151
|
Goodenough S, Conrad S, Skutella T, Behl C. Inactivation of glycogen synthase kinase-3β protects against kainic acid-induced neurotoxicity in vivo. Brain Res 2004; 1026:116-25. [PMID: 15476703 DOI: 10.1016/j.brainres.2004.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 11/19/2022]
Abstract
Many neurodegenerative diseases involve oxidative stress and excitotoxic cell death. In an attempt to further elucidate the signal transduction pathways involved in the cell death/cell survival associated with excitotoxicity, we have used an in vivo model of excitotoxicity employing kainic acid (KA)-induced neurotoxicity. Here, we show that extracellular signal-related kinase (ERK) 2, but not ERK 1, is phosphorylated and thereby activated in the hippocampus and cerebellum of kainic acid-treated mice. Phosphorylation and hence inactivation of glycogen synthase kinase 3beta (GSK-3beta), a general survival factor, is often a downstream consequence of mitogen-activated protein kinase pathway activation. Indeed, GSK-3beta phosphorylation occurred in response to kainic acid exclusively in the affected hippocampus, but not as a consequence of ERK activation. This may represent a compensatory attempt at self-protection by the cells in this particular brain region. A role for GSK-3beta inhibition in cell survival was further supported by the fact that pharmacological inhibition of GSK-3beta using lithium chloride was protective against kainic acid-induced excitotoxicity in hippocampal slice cultures. This work supports a role for GSK-3beta in cell death in response to excitotoxins in vivo and further confirms that GSK-3beta plays a role in cell death/cell survival pathways.
Collapse
Affiliation(s)
- Sharon Goodenough
- Department of Pathobiochemistry, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
152
|
Lee HK, Choi SS, Han KJ, Han EJ, Suh HW. Roles of adenosine receptors in the regulation of kainic acid-induced neurotoxic responses in mice. ACTA ACUST UNITED AC 2004; 125:76-85. [PMID: 15193424 DOI: 10.1016/j.molbrainres.2004.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2004] [Indexed: 11/18/2022]
Abstract
Kainic acid (KA) is a well-known excitatory and neurotoxic substance. In ICR mice, morphological damage of hippocampus induced by KA administered intracerebroventricularly (i.c.v.) was markedly concentrated on the hippocampal CA3 pyramidal neurons. In the present study, the possible role of adenosine receptors in hippocampal cell death induced by KA (0.1 microg) administered i.c.v. was examined. It has been shown that 3,7-dimethyl-1-propargylxanthine (DMPX; A2 adenosine receptors antagonist, 20 microg) reduced KA-induced CA3 pyramidal cell death. KA dramatically increased the phosphorylated extracellular signal-regulated kinase (p-ERK) immunoreactivities (IR) in dentate gyrus (DG) and mossy fibers. In addition, c-Jun, c-Fos, Fos-related antigen 1 (Fra-1) and Fos-related antigen 2 (Fra-2) protein levels were increased in hippocampal area in KA-injected mice. DMPX attenuated KA-induced p-ERK, c-Jun, Fra-1 and Fra-2 IR. However, 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX; A1 adenosine receptor antagonist, 20 microg) did not affect KA-induced p-ERK, c-Jun, Fra-1 and Fra-2 IR. KA also increased the complement receptor type 3 (OX-42) IR in CA3 region of hippocampus. DMPX, but not PACPX, blocked KA-induced OX-42 IR. Our results suggest that p-ERK and c-Jun may function as important regulators responsible for the hippocampal cell death induced by KA administered i.c.v. in mice. Activated microglia, which was detected by OX-42 IR, may be related to phagocytosis of degenerated neuronal elements by KA excitotoxicity. Furthermore, it is implicated that A2, but not A1, adenosine receptors appear to be involved in hippocampal CA3 pyramidal cell death induced by KA administered i.c.v. in mice.
Collapse
Affiliation(s)
- Han-Kyu Lee
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | |
Collapse
|
153
|
Regard JB, Scheek S, Borbiev T, Lanahan AA, Schneider A, Demetriades AM, Hiemisch H, Barnes CA, Verin AD, Worley PF. Verge: a novel vascular early response gene. J Neurosci 2004; 24:4092-103. [PMID: 15102925 PMCID: PMC6729408 DOI: 10.1523/jneurosci.4252-03.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular endothelium forms a continuous, semipermeable barrier that regulates the transvascular movement of hormones, macromolecules, and other solutes. Here, we describe a novel immediate early gene that is expressed selectively in vascular endothelial cells, verge (vascular early response gene). Verge protein includes an N-terminal region of approximately 70 amino acids with modest homology (approximately 30% identity) to Apolipoprotein L but is otherwise unique. Verge mRNA and protein are induced selectively in the endothelium of adult vasculature by electrical or chemical seizures. Verge expression appears to be responsive to local tissue conditions, because it is induced in the hemisphere ipsilateral to transient focal cerebral ischemia. In contrast to the transient expression in adult, Verge mRNA and protein are constitutively expressed at high levels in the endothelium of developing tissues (particularly heart) in association with angiogenesis. Verge mRNA is induced in cultured endothelial cells by defined growth factors and hypoxia. Verge protein is dramatically increased by cysteine proteinase inhibitors, suggesting rapid turnover, and is localized to focal regions near the periphery of the cells. Endothelial cell lines that stably express Verge form monolayers that show enhanced permeability in response to activation of protein kinase C by phorbol esters. This response is accompanied by reorganization of the actin cytoskeleton and the formation of paracellular gaps. These studies suggest that Verge functions as a dynamic regulator of endothelial cell signaling and vascular function.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain Ischemia/metabolism
- Cell Hypoxia
- Cell Membrane Permeability/physiology
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Activators/pharmacology
- Gene Expression Regulation, Developmental/physiology
- Genes, Immediate-Early/genetics
- Growth Substances/pharmacology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Mice
- Molecular Sequence Data
- Myocardium/metabolism
- Neovascularization, Physiologic/genetics
- Organ Specificity
- Protein Kinase C/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Seizures/chemically induced
- Seizures/metabolism
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Jean B Regard
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Vezzani A, Sperk G. Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 2004; 38:245-52. [PMID: 15337376 DOI: 10.1016/j.npep.2004.05.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 05/15/2004] [Indexed: 11/23/2022]
Abstract
Recurrent epileptic seizures in the rat enhance the expression of neuropeptide Y (NPY) and its mRNA in various brain areas including the hippocampus, cerebral cortex and the amygdala. In the hippocampus, the most prominent expression of NPY is observed in mossy fibers and in GABAergic interneurons. At the same time, expression of Y2 receptors is also increased whereas Y1 receptors are reduced. Similar changes in Y1 and Y2 receptors were observed in the hippocampus of patients with temporal lobe epilepsy (TLE). In contrast to the rat, NPY expression is not enhanced in mossy fibers in TLE. In the same tissue, surviving NPY interneurons show marked axonal sprouting into areas innervated by mossy fibers (dentate hilus, stratum lucidum, inner molecular layer of the dentate gyrus). Stimulation of presynaptic Y2 receptors inhibits glutamate release, and exert an anticonvulsant action in experimental models. Y1 receptors mediate a weak excitatory component of NPY action. These findings suggest that changes in the NPY system induced by seizures represent an endogenous adaptive mechanism aimed at counteracting hyperexcitability underlying epileptic activity. This concept is strongly supported by evidence that genetically modified rats overexpressing the NPY gene are less susceptible to seizures while deletion of NPY or Y2 receptor genes results in increased susceptibility to seizures.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Laboratory of Experimental Neurology, Mario Negri Institute for Pharmacology Research, Via Eritrea 62, 20157 Milan, Italy.
| | | |
Collapse
|
155
|
Kondratyev A, Gale K. Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death. ACTA ACUST UNITED AC 2004; 121:86-94. [PMID: 14969739 DOI: 10.1016/j.molbrainres.2003.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2003] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms mediating degeneration in response to neuronal insults, including damage evoked by prolonged seizure activity, show substantial variability across laboratories and injury models. Here we investigate the extent to which the proportion of cell death occurring by apoptotic vs. necrotic mechanisms may be shifted by changing the temporal parameters of the insult. In initial studies with continuous seizures (status epilepticus, SE), signs of apoptotic degeneration were most clearly observed when SE occurred following a long latency (>86 min) after injection of kainic acid as compared with a short-latency SE (<76 min). Therefore, in this study we directly compared short- with long-latency SE for the expression of molecular markers for apoptosis and necrosis in an especially vulnerable brain region (rhinal cortex). Molecular markers of apoptosis (DNA fragmentation, cleavage of ICAD, an inhibitor of "caspase-activated DNase" (CAD), and prevalence of a caspase-generated fragment of alpha-spectrin) were detected following long-latency SE. Short-latency SE resulted in expression of predominantly necrotic features of cell death, such as "non-ladder" pattern of genomic DNA degradation, prevalence of a calpain-generated alpha-spectrin fragment, and absence of ICAD cleavage. Silver staining revealed no significant difference in the extent and spatial distribution of degeneration between long- or short-latency SE. These data indicate that the latency to onset of SE determines the extent to which apoptotic or necrotic mechanisms contribute to the degeneration following SE. The presence of a long latency period, during which multiple brief seizure episodes may occur, favors the occurrence of apoptotic cell death. It is possible that the absence of such "preconditioning" period in short-latency SE favors predominantly necrotic profile.
