151
|
Kondratyev A, Selby D, Gale K. Status epilepticus leads to the degradation of the endogenous inhibitor of caspase-activated DNase in rats. Neurosci Lett 2002; 319:145-8. [PMID: 11834314 DOI: 10.1016/s0304-3940(02)00004-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Specific biochemical hallmarks of apoptosis, namely internucleosomal DNA fragmentation and caspase-3 activation, appear in the aftermath of status epilepticus (SE). This led us to hypothesize that caspase-activated DNase (CAD) is involved in DNA fragmentation and apoptotic neuronal cell death following SE. The present study aimed to determine whether SE is associated with an activation of CAD, as reflected in the degradation of the CAD inhibitor, ICAD. SE was induced in adult male Sprague-Dawley rats by kainic acid (12 mg/kg i.p.) and seizures were terminated with diazepam after 2 h. At 24, 48, or 72 h after SE termination, protein levels of CAD and ICAD were measured by Western blotting (after sodium dodecyl sulfate-polyacrylamide gel electrophoresis) using specific antibodies. At 48 and 72 h after SE termination, ICAD protein levels significantly decreased (by more than 60%) in rhinal cortex and hippocampus as compared with those in the same tissue from animals not experiencing SE. No changes were detected in total CAD protein levels at any time point, resulting in an increase in the ratio of CAD to its inhibitor. The loss of ICAD following SE is indicative of a disinhibition of CAD, leading to DNA fragmentation. Consistent with this, we observed that the decrease in ICAD between 24 and 48 h was accompanied by a marked increase in DNA fragmentation. Our results support the proposal that CAD participates in caspase-3-mediated internucleosomal DNA fragmentation in the aftermath of SE.
Collapse
Affiliation(s)
- Alexei Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, The Research Building, Room W217, 3970 Reservoir Road, Washington, DC 20007, USA.
| | | | | |
Collapse
|
152
|
Lähteinen S, Pitkänen A, Saarelainen T, Nissinen J, Koponen E, Castrén E. Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur J Neurosci 2002; 15:721-34. [PMID: 11886452 DOI: 10.1046/j.1460-9568.2002.01897.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain derived neurotrophic factor (BDNF) has been suggested to be involved in epileptogenesis. Both pro- and antiepileptogenic effects have been reported, but the exact physiological role is still unclear. Here, we investigated the role of endogenous BDNF in epileptogenesis by using transgenic mice overexpressing truncated trkB, a dominant negative receptor of BDNF. After induction of status epilepticus (SE) by kainic acid, the development of spontaneous seizures was monitored by video-EEG system. Hilar cell loss, and the number of neuropeptide Y immunoreactive cells were studied as markers of cellular damage, and mossy fibre sprouting was investigated as a plasticity marker. Our results show that transgenic mice had significantly less frequent interictal spiking than wild-type mice, and the frequency of spontaneous seizures was lower. Furthermore, compared to wild-type animals, transgenic mice had less severe seizures with later onset and mortality was lower. In contrast, no differences between genotypes were observed in any of the cellular or plasticity markers. Our results suggest that transgenic mice with decreased BDNF signalling have reduced epileptogenesis.
Collapse
Affiliation(s)
- Sari Lähteinen
- Laboratory of Molecular Pharmacology, A.I.Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
153
|
Mennicken F, Chabot JG, Quirion R. Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the forebrain. Glia 2002; 37:124-38. [PMID: 11754211 DOI: 10.1002/glia.10021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As chemokines and their receptors are primarily expressed by glial cells in brain parenchyma, a model of glial cell proliferation may be useful to study the regulation of their expression in the brain. The well-established kainic acid seizure model was used in this study, focusing on the expression of the CCR5 chemokine receptor. Adult Sprague-Dawley rats were injected intraperitoneally with kainic acid (12 mg/kg), and in situ hybridization of CCR5 mRNA was performed at 12 h, 1, 3, or 7 days, posttreatment. Autoradiographic films and wet photographic emulsions demonstrated the very low expression of CCR5 mRNA in normal brain parenchyma, as well as in the microvasculature and ventricular/choroid plexus systems. After kainic acid treatment, brain CCR5 mRNA expression increased progressively from 12 h to 7 days, especially in the olfactory system, amygdaloid complex, thalamus, hippocampal formation, septum, and neocortex. This increase paralleled that of activated microglial cells as shown, using the microglial marker, OX-42. Moreover, CCR5 mRNA ISH combined with neuron-specific enolase immunocytochemistry showed that, in addition to its glial expression, CCR5 mRNA is expressed in neurons in the normal brain and, to a lesser extent, after kainate treatment due to neuronal losses. Finally, CCR5 protein is detected by immunocytochemistry in neurodegenerative areas in numerous glial cells, as well as in neurons, as clearly shown in the hippocampal formation. In summary, the chemokine receptor CCR5 is expressed by neuronal and non-neuronal cell types in the normal brain and is upregulated in both cell types after an insult.
Collapse
Affiliation(s)
- Françoise Mennicken
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, LaSalle-Verdun, Québec, Canada
| | | | | |
Collapse
|
154
|
Hsieh CL, Chiang SY, Cheng KS, Lin YH, Tang NY, Lee CJ, Pon CZ, Hsieh CT. Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2002; 29:331-41. [PMID: 11527075 DOI: 10.1142/s0192415x01000356] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gastrodia elata Bl. (GE) is a traditional Chinese herb that is commonly used in Chinese communities to treat convulsive disorders such as epilepsy. The purpose of the present study was to determine the anticonvulsive and free radical activities of GE in rats. In vitro studies were conducted by using brain tissue from 6 male Sprague-Dawley (SD) rats treated with 120 microg/ml of kainic acid (KA), with or without the addition of various concentrations of GE. In vivo studies were conducted in a total of 30 male SD rats divided into 5 groups of 6 rats which were treated as follows: 1) the normal group received an intraperitoneal injection (i.p.) of PBS (Phosphate buffer saline, 1 ml/kg); 2) the control group received KA (12 mg/kg) i.p.; 3) the GE 1.0 group received oral administration of GE 1.0 g/kg 30 min prior to KA administration; 4) the GE 0.5 group received oral administration of GE 0.5 g/kg 30 min prior to KA administration; 5) the PH group received oral administration of phenytoin 20 mg/kg 30 min prior to KA administration. Seizures were verified by behavioral observations, electroencephalograph (EEG) and electromyography (EMG). Lipid peroxide levels in the rat brain, luminol chemiluminescence (CL) and lucigenin-CL in the peripheral blood were measured simultaneously after behavioral observations. The results indicate that GE administration significantly reduced KA-induced lipid peroxide levels in vitro. Oral administration of GE 1.0 g/kg and phenytoin 20 mg/kg significantly reduced counts of wet dog shakes (WDS), paw tremor (PT) and facial myoclonia (FM) in KA-treated rats. In addition, oral administration of GE 1.0 g/kg significantly delayed the onset of WDS, from 30 min in the control group to 46 min in the 0.5 g/kg group, and 63 min in the GE 1.0 g/kg group. A significantly reduced level of lipid peroxides in the rat brain was found in the GE 1.0 g/kg, 0.5 g/kg, and phenytoin 20 mg/kg groups. The GE 1.0 g/kg group showed significant reduction of luminol-CL and lucigenin-CL counts in the peripheral blood compared to the control group. The results of the present study demonstrate that GE has anticonvulsive and free radical scavenging activities. Further studies are needed to determine the clinical effectiveness of GE as an anticonvulsant in humans.
Collapse
Affiliation(s)
- C L Hsieh
- Chang Gung Traditional Chinese Medicine Hospital and Chang Gung University, Graduate Institute of Traditional Chinese Medicine, Kwei-Shan, Taoyuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Camón L, de Vera N, Martínez E. Polyamine metabolism and glutamate receptor agonists-mediated excitotoxicity in the rat brain. J Neurosci Res 2001; 66:1101-11. [PMID: 11746442 DOI: 10.1002/jnr.10024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Putrescine (PUT) increases have been seen in a range of models of neuropathological disturbances. The present study was designed to compare the ability of various types of glutamate receptor agonist to promote excitotoxic brain damage and to examine whether a PUT increase is a general marker of excitotoxic brain damage. To that end, we evaluated features of brain damage associated with the excitotoxicity induced by both ionotropic glutamate receptor (iGluR) and metabotropic glutamate receptor (mGluR) agonists in the conscious rat and the changes produced in the regulation of polyamine metabolism. Intracerebroventricular infusion of N-methyl-D-aspartate (NMDA; 80 nmol), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; 15 nmol), kainic acid (KA; 2.3 nmol), (R,S)-3,5-dihydroxyphenylglycine (3,5-DHPG; 1.5 micromol), and (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD; 2 micromol) produced similar seizure incidences (76-84%) in the rat. The convulsant episodes appeared sooner after iGluR (13-22 min) than after mGluR agonists (50-179 min). Histological analysis of the hippocampus 24 hr after seizures indicated several degrees of excitotoxic injury after equiconvulsive doses of the iGluR and mGluR agonists assayed. The agonists can be placed in the following order, according to the degree of damage they produce: AMPA > 3,5-DHPG approximately KA > NMDA > 1S,3R-ACPD. In the frontal cortex, moderate to low levels of damage were observed after all GluR agonists. Both iGluR- and mGluR-induced seizures produced an overshoot in the hippocampal and cortical PUT concentration, whereas spermidine and spermine levels were similar to control. Moreover, a concurrence of increased PUT levels and brain damage was observed, indicating that PUT is a general marker of excitotoxic brain damage.
