151
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
152
|
Han L, Seward C, Leone G, Ostrowski MC. Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Adv Cancer Res 2022; 154:169-201. [PMID: 35459469 DOI: 10.1016/bs.acr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pancreas and breast cancers both contain abundant stromal components within the tumor tissues. A prominent cell type within the stroma is cancer-associated fibroblasts (CAFs). CAFs play critical and complex roles establishing the tumor microenvironment to either promote or prevent tumor progression. Recently, complex genetic models and single cell-based techniques have provided emerging insights on the precise functions and cellular heterogeneity of CAFs. The transformation of normal fibroblasts into CAFs is a key event during tumor initiation and progression. Such coordination between tumor cells and fibroblasts plays an important role in cancer development. Reprograming fibroblasts is currently being explored for therapeutic benefits. In this review, we will discuss recent literature shedding light on the tissues of origin, activation mechanisms, and heterogeneity of CAFs comparing pancreas and breast cancers.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Cara Seward
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin Cancer Center, Medical college of Wisconsin, Milwaukee, WI, United States
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
153
|
Song H, Tian D, Sun J, Mao X, Kong W, Xu D, Ji Y, Qiu B, Zhan M, Wang J. circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis 2022; 13:361. [PMID: 35436983 PMCID: PMC9016076 DOI: 10.1038/s41419-022-04818-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Extensive changes of circRNA expression underscore their essential contributions to multiple hallmarks of cancers; however, their functions and mechanisms of action in esophageal squamous cell carcinoma (ESCC) remain undetermined. Here, we adopted a three-stage approach by first screening for significantly differentially expressed circRNAs in ESCC and performing an external validation study, followed by the functional analyses. The properties of circRNAs were evaluated using Sanger sequencing, RNase R digestion, actinomycin D treatment, subcellular localization analysis, and fluorescence in situ hybridization. Target transcripts were predicted using online tools and verified by dual-luciferase, RNA immunoprecipitation, qRT-PCR, and western blot. Biotin-labeled RNA-protein pull-down, mass spectrometry, and RNA immunoprecipitation were employed to identify proteins interacting with circRNAs. Gain- and loss-of-function experiments were performed to uncover the roles of circRNAs, their target genes, and binding proteins in the proliferation, metastasis, and invasion. We observed that circFAM120B (hsa_circ_0001666) was frequently downregulated in cancer tissues and patient plasma, and its expression level was related to overall survival in ESCC patients. Overexpression of circFAM120B inhibited the proliferation, metastasis, and invasion of ESCC while silencing it enhanced malignant phenotypes. Mechanistically, circFAM120B was predominantly located in the cytoplasm, guarantying its sponging for miR-661 to restore the expression of PPM1L, a tumor suppressor. We observed that circFAM120B could reduce the stability of RNA-dependent protein kinase (PKR) by promoting its ubiquitination-dependent degradation and subsequently regulating the p38 MAPK signaling pathway, resulting in the repression of EMTs in ESCC cells. Our findings suggest that circFAM120B is a promising biomarker of ESCC, which acts as a tumor suppressor via the circFAM120B/miR-661/PPM1L axis and PKR/p38 MAPK/EMT pathway, supporting its significance as a candidate therapeutic target.