Collapse
Affiliation(s)
- Alexei Kondratyev
- Department of Pharmacology, Georgetown University, Washington, DC, USA.
| | | |
Collapse
|
156
|
Tuz K, Peña-Segura C, Franco R, Pasantes-Morales H. Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. Eur J Neurosci 2004; 19:916-24. [PMID: 15009139 DOI: 10.1111/j.0953-816x.2004.03209.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
External osmolarity reduction (20%) led to labelled glutamate, GABA and taurine release from rat brain cortical synaptosomes. A Cl--independent, Na+-dependent, La3+-sensitive and tetrodotoxin (TTX) reduced depolarization of synaptosomes occurred upon hyposmolarity, suggestive of Na+ entry through nonselective cation channels. This depolarization, together with cytosolic Ca2+ ([Ca2+]I) increase, resulted in exocytosis, monitored by FM1-43. The release fraction resulting from these phenomena was estimated, by its decrease, by La3+, EGTA-AM and tetanus toxin (TeTX), as 34-44% for glutamate, 21-29% for GABA and 18-22% for taurine. Protein kinase C (PKC) activation by phorbol-12-myristate-13-acetate (PMA) increased the hyposmolarity-elicited exocytosis and this activation increased glutamate (80%), GABA (51%) and taurine (42%) hyposmotic efflux. Inhibition by chelerythrine reduced glutamate, GABA and taurine efflux by 64%, 50% and 24%, respectively. The Na+-dependence of amino acid release (glutamate 63%, GABA 46% and taurine 29%) may result from both, prevention of the depolarization-exocytosis efflux, and blockade of the carrier reversal operation. Carrier blockade by dl-threo-beta-benzyloxy aspartate (TBOA) and NO-711 resulted in 37% and 28% reduction of glutamate and GABA release, respectively. Contribution of the osmolyte leak pathway to amino acid release, estimated by the influence of Cl- (NPPB) and tyrosine kinase (AG18) blocker, was up to 55% for taurine, but only 10-18% for GABA, with apparently no contribution for glutamate. The predominant osmolyte-type mechanism of taurine release suggest its function in volume control in nerve endings, while glutamate and GABA respond to events concurrent with hyposmolarity by a neurotransmitter-like release mechanism. The hyposmolarity-induced amino acid efflux from nerve endings may have consequences for neuronal excitability during hyponatremia.
Collapse
Affiliation(s)
- Karina Tuz
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico, Mexico
| | | | | | | |
Collapse
|
157
|
Yalcin A, Kanit L, Sozmen EY. Altered gene expressions in rat hippocampus after kainate injection with or without melatonin pre-treatment. Neurosci Lett 2004; 359:65-8. [PMID: 15050713 DOI: 10.1016/j.neulet.2004.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/07/2004] [Accepted: 02/08/2004] [Indexed: 11/24/2022]
Abstract
The expressions of Bcl-2, Bax and thioredoxin (Trx) mRNAs after kainic acid (KA) injection with or without melatonin pre-treatment were examined by real-time quantitative reverse transcription polymerase chain reaction in rat hippocampus. Bcl-2, Bax, and Trx mRNA expressions after KA injection were significantly increased. Additionally, it was observed that melatonin or melatonin pre-treatment had no significant effect on the regulation of Trx mRNA. Pre-treatment with melatonin at the 30th minute before KA injection resulted in a significant depletion in Bcl-2, Bax and Trx mRNA expressions. However, our results showed that melatonin pre-treatment increases the ratio of Bcl-2 to Bax mRNA in short-term period.
Collapse
Affiliation(s)
- Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey.
| | | | | |
Collapse
|
158
|
Jang YS, Lee MY, Choi SH, Kim MY, Chin H, Jeong SW, Kim IK, Kwon OJ. Expression of B/K protein in the hippocampus of kainate-induced rat seizure model. Brain Res 2004; 999:203-11. [PMID: 14759499 DOI: 10.1016/j.brainres.2003.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 11/22/2022]
Abstract
B/K protein is a newly identified member of double C2-like domain protein family. We examined the expression of B/K protein in the hippocampus of kainate-induced rat seizure model. Intraperitoneal injection of kainate increased the immunoreactivity to B/K protein in the CA1 to CA3 of the hippocampus. B/K protein expression began to increase at 6 h, reached the maximum at 12 h, and then returned nearly to the normal level at 72 h after the injection of kainate (12 mg/kg), and it was also dependent on the dose of kainate between 4 and 16 mg/kg. In electron microscopic and subcellular fractionation studies, B/K protein was localized in the endoplasmic reticulum (ER) of the hippocampus. Kainate also induced the expression of BiP, a typical ER stress marker protein, in the hippocampus and the cortex, and it was coexpressed with B/K protein. Moreover, thapsigargin-induced ER stress caused upregulation of B/K protein expression in PC12 cells. In conclusion, our data showing the induction of both B/K protein expression and ER stress response in the hippocampus of kainate seizure model, and ER-specific expression and ER stress-induced expression of B/K strongly suggest the possible role of B/K protein in epileptogenesis or epilepsy-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Seong Jang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Sperk G, Schwarzer C, Heilman J, Furtinger S, Reimer RJ, Edwards RH, Nelson N. Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus 2004; 13:806-15. [PMID: 14620876 DOI: 10.1002/hipo.10133] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Kainic acid-induced seizures cause a marked increase in the expression of glutamate decarboxylase 67 (GAD67) in granule cells of the dentate gyrus. To determine the possible modes of sequestration of newly formed gamma-aminobutyric acid (GABA), we used in situ hybridization and immunocytochemistry to investigate the expression of several proteins related to GABA in dentate granule cells of rats 4 h to 60 days after kainic acid-induced status epilepticus and in controls. GAD67 and GAD65 mRNA levels were increased by up to 300% and 800%, respectively, in the granule cell layer 6-24 h after kainate injection. Subsequently, increased GAD and GABA immunoreactivity was observed in the terminal field of mossy fibers and in presumed dendrites of granule cells. mRNA of both known plasma membrane GABA transporters (GAT-1 and GAT-3) was expressed in granule cells of control rats. GAT-1 mRNA levels increased (by 30%) 9 h after kainate injection but were reduced by about 25% at later intervals. GAT-3 mRNA was reduced (by 35-75%) in granule cells 4 h to 30 days after kainic acid injection. In contrast, no expression of the mRNA or immunoreactivity of the vesicular GABA transporter was detected in granule cells or in mossy fibers, respectively. GABA transaminase mRNA was only faintly expressed in granule cells, and its levels were reduced (by 60-65%) 12 h to 30 days after kainate treatment. The results indicate that GABA can be taken up and synthesized in granule cells. No evidence for the expression of the vesicular GABA transporter (VGAT) in granule cells was obtained. After sustained epileptic seizures, the markedly increased expression of glutamate decarboxylase and the reduced expression of GABA transaminase may result in increased cytoplasmic GABA concentrations in granule cells. It is suggested that, during epileptic seizures, elevated intracellular GABA and sodium concentration could then result in nonvesicular release of GABA from granule cell dendrites. GABA could then act on GABA-A receptors, protecting granule cells from overexcitation.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
160
|
Schauwecker PE, Williams RW, Santos JB. Genetic control of sensitivity to hippocampal cell death induced by kainic acid: A quantitative trait loci analysis. J Comp Neurol 2004; 477:96-107. [PMID: 15281082 DOI: 10.1002/cne.20245] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Host genetic factors are likely to contribute to differences in individual susceptibility to seizure-induced excitotoxic neuronal damage. Similarly, inbred strains of mice differ in their susceptibility to the kainic acid (KA) model of seizure-induced cell death, but the genes responsible for the differences are not known. Here, we define the inheritance patterns of susceptibility to KA-induced neurodegeneration in the hippocampus by assessing 331 back-cross (N2) progeny of two inbred mouse strains, C57BL/6 and FVB/N, previously shown to display resistance and sensitivity to KA-induced cell death, respectively. Results of phenotypic analysis suggest that the difference in susceptibility between these two strains is conferred by a single dominant gene. Therefore, we used an N2 back-cross between the inbred C57BL/6 and FVB/N strains for a genome-wide search for quantitative trait loci (QTLs), which are chromosomal sites containing genes influencing the magnitude of susceptibility. Genome-wide interval mapping in N2 progeny identified a locus on distal chromosome (Chr) 18 with a peak LOD score of 4.9 localized between D18Mit186 and D18Mit4 as having the strongest and most significant effect in this model. QTLs of minor effect were detected on Chr 15 (D15Mit174-D15Mit156) and Chr 4 (D4Mit264-D4Mit91), with peak LOD scores of 3.02 and 2.46, respectively. The three significant QTLs (Chrs 4, 15, 18) together account for nearly 25% of the trait variance for both genders combined. Reduced KA-induced cell death susceptibility was observed in a congenic strain in which the highly susceptible FVB/N strain carried putative resistance alleles from the C57BL/6 strain on Chr 18.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9112, USA.
| | | | | |
Collapse
|
161
|
Segura Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 2004; 6:615-30. [PMID: 15639792 DOI: 10.1007/bf03033456] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo or in vitro, are capable of producing neuronal damage or neurodegeneration--with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (i.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term 'neurotoxin' includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term 'neurotoxin' might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of 'neurotoxins' during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), methamphetamine; salsolinol; leukoaminochrome-o-semiquinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.
