151
|
miR-221 modulates skeletal muscle satellite cells proliferation and differentiation. In Vitro Cell Dev Biol Anim 2017; 54:147-155. [PMID: 29197032 DOI: 10.1007/s11626-017-0210-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, which play important roles in animals by targeting mRNA transcripts for translational repression. Many recent studies have shown that miRNAs are involved in the control of muscle development. In this study, the expression levels of miR-221 in different tissues and during rabbit skeletal muscle satellite cells (SMSCs) differentiation were detected. Gene ontology term enrichment was used to predict the potential biological roles of miR-221. A synthetic miR-221 mimic and a miR-221 inhibitor were used to investigate the functions of miR-221 during SMSCs proliferation and differentiation to further verify the functions of miR-221 in muscle development. In this report, we compared the expression levels of miR-221 in different tissues. The expression levels of miR-221 were upregulated after the induction of differentiation, and then were gradually downregulated during SMSCs differentiation. Overexpression of miR-221 promoted SMSCs proliferation, whereas inhibiting expression restrained proliferation in the EdU and CCK-8 assays. In addition, overexpression of miR-221 led to a decline in the expression levels of the differentiation marker genes MyoG and MHC. miR-221 overexpression suppressed SMSCs myotube formation. On the contrary, inhibition of miR-221 promoted myotube formation. Our data showed that miR-221 increased SMSCs proliferation and decreased differentiation.
Collapse
|
152
|
Liu T, Wang B, Li Q, Dong XL, Han X, Zhang S. Retracted
: Effects of microRNA‐206 and its target gene IGF‐1 on sevoflurane‐induced activation of hippocampal astrocytes in aged rats through the PI3K/AKT/CREB signaling pathway. J Cell Physiol 2017; 233:4294-4306. [DOI: 10.1002/jcp.26248] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Tie‐Jun Liu
- Department of AnesthesiologyNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Bin Wang
- Department of PaediatricsNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Qun‐Xi Li
- Department of NeurosurgeryNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Xiao‐ Liu Dong
- Department of NeurologyTangshan People's HospitalTangshanP.R. China
| | - Xiao‐Liang Han
- Department of AnesthesiologyNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| | - Shu‐Bo Zhang
- Department of AnesthesiologyNorth China University of Science and Technology Affiliated HospitalTangshanP.R. China
| |
Collapse
|
153
|
Guescini M, Maggio S, Ceccaroli P, Battistelli M, Annibalini G, Piccoli G, Sestili P, Stocchi V. Extracellular Vesicles Released by Oxidatively Injured or Intact C2C12 Myotubes Promote Distinct Responses Converging toward Myogenesis. Int J Mol Sci 2017; 18:ijms18112488. [PMID: 29165341 PMCID: PMC5713454 DOI: 10.3390/ijms18112488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 12/14/2022] Open
Abstract
Myogenic differentiation is triggered, among other situations, in response to muscle damage for regenerative purposes. It has been shown that during myogenic differentiation, myotubes release extracellular vesicles (EVs) which participate in the signalling pattern of the microenvironment. Here we investigated whether EVs released by myotubes exposed or not to mild oxidative stress modulate the behaviour of targeted differentiating myoblasts and macrophages to promote myogenesis. We found that EVs released by oxidatively challenged myotubes (H2O2-EVs) are characterized by an increased loading of nucleic acids, mainly DNA. In addition, incubation of myoblasts with H2O2-EVs resulted in a significant decrease of myotube diameter, myogenin mRNA levels and myosin heavy chain expression along with an upregulation of proliferating cell nuclear antigen: these effects collectively lead to an increase of recipient myoblast proliferation. Notably, the EVs from untreated myotubes induced an opposite trend in myoblasts, that is, a slight pro-differentiation effect. Finally, H2O2-EVs were capable of eliciting an increased interleukin 6 mRNA expression in RAW264.7 macrophages. Notably, this is the first demonstration that myotubes communicate with surrounding macrophages via EV release. Collectively, the data reported herein suggest that myotubes, depending on their conditions, release EVs carrying differential signals which could contribute to finely and coherently orchestrate the muscle regeneration process.
Collapse
Affiliation(s)
- Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy.
| |
Collapse
|
154
|
Magri F, Vanoli F, Corti S. miRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2017; 22:755-767. [PMID: 29160009 PMCID: PMC5783860 DOI: 10.1111/jcmm.13450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by the selective death of lower motor neurons in the brain stem and spinal cord. SMA is caused by mutations in the survival motor neuron 1 gene (SMN1), leading to the reduced expression of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that regulate post-transcriptional gene expression. Recent findings have suggested an important role for miRNAs in the pathogenesis of motor neuron diseases, including SMA. Motor neuron-specific miRNA dysregulation in SMA might be implicated in their selective vulnerability. In this study, we discuss recent findings regarding the consequences of SMN defects on miRNAs and their target mRNAs in motor neurons. Taken together, these data suggest that cell-specific changes in miRNAs are not only involved in the SMA motor neuron phenotype but can also be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Magri
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Fiammetta Vanoli
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Neurological Sciences, Mental Health and Sensory Organs (NESMOS), "Sapienza" University of Rome, Rome, Italy
| | - Stefania Corti
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
155
|
Jebessa E, Ouyang H, Abdalla BA, Li Z, Abdullahi AY, Liu Q, Nie Q, Zhang X. Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget 2017; 9:17309-17324. [PMID: 29707110 PMCID: PMC5915118 DOI: 10.18632/oncotarget.22457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate mRNA expression by degradation or translational inhibition. We investigated the underlying molecular mechanisms of skeletal muscle development based on differentially expressed genes and miRNAs. We compared mRNA and miRNA from chicken skeletal muscle at embryonic day E11, E16 and one day post-hatch (P1). The interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down regulated miRNAs or down-regulated genes with up-regulated miRNAs with |log2fold change| ≥ 1.75, P < 0.005. The miRNA-mRNA integration analysis showed high number of mRNAs regulated by a few number of miRNAs. In the E11_VS_E16, comparison group we identified biological processes including muscle maintenance, myoblast proliferation and muscle thin filament formation. The E11_VS_P1 group comparison included negative regulation of axon extension, sarcomere organization, and cell redox homeostasis and kinase inhibitor activity. The E16_VS_P1 comparison group contained genes for the negative regulation of anti-apoptosis and axon extension as well as glomerular basement membrane development. Functional in vitro assays indicated that over expression of miR-222a and miR-126–5p in DF-1 cells significantly reduced the mRNA levels of the target genes CPEB3 and FGFR3, respectively. These integrated analyses provide several candidates for future studies concerning miRNAs-target function on regulation of embryonic muscle development and growth.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Auwalu Yusuf Abdullahi
- Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingshen Liu
- Department of Animal Production and Management, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
156
|
Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017; 72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
A fundamental process during both embryo development and stem cell differentiation is the control of cell lineage determination. In developing skeletal muscle, many of the diffusible signaling molecules, transcription factors and more recently non-coding RNAs that contribute to this process have been identified. This has facilitated advances in our understanding of the molecular mechanisms underlying the control of cell fate choice. Here we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic muscle development and differentiation, and in satellite cells of adult muscle, which are essential for muscle growth and regeneration. Some of these short post-transcriptional regulators of gene expression are restricted to skeletal muscle, but their expression can also be more widespread. In addition, we discuss a few examples of long non-coding RNAs, which are numerous but much less well understood.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
157
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Downregulation of lizard immuno-genes in the regenerating tail and myogenes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. PROTOPLASMA 2017; 254:2127-2141. [PMID: 28357509 DOI: 10.1007/s00709-017-1107-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Amputated tails of lizards regenerate while limbs form scars which histological structure is very different from the original organs. Lizards provide useful information for regenerative medicine and some hypotheses on the loss of regeneration in terrestrial vertebrates. Analysis of tail and limb transcriptomes shows strong downregulation in the tail blastema for immunoglobulins and surface B and T receptors, cell function, and metabolism. In contrast, in the limb blastema genes for myogenesis, muscle and cell function, and extracellular matrix deposition but not immunity are variably downregulated. The upregulated genes show that the regenerating tail is an embryonic organ driven by the Wnt pathway and non-coding RNAs. The strong inflammation following amputation, the non-activation of the Wnt pathway, and the upregulation of inflammatory genes with no downregulation of immune genes indicate that the amputated limb does not activate an embryonic program. Intense inflammation in limbs influences in particular the activity of genes coding for muscle proteins, cell functions, and stimulates the deposition of dense extracellular matrix proteins resulting in scarring limb outgrowths devoid of muscles. The present study complements that on upregulated genes, and indicates that the regenerating tail requires immune suppression to maintain this embryonic organ connected to the rest of the tail without be rejected or turned into a scar. It is hypothesized that the evolution of the adaptive immune system determined scarring instead of organ regeneration in terrestrial vertebrates and that lizards evolved the process of tail regeneration through a mechanism of immuno-evasion.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Lorenzo Alibardi
- Comparative Histolab, Padova, Italy.