Collapse
Affiliation(s)
- L Camón
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Rosselló 161, 6th floor, 08036-Barcelona, Spain.
| | | | | |
Collapse
|
156
|
Pirttilä TR, Pitkänen A, Tuunanen J, Kauppinen RA. Ex vivo MR microimaging of neuronal damage after kainate-induced status epilepticus in rat: correlation with quantitative histology. Magn Reson Med 2001; 46:946-54. [PMID: 11675647 DOI: 10.1002/mrm.1281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was designed to investigate whether T(2)-weighted signal changes obtained by microimaging of paraformaldehyde-fixed brain correlate with the histologically quantified damage in a model of status epilepticus (SE) induced by kainic acid in the rat. Animals were killed at several time points up to 8 weeks after a single intraperitoneal kainate (KA) injection (9 mg/kg). Perfusion-fixed brains were embedded in gelatin for MR microimaging at 9.4T. After the MRI analysis, the gelatin was removed and the brains were cryoprotected and processed for quantitative histology. Severity of neuronal damage and gliosis were assessed from thionin-stained serial sections. Correlative analysis of microimaging and histology data was done in the hippocampus, amygdala, parietal rhinal cortex (PaRH), piriform cortex (Pir), and entorhinal cortex. The relative signal intensities in T(2)-weighted images correlate with the severity of neuronal damage in the matched histological sections (correlation coefficients of 0.752-0.826). Our data show that MR microimaging ex vivo detects the degree of neuronal damage and its anatomical distribution after KA-induced SE, thus providing a useful tool for detecting the dynamics of progressive neuronal damage after prolonged seizures.
Collapse
Affiliation(s)
- T R Pirttilä
- National Bio-NMR Facility, A.I.Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|
157
|
Van Bogaert P, De Tiège X, Vanderwinden JM, Damhaut P, Schiffmann SN, Goldman S. Comparative study of hippocampal neuronal loss and in vivo binding of 5-HT1a receptors in the KA model of limbic epilepsy in the rat. Epilepsy Res 2001; 47:127-39. [PMID: 11673027 DOI: 10.1016/s0920-1211(01)00301-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A high density of 5-HT1a receptors is present in pyramidal hippocampal cells. Mapping of these receptors may be performed in vivo using the tracer no-carrier-added 4-(18)F-fluoro-N-2-(1-(2-methoxyphenyl)-1-piperazinyl)ethyl-N-2-pyridinyl-benzamide (MPPF). We tested the hypothesis of a relationship between MPPF binding and post-epileptic neuronal loss in the hippocampus. The model of limbic epilepsy induced by kainic acid (KA) in the rat was used. Rats were sacrificed at various times (1 h-240 days) after systemic injection of 10 mg/kg KA. Determination of MPPF binding in the brain was combined with a quantification of neuronal loss using DNA labeling with propidium iodide and confocal microscopy. Hippocampal MPPF binding varied according to time elapsed from KA injection. An initial decrease from day 1 to day 6 post injection was followed by a relative increase between day 6 and day 30. This effect was observed in rats which showed hippocampal neuronal loss but also in one rat which did not. In KA treated rats, statistically significant relationship between MPPF binding and neuronal count was found during the acute period (rats sacrificed 1 h-day 6 after KA injection) and the chronic phase (rats sacrificed beyond day 60 after KA injection). The late relative increase of MPPF binding suggests an epilepsy-induced increase of 5-HT1a receptors in the hippocampus. This effect needs to be further characterized before considering PET determination of hippocampal MPPF binding as a method of post-epileptic neuronal loss assessment.
Collapse
Affiliation(s)
- P Van Bogaert
- PET/Biomedical Cyclotron Unit, Hôpital Erasme, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
158
|
Ferrer I, Blanco R, Carmona M. Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 94:48-58. [PMID: 11597764 DOI: 10.1016/s0169-328x(01)00198-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitotoxicity is considered a major cell death inductor in neurodegeneration. Yet mechanisms involved in cell death and cell survival following excitotoxic insults are poorly understood. Expression of active, phosphorylation-dependent mitogen-activated extracellular signal-regulated kinases (MAPK/ERKs), stress activated c-Jun N-terminal kinases (SAPK/JNKs) and p38 kinases, as well as their putative active specific transcriptional factor substrates CREB, Elk-1, ATF-2, c-Myc and c-Jun, have been examined following intracortical injection of the glutamate analogue quinolinic acid (QA). Increased JNK(P) and p38(P) immunoreactivity has been found in the core at 1 h following QA injection, whereas increased MAPK(P) immunoreactivity occurs in neurons and glial cells localised around the lesion and in neurons in remote cortical regions. This is accompanied by strong phosphorylated Ser63 c-Jun (c-Jun(P)) immunoreactivity in the core at 3 h, and by strong phosphorylated CREB, Elk-1 and ATF-2 (CREB(P), Elk-1(P) and ATF-2(P)) immunoreactivity mainly in neurons around the core at 24 h following QA injection. Examination with the method of in situ end-labelling of nuclear DNA fragmentation has revealed large numbers of positive cells with no apoptotic morphology in the core at 24 h, thus indicating that JNK(P), p38(P) and c-Jun(P) over-expression precedes cell death. In contrast, MAPK(P), CREB(P), Elk-1(P) and ATF-2(P), but not phosphorylated c-Myc (c-Myc(P)), over-expression correlates with cell survival. Examination of cleaved, active caspase-3 has shown specific immunoreactivity restricted to a few hematogenous cells in the area of injection. Since cleaved caspase-3 is not expressed by dying cells in the present paradigm, JNK(P), p38(P) and c-Jun(P) expression is not associated with caspase-3 activation. The present results demonstrate selective activation of specific MAPK signals which are involved either in cell death or cell survival triggered by excitotoxic insult.
Collapse
Affiliation(s)
- I Ferrer
- Unitat de Neuropatologia, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya (Bellvitge), c/ Feixa Llarga sn, 08907, Hospitalet de Llobregat, Spain.
| | | | | |
Collapse
|
159
|
Kondratyev A, Gale K. Temporal and spatial patterns of DNA fragmentation following focally or systemically-evoked status epilepticus in rats. Neurosci Lett 2001; 310:13-6. [PMID: 11524146 DOI: 10.1016/s0304-3940(01)02055-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Status epilepticus (SE) triggers neuronal degeneration comprised of both necrotic and apoptotic components. Here we determined whether internucleosomal DNA fragmentation reflects the severity of SE-induced neuronal damage. We utilized both a systemic (kainic acid) and a focally-induced model of SE in rats. DNA fragmentation was analyzed in rhinal cortex and hippocampus at various time points following SE episodes of varying durations (30-120 min). Radioactively labeled DNA fragments were analyzed by agarose gel electrophoresis and quantified by liquid scintillation counting. The spatial and temporal characteristics of the SE-evoked DNA fragmentation indicated that this marker of apoptosis appears as early as 8 h after SE and reaches peak expression at 48 h. This method permitted us to quantitatively monitor the evolution of the apoptotic component of cell death over the acute post-injury period (8-72 h). Moreover, in both models of SE, the DNA fragmentation varied directly as a linear function of the duration of SE between 30 and 120 min suggesting that this marker should be highly responsive to neuroprotective intervention.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
160
|
Cyclin-dependent kinase 4 and cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo. J Neurosci 2001. [PMID: 11487632 DOI: 10.1523/jneurosci.21-16-06086.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Systemic administration of the glutamic acid analog kainic acid (KA) causes neuronal cell death in brain-vulnerable regions, such as the piriform cortex, hippocampus, and amygdala in rats. We investigated the relationship between the KA-induced neuronal apoptosis and expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1, key regulators of cell cycle progression. Expression of CDK4 and cyclin D1 was upregulated in neurons of the rat piriform cortex and amygdala 1-3 d after KA administration in vivo. CDK4 and cyclin D1 proteins were induced in the cytoplasm and nuclei of neurons, with a concomitant increase of CDK4- and cyclin D1-positive microglia in the affected areas. Continuous infusion of 100 microm CDK4 or cyclin D1 antisense oligonucleotides into the lateral ventricle using mini-osmotic pumps suppressed the excitotoxin-induced neuronal cell death in the piriform cortex and basolateral amygdaloid nucleus, whereas sense oligonucleotides exhibited no such effect. Although KA administration causes prolonged c-Fos expression in the vulnerable regions that preceded the induction of neuronal apoptosis, the CDK4 or cyclin D1 antisense oligonucleotides exhibited no suppressive effect on c-Fos levels. Our results suggest that CDK4 and cyclin D1 are essential for KA-induced neuronal apoptosis in vivo.
Collapse
|
161
|
Wenninger JM, Pan LG, Martino P, Geiger L, Hodges M, Serra A, Feroah TR, Forster HV. Multiple rostral medullary nuclei can influence breathing in awake goats. J Appl Physiol (1985) 2001; 91:777-88. [PMID: 11457794 DOI: 10.1152/jappl.2001.91.2.777] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the effect on breathing of neuronal dysfunction in the retrotrapezoid (RTN), facial (FN), gigantocellularis reticularis (RGN), or vestibular (VN) nuclei of adult awake goats. Microtubules were chronically implanted to induce neuronal dysfunction by microinjection of an excitatory amino acid (EAA) receptor antagonist or a neurotoxin. The EAA receptor antagonist had minimal effect on eupneic breathing, but 8--10 days after injection of the neurotoxin, 7 of 10 goats hypoventilated (arterial PCO(2) increased 3.2 +/- 0.7 Torr). Overall there were no significant (P > 0.10) effects of the EAA receptor antagonist on CO(2) sensitivity. However, for all nuclei, > or =66% of the antagonist injections altered CO(2) sensitivity by more than the normal 12.7 +/- 1.6% day-to-day variation. These changes were not uniform, inasmuch as the antagonist increased (RTN, n = 2; FN, n = 7; RGN, n = 6; VN, n = 1) or decreased (RTN, n = 2; RGN, n = 3; VN, n = 2) CO(2) sensitivity. Ten days after injection of the neurotoxin into the FN (n = 3) or RGN (n = 5), CO(2) sensitivity was also reduced. Neuronal dysfunction also did not have a uniform effect on the exercise arterial PCO(2) response, and there was no correlation between effects on CO(2) sensitivity and the exercise hyperpnea. We conclude that there is a heterogeneous population of neurons in these rostral medullary nuclei (or adjacent tissue) that can affect breathing in the awake state, possibly through chemoreception or chemoreceptor-related mechanisms.