Collapse
Affiliation(s)
- Juan Segura Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Casilla 70000, Santiago, Chile.
| | | |
Collapse
|
162
|
Sperk G, Furtinger S, Schwarzer C, Pirker S. GABA and its receptors in epilepsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:92-103. [PMID: 15250588 DOI: 10.1007/978-1-4757-6376-8_7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the mammalian brain. It acts through 2 classes of receptors, GABAA receptors that are ligand-operated ion channels and the G-protein-coupled metabotropic GABAB receptors. Impairment of GABAergic transmission by genetic mutations or application of GABA receptor antagonists induces epileptic seizures, whereas drugs augmenting GABAergic transmission are used for antiepileptic therapy. In animal epilepsy models and in tissue from patients with temporal lobe epilepsy, loss in subsets of hippocampal GABA neurons is observed. On the other hand, electrophysiological and neurochemical studies indicate a compensatory increase in GABAergic transmission at certain synapses. Also, at the level of the GABAA receptor, neurodegeneration-induced loss in receptors is accompanied by markedly altered expression of receptor subunits in the dentate gyrus and other parts of the hippocampal formation, indicating altered physiology and pharmacology of GABAA receptors. Such mechanisms may be highly relevant for seizure induction, augmentation of endogenous protective mechanisms, and resistance to antiepileptic drug therapy. Other studies suggest a role of GABAB receptors in absence seizures. Presynaptic GABAB receptors suppress neurotransmitter release. Depending on whether this action is exerted in GABAergic or glutamatergic neurons, there may be anticonvulsant or proconvulsant actions.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
163
|
Atoji Y, Wild JM. Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 2004; 475:426-61. [PMID: 15221956 DOI: 10.1002/cne.20186] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of the pigeon hippocampal formation was examined by tract tracing by using biotinylated dextran amine (BDA) and cholera toxin B subunit (CTB) and by injections of kainic acid to produce excitotoxic lesions. The hippocampal formation was divided into seven subdivisions based on Nissl staining and intrinsic and septal connections: dorsomedial (DM), dorsolateral (DL), triangular (Tr), V-shaped layer, magnocellular (Ma), parvocellular, and cell-poor regions. DL was composed of dorsal and ventral portions and sent associational fibers to DM, the V-shaped layer, and Tr. DL had strong reciprocal connections with the densocellular part of the hyperpallium (HD) and projected to the dorsolateral corticoid area. DM had reciprocal fiber connections with the V-shaped layer, Ma, and DL as well as with several subdivisions of the arcopallium. DL and DM, but not the V-shaped layer, projected fibers to the septum where those from DM exceeded in number those from DL. These projections further extended to the hypothalamus, particularly the lateral hypothalamic area. The lateral and medial septal nuclei projected back a very small number of ascending fibers to the hippocampal formation. Intraventricular injections of kainic acid induced neuronal loss widely in the hippocampal formation and subsequently produced gliosis in DM. These results indicate that DL receives its main afferents from HD and in turn sends inputs to an intrinsic circuit composed of hippocampal subdivisions DM, Ma, Tr, and the V-shaped layer; and also that DM is the main exit to the septum and hypothalamus. It is suggested that neurons in the V-shaped layer are intrinsic. Together, the results suggest that the V-shaped layer is comparable to the dentate gyrus of the mammalian hippocampal formation and that DM incorporates components comparable to both Ammon's horn and the subiculum.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan.
| | | |
Collapse
|
164
|
Kim D, Kim MJ, Lee JH, Im JO, Won YJ, Yoon SY, Hong HN. Concomitant distribution shift of glial GABA transporter and S100 calcium-binding proteins in the rat retina after kainate-induced excitotoxic injury. Neurosci Lett 2003; 353:17-20. [PMID: 14642427 DOI: 10.1016/j.neulet.2003.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this study was to elucidate the involvement of neuronal and glial calcium-binding proteins in the stimulation of gamma-aminobutyric acid (GABA) transport system by kainate-induced excitotoxicity in the rat retina. We used immunohistochemical method to assess the localization of GABA reuptake and calcium-binding proteins. After systemic administration of kainate, the neuronal GABA transporter does not show an association with calbindin D-28K. However, the localization of the GAT-3 transport system in Müller glial cells is closely correlated with the S100 proteins interacting with glial fibrillary acidic protein (GFAP) in response to kainate injury. Furthermore, we demonstrate that kainate-mediated excitotoxicity induced concomitant distribution shift of glial GABA transporter, S100 proteins and GFAP in the distal processes and endfeet of glial cells during the first 48 h.
Collapse
Affiliation(s)
- Donghou Kim
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
| | | | | | | | | | | | | |
Collapse
|
165
|
Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 2003; 3:65-94. [PMID: 12728191 DOI: 10.1385/nmm:3:2:65] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 02/19/2003] [Indexed: 12/20/2022]
Abstract
Activation of glutamate receptors can trigger the death of neurons and some types of glial cells, particularly when the cells are coincidentally subjected to adverse conditions such as reduced levels of oxygen or glucose, increased levels of oxidative stress, exposure to toxins or other pathogenic agents, or a disease-causing genetic mutation. Such excitotoxic cell death involves excessive calcium influx and release from internal organelles, oxyradical production, and engagement of programmed cell death (apoptosis) cascades. Apoptotic proteins such as p53, Bax, and Par-4 induce mitochondrial membrane permeability changes resulting in the release of cytochrome c and the activation of proteases, such as caspase-3. Events occurring at several subcellular sites, including the plasma membrane, endoplasmic reticulum, mitochondria and nucleus play important roles in excitotoxicity. Excitotoxic cascades are initiated in postsynaptic dendrites and may either cause local degeneration or plasticity of those synapses, or may propagate the signals to the cell body resulting in cell death. Cells possess an array of antiexcitotoxic mechanisms including neurotrophic signaling pathways, intrinsic stress-response pathways, and survival proteins such as protein chaperones, calcium-binding proteins, and inhibitor of apoptosis proteins. Considerable evidence supports roles for excitotoxicity in acute disorders such as epileptic seizures, stroke and traumatic brain and spinal cord injury, as well as in chronic age-related disorders such as Alzheimer's, Parkinson's, and Huntington's disease and amyotrophic lateral sclerosis. A better understanding of the excitotoxic process is not only leading to the development of novel therapeutic approaches for neurodegenerative disorders, but also to unexpected insight into mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
166
|
Schauwecker PE. Genetic basis of kainate-induced excitotoxicity in mice: phenotypic modulation of seizure-induced cell death. Epilepsy Res 2003; 55:201-10. [PMID: 12972174 DOI: 10.1016/s0920-1211(03)00115-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitotoxicity, a process in which excessive excitation of glutamate receptors results in cell death, has been implicated in a number of neurological disorders. However, the genetic characteristics and molecular mechanisms that can modulate the extent of cell death are unclear. Previously, we had reported that the extent of excitotoxic cell death is conferred by differences in the genetic background of several mouse strains. As a first step in the identification of loci that can modulate the extent of excitotoxin-induced cell death, we tested C57BL/6 and FVB/N mice, their F1 hybrids and backcross progeny for differences in apparent excitotoxic cell death induced by kainic acid (KA). While no strain dependent differences in seizure duration were observed, phenotypic analysis of cell death indicated that C57BL/6 mice showed no seizure-induced cell death, while FVB/N mice exhibited extensive cell death. Studies of seizure-induced cell death in hybrid and backcross progeny revealed an association between seizure-induced cell death and genotype. Mice from the F1 cross exhibited little to no seizure-induced cell death, indicative that the extent of cell death is conferred as a dominant genetic trait. Phenotypic assessment of cell death in backcross progeny suggests that differences in apparent cell death are conferred by a single gene locus. These findings implicate genetic factors in individual differences in excitotoxin-induced cell death.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT 401, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
167
|
Lee HK, Choi SS, Han KJ, Han EJ, Suh HW. Cycloheximide inhibits neurotoxic responses induced by kainic acid in mice. Brain Res Bull 2003; 61:99-107. [PMID: 12788213 DOI: 10.1016/s0361-9230(03)00078-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study, we examined the effect of cycloheximide on various pharmacological responses induced by kainic acid (KA) administered intracerebroventricularly (i.c.v.) in mice. In a passive avoidance test, a 20-min cycloheximide (200mg/kg, i.p.) pretreatment prevented the memory impairment induced by KA. The morphological damage induced by KA (0.1microg) in the hippocampus was markedly concentrated in the CA3 pyramidal neurons and cycloheximide effectively prevented the KA-induced pyramidal cell death in CA3 hippocampal region. In immunohistochemical study, KA dramatically increased the phosphorylation of extracellular signal-regulated protein kinase (p-ERK), c-Jun N-terminal kinase 1 (p-JNK1), and calcium/calmodulin-dependent protein kinase II (p-CaMK II). Cycloheximide attenuated the increased p-ERK, p-JNK1, and p-CaMK II levels induced by KA. Furthermore, cycloheximide inhibited the increased c-Fos and c-Jun protein expression levels induced by KA in the hippocampus. The activation of microglia was detected in KA-induced CA3 cell death region by immunostaining with a monoclonal antibody against the OX-42. Cycloheximide inhibited KA-induced increase of OX-42 immunoreactivity. Our results suggest that the increased expression of the c-Fos, c-Jun, and phosphorylation of ERK, JNK1, and CaMK II proteins may play important roles in the memory impairment and the cell death in CA3 region of the hippocampus induced by i.c.v. KA administration in mice. Furthermore, the activated microglia may be related to phagocytosis of degenerated neuronal elements induced by KA.
Collapse
Affiliation(s)
- Han-Kyu Lee
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do, 200-702, South Korea
| | | | | | | | | |
Collapse
|
168
|
Ogita K, Okuda H, Yamamoto Y, Nishiyama N, Yoneda Y. In vivo neuroprotective role of NMDA receptors against kainate-induced excitotoxicity in murine hippocampal pyramidal neurons. J Neurochem 2003; 85:1336-46. [PMID: 12753091 DOI: 10.1046/j.1471-4159.2003.01778.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.
Collapse
Affiliation(s)
- Kiyokazu Ogita
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, Osaka, Japan.
| | | | | | | | | |
Collapse
|
169
|
Furtinger S, Bettler B, Sperk G. Altered expression of GABAB receptors in the hippocampus after kainic-acid-induced seizures in rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 113:107-15. [PMID: 12750012 DOI: 10.1016/s0169-328x(03)00097-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epilepsy is closely related to an altered transmission of GABA, the major inhibitory transmitter in the brain. GABA acts through two classes of receptors, ionotropic GABA(A) receptors and metabotropic GABA(B) receptors. Using in situ hybridization, receptor autoradiography and immunocytochemistry, we now investigated temporal changes in the expression the GABA(B)-1 and GABA(B)-2 subunits (GABA(B)-1R and GABA(B)-1R, respectively) in the hippocampus following kainic-acid-induced seizures. Significant decreases (by about 40%) in mRNA levels of both splice variants (a and b) of GABA(B)-1R and of GABA(B)-2R were observed in the principal cell layer of the hippocampus 6-12 h after kainic acid injection in the rat. Whereas mRNA levels in the granule cell layer returned to basal after 24 h, the decreases persisted in sectors CA1 and CA3, presumably due to progressing neurodegeneration. In the sector CA3, GABA(B)-R mRNA levels and GABA(B)-R1 immunoreactivity partially recovered 30 days after the initial kainic acid seizures indicating receptor upregulation in surviving neurons.