- Dipartimento Bigea, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
158
|
De Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA, Cardozo CP. Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep 2017; 7:12888. [PMID: 29038428 PMCID: PMC5643439 DOI: 10.1038/s41598-017-13105-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Exosomes are vesicles released by many eukaryotic cells; their cargo includes proteins, mRNA and microRNA (miR) that can be transferred to recipient cells and regulate cellular processes in an autocrine or paracrine manner. While cells of the myoblast lineage secrete exosomes, it is not known whether skeletal muscle fibers (myofibers) release exosomes. In this study, we found that cultured myofibers release nanovesicles that have bilamellar membranes and an average size of 60-130 nm, contain typical exosomal proteins and miRNAs and are taken up by C2C12 cells. miR-133a was found to be the most abundant myomiR in these vesicles while miR-720 was most enriched in exosomes compared to parent myofibers. Treatment of NIH 3T3 cells with myofiber-derived exosomes downregulated the miR-133a targets proteins Smarcd1 and Runx2, confirming that these exosomes have biologically relevant effects on recipient cells. Denervation resulted in a marked increase in miR-206 and reduced expression of miRs 1, 133a, and 133b in myofiber-derived exosomes. These findings demonstrate that skeletal muscle fibers release exosomes which can exert biologically significant effects on recipient cells, and that pathological muscle conditions such as denervation induce alterations in exosomal miR profile which could influence responses to disease states through autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- Rita De Gasperi
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sayyed Hamidi
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Lauren M Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Hanna Ksiezak-Reding
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacologic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
159
|
Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Drosophila melanogaster Indirect Flight Muscles. G3-GENES GENOMES GENETICS 2017; 7:3521-3531. [PMID: 28866639 PMCID: PMC5633399 DOI: 10.1534/g3.117.300232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding endogenous RNAs, typically 21-23 nucleotides long, that regulate gene expression, usually post-transcriptionally, by binding to the 3'-UTR of target mRNA, thus blocking translation. The expression of several miRNAs is significantly altered during cardiac hypertrophy, myocardial ischemia, fibrosis, heart failure, and other cardiac myopathies. Recent studies have implicated miRNA-9 (miR-9) in myocardial hypertrophy. However, a detailed mechanism remains obscure. In this study, we have addressed the roles of miR-9 in muscle development and function using a genetically tractable model system, the indirect flight muscles (IFMs) of Drosophila melanogaster Bioinformatics analysis identified 135 potential miR-9a targets, of which 27 genes were associated with Drosophila muscle development. Troponin-T (TnT) was identified as major structural gene target of miR-9a. We show that flies overexpressing miR-9a in the IFMs have abnormal wing position and are flightless. These flies also exhibit a loss of muscle integrity and sarcomeric organization causing an abnormal muscle condition known as "hypercontraction." Additionally, miR-9a overexpression resulted in the reduction of TnT protein levels while transcript levels were unaffected. Furthermore, muscle abnormalities associated with miR-9a overexpression were completely rescued by overexpression of TnT transgenes which lacked the miR-9a binding site. These findings indicate that miR-9a interacts with the 3'-UTR of the TnT mRNA and downregulates the TnT protein levels by translational repression. The reduction in TnT levels leads to a cooperative downregulation of other thin filament structural proteins. Our findings have implications for understanding the cellular pathophysiology of cardiomyopathies associated with miR-9 overexpression.
Collapse
|
160
|
Pang C, Huang G, Luo K, Dong Y, He F, Du G, Xiao M, Cai W. miR-206 inhibits the growth of hepatocellular carcinoma cells via targeting CDK9. Cancer Med 2017; 6:2398-2409. [PMID: 28940993 PMCID: PMC5633544 DOI: 10.1002/cam4.1188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/22/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022] Open
Abstract
miR‐206 plays an important role in regulating the growth of multiple cancer cells. Cyclin‐dependent kinase 9 (CDK9) stimulates the production of abundant prosurvival proteins, leading to impaired apoptosis of cancer cells. However, it is unknown whether CDK9 is involved in the miR‐206‐mediated growth suppression of hepatocellular carcinoma (HCC) cells. In this study, we found that the expression level of miR‐206 was significantly lower in HCC cell lines than that in normal hepatic cell line (L02). Meanwhile, CDK9 was upregulated in HCC cell lines. Moreover, miR‐206 downregulated CDK9 in HCC cells via directly binding to its mRNA 3′ UTR, which resulted in a decrease of RNA PolII Ser2 phosphorylation and Mcl‐1 level. Additionally, miR‐206 suppressed the cell proliferation, and induced cell cycle arrest and apoptosis. Similarly, silence or inhibition of CDK9 also repressed the cell proliferation, and induced cell cycle arrest and apoptosis. Taken together, the results demonstrated that miR‐206 inhibited the growth of HCC cells through targeting CDK9, suggesting that the miR‐206‐CDK9 pathway may be a novel target for the treatment of HCC.
Collapse
Affiliation(s)
- Chi Pang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Kaili Luo
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Yuying Dong
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 570102, China
| |
Collapse
|
161
|
Simon L, Ford SM, Song K, Berner P, Vande Stouwe C, Nelson S, Bagby GJ, Molina PE. Decreased myoblast differentiation in chronic binge alcohol-administered simian immunodeficiency virus-infected male macaques: role of decreased miR-206. Am J Physiol Regul Integr Comp Physiol 2017; 313:R240-R250. [PMID: 28637658 PMCID: PMC5625276 DOI: 10.1152/ajpregu.00146.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
Abstract
Skeletal muscle stem cells play a critical role in regeneration of myofibers. We previously demonstrated that chronic binge alcohol (CBA) markedly attenuates myoblast differentiation potential and myogenic gene expression. Muscle-specific microRNAs (miRs) are implicated in regulation of myogenic genes. The aim of this study was to determine whether myoblasts isolated from asymptomatic CBA-administered simian immunodeficiency virus (SIV)-infected macaques treated with antiretroviral therapy (ART) showed similar impairments and, if so, to elucidate potential underlying mechanisms. Myoblasts were isolated from muscle at 11 mo after SIV infection from CBA/SIV macaques and from time-matched sucrose (SUC)-treated SIV-infected (SUC/SIV) animals and age-matched controls. Myoblast differentiation and myogenic gene expression were significantly decreased in myoblasts from SUC/SIV and CBA/SIV animals compared with controls. SIV and CBA decreased muscle-specific miR-206 in plasma and muscle and SIV decreased miR-206 expression in myoblasts, with no statistically significant changes in other muscle-specific miRs. These findings were associated with a significant increase in histone deacetylase 4 (HDAC4) and decrease in myogenic enhancer factor 2C (MEF2C) expression in CBA/SIV muscle. Transfection with miR-206 inhibitor decreased myotube differentiation, increased expression of HDAC4, and decreased MEF2C, suggesting a critical role of miR-206 in myogenesis. Moreover, HDAC4 was confirmed to be a direct miR-206 target. These results support a mechanistic role for decreased miR-206 in suppression of myoblast differentiation resulting from chronic alcohol and SIV infection. The parallel changes in skeletal muscle and circulating levels of miR-206 warrant studies to establish the possible use of plasma miR-206 as an indicator of impaired muscle function.
Collapse
Affiliation(s)
- L Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| | - S M Ford
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - K Song
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - P Berner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - C Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - S Nelson
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - G J Bagby
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - P E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| |
Collapse
|
162
|
Osorio JS, Vailati-Riboni M, Palladino A, Luo J, Loor JJ. Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
163
|
Identification of organ tissue types and skin from forensic samples by microRNA expression analysis. Forensic Sci Int Genet 2017; 28:99-110. [DOI: 10.1016/j.fsigen.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 01/19/2023]
|
164
|
Demonbreun AR, McNally EM. Muscle cell communication in development and repair. Curr Opin Pharmacol 2017; 34:7-14. [PMID: 28419894 DOI: 10.1016/j.coph.2017.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Under basal conditions, postnatal skeletal muscle displays little cell turnover. With injury, muscle initiates a rapid repair response to reseal damaged membrane, reactivating many developmental pathways to facilitate muscle regeneration and prevent tissue loss. Muscle precursor cells become activated accompanied by differentiation and fusion during both muscle growth and regeneration; inter-cellular communication is required for successful completion of these processes. Cellular communication is mediated by lipids, fusogenic membrane proteins, and exosomes. Muscle-derived exosomes carry proteins and micro RNAs as cargo. Secreted factors such as IGF-1, TGFβ, and myostatin are also released by muscle cells providing local signaling cues to modulate muscle fusion and regeneration. Proteins that regulate myoblast fusion also participate in membrane repair and regeneration. Here we will review methods of muscle cell communication focusing on proteins that mediate membrane fusion, exosomes, and autocrine factors.