Collapse
Affiliation(s)
- Huan Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dan Tian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng and Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224001, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi, 214200, China
| | - Weimin Kong
- Department of Thoracic Surgery, The First People's Hospital of Yancheng and Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224001, China
| | - Dian Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Beibei Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengyao Zhan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
154
|
Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:145. [PMID: 35428295 PMCID: PMC9013041 DOI: 10.1186/s13046-022-02348-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/26/2022] [Indexed: 01/02/2023]
Abstract
Background Metastasis is the leading cause of mortality in human cancers, including esophageal squamous cell carcinoma (ESCC). As a pro-inflammatory cytokine, IL-32 was reported to be a poor prognostic factor in many cancers. However, the role of IL-32 in ESCC metastasis remains unknown. Methods ESCC cells with ectopic expression or knockdown of IL-32 were established and their effects on cell motility were detected. Ultracentrifugation, Transmission electron microscopy and Western blot were used to verify the existence of extracellular vesicle IL-32 (EV-IL-32). Coculture assay, immunofluorescence, flow cytometry, and in vivo lung metastasis model were performed to identify how EV-IL-32 regulated the crosstalk between ESCC cells and macrophages. Results Here, we found that IL-32 was overexpressed and positively correlated to lymph node metastasis of ESCC. IL-32 was significantly higher in the tumor nest compared with the non-cancerous tissue. We found that IL-32β was the main isoform and loaded in EV derived from ESCC cells. The shuttling of EV-IL-32 derived from ESCC cells into macrophages could promote the polarization of M2 macrophages via FAK-STAT3 pathway. IL-32 overexpression facilitated lung metastasis and was positively correlated with the proportion of M2 macrophages in tumor microenvironment. Conclusions Taken together, our results indicated that EV-IL-32 derived from ESCC cell line could be internalized by macrophages and lead to M2 macrophage polarization via FAK-STAT3 pathway, thus promoting the metastasis of ESCC. These findings indicated that IL-32 could serve as a potential therapeutic target in patients with ESCC. Supplementary information The online version contains supplementary material available at 10.1186/s13046-022-02348-8.
Collapse
|
155
|
Mohamed MS, Ghaly S, Azmy KH, Mohamed GA. Assessment of interleukin 32 as a novel biomarker for non-alcoholic fatty liver disease. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterised by enhanced hepatic fat deposition and inflammation. Efforts to manage NAFLD are limited by the poorly characterised pathological processes and the lack of precise non-invasive markers, thus, proving the need to further study the involved cytokines, which, in turn, may represent novel molecular targets with possible diagnostic and therapeutic applications. Hence, we aimed to assess the diagnostic utility of serum interleukin 32 (IL-32) in NAFLD cases. This case-control study included 40 NAFLD patients and 40 healthy controls. The serum IL-32 concentrations were assessed by the enzyme-linked immunosorbent assay (ELISA).
Results
The serum IL-32 concentrations were significantly higher in NAFLD cases than controls (76 [45.5–111.125] vs. 13 [8–15] pg/mL, P < 0.001, respectively). IL-32 at a cut-off point > 22.5 pg/mL had 100% sensitivity, 87.50% specificity, 88.9% positive predictive value, 100% negative predictive value, and 98.2% accuracy in detecting the NAFLD cases.
Conclusion
Serum IL-32 could be considered a novel non-invasive marker for NAFLD. Further investigations are warranted to verify the potential utility of IL-32 in the clinical setting.
Collapse
|
156
|
Yu H, Zhou C, Hu D, Li C, Wang Q, Xue W, Peng A. Uremic toxin indoxyl sulfate induces dysfunction of vascular smooth muscle cells via integrin-β1/ERK signaling pathway. Clin Exp Nephrol 2022; 26:640-648. [PMID: 35333997 DOI: 10.1007/s10157-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Protein-bound uremic toxins (PBUTs) are reported to be one of the major culprits in chronic kidney disease-cardiovascular disease (CKD-CVD) development, yet its mechanism is not fully clear. Our previous study confirmed elevated expression of integrin-β1 (ITGβ1) in vascular smooth muscle cells of uremic patients. Thus, this study aimed to explore the relationship between PBUTs and ITGβ1 in uremic vasculature injury. METHODS Human umbilical vein smooth muscle cells (HUVSMCs) and endothelial cells (HUVECs) were treated with two representative PUBTs, indoxyl sulfate (IS) and p-cresyl sulfate (PC). Both cells were measured for the expression of ITGβ1 and downstream signaling pathways and assayed for proliferation, migration, adhesion and apoptosis. RESULTS The IS treatments were observed with significantly up-regulated ITGβ1 in HUVSMCs but not in HUVECs, while PC did not induce ITGβ1 alteration in either HUVSMCs or HUVECs. Furthermore, overexpression of ITGβ1 revealed activated downstream signal-regulated kinase (ERK) signaling pathway with promoted focal adhesion, migration, proliferation but no apoptosis in HUVSMCs by IS. These functional and pathway alterations could be significantly suppressed by RNA interference of ITGβ1. More importantly, the application of ERK1/2 inhibitor significantly suppressed the focal adhesion, migration and proliferation of HUVSMCs. CONCLUSION We first demonstrated that ITGβ1/ERK signaling pathway mediated abnormal focal adhesion, migration and proliferation of vascular smooth muscle cells stimulated by IS. ITGβ1/ERK signaling may serve as a novel therapeutic target for CKD-CVD.