Collapse
Affiliation(s)
- J M Wenninger
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Kondratyev A, Sahibzada N, Gale K. Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:1-13. [PMID: 11457487 DOI: 10.1016/s0169-328x(01)00099-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. The vulnerability to adrenalectomy-induced apoptotic neuronal death was recently reported to be reduced by prior exposure to repeated daily noninjurious electroconvulsive shock (ECS). The present studies identified apoptosis and apoptosis-associated gene products in the neurodegenerative response to experimentally controlled periods (1 or 2 h) of SE in the rat, and determined whether exposure to ECS can interrupt these apoptotic responses mechanisms. Internucleosomal DNA fragmentation and the presence of apoptotic-like neurons (as assessed by in situ double labeling technique) was detected in hippocampus and rhinal cortex at 24 h after SE. Under these conditions, levels of both mRNA and protein encoded by the 'death promoting' bcl-XS gene were increased in the same brain areas. Pretreatment of animals for 7 days with low intensity (minimal) ECS conferred resistance to SE-evoked neurodegeneration, as assessed histopathologically by silver staining. Associated with this neuroprotective action was a reduction in the incidence of apoptosis-like neuronal morphology and DNA fragmentation, and a prevention of the increase in Bcl-XS protein and mRNA in hippocampus and rhinal cortex. These data suggest that pre-exposure to controlled, brief noninjurious seizures decreases vulnerability to programmed neuronal cell death, that this neuroprotective action occurs upstream from Bcl-XS, and that increases in bcl-XS gene expression may serve as a sensitive indicator of neurodegeneration following SE.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | |
Collapse
|
163
|
Salmenperä T, Kälviäinen R, Partanen K, Pitkänen A. Hippocampal and amygdaloid damage in partial epilepsy: a cross-sectional MRI study of 241 patients. Epilepsy Res 2001; 46:69-82. [PMID: 11395291 DOI: 10.1016/s0920-1211(01)00258-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients with drug-refractory temporal lobe epilepsy (TLE) often have hippocampal and amygdaloid damage. The present study investigated the factors associated with the occurrence and severity of damage in patients with partial epilepsy. Magnetic resonance imaging was used to measure the volumes of the hippocampus and the amygdala in 241 patients with different durations of epilepsy. We also investigated the association of damage with the location of seizure focus and clinical factors (age at onset of seizures, lifetime seizure number and medical history of complex febrile convulsions, intracranial infection or status epilepticus) with regression analysis. We found that high lifetime seizure number (P<0.05), history of complex febrile convulsions (P<0.01), and age < or = 5 years at the time of the first seizure (P<0.01) were significant risk factors for reduced hippocampal volume in TLE patients. The severity of amygdaloid damage did not differ between TLE patients with different durations of epilepsy or seizure frequency, but complex febrile convulsions (P<0.05) and intracranial infection (P<0.05) were associated with amygdaloid damage. In patients with extratemporal or unclassified partial epilepsy, the hippocampal and amygdaloid volumes did not differ when patients with different durations of epilepsy were compared with controls. The present findings indicate that a high seizure number, the occurrence of complex febrile convulsions, and an early onset of seizures contribute to hippocampal volume reduction in patients with TLE. The data provided have important implications with regard to early and effective management and seizure control in vulnerable patients.
Collapse
Affiliation(s)
- T Salmenperä
- Department of Neurology, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | | | | | | |
Collapse
|
164
|
Rodrigues MC, Guizzo R, dos Santos WF, Cairasco NG. A comparative neuroethological study of limbic seizures induced by Parawixia bistriata venom and kainic acid injections in rats. Brain Res Bull 2001; 55:79-86. [PMID: 11427341 DOI: 10.1016/s0361-9230(01)00495-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A number of neurotoxins derived from arthropod venoms are known to show highly selective effects on nervous tissue. These neurotoxins have been proved to be extremely useful tools to investigate either convulsive or anticonvulsive mechanisms in the nervous system. In the present work, intracerebroventricular injection of the crude venom from the spider Parawixia bistriata (Araneae, Araneidae) in rats induced convulsive limbic seizures (head and forelimb myoclonus, as well as rearing and falling). Neuroethological analysis showed that the limbic seizures induced by the venom were different from those induced by kainic acid. Intravenous injection of the same venom did not induce seizures, but the neuroethological analysis showed an intensification of grooming behavior similar to a displaced activity. In conclusion, our experiments point that crude venom of P. bistriata may contain convulsant neurotoxins probably acting in limbic system structures. The mechanism of action of these neurotoxins may be different from simple activation of glutamatergic kainate receptors, as evidenced by a comparative neuroethological analysis of seizures induced by either venom or kainic acid.
Collapse
Affiliation(s)
- M C Rodrigues
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicologia e Educação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
165
|
Chuang JI, Chen ST, Chang YH, Jen LS. Alteration of Bcl-2 expression in the nigrostriatal system after kainate injection with or without melatonin co-treatment. J Chem Neuroanat 2001; 21:215-23. [PMID: 11382533 DOI: 10.1016/s0891-0618(01)00109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to understand further the role of the anti-apoptotic Bcl-2 proto-oncogene protein in excitotoxin-induced brain injury and possible interaction between Bcl-2 and the antioxidant melatonin, the expression of Bcl-2 in various brain parts was studied after intrastriatal injection of kainate (KA, 2.5 nmol) with or without co-treatment of melatonin (10 mg/kg, intraperitoneally (i.p.)). Three days after unilateral injection of KA to the striatum in the rat, a dramatic direct cytotoxic effect was observed, as indicated an expression of Bcl-2 immunoreactivity in TUNEL- and OX-42-positive cells in the KA-injected striatum and traumatized cortical region. A less severe detrimental effect was also observed in the ipsilateral substantia nigra and peritraumatic cortex, as reflected by an upregulation of Bcl-2-immunostained neurons. Surprisingly, a reduction in Bcl-2-immunoreactive neurons that was accompanied by a less severe loss of tyrosine hydroxylase-immunoreactive neurons in the nigrostriatal pathway was observed after co-treatment with melatonin. Western blot analysis confirmed that Bcl-2 expression is elevated in striatum and cortex on the lesioned side, and that its expression was attenuated substantially after systemic administration of melatonin. The results showing an upregulation of Bcl-2 in nigral neurons and reactive microglia after KA lesion are consistent with the view that Bcl-2 is protective in function in the central nervous system.
Collapse
Affiliation(s)
- J I Chuang
- Department of Physiology, National Cheng Kung University, Taiwan 701, Taiwan, ROC
| | | | | | | |
Collapse
|
166
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
167
|
Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, Moechars D, Van Leuven F, Herms J. Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 2001; 276:11539-44. [PMID: 11278803 DOI: 10.1074/jbc.m010977200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutant human presenilin-1 (PS1) causes an Alzheimer's-related phenotype in the brain of transgenic mice in combination with mutant human amyloid precursor protein by means of increased production of amyloid peptides (Dewachter, I., Van Dorpe, J., Smeijers, L., Gilis, M., Kuiperi, C., Laenen, I., Caluwaerts, N., Moechars, D., Checler, F., Vanderstichele, H. & Van Leuven, F. (2000) J. Neurosci. 20, 6452-6458) that aggravate plaques and cerebrovascular amyloid (Van Dorpe, J., Smeijers, L., Dewachter, I., Nuyens, D., Spittaels, K., van den Haute, C., Mercken, M., Moechars, D., Laenen, I., Kuipéri, C., Bruynseels, K., Tesseur, I., Loos, R., Vanderstichele, H., Checler, F., Sciot, R. & Van Leuven, F. (2000) J. Am. Pathol. 157, 1283-1298). This gain of function of mutant PS1 is approached here in three paradigms that relate to glutamate neurotransmission. Mutant but not wild-type human PS1 (i) lowered the excitotoxic threshold for kainic acid in vivo, (ii) facilitated hippocampal long-term potentiation in brain slices, and (iii) increased glutamate-induced intracellular calcium levels in isolated neurons. Prominent higher calcium responses were triggered by thapsigargin and bradykinin, indicating that mutant PS modulates the dynamic release and storage of calcium ions in the endoplasmatic reticulum. In reaction to glutamate, overfilled Ca(2+) stores resulted in higher than normal cytosolic Ca(2+) levels, explaining the facilitated long-term potentiation and enhanced excitotoxicity. The lowered excitotoxic threshold for kainic acid was also observed in mice transgenic for mutant human PS2[N141I] and was prevented by dantrolene, an inhibitor of Ca(2+) release from the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Schneider
- Department of Neuropathology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Clinical studies of the treatment of status epilepticus are extremely difficult to carry out, therefore a paucity of new clinical studies have been reported. Much of the progress regarding the therapy of status epilepticus has come from a better understanding of the epidemiology of status epilepticus and its consequences and from laboratory studies of experimental status. Status epilepticus has been used as an experimental tool to study epileptogenesis, but from such studies have come insights that can be applied to the therapy of status epilepticus itself. This review will focus on information from epidemiological, experimental, and clinical studies of status epilepticus, which may contribute to the improved treatment of this life-threatening disorder.