Collapse
Affiliation(s)
- Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
165
|
Koganti PP, Wang J, Cleveland B, Ma H, Weber GM, Yao J. Estradiol regulates expression of miRNAs associated with myogenesis in rainbow trout. Mol Cell Endocrinol 2017; 443:1-14. [PMID: 28011237 DOI: 10.1016/j.mce.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
17β-Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanism associated with this response is not fully understood. To better characterize the effects of E2 on muscle, we identified differentially regulated microRNAs (miRNAs) and muscle atrophy-related transcripts in juvenile rainbow trout exposed to E2. Small RNA-Seq analysis of E2-treated vs. control muscle identified 36 differentially expressed miRNAs including those known to be involved in myogenesis, cell cycle, apoptosis, and cell death. Some important myogenic miRNAs, such as miR-133 and miR-206, are upregulated while others like miR-145 and miR-499, are downregulated. Gene Ontology analysis of the target genes regulated by the miRNAs involved in atrophy and cell cycle indicates that E2 influence leads to expansion of quiescent myogenic precursor cell population to address atrophying mature muscle in rainbow trout during sexual development.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Jian Wang
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Beth Cleveland
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Hao Ma
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Gregory M Weber
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Jianbo Yao
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
166
|
Amirouche A, Jahnke VE, Lunde JA, Koulmann N, Freyssenet DG, Jasmin BJ. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. Am J Physiol Cell Physiol 2017; 312:C209-C221. [DOI: 10.1152/ajpcell.00185.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 01/31/2023]
Abstract
Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Saint Etienne, Université de Lyon, Lyon, France
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Vanessa E. Jahnke
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Saint Etienne, Université de Lyon, Lyon, France
| | - John A. Lunde
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-sur-Orge, France
| | - Damien G. Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Saint Etienne, Université de Lyon, Lyon, France
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
167
|
Gabunia K, Herman AB, Ray M, Kelemen SE, England RN, DeLa Cadena R, Foster WJ, Elliott KJ, Eguchi S, Autieri MV. Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC. J Mol Cell Cardiol 2017; 105:38-48. [PMID: 28257760 DOI: 10.1016/j.yjmcc.2017.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The transformation of vascular smooth muscle cells [VSMC] into foam cells leading to increased plaque size and decreased stability is a key, yet understudied step in atherogenesis. We reported that Interleukin-19 (IL-19), a novel, anti-inflammatory cytokine, attenuates atherosclerosis by anti-inflammatory effects on VSMC. In this work we report that IL-19 induces expression of miR133a, a muscle-specific miRNA, in VSMC. Although previously unreported, we report that miR133a can target and reduce mRNA abundance, mRNA stability, and protein expression of Low Density Lipoprotein Receptor Adaptor Protein 1, (LDLRAP1), an adaptor protein which functions to internalize the LDL receptor. Mutations in this gene lead to LDL receptor malfunction and cause the Autosomal Recessive Hypercholesterolemia (ARH) disorder in humans. Herein we show that IL-19 reduces lipid accumulation in VSMC, and LDLRAP1 expression and oxLDL uptake in a miR133a-dependent mechanism. We show that LDLRAP1 is expressed in plaque and neointimal VSMC of mouse and human injured arteries. Transfection of miR133a and LDLRAP1 siRNA into VSMC reduces their proliferation and uptake of oxLDL. miR133a is significantly increased in plasma from hyperlipidemic compared with normolipidemic patients. Expression of miR133a in IL-19 stimulated VSMC represents a previously unrecognized link between vascular lipid metabolism and inflammation, and may represent a therapeutic opportunity to combat vascular inflammatory diseases.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Allison B Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Ross N England
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Raul DeLa Cadena
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - William J Foster
- Departments of Ophthalmology & Bioengineering, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Katherine J Elliott
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Satoru Eguchi
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
168
|
Wang CN, Wang YJ, Wang H, Song L, Chen Y, Wang JL, Ye Y, Jiang B. The Anti-dementia Effects of Donepezil Involve miR-206-3p in the Hippocampus and Cortex. Biol Pharm Bull 2017; 40:465-472. [PMID: 28123152 DOI: 10.1248/bpb.b16-00898] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a most serious age-related neurodegenerative disorder accompanied with significant memory impairments in this world. Recently, microRNAs (miRNAs) have been reported to be invlolved in the pathophysiology of AD. Previous studies have shown that miRNA-206 (miR-206) is implicated in the pathogenesis of AD via suppressing the expression of brain-derived neurotrophic factor (BDNF) in the brain. Here, we examined the miR-206-3p and miR-206-5p expression in the hippocampus and cortex of Abeta precursor protein (APP)/presenilin-1 (PS1) transgenic mice treated with donepezil, a drug approved for treating AD in clinic. We found that the expression of miR-206-3p was significantly up-regulated in the hippocampus and cortex of APP/PS1 mice, while donepezil administration significantly reversed this dysfunction. In addition, enhancing the miR-206-3p level by the usage of AgomiR-206-3p significantly attenuated the anti-dementia effects of donepezil in APP/PS1 mice. Together, these results suggested that miR-206-3p is involved in the anti-dementia effects of donepezil, and could be a novel pharmacological target for treating AD.
Collapse
Affiliation(s)
- Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Fritegotto C, Ferrati C, Pegoraro V, Angelini C. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1. Neurol Sci 2017; 38:619-625. [PMID: 28078570 DOI: 10.1007/s10072-017-2811-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
Abstract
We aimed to explore the cellular action of micro-RNAs that are non-coding-RNAs modulating gene expression, whose expression is dysregulated in myotonic dystrophy (DM1). Basic procedure was to measure the levels of muscle-specific myo-miRNAs (miR-1, miR-133a/b, miR-206) in muscle of 12 DM1 patients. Muscle fiber morphometry and a new grading of histopathological severity score were used to compare specific myo-miRNA level and fiber atrophy. We found that the levels of miR-1 and miR-133a/b were significantly decreased, while miR-206 was significantly increased as compared to controls. The histopathological score did not significantly correlate with the levels of myo-miRNAs, even if the lowest levels of miRNA-1 and miRNA-133a/b, and the highest levels of miRNA-206 were observed in patients with either severe histopathological scores or long disease duration. The histopathological score was inversely correlated with disease duration. Nowadays that DM1 muscle biopsies are scanty, since patients are usually diagnosed by genetic analysis, our study offers a unique opportunity to present miRNA expression profiles in muscle and correlate them to muscle morphology in this rare multisystem disorder. Our molecular and morphologic data suggest a post-transcriptional regulatory action of myo-miRNA in DM1, highlighting their potential role as biomarkers of muscle plasticity.
Collapse
Affiliation(s)
- Chiara Fritegotto
- Department of Neurosciences, University of Padova, via Orus 2B, 35129, Padova, Italy.,Fondazione San Camillo Hospital IRCCS, via Alberoni 70, 30126, Lido Venice, Italy
| | - Chiara Ferrati
- Department of Neurosciences, University of Padova, via Orus 2B, 35129, Padova, Italy
| | - Valentina Pegoraro
- Fondazione San Camillo Hospital IRCCS, via Alberoni 70, 30126, Lido Venice, Italy
| | - Corrado Angelini
- Fondazione San Camillo Hospital IRCCS, via Alberoni 70, 30126, Lido Venice, Italy.
| |
Collapse
|
170
|
Esteves JV, Enguita FJ, Machado UF. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance. J Diabetes Res 2017; 2017:7267910. [PMID: 28428964 PMCID: PMC5385897 DOI: 10.1155/2017/7267910] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
The solute carrier family 2 facilitated glucose transporter member 4 (GLUT4) plays a key role in the insulin-induced glucose uptake by muscle and adipose tissues. In prediabetes and diabetes, GLUT4 expression/translocation has been detected as reduced, participating in mechanisms that impair glycemic control. Recently, a class of short endogenous noncoding RNAs named microRNAs (miRNAs) has been increasingly described as involved in the posttranscriptional epigenetic regulation of gene expression. The present review focuses on miRNAs potentially involved in the expression of GLUT4 expression, and proteins related to GLUT4 and translocation in skeletal muscle, seeking to correlate them with insulin resistance and diabetes. So far, miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p, miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p have been reported to directly and/or indirectly regulate the GLUT4 expression; and their expression is altered under diabetes-related conditions. Besides, some miRNAs that have been linked to the expression of proteins involved in GLUT4 translocation machinery in muscle could also impact glucose uptake. That makes these miRNAs promising targets for preventive and/or therapeutic approaches, which could improve glycemic control, thus deserving future new investigations.