Collapse
Affiliation(s)
- Haibo Yu
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyu Zhou
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dayong Hu
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Changbin Li
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Wang
- Department of Nephrology, Qilu Hospital of Shandong University (Qingdao), Qingdao, People's Republic of China
| | - Wen Xue
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Ai Peng
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
157
|
Mathilakathu A, Wessolly M, Mairinger E, Uebner H, Kreidt D, Brcic L, Steinborn J, Greimelmaier K, Wohlschlaeger J, Schmid KW, Mairinger FD, Borchert S. Cancer-Associated Fibroblasts Regulate Kinase Activity in Mesothelioma Cell Lines via Paracrine Signaling and Thereby Dictate Cell Faith and Behavior. Int J Mol Sci 2022; 23:ijms23063278. [PMID: 35328699 PMCID: PMC8949651 DOI: 10.3390/ijms23063278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) has an infaust prognosis due to resistance to systemic treatment with platin-analoga. MPM cells modulate the immune response to their benefit. They release proinflammatory cytokines, such as TGF-ß, awakening resting fibrocytes that switch their phenotype into activated fibroblasts. Signaling interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an integral part in tumor progression. This study aimed to investigate the role CAFs play in MPM progression, analyzing the impact this complex, symbiotic interaction has on kinase-related cell signaling in vitro. METHODS We simulated paracrine signaling in vitro by treating MPM cell lines with conditioned medium (CM) from fibroblasts (FB) and vice versa. NCI-H2052, MSTO-211H, and NCI-H2452 cell lines representing the three mayor MPM subtypes, while embryonal myofibroblast cell lines, IMR-90 and MRC-5, provide a CAFs-like phenotype. Subsequently, differences in proliferation rates, migratory behavior, apoptosis, necrosis, and viability were used as covariates for data analysis. Kinase activity of treated samples and corresponding controls were then analyzed using the PamStation12 platform (PamGene); Results: Treatment with myofibroblast-derived CM revealed significant changes in phosphorylation patterns in MPM cell lines. The observed effect differs strongly between the analyzed MPM cell lines and depends on the origin of CM. Overall, a much stronger effect was observed using CM derived from IMR-90 than MRC-5. The phosphorylation changes mainly affected the MAPK signaling pathway.; Conclusions: The factors secreted by myofibroblasts in fibroblasts CM significantly influence the phosphorylation of kinases, mainly affecting the MAPK signaling cascade in tested MPM cell lines. Our in vitro results indicate promising therapeutic effects by the use of MEK or ERK inhibitors and might have synergistic effects in combination with cisplatin-based treatment, improving clinical outcomes for MPM patients.
Collapse
Affiliation(s)
- Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Hospital Essen—Ruhrlandklinik, University of Duisburg Essen, 45147 Essen, Germany;
| | - Daniel Kreidt
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria;
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Kristina Greimelmaier
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany; (K.G.); (J.W.)
| | - Jeremias Wohlschlaeger
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany; (K.G.); (J.W.)