Collapse
Affiliation(s)
- D M Treiman
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
169
|
Eppler B, Patterson TA, Zhou W, Millard WJ, Dawson R. Kainic acid (KA)-induced seizures in Sprague-Dawley rats and the effect of dietary taurine (TAU) supplementation or deficiency. Amino Acids 2001; 16:133-47. [PMID: 10319185 DOI: 10.1007/bf01321532] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Male Sprague-Dawley rats received TAU supplementation (1.5% in drinking water) or TAU deficient diets for 4 weeks to test for a possible neuroprotective role of TAU in KA-induced (10 mg/kg s.c.) seizures. TAU supplementation significantly increased serum and hippocampal TAU levels, but not TAU content in temporal cortex or striatum. TAU deficient diets did not attenuate serum or tissue TAU levels. Dietary TAU supplementation failed to decrease the number or latency of partial or clonic-tonic seizures or wet dog shakes, whereas a TAU deficient diet decreased the number of clonictonic and partial seizures. This study does not support previous observations of an anticonvulsant effect of TAU against KA-induced seizures. KA-treatment decreased alpha 2-adrenergic receptor binding sites and TAU content in the temporal cortex across all dietary treatment groups, supporting previous evidence of severe KA-induced damage and neuronal loss in this brain region.
Collapse
Affiliation(s)
- B Eppler
- Department of Pharmacodynamics, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
170
|
Mangan PS, Scott CA, Williamson JM, Bertram EH. Aberrant neuronal physiology in the basal nucleus of the amygdala in a model of chronic limbic epilepsy. Neuroscience 2001; 101:377-91. [PMID: 11074161 DOI: 10.1016/s0306-4522(00)00358-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limbic epilepsy is a chronic condition associated with a broad zone of seizure onset and pathology. Studies have focused mainly on the hippocampus, but there are indications that changes occur in other regions of the limbic system. This study used in vitro intracellular recording and histology to examine alterations to the physiology and anatomy of the basal nucleus of the amygdala in a rat model of chronic limbic epilepsy characterized by spontaneously recurring seizures. Epileptic pyramidal neuron responses evoked by stria terminalis stimulation revealed hyperexcitability characterized by multiple action potential bursts and no evident inhibitory potentials. In contrast, no hyperexcitability was observed in amygdalar neurons from kindled (included as a control for seizure activity) or control rats. Blockade of ionotropic glutamate receptors unmasked inhibitory postsynaptic potentials in epileptic pyramidal neurons. Control, kindled and epileptic inhibitory potentials were predominantly biphasic, with fast and slow components, but a few cells exhibited only the fast component (2/12 in controls, 0/3 in kindled, 3/10 in epileptic). Epileptic fast inhibitory potentials had a more rapid onset and shorter duration than control and kindled. Approximately 40% of control neurons exhibited spontaneous inhibitory potentials; no spontaneous inhibitory potentials were observed in neurons from kindled or epileptic rats. A preliminary histological examination revealed no gross alterations in the basal amygdala from epileptic animals. These results extend previous findings from this laboratory that hyperexcitability is found in multiple epileptic limbic regions and may be secondary to multiple alterations in excitatory and inhibitory efficacy. Because there were no differences between control and kindled animals, the changes observed in the epileptic animals are unlikely to be secondary to recurrent seizures.
Collapse
Affiliation(s)
- P S Mangan
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, VA 22908,USA
| | | | | | | |
Collapse
|
171
|
Bourne JA, Fosbraey P, Halliday J. Changes in striatal electroencephalography and neurochemistry induced by kainic acid seizures are modified by dopamine receptor antagonists. Eur J Pharmacol 2001; 413:189-98. [PMID: 11226392 DOI: 10.1016/s0014-2999(01)00747-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the involvement of striatal dopamine release in electrographic and motor seizure activity evoked by kainic acid in the guinea pig. The involvement of the dopamine receptor subtypes was studied by systemic administration of the dopamine D(1) receptor antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390; 0.5 mg kg(-1)), or the dopamine D(2) antagonist, (5-aminosulphonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride, 30 mg kg(-1)). Microdialysis and high performance liquid chromatography were used to monitor changes in extracellular levels of striatal dopamine and its metabolites, glutamate, aspartate and gamma-amino-butyric acid (GABA). These data were correlated with changes in the striatal and cortical electroencephalographs and clinical signs. We found that, although neither dopamine receptor antagonist inhibited behavioural seizure activity, blockade of the dopamine D(1)-like receptor with SCH 23390 significantly reduced both the 'power' of the electrical seizure activity and the associated change in extracellular striatal concentration of glutamate, whilst increasing the extracellular striatal concentration of GABA. In contrast, blockade of the dopamine D(2)-like receptor with sulpiride significantly increased the extracellular, striatal content of glutamate and the dopamine metabolites. These results confirm previous evidence in other models of chemically-evoked seizures that antagonism of the dopamine D(1) receptor tends to reduce motor and electrographic seizure activity as well as excitatory amino-acid transmitter activity, while antagonism of the dopamine D(2) receptor has relatively less apparent effect.
Collapse
Affiliation(s)
- J A Bourne
- Biomedical Sciences Department, CBD Porton Down, Salisbury SP4 0JQ, UK.
| | | | | |
Collapse
|
172
|
Abstract
Although the neuropathological changes caused by severe or repeated seizures have been well characterized, many questions about the molecular mechanisms involved remain unanswered. Neuronal cell death, reactive gliosis, enhanced neurogenesis, and axonal sprouting are four of the best-studied sequelae of seizures. In vitro, each of these pathological processes can be substantially influenced by soluble protein factors, including neurotrophins, cytokines, and growth factors. Furthermore, many of these proteins and their receptors are expressed in the adult brain and are up-regulated in response to neuronal activity and injury. We review the evidence that these intercellular signaling proteins regulate seizure activity as well as subsequent pathology in vivo. As nerve growth factor and brain derived neurotrophic factor are the best-studied proteins of this class, we begin by discussing the evidence linking these neurotrophins to epilepsy and seizure. More than a dozen additional cytokines, growth factors, and neurotrophins that have been examined in the context of epilepsy models are then considered. We discuss the effect of seizure on expression of cytokines and growth factors, and explore the regulation of seizure development and aftermath by exogenous application or antagonist perturbation of these proteins. The experimental evidence supports a role for these factors in each aspect of seizure and pathology, and suggests potential targets for future therapeutics.
Collapse
Affiliation(s)
- J L Jankowsky
- Biology Division, California Institute of Technology, 216-76 Caltech, Pasadena, CA 91125, USA
| | | |
Collapse
|
173
|
Diehl B, Najm I, Ruggieri P, Tkach J, Mohamed A, Morris H, Wyllie E, Fisher E, Duda J, Lieber M, Bingaman W, Lüders HO. Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia 2001; 42:21-8. [PMID: 11207781 DOI: 10.1046/j.1528-1157.2001.19500.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Diffusion-weighted MR imaging (DWI) is a novel technique to delineate focal areas of cytotoxic edema of various etiologies. We hypothesized that DWI may also detect the epileptogenic region and adjacent areas during the ictal and early postictal periods in patients with temporal lobe epilepsy (TLE). METHODS We studied patients with intractable TLE (n = 9), due to hippocampal sclerosis (HS, n = 7), left mesial temporal lobe tumor (n = 1), and of unknown etiology (n = 1). Informed consent was obtained before inclusion in the study. All patients with single short seizures were scanned immediately after EEG-documented seizures (between 45 and 150 min); one of two patients in status was scanned 14 h after cessation of seizures. DWI results were analyzed visually and by calculating apparent diffusion coefficient (ADC) maps. RESULTS We found significant decreases in ADC postictally in one of six patients with TLE due to HS and single short seizures. One patient with an incompletely resected temporal lobe tumor also exhibited ADC abnormalities. One patient in focal status epilepticus revealed a decrease in ADC, and one patient with a continuous aura had no DWI abnormality. CONCLUSIONS Postictal DWI technique may occasionally help delineate epileptic areas in some patients with TLE. Yield is low in patients with HS and single short seizures: it may be higher in patients with tumor or status epilepticus.