Collapse
Affiliation(s)
- João Victor Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francisco Javier Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- *Ubiratan Fabres Machado:
| |
Collapse
|
171
|
Butchart LC, Fox A, Shavlakadze T, Grounds MD. The long and short of non-coding RNAs during post-natal growth and differentiation of skeletal muscles: Focus on lncRNA and miRNAs. Differentiation 2016; 92:237-248. [DOI: 10.1016/j.diff.2016.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
172
|
Desvignes T, Detrich HW, Postlethwait JH. Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish. Mar Genomics 2016; 30:27-34. [PMID: 27189439 PMCID: PMC5108692 DOI: 10.1016/j.margen.2016.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 01/03/2023]
Abstract
White-blooded Antarctic crocodile icefish are the only vertebrates known to lack functional hemoglobin genes and red blood cells throughout their lives. We do not yet know, however, whether extinction of hemoglobin genes preceded loss of red blood cells or vice versa, nor whether erythropoiesis regulators disappeared along with hemoglobin genes in this erythrocyte-null clade. Several microRNAs, which we here call erythromiRs, are expressed primarily in developing red blood cells in zebrafish, mouse, and humans. Abrogating some erythromiRs, like mir144 and mir451a, leads to profound anemia, demonstrating a functional role in erythropoiesis. Here, we tested two not mutually exclusive hypotheses: 1) that the loss of one or more erythromiR genes extinguished the erythropoietic program of icefish and/or led to the loss of globin gene expression through pseudogenization; and 2) that some erythromiR genes were secondarily lost after the loss of functional hemoglobin and red blood cells in icefish. We explored small RNA transcriptomes generated from the hematopoietic kidney marrow of four Antarctic notothenioids: two red-blooded species (bullhead notothen Notothenia coriiceps and emerald notothen Trematomus bernacchii) and two white-blooded icefish (blackfin icefish Chaenocephalus aceratus and hooknose icefish Chionodraco hamatus). The N. coriiceps genome assembly anchored analyses. Results showed that, like the two red-blooded species, the blackfin icefish genome possessed and the marrow expressed all known erythromiRs. This result indicates that loss of hemoglobin and red blood cells in icefish was not caused by loss of known erythromiR genes. Furthermore, expression of only one erythromiR, mir96, appears to have been lost after the loss of red blood cells and hemoglobin-expression was not detected in the erythropoietic organ of hooknose icefish but was present in blackfin icefish. All other erythromiRs investigated, including mir144 and mir451a, were expressed by all four species and thus are present in the genomes of at least the two white-blooded icefish. Our results rule out the hypothesis that genomic loss of any known erythromiRs extinguished erythropoiesis in icefish, and suggest that after the loss of red blood cells, few erythromiRs experienced secondary loss. Results suggest that functions independent of erythropoiesis maintained erythromiRs, thereby highlighting the evolutionary resilience of miRNA genes in vertebrate genomes.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, 01908, USA.
| | | |
Collapse
|
173
|
De Gasperi R, Graham ZA, Harlow LM, Bauman WA, Qin W, Cardozo CP. The Signature of MicroRNA Dysregulation in Muscle Paralyzed by Spinal Cord Injury Includes Downregulation of MicroRNAs that Target Myostatin Signaling. PLoS One 2016; 11:e0166189. [PMID: 27907012 PMCID: PMC5132212 DOI: 10.1371/journal.pone.0166189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) results in muscle atrophy, reduced force generation and an oxidative-to-glycolytic fiber type shift. The mechanisms responsible for these alterations remain incompletely understood. To gain new insights regarding mechanisms involved in deterioration of muscle after SCI, global expression profiles of miRs in paralyzed gastrocnemius muscle were compared between sham-operated (Sham) and spinal cord-transected (SCI) rats. Ingenuity Pathways Analysis of the altered miRs identified signaling via insulin, IGF-1, integrins and TGF-β as being significantly enriched for target genes. By qPCR, miRs 23a, 23b, 27b, 145, and 206, were downregulated in skeletal muscle 56 days after SCI. Using FISH, miR-145, a miR not previously implicated in the function of skeletal muscle, was found to be localized to skeletal muscle fibers. One predicted target of miR-145 was Cited2, a transcriptional regulator that modulates signaling through NF-κB, Smad3 and other transcription factors. The 3’ UTR of Cited2 mRNA contained a highly conserved miR-145 seed sequence. Luciferase reporter assays confirmed that miR-145 interacts with this seed sequence. However, Cited2 protein levels were similar between Sham and SCI groups, indicating a biochemical interaction that was not involved in the context of adaptations after SCI. Taken together, the findings indicate dysregulation of several highly expressed miRs in skeletal muscle after SCI and suggest that reduced expression of miR-23a, 145 and 206 may have roles in alteration in skeletal muscle mass and insulin responsiveness in muscle paralyzed by upper motor neuron injuries.
Collapse
Affiliation(s)
- Rita De Gasperi
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary A. Graham
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lauren M. Harlow
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
| | - William A. Bauman
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Weiping Qin
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher P. Cardozo
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pharmacologic Science Icahn School of Medicine at Mount Sinai, New York, New York
- * E-mail:
| |
Collapse
|
174
|
Witwer KW, Halushka MK. Toward the promise of microRNAs - Enhancing reproducibility and rigor in microRNA research. RNA Biol 2016; 13:1103-1116. [PMID: 27645402 DOI: 10.1080/15476286.2016.1236172] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fields of applied and translational microRNA research have exploded in recent years as microRNAs have been implicated across a spectrum of diseases. MicroRNA biomarkers, microRNA therapeutics, microRNA regulation of cellular physiology and even xenomiRs have stimulated great interest, which have brought many researchers into the field. Despite many successes in determining general mechanisms of microRNA generation and function, the application of microRNAs in translational areas has not had as much success. It has been a challenge to localize microRNAs to a given cell type within tissues and assay them reliably. At supraphysiologic levels, microRNAs may regulate hosts of genes that are not the physiologic biochemical targets. Thus the applied and translational microRNA literature is filled with pitfalls and claims that are neither scientifically rigorous nor reproducible. This review is focused on increasing awareness of the challenges of working with microRNAs in translational research and recommends better practices in this area of discovery.
Collapse
Affiliation(s)
- Kenneth W Witwer
- a Department of Molecular and Comparative Pathobiology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Department of Neurology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marc K Halushka
- c Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
175
|
Coenen-Stass AML, Betts CA, Lee YF, Mäger I, Turunen MP, El Andaloussi S, Morgan JE, Wood MJA, Roberts TC. Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Hum Mol Genet 2016; 25:3960-3974. [PMID: 27466195 PMCID: PMC5291232 DOI: 10.1093/hmg/ddw237] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 05/11/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
MyomiRs are muscle-specific microRNAs (miRNAs) that regulate myoblast proliferation and differentiation. Extracellular myomiRs (ex-myomiRs) are highly enriched in the serum of Duchenne Muscular Dystrophy (DMD) patients and dystrophic mouse models and consequently have potential as disease biomarkers. The biological significance of miRNAs present in the extracellular space is not currently well understood. Here we demonstrate that ex-myomiR levels are elevated in perinatal muscle development, during the regenerative phase that follows exercise-induced myoinjury, and concomitant with myoblast differentiation in culture. Whereas ex-myomiRs are progressively and specifically released by differentiating human primary myoblasts and C2C12 cultures, chemical induction of apoptosis in C2C12 cells results in indiscriminate miRNA release. The selective release of myomiRs as a consequence of cellular differentiation argues against the idea that they are solely waste products of muscle breakdown, and suggests they may serve a biological function in specific physiological contexts. Ex-myomiRs in culture supernatant and serum are predominantly non-vesicular, and their release is independent of ceramide-mediated vesicle secretion. Furthermore, ex-myomiRs levels are reduced in aged dystrophic mice, likely as a consequence of chronic muscle wasting. In conclusion, we show that myomiR release accompanies periods of myogenic differentiation in cell culture and in vivo. Serum myomiR abundance is therefore a function of the regenerative/degenerative status of the muscle, overall muscle mass, and tissue expression levels. These findings have implications for the use of ex-myomiRs as biomarkers for DMD disease progression and monitoring response to therapy.
Collapse
Affiliation(s)
- Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Yi F Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm SE-141 57, Sweden
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Mikko P Turunen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, 70150 Kuopio, Finland
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm SE-141 57, Sweden
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| |
Collapse
|
176
|
Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016; 432:83-95. [PMID: 26525415 DOI: 10.1016/j.mce.2015.10.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine.