Collapse
Affiliation(s)
- Sabine Furtinger
- Department of Pharmacology, University of Innsbruck, Peter-Mayr-Strasse 1a, Austria
| | | | | |
Collapse
|
170
|
Schauwecker PE. Differences in ionotropic glutamate receptor subunit expression are not responsible for strain-dependent susceptibility to excitotoxin-induced injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:70-81. [PMID: 12670704 DOI: 10.1016/s0169-328x(03)00048-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic administration of kainic acid in C57BL/6 and FVB/N mice induces a comparable level of seizure induction yet results in differential susceptibility to seizure-induced cell death. While kainate administration causes severe hippocampal damage in mice of the FVB/N strain, C57BL/6 mice display no demonstrable cell loss or damage. At present, while the cellular mechanisms underlying strain-dependent differences in susceptibility remain unclear, some of this variation is assumed to have a genetic basis. As glutamate receptors are thought to participate in seizure induction and the subsequent neuronal degeneration that ensues, previous studies have proposed that variation in the precise subunit composition of glutamate receptors may result in differential susceptibility to excitotoxic cell death. Thus, we chose to examine the relationship between the cellular distribution and expression of glutamate receptor subunit proteins and cell loss within the hippocampus in mouse strains resistant and susceptible to kainate-induced excitotoxicity. Using semi-quantitative Western blot techniques and immunohistochemistry with the use of antibodies that recognize subunits of the KA (GluR5,6,7), AMPA (GluR1, GluR2, and GluR4), and NMDA (NMDAR1 and NMDAR2A/2B) receptors, we found no significant strain-dependent differences in the expression or distribution of these glutamate receptor subunits in the intact hippocampus. Following kainate administration, expression changes in ionotropic glutamate receptor subunits paralleled the development of susceptibility to cell death in the FVB/N strain only. Strain differences in hippocampal vulnerability to kainate-induced status epilepticus are not due to glutamate receptor protein expression.
Collapse
MESH Headings
- Animals
- Cell Death/genetics
- Disease Models, Animal
- Drug Resistance/genetics
- Epilepsy/genetics
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Genetic Predisposition to Disease/genetics
- Glutamic Acid/metabolism
- Glutamic Acid/toxicity
- Immunohistochemistry
- Kainic Acid/metabolism
- Kainic Acid/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neurotoxins/metabolism
- Neurotoxins/toxicity
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Glutamate/genetics
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Species Specificity
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
171
|
Hong YM, Jo DG, Lee MC, Kim SY, Jung YK. Reduced expression of calsenilin/DREAM/KChIP3 in the brains of kainic acid-induced seizure and epilepsy patients. Neurosci Lett 2003; 340:33-6. [PMID: 12648752 DOI: 10.1016/s0304-3940(03)00067-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calsenilin is a neuronal calcium binding protein that may function in calcium signaling and cell death. Kainic acid, an analog of the excitatory amino acid L-glutamate, produced excitotoxic cell death and induced the pathophysiology of status epilepticus. The expression of calsenilin was investigated in the mouse brain after kainic acid-induced seizure and seizure-induced hippocampal neuronal cell culture system using immunostaining analysis. Calsenilin was markedly decreased not only in the damaged cortex and CA3 region of hippocampus at 24 h after kainic acid-induced seizure but also in a cell-culture model of seizure-like activity. In addition, immunoreactivity of calsenilin in the hippocampus derived from human epilepsy patient was significantly decreased compared with normal brain. These results demonstrate that the reduced expression of calsenilin may functionally be associated with the pathophysiology of status epilepticus.
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Department of Life Science, Kwangju Institute of Science and Technology, 1 Oryong-dong, Puk-gu, Kwangju 500-712, South Korea
| | | | | | | | | |
Collapse
|
172
|
Senn P, Lövblad KO, Zutter D, Bassetti C, Zeller O, Donati F, Schroth G. Changes on diffusion-weighted MRI with focal motor status epilepticus: case report. Neuroradiology 2003; 45:246-9. [PMID: 12687309 DOI: 10.1007/s00234-002-0850-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 07/03/2002] [Indexed: 12/01/2022]
Abstract
Transient imaging abnormalities, including changes on diffusion-weighted imaging (DWI), may be seen in focal status epilepticus. The changes on DWI provide am insight into the pathophysiology. We report a 53-year-old man with focal motor status epilepticus involving the left hand, arm and face with focal slowing on EEG. The apparent diffusion coefficients (ADC) were higher in the affected hemisphere than on the other side. At 10 days and 6 weeks after the end of the seizures, we saw normal ADCs and atrophy of the affected hemisphere. We conclude that the MRI findings indicate both cytotoxic and vasogenic oedema during seizure activity and subsequent loss of brain parenchyma.
Collapse
Affiliation(s)
- P Senn
- Department of Neurology, Inselspital, University Hospital, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
173
|
Kalwy SA, Akbar MT, Coffin RS, de Belleroche J, Latchman DS. Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainic-acid-induced cell loss. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:91-103. [PMID: 12654509 DOI: 10.1016/s0169-328x(02)00692-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat shock proteins are expressed in response to cellular stress and can protect cells from further stress and facilitate recovery. Heat shock protein 27 is of particular interest because it has been implicated in a range of protective roles including protein chaperoning, stabilising elements of the cytoskeleton and as an active inhibitor of apoptosis. In the present study, we have examined the potential of administration of exogenous HSP27 to confer protection against KA-induced neuronal cell death in vivo. We aimed to exploit the neurotropic specificity of herpes simplex virus-1 based virus vectors, which have been rendered replication-incompetent, to infect neurons of the hippocampus. The systemic administration of kainic acid, an analogue of glutamate, causes seizures resulting in neuronal damage and is an established animal model of epilepsy. Neuron loss is particularly prominent in the hippocampus and the mode of death is at least partly apoptotic in nature. We show that the overexpression of HSP27 in these neurons can significantly augment their survival following kainic acid administration. In contrast, injection of a control virus expressing beta-galactosidase does not confer protection. This is the first time that protection by exogenously expressed HSP27 has been demonstrated in an in vivo model of neuronal cell death.
Collapse
Affiliation(s)
- Stephan A Kalwy
- Institute of Child Health, University College London, 30 Guilford St., London WC1 1EH, UK
| | | | | | | | | |
Collapse
|
174
|
Osorio-Rico L, Mancera-Flores M, Ríos C. Changes in brain serotonin turnover, body and head shakes in kainic acid-treated rats. PHARMACOLOGY & TOXICOLOGY 2003; 92:143-7. [PMID: 12753430 DOI: 10.1034/j.1600-0773.2003.920307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Kainic acid induces seizures and neurotoxicity in rats, produces changes in brain serotonin (5-HT), dopamine and noradrenaline metabolites among other changes in neurotransmitters. In this work, we investigated the changes in 5-HT turnover in brain regions from 84 rats intraperitoneally injected with kainic acid and a specific behavioural change, the body and head shakes, exerted by this neurotoxin in the presence of 5-HT receptor antagonists. Kainic acid produced an increase in 5-hydroxyindoleacetic acid levels in frontal cortex (212%; 180%), striatum (177%; 116%), amygdala (202%; 337%) and hippocampus (43%; 70 %) at 2 and 24 hr as compared with controls, respectively. Serotonin turnover was increased in amygdala (157%) and frontal cortex (169%) at 2 hr; whereas 24 hr after kainic acid administration, increases were observed in amygdala (207%), and frontal cortex (178%). Kainic acid also produced an increase in the frequency of head and body shakes when administered alone or together with pargyline, a monoamine oxidase inhibitor; whereas the administration of 5-HT receptor antagonists such as ketanserin and methiothepin, decreased this behaviour 54% and 50% as compared with kainic acid alone, respectively. These results suggest an active participation of 5-HT neurotransmission on the excitotoxic action of kainic acid in the brain.
Collapse
Affiliation(s)
- Laura Osorio-Rico
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, México
| | | | | |
Collapse
|
175
|
Chung SY, Han SH. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J Pineal Res 2003; 34:95-102. [PMID: 12562500 DOI: 10.1034/j.1600-079x.2003.00010.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The antioxidant and anti-inflammatory effects of melatonin on kainic acid (KA)-induced neurodegeneration in the hippocampus were evaluated in vivo. It has been suggested that the pineal secretory product, melatonin, protects neurons in vitro from excitotoxicity mediated by kainate-sensitive glutamate receptors, and from oxidative stress-induced DNA damage and apoptosis. In this study, we injected 10 mg/kg kainate intraperitoneally (i.p.) into adult male Sprague-Dawley rats. This results in selective neuronal degeneration accompanied by intense microglial activation and triggers DNA damage in the hippocampus. We tested the in vivo efficacy of melatonin in preventing KA-induced neurodegeneration, oxidative stress and neuroinflammation in the hippocampus. Melatonin (2.5 mg/kg, i.p.) was given 20 min before, immediately after, and 1 and 2 hr after KA administration. Rats were killed 72 hr later and their hippocampi were examined for evidence of DNA damage (in situ dUTP end-labeling, i.e. TUNEL staining), cell viability (hematoxylin and eosin staining), and microglial (isolectin-B4 histochemistry) and astroglial responses (glial fibrillary acidic protein immunohistochemistry), as well as lipid peroxidation (4-hydroxynonenal immunohistochemistry). A cumulative dose of 10 mg/kg melatonin attenuates KA-induced neuronal death, lipid peroxidation, and microglial activation, and reduces the number of DNA breaks. A possible mechanism for melatonin-mediated neuroprotection involves its antioxidant and anti-inflammatory actions. The present data suggest that melatonin is potentially useful in the treatment of acute brain pathologies associated with oxidative stress-induced neuronal damage such as epilepsy, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Seung-Yun Chung
- Department of Pediatrics, Our Lady of Mercy Hospital, Catholic University Medical College, Inchon, Korea
| | | |
Collapse
|
176
|
Lehtimäki KA, Peltola J, Koskikallio E, Keränen T, Honkaniemi J. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:253-60. [PMID: 12591161 DOI: 10.1016/s0169-328x(02)00654-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that IL-6 protein levels are increased in cerebrospinal fluid in humans after recent tonic-clonic seizures with unchanged levels of IL-1beta and TNFalpha. Here we studied the expression of cytokines IL-6, LIF, IL-1beta and TNFalpha and cytokine receptors IL-6R, LIFR and Gp130 in the rat brain after kainic acid-induced status epilepticus using Northern blot analysis and in situ hybridization histochemistry. After seizures, IL-6 mRNA was induced in the hippocampus, cortex, amygdala and meninges, and IL-6R was up-regulated in the hippocampus. LIF was up-regulated in the hippocampus, cortex and meninges after seizures, and LIFR mRNA was induced in the hippocampus and cortex. Gp130 was constitutively expressed in the brain. After seizures, Gp130 transcription was rapidly induced in the meninges. In thalamus, cortex, amygdala and hippocampus Gp130 mRNA was induced in a delayed fashion. IL-1beta transcription was induced in the temporal lobe cortex and thalamus, and TNFalpha in the hippocampus. In general, the cytokine and their receptor mRNA levels were low in intact rat brain, but were induced by seizures. Since IL-6 and LIF transcripts were induced in the meninges after seizures, the protein products of these transcripts may be more readily released in cerebrospinal fluid after seizures. In addition, the activity of IL-6 and LIF signaling pathways may be influenced by increased expression of their receptors after seizures.