Collapse
Affiliation(s)
- B Diehl
- Department of Neurology, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, Ohio 44195, U.S.A.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
|
175
|
Eriksson C, Zou LP, Ahlenius S, Winblad B, Schultzberg M. Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:103-13. [PMID: 11146112 DOI: 10.1016/s0169-328x(00)00251-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokines interleukin-1 beta (IL-1 beta) and IL-1 receptor antagonist (IL-1ra) are rapidly induced in response to excitotoxic and ischemic brain damage. The aim of the present study was to investigate the influence of a non-competitive (dizocilpine maleate, MK-801) and a competitive ((R)-CPP) NMDA receptor antagonist on the transient cytokine expression in the rat brain induced by systemic kainic acid administration. Peripheral administration of kainic acid (10 mg/kg, i.p.) results in a transient expression of IL-1 beta and IL-1ra mRNA, mainly in microglia, in regions showing neurodegeneration such as the hippocampus, thalamus, amygdala, and certain cortical regions. In addition, a few neurons expressing IL-1ra mRNA were observed in the piriform cortex and amygdala following kainic acid injection. Administration of MK-801 (i.p.) 1 h prior to kainic acid injection reduced cytokine expression in all of these regions. MK-801 at 3.0 mg/kg decreased the IL-1 beta mRNA expression, blocked or decreased the IL-1ra mRNA expression, depending on the brain region. MK-801 at 5.0 mg/kg abolished IL-1ra mRNA expression in all of the regions, whereas the IL-1 beta mRNA expression was decreased or blocked, depending on the brain region, or the time point investigated. Peripheral administration of (R)-CPP (15 mg/kg, i.p.) 15 min prior to the kainic acid injection abolished the IL-1 beta mRNA expression. The IL-1ra mRNA expression was abolished in all regions except for a few neurons in the piriform cortex. The finding that NMDA receptor antagonists inhibit the IL-1 beta and IL-1ra mRNA synthesis induced by kainic acid suggests that NMDA receptor activation may be involved in triggering cytokine synthesis following excitotoxic brain damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, S-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
176
|
Schauwecker PE. Seizure-induced neuronal death is associated with induction of c-Jun N-terminal kinase and is dependent on genetic background. Brain Res 2000; 884:116-28. [PMID: 11082493 DOI: 10.1016/s0006-8993(00)02888-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous studies have shown that expression of c-Jun protein, as well as the c-Jun amino-terminal kinase (JNK) group of mitogen-activated protein kinases, may play a critical role in the pathogenesis of glutamate neurotoxicity. In order to define the molecular cascade that leads to c-Jun activation following excitotoxic injury and delineate whether induction of protein synthesis is related to cell death signaling cascades or those changes associated with increased seizure activity, we examined the expression of JNK-1, as well as its substrate, c-Jun and N-terminal phosphorylated c-Jun following kainic acid (KA) administration in two strains of mice. In the present study, we assessed the immunohistochemical expression of these proteins at time points between 2 h and 7 days, in excitotoxic cell death-resistant (C57BL/6) and -susceptible (FVB/N) mouse strains that were systemically injected with saline or kainic acid. No strain-related differences in the immunohistochemical expression of any of the proteins were observed in intact control mice. However, following KA administration, the magnitude and period of induction of JNK-1 protein was associated with impending cell death, while increased phosphorylation of c-Jun protein was associated with resistance to cell death. In contrast, expression of c-Jun protein does not appear to be a reliable indicator of impending cell death, as it was expressed in resistant and vulnerable subfields in mice susceptible to kainate injury. These results provide the first evidence that JNK-1 expression may be involved in producing the neuronal cell death response following excitotoxin-induced injury.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
177
|
Fujikawa DG, Shinmei SS, Cai B. Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia 2000; 41 Suppl 6:S9-13. [PMID: 10999512 DOI: 10.1111/j.1528-1157.2000.tb01549.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine definitively the morphology of neuronal death from lithium-pilocarpine (LPC)-and kainic acid (KA)-induced status epilepticus (SE), and to correlate this with markers of DNA fragmentation that have been associated with cellular apoptosis. Endogenous glutamate release is probably responsible for neuronal death in both seizure models, because neuronal death in both is N-methyl-D-aspartate receptor-mediated. METHODS SE was induced for 3 hours in adult male Wistar rats with either LPC or KA, and 24 or 72 hours later the rats were killed. One group of rats had brain sections, stained with hematoxylin and eosin and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique, examined by light microscopy and by electron microscopy. A separate group of rats had DNA extracted from the same brain regions examined by electron microscopy in the first group. The extracted DNA was electrophoresed on an agarose gel with ethidium bromide and was examined for the presence or absence of internucleosomal DNA cleavage (DNA "laddering"). RESULTS Twenty-four and 72 hours after 3 hours of LPC- or KA-induced SE, neuronal death in the hippocampus, amygdala, and piriform, entorhinal, and frontal cortices was morphologically necrotic, in spite of DNA laddering in these regions 24 and 72 hours after SE and positive TUNEL staining in some of the regions 72 hours after SE. Ultrastructurally, necrotic neurons were dark and shrunken, with cytoplasmic vacuoles and pyknotic nuclei with small, irregular, dispersed chromatin clumps. CONCLUSIONS Our results, together with those of other reports, suggest that programmed cell death-promoting mechanisms are activated by SE in neurons that become necrotic rather than apoptotic and point to the possibility that such mechanisms may contribute to SE-induced neuronal necrosis.
Collapse
Affiliation(s)
- D G Fujikawa
- Neurology Department, Sepulveda Ambulatory Care Center, VA Greater Los Angeles Healthcare System, California 91343, USA.
| | | | | |
Collapse
|
178
|
Najbauer J, Schuman EM, Mamelak AN. The aspirin metabolite sodium salicylate causes focal cerebral hemorrhage and cell death in rats with kainic acid-induced seizures. Neuroscience 2000; 99:107-17. [PMID: 10924956 DOI: 10.1016/s0306-4522(00)00158-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aspirin (acetylsalicylic acid), and its main metabolite sodium salicylate, have been shown to protect neurons from excitotoxic cell death in vitro. The objective of our study was to investigate the possible neuroprotective effects of sodium salicylate in vivo in rats with kainic acid-induced seizures, a model for temporal lobe epilepsy in human patients. Male Sprague-Dawley rats received intraperitoneal injections of kainic acid either alone, or with sodium salicylate given before and for 40h after kainic acid injections. The control group received either phosphate-buffered saline or sodium salicylate without co-administration of kainic acid. Animals developed status epilepticus, which was aborted 1.5-2h later with diazepam. On day 3 following kainic acid-induced seizures, animals received bromodeoxyuridine to measure cellular proliferation, and were killed under anesthesia 24h later. Brains were removed, sectioned, and analysed for gross histological changes, evidence of hemorrhage, DNA fragmentation, cellular proliferation, and microglial immunohistochemistry. We report that sodium salicylate did not protect neurons from seizure-induced cell death, and to the contrary, it caused focal hemorrhage and cell death in the hippocampal formation and the entorhinal/piriform cortex of rats with kainic acid-induced seizures. Hemorrhage was never observed in animals that received vehicle, kainic acid or sodium salicylate only, which indicated that sodium salicylate exerted its effect only in animals with seizures, and was confined to select regions of the brain that undergo seizure activity. Large numbers of cells displaying DNA fragmentation were detected in the hippocampal formation, entorhinal/piriform cortex and the dorsomedial thalamic nucleus of rats that received kainic acid or kainic acid in combination with sodium salicylate. Bromodeoxyuridine immunohistochemistry revealed large numbers of proliferating cells in and around the areas with most severe neural injury induced by kainic acid or kainic acid co-administered with sodium salicylate. These same brain regions displayed intense staining with a microglia-specific marker, an indication of microglial activation in response to brain damage. In all cases, the degree of cell death, cell proliferation and microglia staining was more severe in animals that received the combination of kainic acid and sodium salicylate when compared to animals that received kainic acid alone. We hypothesize that our findings are attributable to sodium salicylate-induced blockade of cellular mechanisms that protect cells from calcium-mediated injury. These initial observations may have important clinical implications for patients with epilepsy who take aspirin while affected by these conditions, and should promote further investigation of this relationship.
Collapse
Affiliation(s)
- J Najbauer
- Division of Biology 216-76 and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
179
|
Zipfel GJ, Babcock DJ, Lee JM, Choi DW. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma 2000; 17:857-69. [PMID: 11063053 DOI: 10.1089/neu.2000.17.857] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While a role has been well established for excitotoxic necrosis in the pathogenesis of traumatic or ischemic damage to the CNS, accumulating evidence now suggests that apoptosis may also be a prominent contributor. In this review we focus on the role of glutamate and attendant intracellular calcium influx in triggering or modifying excitotoxic necrosis and apoptosis, raising the possibility that calcium influx may affect these two death pathways in opposite directions. Incorporating consideration of both pathways will probably be needed to develop the most effective neuroprotective treatments for CNS injury.
Collapse
Affiliation(s)
- G J Zipfel
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
180
|
Lee YK, Lee SR, Kim CY. Melatonin attenuates the changes in polyamine levels induced by systemic kainate administration in rat brains. J Neurol Sci 2000; 178:124-31. [PMID: 11018704 DOI: 10.1016/s0022-510x(00)00393-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemically administered kainate has been demonstrated to induce neuronal damage and changes of the levels of biochemical substances related to neurotoxicity. Polyamines are thought to be important in the generation of edema and neuronal cell loss associated with various type of excitotoxicity. Melatonin exerts potent free radical scavenging, antioxidant, and neuroprotective properties. This study was designed to estimate the effect of exogenous melatonin administration on the changes of polyamine levels in rat brains after systemic administration of kainate. Kainate [10 mg/kg, intraperitoneally (i.p.)] was injected into the rats to produce excitotoxicity. Melatonin (15 mg/kg, i.p.) was administered 1 h before, immediately after, and 1 h after kainate treatment. We examined the polyamine [putrescine (PU), spermidine (SD) and spermine (SM)] levels in the cerebral cortex and hippocampus and neuronal density in the hippocampal CA1 and CA3 subsectors in brain sections. PU levels were increased 8 and 24 h after kainate treatment and the administration of melatonin attenuated these changes. Only minor changes were noted in the levels of the polyamine SD and SM after the kainate treatment. In histology, neuronal injuries in the hippocampal CA1 and CA3 subsectors were examined 3 days after kainate treatment and melatonin reduced the kainate-induced neuronal injuries. Our results show that melatonin inhibits the polyamine responses in the cerebral cortex and hippocampus following kainate-induced excitotoxicity and PU may be responsible for the protective effect of melatonin against kainate-induced excitotoxicity.
Collapse
Affiliation(s)
- Y K Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, 2-101 Dongin dong, 700-422, Taegu, South Korea
| | | | | |
Collapse
|
181
|
Fan XD, Li XM, Juorio AV. Substantia nigra pars reticulata lesion facilitates kainic acid-induced seizures. Brain Res 2000; 877:107-9. [PMID: 10980251 DOI: 10.1016/s0006-8993(00)02620-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The administration of subconvulsive doses of kainic acid (5 mg/kg, intraperitoneally) to rats, with lesion of the substantia nigra pars reticulata (1 week), produced high frequency wet dog shakes and severe convulsive behavior (observed in 60% of the rats). The behavior was not observed in rats treated with kainic acid but without reticulata lesion. The results show that rats with unilateral lesion of the substantia nigra pars reticulata are more vulnerable to seizure stimuli.