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Fabian D. Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
- Correspondence:
| |
Collapse
|
158
|
Zhang Y, Sun L, Li H, Ai L, Ma Q, Qiao X, Yang J, Zhang H, Ou X, Wang Y, Chen G, Xue J, Zhu X, Zhao Y, Yang Y, Liu C. Binding blockade between TLN1 and integrin β1 represses triple-negative breast cancer. eLife 2022; 11:e68481. [PMID: 35285795 PMCID: PMC8937232 DOI: 10.7554/elife.68481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background Integrin family are known as key gears in focal adhesion for triple-negative breast cancer (TNBC) metastasis. However, the integrin independent factor TLN1 remains vague in TNBC. Methods Bioinformatics analysis was performed based on TCGA database and Shengjing Hospital cohort. Western blot and RT-PCR were used to detect the expression of TLN1 and integrin pathway in cells. A small-molecule C67399 was screened for blocking TLN1 and integrin β1 through a novel computational screening approach by targeting the protein-protein binding interface. Drug pharmacodynamics were determined through xenograft assay. Results Upregulation of TLN1 in TNBC samples correlates with metastasis and worse prognosis. Silencing TLN1 in TNBC cells significantly attenuated the migration of tumour cells through interfering the dynamic formation of focal adhesion with integrin β1, thus regulating FAK-AKT signal pathway and epithelial-mesenchymal transformation. Targeting the binding between TLN1 and integrin β1 by C67399 could repress metastasis of TNBC. Conclusions TLN1 overexpression contributes to TNBC metastasis and C67399 targeting TLN1 may hold promise for TNBC treatment. Funding This study was supported by grants from the National Natural Science Foundation of China (No. 81872159, 81902607, 81874301), Liaoning Colleges Innovative Talent Support Program (Name: Cancer Stem Cell Origin and Biological Behaviour), Outstanding Scientific Fund of Shengjing Hospital (201803), and Outstanding Young Scholars of Liaoning Province (2019-YQ-10).
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
- Innovative Cancer Drug Research and Development Engineering Center of Liaoning ProvinceShenyangChina
| | - Haonan Li
- School of Bioengineering, Dalian University of TechnologyDalianChina
| | - Liping Ai
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Jie Yang
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Hao Zhang
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xunyan Ou
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yining Wang
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xudong Zhu
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Yongliang Yang
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- School of Bioengineering, Dalian University of TechnologyDalianChina
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
- Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical UniversityShenyangChina
- Innovative Cancer Drug Research and Development Engineering Center of Liaoning ProvinceShenyangChina
| |
Collapse
|
159
|
Ribeiro-Dias F, Oliveira I. A Critical Overview of Interleukin 32 in Leishmaniases. Front Immunol 2022; 13:849340. [PMID: 35309341 PMCID: PMC8927017 DOI: 10.3389/fimmu.2022.849340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022] Open
Abstract
Interleukin-32 (IL-32) has several immune regulatory properties, which have driven its investigation in the context of various diseases. IL-32 expression is reported to be induced in the lesions of patients with American tegumentary leishmaniasis (ATL) by the New World Leishmania spp. that are responsible for causing ATL and visceral leishmaniasis (VL). IL-32 expression may elevate the inflammatory process through the induction of pro-inflammatory cytokines and also via mechanisms directed to kill the parasites. The genetic variants of IL-32 might be associated with the resistance or susceptibility to ATL, while different isoforms of IL-32 could be associated with distinct T helper lymphocyte profiles. IL-32 also determines the transcriptional profile in the bone marrow progenitor cells to mediate the trained immunity induced by β-glucan and BCG, thereby contributing to the resistance against Leishmania. IL-32γ is essential for the vitamin D-dependent microbicidal pathway for parasite control. In this context, the present review report briefly discusses the data retrieved from the studies conducted on IL-32 in leishmaniasis in humans and mice to highlight the current challenges to understanding the role of IL-32 in leishmaniasis.
Collapse
Affiliation(s)
- Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
160
|
Yang W, Bai X, Li H, Li H, Fan W, Zhang H, Liu W, Sun L. Influenza A and B Virus-Triggered Epithelial–Mesenchymal Transition Is Relevant to the Binding Ability of NA to Latent TGF-β. Front Microbiol 2022; 13:841462. [PMID: 35283846 PMCID: PMC8914340 DOI: 10.3389/fmicb.2022.841462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an important mechanism of lung tissue repair after injury, but excessive EMT may lead to pulmonary fibrosis, respiratory failure, and even death. The EMT triggered by influenza A virus (IAV) and influenza B virus (IBV) is not well understood. We hypothesized that there was difference in EMT induced by different influenza virus strains. Here we discovered that both IAV [A/WSN/1933 (H1N1), WSN] and IBV (B/Yamagata/16/88, Yamagata) infection caused EMT in mouse lung and A549 cells, and more EMT-related genes were detected in mice and cells infected with WSN than those infected with Yamagata. Neuraminidase (NA) of IAV is able to activate latent TGF-β and the downstream TGF-β signaling pathway, which play a vital role in EMT. We observed that IAV (WSN) triggered more activated TGF-β expression and stronger TGF-β/smad2 signaling pathway than IBV (Yamagata). Most importantly, WSN NA combined more latent TGF-β than Yamagata NA in A549 cells. Collectively, these data demonstrate that both IAV and IBV induce TGF-β/smad2 signaling pathway to promote EMT, which might depend on the binding ability of NA to latent TGF-β.