Collapse
Affiliation(s)
- K A Lehtimäki
- Department of Neurology and Rehabilitation, University of Tampere and Tampere University Hospital, PO Box 607, 33101 Tampere, Finland
| | | | | | | | | |
Collapse
|
177
|
Kim D, Im JO, Won YJ, Yoon SY, Lee EJ, Lee JH, Hong HN. Upregulation of c-Kit receptor and stem cell factor in cerebellar inhibitory synapses in response to kainic acid. J Neurosci Res 2003; 71:72-8. [PMID: 12478615 DOI: 10.1002/jnr.10466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal stimulation was induced in rats by systemic administration of kainic acid (KA) to determine if such stimulation is responsible for changes in the expression patterns of c-Kit and stem cell factor (SCF) in cerebellar synapses between inhibitory interneurons and Purkinje cells. Using immunocytochemistry and immunoblotting analyses, we demonstrate that c-Kit receptor tyrosine kinase and its ligand SCF are present on the pre- and postsynaptic sides of inhibitory synapses on Purkinje cells. These proteins are upregulated during the first 48 hr after KA treatment, whereas their levels fall below that of the control by 1 week and remain as such thereafter. Expression of both c-Kit and SCF are significantly elevated in the Purkinje cell layer 24 hr after KA administration, and the Purkinje cell layer exhibits a loss of calbindin D-28K immunoreactivity. Expression of c-Kit in basket cell axon terminals is activated until 48 hr after KA treatment, suggesting the transient participation of c-Kit receptor tyrosine kinase in the maintenance of these axonal terminals. Also during the first 48 hr after KA treatment, SCF levels increase in axonal processes of Purkinje cells, and these SCF-positive axons correlate with c-Kit-positive pinceau structures. The increased expression of c-Kit and SCF in response to KA-induced neuronal stimulation may indicate that c-Kit receptor tyrosine kinase and its ligand SCF function in the inhibitory synapse between cerebellar interneurons and Purkinje cells, and that this role is most pronounced during the first 48 hr after KA treatment.
Collapse
Affiliation(s)
- D Kim
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
178
|
Kim HC, Bing G, Kim SJ, Jhoo WK, Shin EJ, Bok Wie M, Ko KH, Kim WK, Flanders KC, Choi SG, Hong JS. Kainate treatment alters TGF-beta3 gene expression in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 108:60-70. [PMID: 12480179 DOI: 10.1016/s0169-328x(02)00514-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to evaluate the role of transforming growth factor (TGF)-beta3 in the neurodegenerative process, we examined the levels of mRNA and immunocytochemical distribution for TGF-beta3 in the rat hippocampus after systemic kainic acid (KA) administration. Hippocampal TGF-beta3 mRNA level was reduced 3 h after KA injection. However, the levels of TGF-beta3 mRNA were elevated 1 day post-KA and lasted for at least 30 days. A mild TGF-beta3 immunoreactivity (TGF-beta3-IR) in the Ammon's horn and a moderate TGF-beta3-IR in the dentate granule cells were observed in the normal hippocampus. The CA1 and CA3 neurons lost their TGF-beta3-IR, while TGF-beta3-positive glia-like cells proliferated mainly throughout the CA1 sector and had an intense immunoreactivity at 7, 15 and 30 days after KA. This immunocytochemical distribution of TGF-beta3-positive non-neuronal populations was similar to that of glial fibrillary acidic protein (GFAP)-positive cells. Double labeling immunocytochemical analysis demonstrated colocalization of TGF-beta3- and GFAP-immunoreactivity in the same cells. These findings suggest a compensatory mechanism of astrocytes for the synthesis of TGF-beta3 protein in response to KA-induced neurodegeneration. In addition, exogenous TGF-beta3 (5 or 10 ng/i.c.v.) significantly attenuated KA-induced seizures and neuronal damages in a dose-related manner. Therefore, our results suggest that TGF-beta3 plays an important role in protective mechanisms against KA-induced neurodegeneration.
Collapse
Affiliation(s)
- Hyoung-Chun Kim
- Neurotoxicology Program, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University, Chunchon 200-701, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Pérez-Cruz C, Rocha L. Kainic acid modifies mu-receptor binding in young, adult, and elderly rat brain. Cell Mol Neurobiol 2002; 22:741-53. [PMID: 12585692 PMCID: PMC11533739 DOI: 10.1023/a:1021861108885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mu-receptor binding changes were evaluated following the kainic acid (KA)-induced status epilepticus (SE) in young, adult, and elderly animals. Male Wistar rats were used as follows: young rats (15 days old) were treated with KA (7 mg/kg) and sacrificed 72 h (YKA3d) or 35 days (YKA35d) after SE; adult (90 days old) (AKA1d and AKA40d) and elderly rats (1-year-old) (EKA1d and EKA40d) were injected with KA (10 mg/kg) and then sacrificed 24 h or 40 days following SE. Their brains were processed for an autoradiography assay for mu-receptors. The YKA3d group showed increased values in dentate gyrus (39%) and a decrease in substantia nigra (26%); YKA35d animals had a reduction in caudate putamen (29%) and in substantia nigra (20%). The AKA1d group exhibited increased mu-receptors in caudate putamen (49%), cingulate (415%), frontal (52%), and temporal (53%) cortices: substantia nigra (56%), dentate gyrus (48%). and CA2 field of hippocampus (53%). The AKA40d group showed increased values in sensorimotor cortex (45%), anterior (39%), medial (65%), basolateral (202%), and central (32%) amygdaloid nuclei; dentate gyrus (80%) as well as CA2 (80%) and CA3 (49%) fields of hippocampus. The EKA1d group presented decreased mu-receptor binding in piriform (16%) and enthorinal (22%) cortices as well as in anterior amygdala nucleus (17%). The EKA40d group showed reduced values in sensorimotor cortex (14%) and substantia nigra (27%). The present results indicate that the mu-binding changes following SE depend on the rate of brain maturation.
Collapse
Affiliation(s)
- Claudia Pérez-Cruz
- División de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente: Av. México-Xochimilco 101, Mexico. D.F. C.P., 14370 Mexico
| | | |
Collapse
|
180
|
Zucchini S, Buzzi A, Bergamaschi M, Pietra C, Villetti G, Simonato M. Neuroprotective activity of CHF3381, a putative N-methyl-D-aspartate receptor antagonist. Neuroreport 2002; 13:2071-4. [PMID: 12438928 DOI: 10.1097/00001756-200211150-00016] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate the neuroprotective effect of CHF3381, a novel putative NMDA antagonist characterized by a good therapeutic index. We have compared the effects of CHF3381 on kainate seizure-induced neurodegeneration with those produced by the non competitive NMDA receptor antagonist MK-801 and by the Na channel blocker lamotrigine. All compounds have been employed at doses incapable of preventing or attenuating seizures. The fluorescent marker Fluoro-Jade B has been used to identify degenerating cells. Animals pretreated with lamotrigine presented the same degree of cell damage as the controls. As for the controls, a clear correlation was also observed between seizure severity and neurodegeneration. In contrast, MK-801 and CHF3381 completely prevented cell damage. These data indicate that CHF3381 may be successfully utilized in neurological disorders characterized by or associated with neurodegenerative excitotoxicity.
Collapse
Affiliation(s)
- Silvia Zucchini
- Department of Clinical and Experimental Medicine, Section of Pharmacology Neuroscience Center, University of Ferrara, via Fossato di Mortara, 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
181
|
Jeon J, Kim C, Sun W, Chung H, Park SH, Kim H. Cloning and localization of rgpr85 encoding rat G-protein-coupled receptor. Biochem Biophys Res Commun 2002; 298:613-8. [PMID: 12408996 DOI: 10.1016/s0006-291x(02)02515-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In an attempt to isolate genes involved in the brain development using ordered differential display PCR, we cloned rgpr85 which encodes rat G-protein-coupled receptor with high degree of identity to the amine-like neurotransmitter receptors. This gene was found to be localized at rat chromosome 4q21. In situ hybridization demonstrated that rgpr85 was predominantly expressed in the developing brain and spinal cord. Hybridization signal was especially abundant within the embryonic cortical plates where postmitotic cortical neurons are localized. In the cerebral cortex, the expression of rgpr85 was gradually decreased postnatally and became undetectable by P18. However, weak but significant expression of rgpr85 was maintained in the adult hippocampal formation, olfactory bulb, and cerebellum. Interestingly, rgpr85 expression was transiently induced in the adult hippocampal formation, piriform cortex, and amygdaloid complex by kainic acid (KA) treatment. Thus, dynamic regulation of rgpr85 expression suggests an importance of rgpr85-mediated signaling in the development of cerebral cortex and in the KA-induced responses in the adult brain.