Collapse
Affiliation(s)
- X D Fan
- Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon, S7N 5E4, Saskatchewan, Canada
| | | | | |
Collapse
|
182
|
Parsons JT, Churn SB, Kochan LD, DeLorenzo RJ. Pilocarpine-induced status epilepticus causes N-methyl-D-aspartate receptor-dependent inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake. J Neurochem 2000; 75:1209-18. [PMID: 10936204 DOI: 10.1046/j.1471-4159.2000.0751209.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Status epilepticus is associated with sustained and elevated levels of cytosolic Ca(2+). To elucidate the mechanisms associated with changes of cytosolic Ca(2+) after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in microsomes isolated from rat cortex, because the Ca(2+) uptake mechanism plays a major role in regulating intracellular Ca(2+) levels. The data demonstrated that the initial rate and overall Ca(2+) uptake in microsomes from pilocarpine treated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca(2+) uptake caused by status epilepticus was not an artifact of increased Ca(2+) release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg(2+)/Ca(2+) ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca(2+) uptake. The data suggest that inhibition of microsomal Mg(2+)/Ca(2+) ATPase Ca(2+) uptake is involved in NMDA-dependent deregulation of cytosolic Ca(2+) homeostasis associated with status epilepticus.
Collapse
Affiliation(s)
- J T Parsons
- Department of Neurology, Medical College of Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | | | |
Collapse
|
183
|
Fujikawa DG, Shinmei SS, Cai B. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 2000; 98:41-53. [PMID: 10858610 DOI: 10.1016/s0306-4522(00)00085-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prolonged seizures (status epilepticus) induced by kainic acid activate programmed cell death mechanisms, and it is believed that kainic acid-induced status epilepticus induces neuronal apoptosis. In order to test this hypothesis, adult rats were subjected to 3-h kainic acid-induced seizures, with 24- or 72-h recovery periods. Neuronal death was assessed by light microscopy with the Hematoxylin and Eosin stain and with in situ terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL stain), by electron microscopy, and by agarose gel electrophoresis of DNA extracted from five vulnerable brain regions. Spontaneous and MK-801-induced apoptotic neurons from retrosplenial cortex of neonatal rats, evaluated by light and electron microscopy, were used as positive controls for apoptosis. Surprisingly, the large chromatin clumps of apoptotic neurons were TUNEL negative, whereas the cytoplasm showed light-to-moderate TUNEL staining, consistent with a lack of identifiable nuclear membranes ultrastructurally, and with intermingling of nuclear and cytoplasmic contents. Ultrastructurally, the acidophilic neurons produced by kainic acid-induced status epilepticus, identified with Hematoxylin and Eosin stain, were dark, shrunken and necrotic, with pyknotic nuclei containing small, dispersed chromatin clumps, and with cytoplasmic vacuoles, some of which were swollen, disrupted mitochondria. No apoptotic cells were seen. Acidophilic neurons were found in up to 20 of 23 brain regions examined and comprised 10-25% of the total number of neurons examined. A subset of these neurons (<10% of the total number of neurons in five of 23 regions) had TUNEL-positive nuclei 72h but not 24h after status epilepticus. Internucleosomal DNA cleavage (DNA "laddering") occurred in the four most damaged brain regions examined by electron microscopy 24h after SE and the three most damaged regions 72h after status epilepticus. Our results demonstrate that kainic acid-induced status epilepticus produces neuronal necrosis and not apoptosis in adult rats. The necrotic neurons show nuclear pyknosis, chromatin condensation and DNA laddering. Programmed cell death mechanisms activated by kainic acid-induced status epilepticus occur in neurons which become necrotic and could contribute to necrotic, as well as apoptotic, neuronal death.
Collapse
Affiliation(s)
- D G Fujikawa
- Experimental Neurology Laboratory, VA Greater Los Angeles Healthcare System, Sepulveda Ambulatory Care Center and Nursing Home Care Unit, Sepulveda CA 91343, USA.
| | | | | |
Collapse
|
184
|
Fujikawa DG, Itabashi HH, Wu A, Shinmei SS. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000; 41:981-91. [PMID: 10961625 DOI: 10.1111/j.1528-1157.2000.tb00283.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the regional distribution of neuronal damage caused strictly by status epilepticus (SE) without systemic complications, underlying brain pathology, or a history of preexisting epilepsy. METHODS The medical records and electroencephalograms (EEGs) of three deceased patients who developed SE in the hospital were reviewed. Their brains were formalin-fixed, and 17 brain regions were selected, embedded in paraffin, and sectioned. Alternate sections were stained with either hematoxylin and eosin and cresyl violet to determine the extent of neuronal loss and gliosis or glial fibrillary astrocytic protein to confirm the extent of astrocytic proliferation. RESULTS The three patients died 11 to 27 days after the onset of focal motor SE; none had hypotension, hypoxemia, hypoglycemia, or significant hyperthermia. Two patients had no prior seizures and no underlying brain pathology. The third patient, who had leptomeningeal carcinomatosis, had one seizure 2 months before the onset of SE. The duration of SE was 8.8 hours to 3 days. EEGs showed unilateral temporal lobe sharp-wave discharges in one patient and independent temporal lobe sharp-wave discharges bilaterally in the other two patients. In addition to widespread neuronal loss and reactive gliosis in the hippocampus, amygdala, dorsomedial thalamic nucleus, and Purkinje cell layer of the cerebellum, we report for the first time periamygdaloid (piriform) and entorhinal cortical damage occurring acutely after SE in humans. CONCLUSIONS In the absence of systemic complications or preexisting epilepsy, SE produces neuronal loss in a distribution similar to that from domoic acid-induced SE in humans and from kainic acid- and pilocarpine-induced SE in rats.
Collapse
Affiliation(s)
- D G Fujikawa
- Neurology Department, VA Greater Los Angeles Healthcare System, Sepulveda Ambulatory Care Center, California 91343, USA.
| | | | | | | |
Collapse
|
185
|
Abstract
While primary, or idiopathic, epilepsies may exist, in the vast majority of cases epilepsy is a symptom of an underlying brain disease or injury. In these cases, it is difficult if not impossible to dissociate the consequences of epilepsy from the consequences of the underlying disease, the treatment of either the disease or the epilepsy, or the actual seizures themselves. Several cases of apparent complications of epilepsy are presented to illustrate the range of consequences encountered in clinical practice and the difficulty in assigning blame for progressive symptomatology in individual cases. Because of the difficulty in interpreting clinical material, many investigators have turned to epilepsy models in order to address the potential progressive consequences of recurrent seizures. The authors review experimental data, mainly from animal models, that illustrate short-, medium-, and long-term morphological and biochemical changes in the brain occurring after seizures, and attempt to relate these observations to the human condition.
Collapse
Affiliation(s)
- A J Cole
- Epilepsy Service, Massachusetts General Hospital and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
186
|
Salmenperä T, Kälviäinen R, Partanen K, Mervaala E, Pitkänen A. MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res 2000; 40:155-70. [PMID: 10863143 DOI: 10.1016/s0920-1211(00)00121-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal damage has been observed in the medial temporal lobe of both humans and animals following status epilepticus. The aim of the present study was to investigate the occurrence of medial temporal lobe damage in status epilepticus patients treated in hospital with a predetermined protocol and to assess whether the changes progress in a long-term follow-up. The volumes of the hippocampus, amygdala, entorhinal and perirhinal cortices were measured using magnetic resonance imaging (MRI) in nine adult patients with status epilepticus 3 weeks, 6 and 12 months after the insult. The control group included 20 healthy subjects. The etiology of status epilepticus was an acute process in one patient and a chronic process in eight cases. The mean duration of secondarily generalized tonic-clonic status epilepticus episodes was 1 h and 44 min. Volumetric MRI indicated that none of the patients developed marked volume reduction in the hippocampus, amygdala, or the entorhinal and perirhinal cortices during the 1-year follow-up period. Status epilepticus does not invariably lead to a progressive volume reduction in the medial temporal lobe structures of adult patients treated promptly in hospital with a predetermined protocol for rapid cessation of seizure activity.
Collapse
Affiliation(s)
- T Salmenperä
- Department of Neurology, University of Kuopio, PO Box 1627, FIN-70211, Kuopio, Finland
| | | | | | | | | |
Collapse
|
187
|
Fan XD, Li XM, Juorio AV. Substantia nigra pars reticulata lesion induces preconvulsive behavior and changes in glutamate receptor gene expression in the rat brain. Brain Res 2000; 867:40-51. [PMID: 10837796 DOI: 10.1016/s0006-8993(00)02199-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substantia nigra pars reticulata (SNpr) has been proposed to play an important role in the control of the propagation and/or the generation of epileptic seizures. Earlier studies have shown differential effects of the lesion of the SNpr on seizure genesis that demonstrated a regional difference in the anterior and posterior parts of the SNpr in preconvulsive behavior induced by unilateral reticulata injection of dopamine (DA). This study was aimed to investigate some of the underlying mechanisms of the preconvulsive behavior elicited by unilateral SNpr DA injection by the study of changes in the gene expression of glutamate receptor subunits (GluR1, GluR2 and NMDAR1) and of changes in animal behavior following coinfusion of DA and a DA D1 antagonist SCH 23390 into the SNpr. Unilateral injection of exogenous DA into the anterior region of the SNpr induced rapid and short lasting preconvulsive behavior up to wet dog shakes stage and a significant reduction of gene expression for GluR1, GluR2 and NMDAR1 subunits in rat hippocampal subfields including CA1 through CA4 and dentate gyrus (DG) at 1 day after nigral DA injection. The effect was long lasting and persisted for at least 3 weeks. Both preconvulsive behavior and downregulation of glutamate receptor subunit genes were completely blocked by simultaneous coinfusion of DA and SCH 23390. The results suggest, for the first time, that DA D1 receptor in the SNpr may mediate the nigral-involved seizure development. Glutamate desensitization, and/or selective early neuronal damage might be responsible for the downregulation of glutamate receptor subunits by transient preconvulsive activity.