Collapse
Affiliation(s)
- Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Sun,
| |
Collapse
|
161
|
Zhu Y, Xie N, Chai Y, Nie Y, Liu K, Liu Y, Yang Y, Su J, Zhang C. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front Pharmacol 2022; 13:803717. [PMID: 35153781 PMCID: PMC8830521 DOI: 10.3389/fphar.2022.803717] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death and one of the greatest barriers to increased life expectancy worldwide. Currently, chemotherapy with synthetic drugs remains one of the predominant ways for cancer treatment, which may lead to drug resistance and normal organ damage. Increasing researches have suggested that apoptosis, a type of programmed cell death, is a promising way for cancer therapy. Furthermore, natural products are important sources for finding new drugs with high availability, low cost and low toxicity. As a well-known isoquinoline alkaloid, accumulating evidence has revealed that berberine (BBR) exerts potential pro-apoptotic effects on multiple cancers, including breast, lung, liver, gastric, colorectal, pancreatic, and ovarian cancers. The related potential signal pathways are AMP-activated protein kinase, mitogen-activated protein kinase, and protein kinase B pathways. In this review, we provide a timely and comprehensive summary of the detailed molecular mechanisms of BBR in treating three types of cancer (breast, lung and liver cancer) by inducing apoptosis. Furthermore, we also discuss the existing challenges and strategies to improve BBR’s bioavailability. Hopefully, this review provides valuable information for the comprehension of BBR in treating three types of cancer and highlight the pro-apoptotic effects of BBR, which would be beneficial for the further development of this natural compound as an effective clinical drug for treating cancers.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yisen Nie
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
162
|
Li Q, Lan T, Xie J, Lu Y, Zheng D, Su B. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications. Front Oncol 2022; 12:812480. [PMID: 35223494 PMCID: PMC8873568 DOI: 10.3389/fonc.2022.812480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins, a family of adhesion molecules generally exist on the cell surface, are essential for regulating cell growth and its function. As a bi-directional signaling molecule, they mediate cell-cell and cell-extracellular matrix interaction. The recognitions of their key roles in many human pathologies, including autoimmunity, thrombosis and neoplasia, have revealed their great potential as a therapeutic target. This paper focuses on the activation of integrins, the role of integrins in tumorigenesis and progression, and advances of integrin-dependent tumor therapeutics in recent years. It is expected that understanding function and signaling transmission will fully exploit potentialities of integrin as a novel target for tumors.