Collapse
Affiliation(s)
| | - Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Johannes Grillari
- Evercyte GmbH, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria.
| |
Collapse
|
177
|
Hartmann S, Döring C, Agostinelli C, Portscher-Kim SJ, Lonardi S, Lorenzi L, Fuligni F, Martinez D, Mehta J, Borges A, Hackstein H, Kippenberger S, Piccaluga PP, Simonitsch-Klupp I, Cabeçadas J, Campo E, Facchetti F, Pileri SA, Hansmann ML. miRNA expression profiling divides follicular dendritic cell sarcomas into two groups, related to fibroblasts and myopericytomas or Castleman's disease. Eur J Cancer 2016; 64:159-166. [PMID: 27423414 DOI: 10.1016/j.ejca.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Follicular dendritic cell (FDC) sarcomas are rare mesenchymal tumours, which are fatal in 20% of the patients and usually occur in secondary lymphoid organs or extranodal localizations. Due to the rareness of these tumours, only few studies have been conducted on molecular level. In the present study, we performed microRNA (miRNA) profiling of 31 FDC sarcomas and identified two subgroups, one with high miRNA expression and the other group with low miRNA expression levels. The first group showed a strong similarity to fibroblasts and myopericytomas, whereas the second group was more closely related to FDCs from Castleman's disease. Both groups showed important differences compared with myeloid-derived dendritic cells, confirming mesenchymal origin of FDCs and their derived sarcomas. The two FDC sarcoma groups did not differ on morphological grounds, mitotic activity or BRAF mutation status. However, patients of group I presented a tendency to a shorter overall survival and more frequent podoplanin expression by immunohistochemistry. The importance of these newly recognized FDC sarcoma subgroups in terms of clinical behaviour and therapeutic implications should be assessed in a larger cohort in future studies.
Collapse
Affiliation(s)
- Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany.
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Haematopathology Section, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Silvia Lonardi
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Luisa Lorenzi
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic and Specialty Medicine, Haematopathology Section, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniel Martinez
- Hematopathology Section, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jay Mehta
- Histopathology, SRL Diagnostics, Mumbai 400013, India
| | - Anita Borges
- Histopathology, SRL Diagnostics, Mumbai 400013, India
| | | | | | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic and Specialty Medicine, Haematopathology Section, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - José Cabeçadas
- Department of Pathology, Portuguese Institute of Oncology, Lisbon, Portugal
| | - Elias Campo
- Hematopathology Section, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Fabio Facchetti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Stefano A Pileri
- Department of Experimental, Diagnostic and Specialty Medicine, Haematopathology Section, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; Unit of Diagnostic Haematopathology, European Institute of Oncology, Milan, Italy
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
178
|
Koenig EM, Fisher C, Bernard H, Wolenski FS, Gerrein J, Carsillo M, Gallacher M, Tse A, Peters R, Smith A, Meehan A, Tirrell S, Kirby P. The beagle dog MicroRNA tissue atlas: identifying translatable biomarkers of organ toxicity. BMC Genomics 2016; 17:649. [PMID: 27535741 PMCID: PMC4989286 DOI: 10.1186/s12864-016-2958-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression patterns, miRNAs have the potential to be specific biomarkers of organ injury. The identification of miRNA biomarkers requires a systematic approach: 1) determine the miRNA tissue expression profiles within a mammalian species via next generation sequencing; 2) identify enriched and/or specific miRNA expression within organs of toxicologic interest, and 3) in vivo validation with tissue-specific toxicants. While miRNA tissue expression has been reported in rodents and humans, little data exists on miRNA tissue expression in the dog, a relevant toxicology species. The generation and evaluation of the first dog miRNA tissue atlas is described here. Results Analysis of 16 tissues from five male beagle dogs identified 106 tissue enriched miRNAs, 60 of which were highly enriched in a single organ, and thus may serve as biomarkers of organ injury. A proof of concept study in dogs dosed with hepatotoxicants evaluated a qPCR panel of 15 tissue enriched miRNAs specific to liver, heart, skeletal muscle, pancreas, testes, and brain. Dogs with elevated serum levels of miR-122 and miR-885 had a correlative increase of alanine aminotransferase, and microscopic analysis confirmed liver damage. Other non-liver enriched miRNAs included in the screening panel were unaffected. Eli Lilly authors created a complimentary Sprague Dawely rat miRNA tissue atlas and demonstrated increased pancreas enriched miRNA levels in circulation, following caerulein administration in rat and dog. Conclusion The dog miRNA tissue atlas provides a resource for biomarker discovery and can be further mined with refinement of dog genome annotation. The 60 highly enriched tissue miRNAs identified within the dog miRNA tissue atlas could serve as diagnostic biomarkers and will require further validation by in vivo correlation to histopathology. Once validated, these tissue enriched miRNAs could be combined into a powerful qPCR screening panel to identify organ toxicity during early drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2958-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik M Koenig
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Craig Fisher
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Hugues Bernard
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Francis S Wolenski
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Joseph Gerrein
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Mary Carsillo
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Matt Gallacher
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Aimy Tse
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Rachel Peters
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Aaron Smith
- Eli Lilly and Company, 893 S. Delaware, Indianapolis, IN, 46285, USA
| | - Alexa Meehan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Stephen Tirrell
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Patrick Kirby
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| |
Collapse
|
179
|
Nie Y, Sato Y, Wang C, Yue F, Kuang S, Gavin TP. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. FASEB J 2016; 30:3745-3758. [PMID: 27458245 DOI: 10.1096/fj.201600529r] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Exercise promotes multiple beneficial effects on muscle function, including induction of mitochondrial biogenesis. miR-133a is a muscle-enriched microRNA that regulates muscle development and function. The role of miR-133a in exercise tolerance has not been fully elucidated. In the current study, mice that were deficient in miR-133a demonstrated low maximal exercise capacity and low resting metabolic rate. Transcription of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-γ coactivator 1-α, peroxisome proliferator-activated receptor-γ coactivator 1-β, nuclear respiratory factor-1, and transcription factor A, mitochondrial were lower in miR-133a-deficient muscle, which was consistent with lower mitochondrial mass and impaired exercise capacity. Six weeks of endurance exercise training increased the transcriptional level of miR-133a and stimulated mitochondrial biogenesis in wild-type mice, but failed to improve mitochondrial function in miR-133a-deficient mice. Further mechanistic analysis showed an increase in the miR-133a potential target, IGF-1 receptor, along with hyperactivation of Akt signaling, in miR-133a-deficient mice, which was consistent with lower transcription of the mitochondrial biogenesis regulators. These findings indicate an essential role of miR-133a in skeletal muscle mitochondrial biogenesis, exercise tolerance, and response to exercise training.-Nie, Y., Sato, Y., Wang, C., Yue, F., Kuang, S., Gavin, T. P. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice.
Collapse
Affiliation(s)
- Yaohui Nie
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, USA.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Yoriko Sato
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, USA.,Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
180
|
Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle. Animal 2016; 11:227-235. [PMID: 27406318 DOI: 10.1017/s1751731116001488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Satellite cells are adult stem cells located between the basal lamina and sarcolemma of muscle fibers. Under physiological conditions, satellite cells are quiescent, but they maintain a strong proliferative potential and propensity to differentiate, which underlies their critical role in muscle preservation and growth. MicroRNAs (miRNAs) play essential roles during animal development as well as in stem cell self-renewal and differentiation regulation. MiRNA-1, miRNA-133a and miRNA-206 are closely related muscle-specific miRNAs, and are thus defined myomiRNAs. MyomiRNAs are integrated into myogenic regulatory networks. Their expression is under the transcriptional and post-transcriptional control of myogenic factors and, in turn, they exhibit widespread control of muscle gene expression. Very little information is available about the regulation and behavior of satellite cells in large farm animals, in particular during satellite cell differentiation. Here, we study bovine satellite cells (BoSCs) undergoing a differentiation process and report the expression pattern of selected genes and miRNAs involved. Muscle samples of longissimus thoracis from Holstein adult male animals were selected for the collection of satellite cells. All satellite cell preparations demonstrated myotube differentiation. To characterize the dynamics of several transcription factors expressed in BoSCs, we performed real-time PCR on complementary DNA generated from the total RNA extracted from BoSCs cultivated in growth medium (GM) or in differentiation medium (DM) for 4 days. In the GM condition, BoSCs expressed the satellite cell lineage markers as well as transcripts for the myogenic regulatory factors. At the time of isolation from muscle, PAX7 was expressed in nearly 100% of BoSCs; however, its messenger RNA (mRNA) levels dramatically decreased between 3 and 6 days post isolation (P<0.01). MyoD mRNA levels increased during the 1st day of cultivation in DM (day 7; P<0.02), showing a gradual activation of the myogenic gene program. During the subsequent 4 days of culture in DM, several tested genes, including MRF4, MYOG, MEF2C, TMEM8C, DES and MYH1, showed increased expression (P<0.05), and these levels remained high throughout the culture period investigated. Meanwhile, the expression of genes involved in the differentiation process also miRNA-1, miRNA-133a and miRNA-206 were strongly up-regulated on the 1st day in DM (day 7; P<0.05). Analysis revealed highly significant correlations between myomiRNAs expression and MEF2C, MRF4, TMEM8C, DES and MYH1 gene expression (P<0.001). Knowledge about the transcriptional changes correlating with the growth and differentiation of skeletal muscle fibers could be helpful for developing strategies to improve production performance in livestock.