Collapse
Affiliation(s)
- X D Fan
- Neuropsychiatry Research Unit, Department of Psychiatry, Medical Research Building, University of Saskatchewan, 103 Wiggins Road, S7N 5E4, Saskatoon, Sask., Canada
| | | | | |
Collapse
|
188
|
Medvedev A, Mackenzie L, Hiscock JJ, Willoughby JO. Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex. Brain Res Bull 2000; 52:89-98. [PMID: 10808078 DOI: 10.1016/s0361-9230(00)00239-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systemic administration of kainic acid (KA), an excitatory amino acid agonist, provides a model of epilepsy due to increased neural excitation. We examined discharges using multi-channel EEG recording and spectral analysis in rats implanted with neocortical and hippocampal electrodes after intravenous infusion of KA (10 mg/kg), until and including the first convulsive seizure. Gamma activity (30-80 Hz) increased in hippocampus from 3-9 min after KA administration. Two types of preconvulsive bilateral rhythmic discharges were observed, both consisting of generalised high voltage sharp waves at low frequencies (<10 Hz) mixed with fast oscillations (<20 Hz): (1) generalised non-convulsive discharges (GNCD) occurred in all animals and (2) spike-wave discharges (SW), predominantly localised in neocortex, occurred in 45% of animals. Convulsive seizure evolved out of a GNCD. Spectral profiles of epileptiform discharges were characterised by an increase in power of low (<10 Hz) and high (beta and gamma range, 20-80 Hz) frequencies which were differently expressed in neocortex and hippocampus. Thus, in this model of convulsive epilepsy caused by increased excitation, there is an early increase in gamma activity, a process that might contribute to synchronisation, and two distinct types of bilateral discharges, hippocampal-neocortical (GNCD) and preferentially neocortical (SW). Neocortical, not hippocampal, changes in EEG power correlated with development of convulsive behaviours.
Collapse
Affiliation(s)
- A Medvedev
- Department of Medicine and Centre for Neuroscience, Flinders University and Medical Centre, Adelaide, South Australia
| | | | | | | |
Collapse
|
189
|
Larson AA, Giovengo SL, Shi Q, Velázquez RA, Kovacs KJ. Zinc in the extracellular area of the central nervous system is necessary for the development of kainic acid-induced persistent hyperalgesia in mice. Pain 2000; 86:177-84. [PMID: 10779674 DOI: 10.1016/s0304-3959(00)00244-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kainic acid produces a persistent hyperalgesia when injected intraperitoneally (i.p.) in the rat or mouse. At higher doses than those needed to influence nociception, kainic acid induces seizures and translocation of histologically reactive zinc in the hippocampus. We tested the hypothesis that zinc, localized in a population of small diameter primary afferent neurons, plays a role in kainic acid-induced hyperalgesia similar to that in the hippocampus where zinc translocation accompanies kainic acid-induced seizures. The importance of zinc in the extracellular area was assessed by the influence of compounds that chelate divalent cations (disodium calcium ethylene diaminetetraacetate (CaEDTA)) or zinc (dipicolinic acid (DPA)) on kainic acid-induced hyperalgesia. When measured using the tail flick assay, thermal hyperalgesia was blocked by pretreatment intrathecally (i.t.) with either 10 nmol of NaCaEDTA or 1 nmol of DPA, drugs whose distribution is limited to the extracellular area. Injection of 10 ng zinc chloride i.t. had no long-term effect on nociception or on kainic acid-induced hyperalgesia. Whether zinc is translocated in response to a hyperalgesic dose of kainic acid was determined using the zinc-selective dye, N-(6-methoxy-8-quinolyl)-para-toluenensulfonamide (TSQ), which produces a delicate stain in the neuropil of the mouse spinal cord as well as a dense stain in the hippocampus. Injection of a hyperalgesic dose of kainic acid failed to alter TSQ fluorescence in either the spinal cord or hippocampus, in contrast to the distinct bleaching of TSQ in the hippocampus 24 h after a convulsant dose of kainic acid. Together these data suggest that, while not translocated, zinc in the extracellular area is necessary but not sufficient for the development of kainic acid-induced hyperalgesia.
Collapse
Affiliation(s)
- A A Larson
- Department of Veterinary Pathobiology, University of Minnesota, St. Paul 55108, USA.
| | | | | | | | | |
Collapse
|
190
|
Morton AJ, Leavens W. Mice transgenic for the human Huntington's disease mutation have reduced sensitivity to kainic acid toxicity. Brain Res Bull 2000; 52:51-9. [PMID: 10779703 DOI: 10.1016/s0361-9230(00)00238-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mechanism underlying the pathology of Huntington's disease (HD) is unknown, although there is substantial evidence supporting a role for excitotoxicity. The discovery of abnormal aggregations of protein in the brains of patients with HD, as well as in the brains of transgenic mice modeling this disease, has led to the suggestion that these "inclusions" have a pathogenic role. However, the relationship between inclusion formation and the progressive neurodegeneration in HD remains unclear. Here, we used mice transgenic for the first exon of the HD gene and an expanded CAG repeat (R6/2 line) to examine the role of neuronal intranuclear inclusions in kainic acid (KA) excitotoxicity. Unexpectedly, we found that the toxicity of KA was markedly attenuated in R6/2 mice compared with wild-type mice. In particular, the number and severity of KA-induced seizures in R6/2 mice was significantly reduced. When seizures occurred in 3-week-old R6/2 mice, we found lesions in the CA3 region of the hippocampus. However, neuronal intranuclear inclusions were not induced by KA in 3-week-old mice. Further, in older mice (9 weeks), the pre-existence of inclusions in CA3 neurons did not increase the vulnerability of neurons to KA, since no lesions were seen in 9-week R6/2 mouse brain. Our results suggest that an increased susceptibility to excitotoxic stimuli does not underlie the early phase of the neurological phenotype in R6/2 mice, although a role in later stages is not excluded by our findings. The significance of these findings is discussed in the context of the R6/2 mouse as a model for HD.
Collapse
Affiliation(s)
- A J Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
191
|
Feldman JD, Vician L, Crispino M, Hoe W, Baudry M, Herschman HR. rTLE3, a newly identified transducin-like enhancer of split, is induced by depolarization in brain. J Neurochem 2000; 74:1838-47. [PMID: 10800926 DOI: 10.1046/j.1471-4159.2000.0741838.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transducin-like enhancers of split are a family of mammalian proteins that share sequence homology with the Drosophila protein Groucho. Using representational difference analysis, we isolated the cDNA for a previously unidentified gene, rTLE3 (rat transducin-like enhancer of split 3), as a sequence induced by depolarization and forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. rTLE3 encodes the protein rTLE3, a 764-amino acid orthologue of mouse and human TLE3. R-esp2, the gene encoding the closest related rat protein, is not induced by any of the four treatments in PC12 cells. rTLE3 and R-esp2 have different patterns of expression in the adult rat CNS and other tissues. After systemic administration of kainic acid, rTLE3 is induced specifically in the dentate gyrus of the hippocampus. We propose that members of the transducin-like enhancer of split family of proteins may have distinct functions in the mature CNS, in addition to their functions during development.
Collapse
Affiliation(s)
- J D Feldman
- Department of Pediatrics, UCLA Center for the Health Sciences, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
192
|
Eriksson C, Tehranian R, Iverfeldt K, Winblad B, Schultzberg M. Increased expression of mRNA encoding interleukin-1beta and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J Neurosci Res 2000; 60:266-79. [PMID: 10740232 DOI: 10.1002/(sici)1097-4547(20000415)60:2<266::aid-jnr16>3.0.co;2-p] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kainic acid, an analogue of glutamate, injected systemically to rats evokes seizures that are accompanied by nerve cell damage primarily in the limbic system. In the present study, we have analyzed the temporal profile of the expression of the cytokines interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra), and the related IL-1beta-converting enzyme (ICE/caspase-1), in different regions of the rat brain in response to peripheral kainic acid administration (10 mg/kg, i.p.). In situ hybridization histochemistry experiments revealed that IL-1beta mRNA-expressing cells, morphologically identified as microglial cells, were mainly localized to regions showing pronounced neuronal degeneration; hippocampus, thalamus, amygdala, and certain cortical regions. The strongest expression of IL-1beta mRNA was observed after 12 hr in these regions. A weak induction of the IL-1beta mRNA expression was observed already at 2 hr. Similar results were obtained by RT-PCR analysis, showing a significantly increased expression of IL-1beta mRNA in the hippocampus and amygdala after 12 hr. In addition, RT-PCR analysis revealed that IL-1ra mRNA, and specifically mRNA encoding the secreted isoform of IL-1ra (sIL-1ra), was strongly induced in the hippocampus and amygdala at 12 and 24 hr post-injection. RT-PCR analysis of mRNA encoding caspase-1 showed a significantly increased expression in the amygdala after 12 hr. In conclusion, in response to systemic kainic acid injection IL-1beta mRNA is rapidly induced and followed by induction of IL-1ra mRNA and caspase-1 mRNA, supporting a role of the IL-1 system in the inflammatory response during excitotoxic damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
193
|
Ding M, Haglid KG, Hamberger A. Quantitative immunochemistry on neuronal loss, reactive gliosis and BBB damage in cortex/striatum and hippocampus/amygdala after systemic kainic acid administration. Neurochem Int 2000; 36:313-8. [PMID: 10732998 DOI: 10.1016/s0197-0186(99)00139-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell specific markers were quantified in the hippocampus, the amygdala/pyriform cortex, the frontal cerebral cortex and the striatum of the rat brain after systemic administration of kainic acid. Neuron specific enolase (NSE) reflects loss of neurons, glial fibrillary acidic protein (GFAP) reflects reactive gliosis, and brain levels of serum proteins measures blood-brain-barrier permeability. While the concentration of NSE remained unaffected in the frontal cerebral cortex and the striatum, their GFAP content increased during the first three days. In the hippocampus and amygdala, NSE levels decreased significantly. GFAP levels in the hippocampus were unaffected after one day and decreased in the amygdala/pyriform cortex. After that, GFAP increased strikingly until day 9 or, in the case of amygdala/pyriform cortex, even longer. This biphasic time course for GFAP was accompanied by a decrease of S-100 during days 1-9 followed by a significant increase at day 27 above the initial level. The regional differences in GFAP and S-100 could result from the degree of neuronal degeneration, the astrocytic receptor set-up and/or effects on the blood-brain barrier.