Collapse
Affiliation(s)
- Jongrye Jeon
- Department of Anatomy, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | |
Collapse
|
182
|
Marti E, Blasi J, Ferrer I. Early induction of secretoneurin expression following kainic acid administration at convulsant doses in the rat and gerbil hippocampus. Hippocampus 2002; 12:174-85. [PMID: 12000117 DOI: 10.1002/hipo.1103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of secretogranin-II and its major proteolytic product secretoneurin (SN) is under the control of neuronal excitation, as demonstrated by treating rats with the excitotoxic kainic acid (KA). Differences in the structure and function of the hippocampus in rats and gerbils have been described; these suggest possible differential reactive responses to KA. In the present study, the SN immunostaining pattern in relation with cell damage is analyzed from 6 h to 4 days following KA administration in rats and gerbils. Dramatic differences in the expression of SN were found in the hippocampal complex following KA administration in gerbils and rats. A robust increase in SN immunoreactivity was detected in the pyramidal cell layer of the rat hippocampus, especially in the CA1 area. In the gerbil, however, a strong increase in SN immunostaining was detected in interneurons of the hippocampal formation, as shown by double-labeling immunohistochemistry to SN and the calcium-binding proteins parvalbumin, calbindin, and calretinin. In addition, no damage (in the hippocampal formation) or moderate damage (in the entorhinal cortex) was observed in the gerbil, in contrast to the rat. The administration of KA and the GABA-B receptor inhibitors (CGP56999A or CGP36742) to the gerbil resulted in a strong rise in SN immunoreactitivty in the CA1 pyramidal cell layer of the hippocampus, as in the rat. However, no increased cell damage was observed under these conditions. The present data provide evidence of a species-differential reactive response to KA that might be based, in part, on distinct inhibitory intrahippocampal circuitry.
Collapse
Affiliation(s)
- E Marti
- Laboratori de Neurobiologia Cellular i Molecular, Biologia Cellular i Anatomia Patològica Department, Facultat de Medicina, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.
| | | | | |
Collapse
|
183
|
Matsui F, Kawashima S, Shuo T, Yamauchi S, Tokita Y, Aono S, Keino H, Oohira A. Transient expression of juvenile-type neurocan by reactive astrocytes in adult rat brains injured by kainate-induced seizures as well as surgical incision. Neuroscience 2002; 112:773-81. [PMID: 12088737 DOI: 10.1016/s0306-4522(02)00136-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurocan is one of the major chondroitin sulfate proteoglycans expressed in nervous tissues. The expression of neurocan is developmentally regulated, and full-length neurocan is detected in juvenile brains but not in adult brains. In the present study, we demonstrated by western blot analysis that full-length neurocan transiently appeared in adult rat hippocampus when it was lesioned by kainate-induced seizures. Immunohistochemical studies showed that neurocan was detected mainly around the CA1 region although the seizure resulted in neuronal cell degeneration in both the CA1 and CA3 regions of the hippocampus. Double-labeling for neurocan mRNA and glial fibrillary acidic protein demonstrated that many reactive astrocytes expressed neurocan mRNA. The re-expression of full-length neurocan was also observed in the surgically injured adult rat brain. In contrast, the expression of other nervous tissue chondroitin sulfate proteoglycans, such as phosphacan and neuroglycan C, was not intensified but rather was either reduced in the kainate-lesioned hippocampus or in the surgically injured cerebral cortex. These observations indicate that induction of neurocan expression by reactive astrocytes is a common phenomenon in the repair process of adult brain injury, and therefore, it can be postulated that juvenile-type neurocan plays some roles in brain repair.
Collapse
Affiliation(s)
- F Matsui
- Department of Perinatology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Becker AJ, Wiestler OD, Blümcke I. Functional genomics in experimental and human temporal lobe epilepsy: powerful new tools to identify molecular disease mechanisms of hippocampal damage. PROGRESS IN BRAIN RESEARCH 2002; 135:161-73. [PMID: 12143338 DOI: 10.1016/s0079-6123(02)35016-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The human genome project is a milestone for molecular genetic studies on complex, sporadic disorders in the human central nervous system (CNS). Functional analysis and tissue-/cell-specific expression profiles will be of particular importance anticipating the magnitude of expressed genes in the brain and their dynamic epigenetic modifications. The recent progress in microarray technologies allows expression studies for a large number of genes. In combination with laser-microdissection and quantitative reverse transcription-polymerase chain reaction technologies, such large-scale expression analyses can be successfully addressed in well-defined tissue specimens or cellular subpopulations. Complex, sporadic diseases, such as temporal lobe epilepsy (TLE), are challenging for functional genomics. Issues of particular importance in this field include molecular mechanisms of neurodevelopmental abnormalities, neuronal plasticity and hyperexcitability as well as neuronal cell damage in affected CNS areas. The availability of anatomically well-preserved surgical specimens, i.e. hippocampus obtained from epilepsy patients with Ammon's horn sclerosis or focal lesions not affecting the hippocampus proper as well as comparisons with experimental TLE models may help to elucidate specific molecular-pathological mechanisms during epileptogenesis and in chronic conditions of the disease.
Collapse
Affiliation(s)
- Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53105 Bonn, Germany.
| | | | | |
Collapse
|
185
|
Schauwecker PE. Complications associated with genetic background effects in models of experimental epilepsy. PROGRESS IN BRAIN RESEARCH 2002; 135:139-48. [PMID: 12143336 DOI: 10.1016/s0079-6123(02)35014-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To elucidate the genetic influences contributing to susceptibility to seizure disorders, researchers have long used selected lines and inbred strains of rodents. In recent years, the use of genetically altered mice as models of complex human disease has revolutionized biomedical research into the genetics of disease pathogenesis and potential therapeutic interventions. In particular, the study of transgenic and gene-deleted (knockout) mice can provide important insights into the in vivo function and interaction of specific gene products. While a variety of inbred mouse mutations have been used to directly evaluate the genetic basis of seizure disorders, data obtained from such genetically altered mice must be interpreted carefully. An increasing number of scientific articles have reported that the phenotype of a given single gene mutation in mice can be modulated by the genetic background of the inbred strain in which the mutation is maintained. This effect is attributable to so-called modifier genes, which act in combination with the causative gene. In this review, the author points out the importance of considering the genetic background of the strain used to create these animal models, the potential problems with interpretation of phenotype, and solutions to selecting an appropriate mouse model of experimental epilepsy. Despite these potential limitations, knockout mice provide a powerful tool for understanding the genetic and neurobiological mechanisms contributing to experimental epilepsy.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
186
|
Kaasinen SK, Goldsteins G, Alhonen L, Jänne J, Koistinaho J. Induction and activation of protein kinase C delta in hippocampus and cortex after kainic acid treatment. Exp Neurol 2002; 176:203-12. [PMID: 12093097 DOI: 10.1006/exnr.2002.7919] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various isoforms of protein kinase C (PKC), especially the novel PKC subtypes delta, epsilon, and the atypical subtype PKC zeta, are involved in delayed cell death. We studied the expression and late activation of the latter PKC isoforms in comparison with classic PKC alpha, beta, and gamma in the brains of rats exposed to systemic kainate injection. The expression of PKC delta mRNA was strikingly upregulated (13-fold) in the cortex and the CA1 and CA3 hippocampal regions on 1 day after kainate administration, whereas PKC zeta mRNA was only moderately increased (about 100%) in these three brain regions on day 2 following the drug. PKC epsilon mRNA was slightly increased only in the cortex on days 2 and 6, while the mRNA levels of the classic PKC subtypes (alpha, beta, and gamma) remained unchanged or decreased after the treatment. Immunoblotting analyses revealed that the level of PKC delta protein started to increase on day 1 after kainate and was significantly elevated on day 2 in both the membrane and cytosol fractions of cortex and hippocampus. PKC epsilon protein only showed a marginal increase and the level of PKC zeta protein remained unaltered in response to the treatment. Cortical and CA1-3 pyramidal neurons displayed strong immunoreactivity for PKC delta on days 1 and 2, and microglia on days 1, 2, and 4 after the drug. The results indicate that the expression of apoptosis-associated isoforms of PKC, most notably that of delta, but to lesser extent also that of epsilon and zeta, is increased during kainate-induced neuronal death. The predominant induction of PKC delta in neurons and microglia suggests that PKC delta could be the major mediator or modulator of apoptotic and inflammatory responses to excitotoxic insults.
Collapse
Affiliation(s)
- Selma K Kaasinen
- A.1. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
187
|
Morioka T, Nishio S, Ikezaki K, Inamura T, Kawamura T, Fukui K. Unilateral striatal damage following status epilepticus of ipsilateral frontal lobe origin. Seizure 2002; 11:261-5. [PMID: 12027574 DOI: 10.1053/seiz.2001.0604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A 35-year-old man with an old contusional haematoma in the right frontal lobe developed status epilepticus (SE) of right frontal origin. On magnetic resonance (MR) images 10 days after SE, the right striatum showed signal enhancement with Gd-DTPA administration. Subsequent MR imaging 1 month later indicated prolonged T1 and T2 relaxation times in the right striatum. Prolonged seizure activity in the frontal lobe may have induced excitatory neurotoxicity in the ipsilateral striatum, with occurrence of delayed neuronal damage as a result.