Collapse
|
181
|
Abstract
OBJECTIVES Preeclampsia is a multisystem disease that significantly contributes to maternal and foetal morbidity and mortality. In this study, we used a nonbiased microarray approach to identify novel circulating miRNAs in maternal plasma that may be associated with preeclampsia. METHODS Plasma samples were obtained at 16 and 28 weeks of gestation from 18 women who later developed preeclampsia (cases) and 18 matched women with normotensive pregnancies (controls). We studied miRNA expression profiles in plasma and subsequently confirmed miRNA and target gene expression in placenta samples. Placental samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. RESULTS From the microarray, we identified one miRNA that was significantly differentially expressed between cases and controls at 16 weeks of gestation and six miRNAs that were significantly differentially expressed at 28 weeks. Following qPCR validation, only one miR-206 was found to be significantly increased in 28-week samples in women who later developed preeclampsia (1.4-fold change ± 0.2). The trend for increase in miR-206 expression was mirrored within placental tissue from women with preeclampsia. In parallel, IGF-1, a target gene of miR-206, was also found to be downregulated (0.41 ± 0.04) in placental tissue from women with preeclampsia. miR-206 expression was also detectable in myometrium tissue and trophoblast cell lines. CONCLUSION Our pilot study has identified miRNA-206 as a novel factor upregulated in preeclampsia within the maternal circulation and in placental tissue.
Collapse
|
182
|
Regulation of the T-box transcription factor Tbx3 by the tumour suppressor microRNA-206 in breast cancer. Br J Cancer 2016; 114:1125-34. [PMID: 27100732 PMCID: PMC4865973 DOI: 10.1038/bjc.2016.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Tbx3 transcription factor is over-expressed in breast cancer, where it has been implicated in proliferation, migration and regulation of the cancer stem cell population. The mechanisms that regulate Tbx3 expression in cancer have not been fully explored. In this study, we demonstrate that Tbx3 is repressed by the tumour suppressor miR-206 in breast cancer cells. METHODS Bioinformatics prediction programmes and luciferase reporter assays were used to demonstrate that miR-206 negatively regulates Tbx3. We examined the impact of miR-206 on Tbx3 expression in breast cancer cells using miR-206 mimic and inhibitor. Gene/protein expression was examined by quantitative reverse-transcription-PCR and immunoblotting. The effects of miR-206 and Tbx3 on apoptosis, proliferation, invasion and cancer stem cell population was investigated by cell-death detection, colony formation, 3D-Matrigel and tumorsphere assays. RESULTS In this study, we examined the regulation of Tbx3 by miR-206. We demonstrate that Tbx3 is directly repressed by miR-206, and that this repression of Tbx3 is necessary for miR-206 to inhibit breast tumour cell proliferation and invasion, and decrease the cancer stem cell population. Moreover, Tbx3 and miR-206 expression are inversely correlated in human breast cancer. Kaplan-Meier analysis indicates that patients exhibiting a combination of high Tbx3 and low miR-206 expression have a lower probability of survival when compared with patients with low Tbx3 and high miR-206 expression. These studies uncover a novel mechanism of Tbx3 regulation and identify a new target of the tumour suppressor miR-206. CONCLUSIONS The present study identified Tbx3 as a novel target of tumour suppressor miR-206 and characterised the miR-206/Tbx3 signalling pathway, which is involved in proliferation, invasion and maintenance of the cancer stem cell population in breast cancer cells. Our results suggest that restoration of miR-206 in Tbx3-positive breast cancer could be exploited for therapeutic benefit.
Collapse
|
183
|
Siracusa J, Koulmann N, Bourdon S, Goriot ME, Banzet S. Circulating miRNAs as Biomarkers of Acute Muscle Damage in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1313-27. [PMID: 26952641 DOI: 10.1016/j.ajpath.2016.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
Skeletal muscle damage is an often-occurring event. Diagnosis using the classic blood marker creatine kinase sometimes yields unsatisfactory results due to great interindividual variability. Therefore, the identification of reliable biomarkers is important. Our aim was to detect and characterize circulating miRNAs in plasma in response to acute notexin-induced muscle damage in rats. Real-time quantitative RT-PCR profiling led to the identification of miRNAs that were highly increased in plasma in response to notexin injection into several muscles, namely miR-1-3p, -133a-3p, -133b-3p, -206-3p, -208b-3p, and -499-5p, as well as miR-378a-3p and miR-434-3p. Peak values of miRNAs appeared 12 hours after injury, and were contained both in the vesicular and nonvesicular fractions of plasma. Receiver operating characteristic curve analysis showed that circulating miRNAs could accurately discriminate between damaged and nondamaged tissues. Furthermore, we tested the robustness of expression profiles in slow- and fast-type fibers. Upon inducing damage in slow- or fast-type muscle, we found that the damaged-muscle phenotype had a very limited impact on the miRNA response. Similarly, the circulating miRNAs selected were not affected by hemolysis or platelets, two pre-analytical factors known to affect plasma miRNA profiles. Taken together, our results show that circulating muscle-specific miRNAs, miR-378a-3p and miR-434-3p, are robust and promising biomarkers of acute muscle damage in rats.
Collapse
Affiliation(s)
- Julien Siracusa
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France; Ecole du Val-de-Grâce, Paris, France
| | - Stéphanie Bourdon
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Marie-Emmanuelle Goriot
- Armed Forces Biomedical Research Institute/Armed Forces Blood Transfusion Center Jean Julliard, Clamart, France; INSERM U 1197, Clamart, France
| | - Sébastien Banzet
- Armed Forces Biomedical Research Institute/Armed Forces Blood Transfusion Center Jean Julliard, Clamart, France; INSERM U 1197, Clamart, France.
| |
Collapse
|
184
|
Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U, Ponzetto C, Taulli R. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Cell Cycle 2016; 14:1389-402. [PMID: 25644430 DOI: 10.1080/15384101.2015.1005993] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.
Collapse
Key Words
- DCA, Dichloroacetate
- DHEA, Dehydroepiandrosterone
- G6PD, Glucose 6 Phosphate Dehydrogenase
- HMT, Histone MethylTransferase
- MREs, MicroRNA Responsive Elements
- MRFs, Myogenic Regulatory Factors
- PDH, Pyruvate Dehydrogenase
- PDK, Pyruvate Dehydrogenase Kinase
- PPP, Pentose Phosphate Pathway
- RMS, Rhabdomyosarcoma
- Rhabdomyosarcoma
- SMYD1, SET and MYND domain-containing protein 1
- TCA cycle, TriCarboxylic Acid cycle
- differentiation therapy
- metabolism and cancer
- miR-206
- myomiRs, muscle-specific microRNAs
Collapse
|
185
|
Deep-sequencing identification of differentially expressed miRNAs in decidua and villus of recurrent miscarriage patients. Arch Gynecol Obstet 2016; 293:1125-35. [PMID: 26879955 PMCID: PMC4829624 DOI: 10.1007/s00404-016-4038-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/03/2016] [Indexed: 11/02/2022]
Abstract
PURPOSE MicroRNAs (miRNAs) are small non-coding RNA molecules that play critical roles in post-transcriptional gene expression regulation. The aim of this study was to identify differentially expressed miRNAs in decidua and villus of recurrent miscarriage (RM) patients. METHODS Participants were recruited at the outpatient Department of Gynecology and Obstetrics, The Second Hospital of Tianjin Medical University, China. Decidua and villus tissues were collected by curettage from recruited RM patients and normal pregnant women with their informed consent. MiRNAs expression profiles in decidua or villus were respectively determined by the deep-sequencing analysis. The predicated target genes of these differentially expressed miRNAs were analyzed by miRWalk. The differential expressions of four miRNAs in decidua and four miRNAs in villus between the six pairs of RM patients and normal pregnant women were confirmed by qRT-PCR analysis. The expression patterns of two predicated target genes, Bcl-2 and Pten, in the same six pairs of decidual or villus tissues were detected by Western blotting analysis, respectively. RESULTS Totally 18 RM patients and 15 normal pregnant women were recruited. Thirty-two miRNAs in decidua and four miRNAs in villus of RM patients were screened out to be significantly up-regulated compared to that of normal pregnant women, and five miRNAs in villus of RM patients were screened out to be remarkably down-regulated compared to that of normal pregnant women (P value < 0.05 and Fold change >2). These differentially expressed miRNAs were predicted to target a large number of genes that involved in cell apoptosis, p53 signaling pathway, cell cycle and other cellular bio-functions. Differential expressions of hsa-miR-516a-5p, -517a-3p, -519a-3p and -519d in decidua, as well as hsa-miR-1, -372, -100-5p and -146a-5p in villus, were validated by qRT-PCR analysis. In the decidual of RM patients, expression of hsa-miR-516a-5p, -517a-3p, -519a-3p and -519d were significantly up-regulated compared to normal pregnancy. In the villi of RM patients, expression of hsa-miR-100 and -146a-5p were significantly higher, while hsa-miR-1 and -372 were significantly lower compared to normal pregnancy. Furthermore, the expression of Bcl-2 and Pten, a predicated target gene of hsa-miR-1 or hsa-miR-372 respectively, was significantly up-regulated in the villi of RM patients. CONCLUSIONS These data suggested that the pathogenic process of RM might be associated with the alteration of miRNAs expression profiles in decidua and villus. Especially, the aberrant placental expression of hsa-miR-1 and -372 might be involved in the progression of RM, but need to be further investigated by larger studies in the future.