Collapse
Affiliation(s)
- M Ding
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden.
| | | | | |
Collapse
|
194
|
Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:476-509. [PMID: 10760552 DOI: 10.1016/s0165-0173(00)00018-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The concept that neural activity is important for brain maturation has focused much research interest on the developmental role of the NMDA receptor, a key mediator of experience-dependent synaptic plasticity. However, a mechanism able to link spatial and temporal parameters of synaptic activity during development emerged as a necessary condition to explain how axons segregate into a common brain region and make specific synapses on neuronal sub-populations. To comply with this developmental constraint, it was proposed that nitric oxide (NO), or other substances having similar chemical and biological characteristics, could act as short-lived, activity-dependent spatial signals, able to stabilize active synapses by diffusing through a local volume of tissue. The present article addresses this issue, by reviewing the experimental evidence for a correlated role of the activity of the NMDA receptor and the production of NO in key steps of neural development. Evidence for such a functional coupling emerges not only concerning synaptogenesis and formation of neural maps, for which it was originally proposed, but also for some earlier phases of neurogenesis, such as neural cell proliferation and migration. Regarding synaptogenesis and neural map formation in some cases, there is so far no conclusive experimental evidence for a coupled functional role of NMDA receptor activation and NO production. Some technical problems related to the use of inhibitors of NO formation and of gene knockout animals are discussed. It is also suggested that other substances, known to act as spatial signals in adult synaptic plasticity, could have a role in developmental plasticity. Concerning the crucial developmental phase of neuronal survival or elimination through programmed cell death, the well-documented survival role related to NMDA receptor activation also starts to find evidence for a concomitant requirement of downstream NO production. On the basis of the reviewed literature, some of the major controversial issues are addressed and, in some cases, suggestions for possible future experiments are proposed.
Collapse
Affiliation(s)
- A Contestabile
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
195
|
Abstract
The neurotoxic actions of kainic acid can be partly suppressed by antagonists acting at N-methyl-D-aspartate (NMDA) receptors. The present study examined the possible role of endogenous components of the kynurenine pathway to this phenomenon. Administration of kainate (2 nmols) into the hippocampus of anaesthetized rats produced damage in the CA1 and CA3 regions. The involvement of NMDA receptors was confirmed by the ability of dizocilpine (1 mg kg(-1)) to reduce cell loss in the CA1 region from 92 to 42%. The co-administration of m-nitrobenzoylalanine (20 nmols into the hippocampus), an inhibitor of kynurenine hydroxylase and kynureninase, together with a systemic injection of the compound (100 mg kg(-1), i.p.), afforded some protection against kainate, reducing cell loss from 91 to 48%. Protection was not exerted against damage by quinolinic acid or NMDA, excluding a direct interaction between m-nitrobenzoylalanine and NMDA receptors. The protective effect of m-nitrobenzoylalanine was not prevented by glycine, which would be expected to reverse protection caused by an elevation in the levels of endogenous kynurenic acid, arguing against a major role for increased levels of kynurenic acid. The results indicate that inhibition of the kynurenine pathway offers protection against kainate-induced damage. One possible mechanism for the protection is that an increased production of quinolinic acid in the brain, possibly from glial cells and macrophages activated by the initial kainate insult, normally contributes to the local activation of NMDA receptors and thus to kainate-induced cerebral insults. This generation of endogenous quinolinic acid would be suppressed by m-nitrobenzoylalanine.
Collapse
Affiliation(s)
- W M Behan
- Department of Pathology, University of Glasgow, Glasgow G12 8QQ. Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ
| | | |
Collapse
|
196
|
Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 2000; 39:133-52. [PMID: 10759302 DOI: 10.1016/s0920-1211(99)00119-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systemic administration of pilocarpine and kainic acid (KA) has been extensively used to model temporal lobe epilepsy in rats. Here the regional distribution of selectively vulnerable neurons and the temporal evolution of such neuronal injury after status epilepticus (SE) are compared in both models. Using the silver staining technique of Gallyas, argyrophilic neurons were measured on a 0-3 (least-most) scale in 53 different brain areas. Few neurons were silver-stained 2.5 h after kainate-induced SE, but many silver-stained cells could be seen in most neocortical, hippocampal, amygdaloid and hypothalamic structures for pilocarpine group. In general, 8 or 24 h intervals between SE onset and perfusion times yielded the most intense neuronal silver-impregnation. Pilocarpine-induced neuronal silver impregnation was more prominent than that induced by kainate treatment for many areas in cortex, hippocampus, endopiriform nucleus, amygdaloid complex and hypothalamus. On the other hand, in the thalamus, some cortical areas, claustrum, lateral septum and caudoputamen, kainate-induced neuronal silver staining was also prominent, but occurred later than in pilocarpine-treated animals. Neuronal injury was found in almost the same brain areas in both models of SE but with different intensity levels and time course profiles. It was suggested that such differences in the temporal profile of cell damage should be taken into account when searching for neuroprotective agents.
Collapse
Affiliation(s)
- L Covolan
- Department of Physiology, UNIFESP, Sao Paulo SP, Brazil
| | | |
Collapse
|
197
|
Grooms SY, Opitz T, Bennett MV, Zukin RS. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc Natl Acad Sci U S A 2000; 97:3631-6. [PMID: 10725374 PMCID: PMC16291 DOI: 10.1073/pnas.97.7.3631] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/1999] [Indexed: 11/18/2022] Open
Abstract
Kainic acid (KA)-induced status epilepticus in adult rats leads to delayed, selective death of pyramidal neurons in the hippocampal CA1 and CA3. Death is preceded by down-regulation of glutamate receptor 2 (GluR2) mRNA and protein [the subunit that limits Ca(2+) permeability of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] in CA1 and CA3, as indicated by in situ hybridization, immunolabeling, and quantitative Western blotting. GluR1 mRNA and protein are unchanged or slightly increased before cell death. These changes could lead to formation of GluR2-lacking, Ca(2+)-permeable AMPA receptors and increased toxicity of endogenous glutamate. GluR2 immunolabeling is unchanged in granule cells of the dentate gyrus, which are resistant to seizure-induced death. Thus, formation of Ca(2+)-permeable AMPA receptors may be a critical mediator of delayed neurodegeneration after status epilepticus.
Collapse
Affiliation(s)
- S Y Grooms
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
198
|
Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc Natl Acad Sci U S A 2000. [PMID: 10725374 PMCID: PMC16291 DOI: 10.1073/pnas.050586497] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kainic acid (KA)-induced status epilepticus in adult rats leads to delayed, selective death of pyramidal neurons in the hippocampal CA1 and CA3. Death is preceded by down-regulation of glutamate receptor 2 (GluR2) mRNA and protein [the subunit that limits Ca(2+) permeability of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] in CA1 and CA3, as indicated by in situ hybridization, immunolabeling, and quantitative Western blotting. GluR1 mRNA and protein are unchanged or slightly increased before cell death. These changes could lead to formation of GluR2-lacking, Ca(2+)-permeable AMPA receptors and increased toxicity of endogenous glutamate. GluR2 immunolabeling is unchanged in granule cells of the dentate gyrus, which are resistant to seizure-induced death. Thus, formation of Ca(2+)-permeable AMPA receptors may be a critical mediator of delayed neurodegeneration after status epilepticus.
Collapse
|
199
|
Holcik M, Thompson CS, Yaraghi Z, Lefebvre CA, MacKenzie AE, Korneluk RG. The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci U S A 2000; 97:2286-90. [PMID: 10681452 PMCID: PMC15793 DOI: 10.1073/pnas.040469797] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuronal apoptosis inhibitory protein (NAIP) is a member of a novel family of inhibitor of apoptosis (IAP) proteins. The IAP genes are highly conserved from baculovirus to metazoans and suppress apoptosis induced by a variety of triggers both in vitro and in vivo. Here we describe the generation and characterization of mice with the targeted deletion of NAIP1. We demonstrate that the NAIP1-deleted mice develop normally. However, the survival of pyramidal neurons in the hippocampus after kainic acid-induced limbic seizures is greatly reduced in the NAIP1 knock-out animals. Thus, although NAIP1 is not necessary for normal development of murine central nervous system, the endogenous NAIP1 is required for neuronal survival in pathological conditions.
Collapse
Affiliation(s)
- M Holcik
- Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada K1H 8L1
| | | | | | | | | | | |
Collapse
|
200
|
Kondratyev A, Gale K. Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:216-24. [PMID: 10686342 DOI: 10.1016/s0169-328x(99)00292-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. Recent studies have implicated apoptotic processes in this seizure-related injury. Because activation of caspase-3-like cysteine proteases plays a crucial role in mammalian neuronal apoptosis, we explored the possibility that activation of caspase-3 is involved in the neuronal apoptotic cell death that occurs in rat brain following SE induced by systemic kainic acid. Caspase-3 activity was determined immunocytochemically using CM1 antibodies specific for catalytically active subunit (p17) of the enzyme. We found an induction of caspase-3 activity in rhinal cortex and amygdala at 24 h after SE. To determine whether activation of caspase-3-like proteases is a necessary component of the injury process, we delivered a caspase-3 inhibitor, z-DEVD-fmk, into the lateral ventricle prior to, and following SE. z-DEVD-fmk treatment substantially attenuated apoptotic cell death after SE, both in hippocampus and rhinal cortex, as evaluated by analysis of internucleosomal DNA fragmentation and neuronal nuclear morphology. Our findings implicate caspase-3 cysteine protease in the neurodegenerative response to SE and suggest that this degeneration can be attenuated by inhibition of caspase-3-like enzyme activity.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA.
| | | |
Collapse
|