Collapse
Affiliation(s)
- Takato Morioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
188
|
Chen Z, Ljunggren HG, Bogdanovic N, Nennesmo I, Winblad B, Zhu J. Excitotoxic neurodegeneration induced by intranasal administration of kainic acid in C57BL/6 mice. Brain Res 2002; 931:135-45. [PMID: 11897099 DOI: 10.1016/s0006-8993(02)02268-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutamate excitotoxicity plays a key role in inducing neuronal cell death in many neurological diseases. In mice, administration of kainic acid, an analogue of the excitotoxin glutamate, results in hippocampal cell death and seizures. Kainic-acid-induced seizures in mice provide a well-characterized model for studies of human neurodegenerative diseases. However, C57BL/6 mice, which are often used for genetic analyses and transgenic and knockout studies, are resistant to excitotoxicity induced by subcutaneous administration of kainic acid. In the present study, kainic acid administered by the intranasal route was shown to result in continuous tonic-clonic seizures in C57BL/6 mice. These seizures continued for 1-5 h and successfully induced selective lesions in area CA3 of the hippocampus. The survival rate was high even after mice experienced severe seizures. The hippocampal lesions were associated with a high level of cyclooxygenase-2 production as well as astrogliosis. Administration of kainic acid also altered behavioral responses, with mice showing a significant increase in locomotion and rearing activity as indicated by an open-field test. This animal model could provide a valuable tool for exploring the role of excitotoxicity in neuropathological conditions and should be further evaluated in gene-targeting studies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiguo Chen
- NEUROTEC, Division of Experimental Geriatrics, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
189
|
Mellström B, Ceña V, Lamas M, Perales C, Gonzalez C, Naranjo JR. Gas1 is induced during and participates in excitotoxic neuronal death. Mol Cell Neurosci 2002; 19:417-29. [PMID: 11906213 DOI: 10.1006/mcne.2001.1092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have performed differential screening to identify genes participating in NMDA-induced neuronal death. The gas1 (growth arrest-specific gene 1) gene, whose product is known to inhibit cell cycle progression, was induced in cultured corticohippocampal neurons committed to die after a brief exposure to NMDA. Overexpression of Gas1 in cultured hippocampal neurons and in human neuroblastoma NB69 cells produced a marked reduction in the number of viable cells. Furthermore, gas1 antisense oligodeoxynucleotide or antisense mRNA protected hippocampal neurons or NB69 cells from neuronal death. Importantly, Gas1-induced neuronal death was attenuated by coexpression of the human Bcl-2 protein or the baculoviral caspase inhibitor OpIAP2. While Gas1 does not directly interact with Bcl-2, OpIAP2 coimmunoprecipitates with Gas1. In addition, induction of gas1 also occurred in rat brain in two models of excitotoxicity: delayed neuronal death after intraperitoneal kainate injection and neuronal death in hippocampal slices after ischemia. These results indicate that Gas1 is induced by activation of glutamate receptors and is part of the gene expression program directing neuronal death after mild excitotoxic insults.
Collapse
Affiliation(s)
- Britt Mellström
- Departamento de Biologia Molecular y Celular, Centro Nacional de Biotecnologia, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
190
|
Kondratyev A, Selby D, Gale K. Status epilepticus leads to the degradation of the endogenous inhibitor of caspase-activated DNase in rats. Neurosci Lett 2002; 319:145-8. [PMID: 11834314 DOI: 10.1016/s0304-3940(02)00004-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Specific biochemical hallmarks of apoptosis, namely internucleosomal DNA fragmentation and caspase-3 activation, appear in the aftermath of status epilepticus (SE). This led us to hypothesize that caspase-activated DNase (CAD) is involved in DNA fragmentation and apoptotic neuronal cell death following SE. The present study aimed to determine whether SE is associated with an activation of CAD, as reflected in the degradation of the CAD inhibitor, ICAD. SE was induced in adult male Sprague-Dawley rats by kainic acid (12 mg/kg i.p.) and seizures were terminated with diazepam after 2 h. At 24, 48, or 72 h after SE termination, protein levels of CAD and ICAD were measured by Western blotting (after sodium dodecyl sulfate-polyacrylamide gel electrophoresis) using specific antibodies. At 48 and 72 h after SE termination, ICAD protein levels significantly decreased (by more than 60%) in rhinal cortex and hippocampus as compared with those in the same tissue from animals not experiencing SE. No changes were detected in total CAD protein levels at any time point, resulting in an increase in the ratio of CAD to its inhibitor. The loss of ICAD following SE is indicative of a disinhibition of CAD, leading to DNA fragmentation. Consistent with this, we observed that the decrease in ICAD between 24 and 48 h was accompanied by a marked increase in DNA fragmentation. Our results support the proposal that CAD participates in caspase-3-mediated internucleosomal DNA fragmentation in the aftermath of SE.
Collapse
Affiliation(s)
- Alexei Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, The Research Building, Room W217, 3970 Reservoir Road, Washington, DC 20007, USA.
| | | | | |
Collapse
|
191
|
Mennicken F, Chabot JG, Quirion R. Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the forebrain. Glia 2002; 37:124-38. [PMID: 11754211 DOI: 10.1002/glia.10021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As chemokines and their receptors are primarily expressed by glial cells in brain parenchyma, a model of glial cell proliferation may be useful to study the regulation of their expression in the brain. The well-established kainic acid seizure model was used in this study, focusing on the expression of the CCR5 chemokine receptor. Adult Sprague-Dawley rats were injected intraperitoneally with kainic acid (12 mg/kg), and in situ hybridization of CCR5 mRNA was performed at 12 h, 1, 3, or 7 days, posttreatment. Autoradiographic films and wet photographic emulsions demonstrated the very low expression of CCR5 mRNA in normal brain parenchyma, as well as in the microvasculature and ventricular/choroid plexus systems. After kainic acid treatment, brain CCR5 mRNA expression increased progressively from 12 h to 7 days, especially in the olfactory system, amygdaloid complex, thalamus, hippocampal formation, septum, and neocortex. This increase paralleled that of activated microglial cells as shown, using the microglial marker, OX-42. Moreover, CCR5 mRNA ISH combined with neuron-specific enolase immunocytochemistry showed that, in addition to its glial expression, CCR5 mRNA is expressed in neurons in the normal brain and, to a lesser extent, after kainate treatment due to neuronal losses. Finally, CCR5 protein is detected by immunocytochemistry in neurodegenerative areas in numerous glial cells, as well as in neurons, as clearly shown in the hippocampal formation. In summary, the chemokine receptor CCR5 is expressed by neuronal and non-neuronal cell types in the normal brain and is upregulated in both cell types after an insult.
Collapse
Affiliation(s)
- Françoise Mennicken
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, LaSalle-Verdun, Québec, Canada
| | | | | |
Collapse
|
192
|
Baram TZ, Eghbal-Ahmadi M, Bender RA. Is neuronal death required for seizure-induced epileptogenesis in the immature brain? PROGRESS IN BRAIN RESEARCH 2002; 135:365-75. [PMID: 12143355 PMCID: PMC3084550 DOI: 10.1016/s0079-6123(02)35033-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Do seizures cause neuronal death? At least in the immature hippocampus, this may not be the critical question for determining the mechanisms of epileptogenesis. Neuronal injury and death have clearly been shown to occur in most epilepsy models in the mature brain, and are widely considered a prerequisite to seizure-induced epilepsy. In contrast, little neuronal death occurs after even a severe and prolonged seizure prior to the third postnatal week. However, seizures early in life, for example prolonged experimental febrile seizures, can profoundly and permanently change the hippocampal circuit in a pro-epileptogenic direction. These seizure-induced alterations of limbic excitability may require transient structural injury, but are mainly due to functional changes in expression of gene coding for specific receptors and channels, leading to altered functional properties of hippocampal neurons. Thus, in some pro-epileptogenic models in the developing brain, neither the death of neurons nor death-induced abnormalities of surviving neurons may underlie the formation of an epileptic circuit. Rather, findings in the experimental prolonged febrile seizure model suggest that persistent functional alterations of gene expression ('neuroplasticity') in diverse hippocampal neuronal populations may promote pro-epileptogenic processes induced by these seizures. These findings also suggest that during development, relatively short, intense bursts of neuronal activity may disrupt 'normal' programmed maturational processes to result in permanent, selective alterations of gene expression, with profound functional consequences. Therefore, determining the cascade of changes in the programmed expression of pertinent genes, including their temporal and cell-specific spatial profiles, may provide important information for understanding the process of transformation of an evolving, maturing hippocampal network into one which is hyperexcitable.
Collapse
Affiliation(s)
- Tallie Z Baram
- Departments of Pediatrics, Anatomy, Neurobiology and Neurology, University of California at Irvine, Irvine, CA 92697-4475, USA.
| | | | | |
Collapse
|
193
|
Kang TC, Kim HS, Seo MO, Choi SY, Kwon OS, Baek NI, Lee HY, Won MH. The temporal alteration of GAD67/GAD65 ratio in the gerbil hippocampal complex following seizure. Brain Res 2001; 920:159-69. [PMID: 11716822 DOI: 10.1016/s0006-8993(01)03056-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the distribution of glutamic acid decarboxylase (GAD) isoforms in the hippocampus of the Mongolian gerbil and its association with different sequelae of spontaneous seizure were investigated to identify the roles of balance of GAD isoforms in the epileptogenesis and the recovery mechanisms in these animals. The GAD67/GAD65 ratio in the hippocampus of pre-seizure seizure sensitive (SS) gerbil was approximately 3.5-fold higher as compared to seizure resistant (SR) gerbil. Following seizure, this ratio shifted to the level of SR gerbils up to 12 h postical. Therefore, the mismatched GAD67/GAD65 ratio (imbalance of GAD isoform expressions) in the hippocampus of SS gerbil implies that GABAergic neurons may be highly activated in order to regulate the increased neuronal excitability. In addition, the alteration in this ratio after seizure may be the compensatory response for reduction of epileptic activity in this animal.