Collapse
Affiliation(s)
- Qingling Li
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jian Xie
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| |
Collapse
|
163
|
Lv W, Tan Y, Xiong M, Zhao C, Wang Y, Wu M, Wu Y, Zhang Q. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression. J Transl Med 2021; 19:527. [PMID: 34952600 PMCID: PMC8709995 DOI: 10.1186/s12967-021-03196-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background N6-methyladenosine (m6A), the most abundant and reversible modification of mRNAs in eukaryotes, plays pivotal role in breast cancer (BC) tumorigenesis and progression. Circular RNAs (circRNAs) can act as tumor promoters or suppressors by microRNA (miRNA) sponges in BC. However, the underlying mechanism of circRNAs in BC progression via regulating m6A modulators remains unclear. Methods Prognostic m6A RNA methylation regulators were identified in 1065 BC patients from The Cancer Genome Atlas (TCGA) project. Differentially expressed (DE) miRNAs and DE circRNAs were identified between BC and normal samples in TCGA and GSE101123, respectively. MiRNA-mRNA interactive pairs and circRNA-miRNA interactive pairs were verified by MiRDIP and Circular RNA Interactome. GSEA, KEGG, and ssGSEA were executed to explore the potential biological and immune functions between HNRNPC-high and HNRNPC-low expression groups. qRT-PCR and Western blot were used to quantify the expression of HNRNPC and circBACH2 in MCF-7 and MDA-MB-231 cells. The proliferation of BC cells was assessed by CCK-8 and EdU assay. Results 2 m6A RNA methylation regulators with prognostic value, including HNRNPC and YTHDF3, were identified in BC patients. Then, the regulatory network of circRNA-miRNA-m6A modulators was constructed, which consisted of 2 DE m6A modulators (HNRNPC and YTHDF3), 12 DE miRNAs, and 11 DE circRNAs. Notably, BC patients with high expression of HNRNPC and low expression of hsa-miR-944 were correlated with late clinical stages and shorter survival times. Besides, the results from the KEGG inferred that the DE HNRNPC was associated with the MAPK signaling pathway in BC. Moreover, the circBACH2 (hsa_circ_0001625) was confirmed to act as hsa-miR-944 sponge to stimulate HNRNPC expression to promote BC cell proliferation via MAPK signaling pathway, thus constructing a circBACH2/hsa-miR-944/HNRNPC axis in BC. Conclusions Our findings decipher a novel circRNA-based m6A regulatory mechanism involved in BC progression, thus providing attractive diagnostic and therapeutic strategies for combating BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03196-4.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
164
|
Lee BY, Hogg EKJ, Below CR, Kononov A, Blanco-Gomez A, Heider F, Xu J, Hutton C, Zhang X, Scheidt T, Beattie K, Lamarca A, McNamara M, Valle JW, Jørgensen C. Heterocellular OSM-OSMR signalling reprograms fibroblasts to promote pancreatic cancer growth and metastasis. Nat Commun 2021; 12:7336. [PMID: 34921158 PMCID: PMC8683436 DOI: 10.1038/s41467-021-27607-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with a complex microenvironment. Dichotomous tumour-promoting and -restrictive roles have been ascribed to the tumour microenvironment, however the effects of individual stromal subsets remain incompletely characterised. Here, we describe how heterocellular Oncostatin M (OSM) - Oncostatin M Receptor (OSMR) signalling reprograms fibroblasts, regulates tumour growth and metastasis. Macrophage-secreted OSM stimulates inflammatory gene expression in cancer-associated fibroblasts (CAFs), which in turn induce a pro-tumourigenic environment and engage tumour cell survival and migratory signalling pathways. Tumour cells implanted in Osm-deficient (Osm-/-) mice display an epithelial-dominated morphology, reduced tumour growth and do not metastasise. Moreover, the tumour microenvironment of Osm-/- animals exhibit increased abundance of α smooth muscle actin positive myofibroblasts and a shift in myeloid and T cell phenotypes, consistent with a more immunogenic environment. Taken together, these data demonstrate how OSM-OSMR signalling coordinates heterocellular interactions to drive a pro-tumourigenic environment in PDA.
Collapse
Affiliation(s)
- Brian Y Lee
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Elizabeth K J Hogg
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Christopher R Below
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Alexander Kononov
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Adrian Blanco-Gomez
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Felix Heider
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Jingshu Xu
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Colin Hutton
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Xiaohong Zhang
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Tamara Scheidt
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Kenneth Beattie
- FingerPrints Proteomics Facility, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX, Manchester, UK
- Institute of Cancer Sciences, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
| | - Mairéad McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX, Manchester, UK
- Institute of Cancer Sciences, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX, Manchester, UK
- Institute of Cancer Sciences, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK.
| |
Collapse
|
165
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
Affiliation(s)
- Farhana Mollah
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pegah Varamini
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
166
|
Targeted Therapy Modulates the Secretome of Cancer-Associated Fibroblasts to Induce Resistance in HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413297. [PMID: 34948097 PMCID: PMC8706990 DOI: 10.3390/ijms222413297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer.