Collapse
|
186
|
Moon J, Lee ST, Kong IG, Byun JI, Sunwoo JS, Shin JW, Shim JY, Park JH, Jeon D, Jung KH, Jung KY, Kim DY, Lee SK, Kim M, Chu K. Early diagnosis of Alzheimer's disease from elevated olfactory mucosal miR-206 level. Sci Rep 2016; 6:20364. [PMID: 26842588 PMCID: PMC4740889 DOI: 10.1038/srep20364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/31/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNA-206, which suppresses the expression of brain-derived neurotrophic factor, is known to be elevated in the brains of Alzheimer's disease (AD) patients. We performed intranasal biopsy of the olfactory epithelia of early dementia patients (n = 24) and cognitively healthy controls (n = 9). Patients with significant depression (n = 8) were analyzed separately, as their cognitive impairments were thought to be caused by their depression. Real-time PCR was performed on the biopsied tissues. The relative microRNA-206 level exhibited a 7.8-fold increase (P = 0.004) in the mild cognitive impairment group (CDR 0.5; n = 13) and a 41.5-fold increase (P < 0.001) in the CDR 1 group (n = 11). However, this level was not increased in the depression group, even in those with cognitive decline. Using the optimal cutoff value, the sensitivity/specificity for diagnosing CDR 0.5 and CDR 1 dementia were 87.5%/94.1% and 90.9%/93.3%, respectively. In ROC analysis, the AUCs were 0.942 and 0.976 in the CDR 0.5 and CDR 1 groups, respectively. The olfactory mucosal microRNA-206 level and cognitive assessment scores were significantly correlated in the non-depressed subjects with cognitive impairment. In conclusion, the olfactory mucosal microRNA-206 level can be easily measured, and it can be utilized as an excellent biomarker for the diagnosis of early AD, including mild cognitive impairment.
Collapse
Affiliation(s)
- Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | | | - Jung-Ick Byun
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University College of Medicine, Seoungnam, South Korea
| | - Ji-Young Shim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Hyun Park
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Daejong Jeon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| |
Collapse
|
187
|
Muscle-specific microRNAs in skeletal muscle development. Dev Biol 2016; 410:1-13. [DOI: 10.1016/j.ydbio.2015.12.013] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
188
|
Zhang BW, Cai HF, Wei XF, Sun JJ, Lan XY, Lei CZ, Lin FP, Qi XL, Plath M, Chen H. miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL. Int J Mol Sci 2016; 17:ijms17020182. [PMID: 26840300 PMCID: PMC4783916 DOI: 10.3390/ijms17020182] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/26/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Han-Fang Cai
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xue-Feng Wei
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia-Jie Sun
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chu-Zhao Lei
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Feng-Peng Lin
- Department of Animal Husbandry, Bureau of Biyang County of Henan province, Biyang 463700, Henan, China.
| | - Xing-Lei Qi
- Department of Animal Husbandry, Bureau of Biyang County of Henan province, Biyang 463700, Henan, China.
| | - Martin Plath
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hong Chen
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
189
|
Ju H, Yang Y, Sheng A, Qi Y. MicroRNA-378 promotes myogenic differentiation by targeting BMP4. Mol Med Rep 2016; 13:2194-200. [PMID: 26782975 DOI: 10.3892/mmr.2016.4764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 12/01/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-378 (miRNA-378) has been reported to have a crucial role in skeletal muscle differentiation; however, the underlying mechanisms have largely remained to be elucidated. The present study employed high‑throughput RNA sequencing to investigate the transcriptome following transfection of miRNA‑378 mimics or control RNAs into C2C12 myoblast cells. By sequencing and annotation, 2,802 transcripts that were changed by >1.5 fold were obtained and then subjected to signaling pathway enrichment and gene ontology analysis. Eight genes associated with development were subsequently selected for validation by quantitative qPCR, the results of which were highly consistent with those of the high‑throughput RNA sequencing. The protein levels of bone morphogenetic protein 4 (BMP4), which was among the differentially expressed genes, were decreased following ectopic expression of miRNA‑378. BMP4 was further confirmed to be a direct target of miRNA‑378 by using a dual luciferase assay. Finally, treatment with miRNA‑378 or small interfering RNA against BMP4 induced myogenic differentiation in C2C12 cells. In conclusion, the present study suggested that miRNA‑378 is critical for the promotion of myoblast differentiation by targeting BMP4.
Collapse
Affiliation(s)
- Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuefei Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Anzhi Sheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuyu Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
190
|
Lim HJ, Yang JL. Regulatory roles and therapeutic potential of microRNA in sarcoma. Crit Rev Oncol Hematol 2016; 97:118-30. [DOI: 10.1016/j.critrevonc.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 02/01/2023] Open
|
191
|
miRNA 206 and miRNA 574-5p are highly expression in coronary artery disease. Biosci Rep 2015; 36:e00295. [PMID: 26685009 PMCID: PMC4748332 DOI: 10.1042/bsr20150206] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide. Innovative diagnostic biomarkers are a pressing need for this disease. miRNAs profiling is an innovative method of identifying biomarkers for many diseases and could be proven as a powerful tool in the diagnosis and treatment of CAD. We performed miRNA microarray analysis from the plasma of three CAD patients and three healthy controls. Subsequently, we performed quantitative real-time PCR (qRT-PCR) analysis of miRNA expression in plasma of another 67 CAD patients and 67 healthy controls. We identified two miRNAs (miR-206 and miR-574-5p) that were significantly up-regulated in CAD patients as compared with healthy controls (P<0.05). The receiver operating characteristic (ROC) curves indicated these two miRNAs had great potential to provide sensitive and specific diagnostic value for CAD.
Collapse
|
192
|
Abstract
Preclinical Research Idiopathic Pulmonary Fibrosis (IPF) is the most severe fibrotic lung disease and characterized by the accumulation of (myo)fibroblasts and collagen within the alveolar wall resulting in obliteration of the gas-exchange surface. Although the detailed pathogenesis is not understood, recent studies have found that several microRNAs (miRNAs) are associated with the progression of lung diseases including IPF. IPF is a fibrotic disease and, most frequently found in an aged population. In this review, the functional roles of miRNAs that are deregulated in IPF progression are discussed together with how aging affects the miRNA signature, altering the fibroblast phenotype and promoting lung fibrosis. Finally, the possibility of targeting miRNAs as a therapeutic approach for the treatment of IPF is discussed.