Collapse
Affiliation(s)
- T C Kang
- Department of Anatomy, College of Medicine, Hallym University, Kangwon-Do 200-702, Chunchon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Van Bogaert P, De Tiège X, Vanderwinden JM, Damhaut P, Schiffmann SN, Goldman S. Comparative study of hippocampal neuronal loss and in vivo binding of 5-HT1a receptors in the KA model of limbic epilepsy in the rat. Epilepsy Res 2001; 47:127-39. [PMID: 11673027 DOI: 10.1016/s0920-1211(01)00301-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A high density of 5-HT1a receptors is present in pyramidal hippocampal cells. Mapping of these receptors may be performed in vivo using the tracer no-carrier-added 4-(18)F-fluoro-N-2-(1-(2-methoxyphenyl)-1-piperazinyl)ethyl-N-2-pyridinyl-benzamide (MPPF). We tested the hypothesis of a relationship between MPPF binding and post-epileptic neuronal loss in the hippocampus. The model of limbic epilepsy induced by kainic acid (KA) in the rat was used. Rats were sacrificed at various times (1 h-240 days) after systemic injection of 10 mg/kg KA. Determination of MPPF binding in the brain was combined with a quantification of neuronal loss using DNA labeling with propidium iodide and confocal microscopy. Hippocampal MPPF binding varied according to time elapsed from KA injection. An initial decrease from day 1 to day 6 post injection was followed by a relative increase between day 6 and day 30. This effect was observed in rats which showed hippocampal neuronal loss but also in one rat which did not. In KA treated rats, statistically significant relationship between MPPF binding and neuronal count was found during the acute period (rats sacrificed 1 h-day 6 after KA injection) and the chronic phase (rats sacrificed beyond day 60 after KA injection). The late relative increase of MPPF binding suggests an epilepsy-induced increase of 5-HT1a receptors in the hippocampus. This effect needs to be further characterized before considering PET determination of hippocampal MPPF binding as a method of post-epileptic neuronal loss assessment.
Collapse
Affiliation(s)
- P Van Bogaert
- PET/Biomedical Cyclotron Unit, Hôpital Erasme, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
195
|
Che Y, Yu YM, Han PL, Lee JK. Delayed induction of p38 MAPKs in reactive astrocytes in the brain of mice after KA-induced seizure. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 94:157-65. [PMID: 11597776 DOI: 10.1016/s0169-328x(01)00233-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been implicated in pathological changes in inflammatory and apoptotic processes in various cell types including neurons. Here we report the delayed induction of p38 MAPKs in the brain of mice following kainic acid (KA)-induced seizure. The immunoreactivities of p38alpha and p38beta MAPKs were markedly increased in the brain 4 days after KA administration, especially in the areas undergoing selective neuronal loss. In particular, p38beta was dramatically increased in reactive astrocytes of CA3 and CA1 regions of hippocampus with its enriched localization in the nucleus of astrocytes. The induction of p38beta was sustained for more than 10 days after KA-treatment. Pre-administration of the selective neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI), which suppressed the delayed neuronal death as well as astrogliosis in hippocampus of seizure-experienced animals, dramatically repressed the delayed induction of p38beta MAPK in astrocytes. The repression was reversed by the co-injection with L-arginine (L-arg), a substrate for NOS, which coincided with the aggravation of neuronal death. Together, these data suggested a role of p38 MAPK signal pathway in delayed neuronal death and/or in reactive gliosis in mice with KA-induced seizure.
Collapse
Affiliation(s)
- Y Che
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, 400-712, Inchon, South Korea
| | | | | | | |
Collapse
|
196
|
Kondratyev A, Gale K. Temporal and spatial patterns of DNA fragmentation following focally or systemically-evoked status epilepticus in rats. Neurosci Lett 2001; 310:13-6. [PMID: 11524146 DOI: 10.1016/s0304-3940(01)02055-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Status epilepticus (SE) triggers neuronal degeneration comprised of both necrotic and apoptotic components. Here we determined whether internucleosomal DNA fragmentation reflects the severity of SE-induced neuronal damage. We utilized both a systemic (kainic acid) and a focally-induced model of SE in rats. DNA fragmentation was analyzed in rhinal cortex and hippocampus at various time points following SE episodes of varying durations (30-120 min). Radioactively labeled DNA fragments were analyzed by agarose gel electrophoresis and quantified by liquid scintillation counting. The spatial and temporal characteristics of the SE-evoked DNA fragmentation indicated that this marker of apoptosis appears as early as 8 h after SE and reaches peak expression at 48 h. This method permitted us to quantitatively monitor the evolution of the apoptotic component of cell death over the acute post-injury period (8-72 h). Moreover, in both models of SE, the DNA fragmentation varied directly as a linear function of the duration of SE between 30 and 120 min suggesting that this marker should be highly responsive to neuroprotective intervention.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
197
|
Kondratyev A, Sahibzada N, Gale K. Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:1-13. [PMID: 11457487 DOI: 10.1016/s0169-328x(01)00099-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. The vulnerability to adrenalectomy-induced apoptotic neuronal death was recently reported to be reduced by prior exposure to repeated daily noninjurious electroconvulsive shock (ECS). The present studies identified apoptosis and apoptosis-associated gene products in the neurodegenerative response to experimentally controlled periods (1 or 2 h) of SE in the rat, and determined whether exposure to ECS can interrupt these apoptotic responses mechanisms. Internucleosomal DNA fragmentation and the presence of apoptotic-like neurons (as assessed by in situ double labeling technique) was detected in hippocampus and rhinal cortex at 24 h after SE. Under these conditions, levels of both mRNA and protein encoded by the 'death promoting' bcl-XS gene were increased in the same brain areas. Pretreatment of animals for 7 days with low intensity (minimal) ECS conferred resistance to SE-evoked neurodegeneration, as assessed histopathologically by silver staining. Associated with this neuroprotective action was a reduction in the incidence of apoptosis-like neuronal morphology and DNA fragmentation, and a prevention of the increase in Bcl-XS protein and mRNA in hippocampus and rhinal cortex. These data suggest that pre-exposure to controlled, brief noninjurious seizures decreases vulnerability to programmed neuronal cell death, that this neuroprotective action occurs upstream from Bcl-XS, and that increases in bcl-XS gene expression may serve as a sensitive indicator of neurodegeneration following SE.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | |
Collapse
|
198
|
Di Iorio P, Virgilio A, Giuliani P, Ballerini P, Vianale G, Middlemiss PJ, Rathbone MP, Ciccarelli R. AIT-082 is neuroprotective against kainate-induced neuronal injury in rats. Exp Neurol 2001; 169:392-9. [PMID: 11358452 DOI: 10.1006/exnr.2001.7654] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
4-[[3-(1,6-dihydro-6-oxo-9-purin-9-yl)-1-oxopropyl]amino]benzoic acid (AIT-082) is an hypoxanthine derivative that stimulates in vitro neurite outgrowth and the production of adenosine and neurotrophins from astrocytes. These effects may predict an in vivo neuroprotective activity of the drug. Thus, we evaluated whether AIT-082 protected against a long-term excitotoxicity of hippocampal neurons following status epilepticus induced in rats by i.p. injection of kainate (12 mg/kg). The epileptogenic effect of kainate was evaluated by monitoring behavioral signs and by electroencephalographic (EEG) recording (80% of the animals showed status epilepticus with a latency of 96.8 +/- 7.4 min starting from the injection). In surviving rats (40% of the injected animals) the neurotoxic effect was evaluated by measuring glutamic acid decarboxylase (GAD) activity, as an index of loss of hippocampal GABAergic neurons, by evaluating the body weight after 7 days and by histological examination of hippocampi. The GAD activity was reduced by 44 +/- 8%, and neuronal loss (about 70%) was found in the CA3c, the CA1 area, and in the dentate gyrus. A single dose of diazepam (20 mg/kg; i.p., 20 min before the kainate injection) almost completely inhibited both seizures and neurotoxicity, ensuring survival of animals. AIT-082 (60 mg/kg/day; i.p., for 7 days, starting from 20 min before the kainate injection) did not modify the seizures caused by kainate but, like diazepam, it decreased kainate-induced mortality, the reduction of GAD activity, and the loss of hippocampal neurons. These data confirm that AIT-082 is of potential interest for the experimental therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- P Di Iorio
- Department of Biomedical Sciences, University of Chieti, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Lerma J, Paternain AV, Rodríguez-Moreno A, López-García JC. Molecular physiology of kainate receptors. Physiol Rev 2001; 81:971-98. [PMID: 11427689 DOI: 10.1152/physrev.2001.81.3.971] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A decade ago, our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology was essentially null. A plethora of recent studies has altered this situation profoundly such that kainate receptors are now regarded as key players in the modulation of transmitter release, as important mediators of the postsynaptic actions of glutamate, and as possible targets for the development of antiepileptic and analgesic drugs. In this review, we summarize our current knowledge of the properties of kainate receptors focusing on four key issues: 1) their structural and biophysical features, 2) the important progress in their pharmacological characterization, 3) their pre- and postsynaptic mechanisms of action, and 4) their involvement in a series of physiological and pathological processes. Finally, although significant progress has been made toward the elucidation of their importance for brain function, kainate receptors remain largely an enigma and, therefore, we propose some new roads that should be explored to obtain a deeper understanding of this young, but intriguing, class of proteins.
Collapse
Affiliation(s)
- J Lerma
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | |
Collapse
|
200
|
Abstract
Apart from constituting an important management problem, depression coexisting with epilepsy is also an interesting psychiatric phenomenon, with multiple interacting biological, psychological and social factors involved in its causation. New research approaches to the study of epilepsy and depression, including neuroimaging, neurochemical and neuroendocrine techniques, and the arrival of new classes of antidepressants in recent years, suggest it is timely to reconsider this topic. We review current knowledge of the prevalence and causes of interictal depression in epilepsy, focussing mainly on neurobiological factors, and give an overview of recent concepts concerning the management of depression. We also discuss pharmacological treatment of depression in epilepsy, focussing on the association between antidepressants and seizures, and drug interactions.
Collapse
Affiliation(s)
- M R Salzberg
- St. Vincent's Mental Health Service, St Vincent's Hospital, Melbourne, Australia
| | | |
Collapse
|