Collapse
|
193
|
Mu Y, Zhou H, Wu WJ, Hu LC, Chen HB. Dynamic expression of miR-206-3p during mouse skin development is independent of keratinocyte differentiation. Mol Med Rep 2015; 12:8113-20. [PMID: 26500069 DOI: 10.3892/mmr.2015.4456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/16/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-206 (miR-206), the homolog of which in mice is termed miR-206-3p, is a muscle-specific miRNA known to be important in the development of skeletal muscle, and is involved in smooth muscle innervation of the airway through the post‑transcriptional suppression of brain‑derived neurotrophic factor (Bdnf). miR‑206‑3p is also expressed at significant levels in adult and embryonic skin; however, its functional roles in adult skin and during skin development remain to be fully elucidated. In the present study, the spatiotemporal expression of miR‑206‑3p and its target‑gene, Bdnf, during mouse skin development were investigated. The expression level of miR‑206‑3p increased from 13.5 days postcoitus (dpc), peaked at 17.5 dpc and declined following birth. The observed temporal profile of the expression of miR‑206‑3p was accompanied by an inverse change in the protein expression levels of BDNF. However, the mRNA expression levels of Bdnf did not parallel those of BDNF protein. The localization of the expression of miR‑206‑3p was similar, or located near that of ubiquitin carboxyl‑terminal hydrolase L1 during skin development. An in vitro keratinocyte model demonstrated no significant differences between primary and differentiated keratinocytes in the expression levels of either miR‑206‑3p (P=0.227) or Bdnf (mRNA, P=0.118; mature BDNF, P=0.106; pro‑BDNF, P=0.905). These findings indicate a potential role for miR‑206‑3p in cutaneous innervation, which largely relies on BDNF neurotrophic support and is independent of keratinocyte differentiation. The results of the present study suggested that this novel mechanism may be targeted for developing potential therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Mu
- Department of Clinical Laboratory, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Hong Zhou
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei-Jiang Wu
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li-Chao Hu
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong-Bing Chen
- Department of Clinical Laboratory, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
194
|
Abstract
MicroRNAs (miRs) are a group of small RNAs that play a major role in post-transcriptional regulation of gene expression. In animals, many of the miRs are expressed in a conserved spatiotemporal manner. Muscle tissues, the major cellular systems involved in the locomotion and physiological functions of animals, have been one of the main sites for verification of miR targets and analysis of their developmental functions. During the determination and differentiation of muscle cells, numerous miRs bind to and repress target mRNAs in a highly specific but redundant manner. Interspecific comparisons of the sequences and expression of miRs have suggested that miR regulation became increasingly important during the course of vertebrate evolution. However, the detailed molecular interactions that have led to the highly complex morphological structures still await investigation. In this review, we will summarize the recent findings on the functional and developmental characteristics of miRs that have played major roles in vertebrate myogenesis, and discuss how the evolution of miRs is related to the morphological complexity of the vertebrates.
Collapse
|
195
|
Sharma S, Umar S, Centala A, Eghbali M. Role of miR206 in genistein-induced rescue of pulmonary hypertension in monocrotaline model. J Appl Physiol (1985) 2015; 119:1374-82. [PMID: 26472874 DOI: 10.1152/japplphysiol.00699.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/03/2015] [Indexed: 11/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive lung disease associated with proliferation of smooth muscle cells and constriction of lung microvasculature, leading to increased pulmonary arterial pressure, right ventricular failure, and death. We have previously shown that genistein rescues preexisting established PH by significantly improving lung and heart function. (Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, Amjedi M, Eghbali M. Hypertension 60: 425-430, 2012). Here, we have examined the role of microRNAs (miRs) in the rescue action of genistein in monocrotaline (MCT)-induced PH in rats. Our miR microarray analysis on the lung samples from control, PH, and genistein-rescue group revealed that miR206, which was robustly upregulated to ∼11-fold by PH, was completely normalized to control levels by genistein treatment. Next, we examined whether knockdown of miR206 could reverse preexisting established PH. PH was induced in male rats by 60 mg/kg of MCT, and rats received three intratracheal doses of either miR206 antagomir (10 mg/kg body wt) or scrambled miR control at days 17, 21, and 26. Knockdown of miR206 resulted in significant improvement in the cardiopulmonary function, as right ventricular pressure was significantly reduced to 38.6 ± 3.61 mmHg from 61.2 ± 5.4 mmHg in PH, and right ventricular hypertrophy index was decreased to 0.35 ± 0.04 from 0.59 ± 0.037 in PH. Knockdown of miR206 reversed PH-induced pulmonary vascular remodeling in vivo and was associated with restoration of PH-induced loss of capillaries in the lungs and induction of vascular endothelial growth factor A expression. In conclusion, miR206 antagomir therapy improves cardiopulmonary function and structure and rescues preexisting severe PH in MCT rat model possibly by stimulating angiogenesis in the lung.
Collapse
Affiliation(s)
- Salil Sharma
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Alexander Centala
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
196
|
Park KHJ. Mechanisms of Muscle Denervation in Aging: Insights from a Mouse Model of Amyotrophic Lateral Sclerosis. Aging Dis 2015; 6:380-9. [PMID: 26425392 DOI: 10.14336/ad.2015.0506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Abstract
Muscle denervation at the neuromuscular junction (NMJ) is thought to be a contributing factor in age-related muscle weakness. Therefore, understanding the mechanisms that modulate NMJ innervation is a key to developing therapies to combat age-related muscle weakness affecting the elderly. Two mouse models, one lacking the Cu/Zn superoxide dismutase (SOD1) gene and another harboring the transgenic mutant human SOD1 gene, display progressive changes at the NMJ, including muscle endplate fragmentation, nerve terminal sprouting, and denervation. These changes at the NMJ share many of the common features observed in the NMJs of aged mice. In this review, research findings demonstrating the effects of PGC-1α, IGF-1, GDNF, MyoD, myogenin, and miR-206 on NMJ innervation patterns in the G93A SOD1 mice will be highlighted in the context of age-related muscle denervation.
Collapse
Affiliation(s)
- Kevin H J Park
- Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
197
|
Li D, Deng T, Li H, Li Y. MiR-143 and miR-135 inhibitors treatment induces skeletal myogenic differentiation of human adult dental pulp stem cells. Arch Oral Biol 2015; 60:1613-7. [PMID: 26351742 DOI: 10.1016/j.archoralbio.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/19/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Dental pulp stem cells (DPSCs) possess pluripotent properties that allow them to differentiate into multiple cell lineages, which can be potentially used in tissue regeneration. The aim of this in vitro study is to explore the effect of miRNAs on the myogenic differentiation of human adult DPSCs and seek for some potential biological factors for stable and feasible application in DPSC myogenic differentiation. METHODS Human adult DPSCs were isolated from normal impacted third molars were treated with 5-Aza-2'-deoxycytidine to induce to myogenic differentiation in vitro. During this process the levels of myomiRNAs and myogenic marker genes were detected by real-time qPCR and Western blotting. Then antisense oligonucleotides of miR-143 and miR-135 were transfected into DPSCs to explore their effects on myogenic differentiation. Gene expression detection and MyHC immunofluorescence microscopy analysis were applied to characterize the myogenic differentiation of DPSCs. RESULTS Expression of miR-135 and miR-143 was markedly decreased in myoblast DPSCs induced by 5-Aza. Part of the DPSCs treated with miR-135 or miR-143 inhibitors showed apparent myocytic properties and eventually fused to form myotubes. Co-transfection of miR-135 and miR-143 inhibitors impelled half of DPSCs to form myotubes. CONCLUSION MiR-135 and miR-143 inhibitors could induce myogenic differentiation of DPSCs. Our findings indicated that miRNAs could exert a decisive function in induction of myogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Dongxia Li
- Department of Stomatology, The General Hospital of the Air Force, Beijing, China.
| | - Tianzheng Deng
- Department of Stomatology, The General Hospital of the Air Force, Beijing, China
| | - Hongshi Li
- Department of Stomatology, The General Hospital of the Air Force, Beijing, China
| | - Ying Li
- Department of Stomatology, The General Hospital of the Air Force, Beijing, China
| |
Collapse
|
198
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
199
|
Morrison JL, Zhang S, Tellam RL, Brooks DA, McMillen IC, Porrello ER, Botting KJ. Regulation of microRNA during cardiomyocyte maturation in sheep. BMC Genomics 2015. [PMID: 26198574 PMCID: PMC4509559 DOI: 10.1186/s12864-015-1693-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. Results The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of ‘pro-proliferative’ miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. Conclusion The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1693-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Song Zhang
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Ross L Tellam
- CSIRO Agriculture, CSIRO, Queensland Biosciences Precinct, St Lucia, QLD, Australia.
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, University of South Australia, Adelaide, SA, Australia.
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Enzo R Porrello
- Laboratory for Cardiac Regeneration, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
200
|
The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015; 88:37-52. [PMID: 25912658 DOI: 10.1016/j.addr.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
microRNAs (miRs) are small non-protein-coding RNAs, able to post-transcriptionally regulate many genes and exert pleiotropic effects. Alteration of miR levels in tissues and in the circulation has been associated with various pathological and regenerative conditions. In this regard, tissue engineering of cardiac and skeletal muscles is a fascinating context for harnessing the complexity of miR-based circuitries and signals. In this review, we will focus on miR-driven regulation of cardiac and skeletal myogenic routes in homeostatic and challenging states. Furthermore, we will survey the intriguing perspective of exosomal and circulating miRs as novel paracrine players, potentially useful for current and future approaches of regenerative medicine for the striated muscles.
Collapse
|