Collapse
|
167
|
Qin S, Ning M, Liu Q, Ding X, Wang Y, Liu Q. Knockdown of long non-coding RNA CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis. Bioengineered 2021; 12:5125-5137. [PMID: 34374638 PMCID: PMC8806778 DOI: 10.1080/21655979.2021.1962685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
The lncRNAs have been made certain to take part in the development of most cancers in multiple ways. Here, our purpose is to making observation of the biological role and function of lncRNA CDKN2B-AS1 in human breast cancer. Twenty-eight pairs of breast cancer tissue and adjacent normal tissue from breast cancer patients were used to investigate the expression of CDKN2B-AS1 by qRT-PCR. And a lentivirus-shRNA guided CDKN2B-AS1 were to reduce its expression. The function of CDKN2B-AS1 was analyzed using a series of in vitro assays. Meanwhile, the xenograft model was used to further explicate the role of CDKN2B-AS1 in breast cancer. As for the results, there is a relative rich expression of CDKN2B-AS1 in breast cancer tissues compared with the corresponding adjacent normal tissues. Compared with the human breast epithelial cell line, the abundant expression of CDKN2B-AS1 in breast cancer cells were revealed as well. Then, knockdown CDKN2B-AS1 inhibited the malignant biological behaviors of MCF7 and T47D cells. In mechanism, CDKN2B-AS1 sponged the miR-122-5p to regulate STK39 expression. Furthermore, the inhibition effect with sh-CDKN2B-AS1 on breast cancer cells was alleviated by miR-122-5p inhibitor. Last, an in vivo model also confirmed that knockdown CDKN2B-AS1 retarded the growth of breast cancer. Our data concluded that knockdown of CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis.
Collapse
Affiliation(s)
- Shaojie Qin
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Mingliang Ning
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Qingyuan Liu
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Xiaoyun Ding
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Yanbai Wang
- Cerebrospinal Fluid Laboratory; General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Qilun Liu
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| |
Collapse
|
168
|
Shi Y, Xu S, Ngoi NYL, Zeng Q, Ye Z. PRL-3 dephosphorylates p38 MAPK to promote cell survival under stress. Free Radic Biol Med 2021; 177:72-87. [PMID: 34662712 DOI: 10.1016/j.freeradbiomed.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/21/2023]
Abstract
Hypoxia within the tumor microenvironment, which leads to excessive ROS and genomic instability, is one of the hallmarks of cancer, contributing to self-renewal capability, metastasis, and radio-chemotherapy resistance. PRL-3 is an oncoprotein involved in various pro-survival signaling pathways, such as Ras/Erk, PI3K/Akt, Src/STAT, mTORC1 and JAK/STAT. However, there is little evidence connecting PRL-3-mediated apoptosis resistance to tumor microenvironmental stress. In this study, by profiling the PRL-3 expression of multiple tumor types retrieved from public databases (TCGA and NCBI GEO), we confirmed the oncogenic function of PRL-3 and found an intriguing connection between PRL-3 expression and tumor hypoxia signature genes. Moreover, by using CoCl2, a hypoxia mimetic and ROS inducer, we discovered that cells stably expressing PRL-3, but not catalytically-inactive mutant PRL-3 C104S, showed significant resistance to CoCl2 -induced apoptosis. This resistance to apoptosis was found to depend on p38 MAPK signaling and was further confirmed in other conditions of microenvironmental stress, including UV, H2O2 and hypoxia. Mechanistically, we proved that PRL-3 is a direct phosphatase of p38 MAPK under stressed conditions. Additionally, in mouse models of tumor metastasis, higher lung metastatic burden and lower p38 MAPK phosphorylation were found in mice seeded with GFP-PRL-3 expressing cells compared with those seeded with GFP-Ctrl cells. Taken together, our study identified a critical role of RPL-3 in tumorigenesis by negatively regulating p38 MAPK activity in order to facilitate tumor cell adaptation to a hypoxic stressed tumor microenvironment and suggests that PRL-3 could serve as a promising novel therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA; Department of Hematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR Agency for Science Technology and Research, 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119260, Singapore.
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore; Institute of Molecular and Cell Biology, A*STAR Agency for Science Technology and Research, 138673, Singapore; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| |
Collapse
|
169
|
Tu G, Peng W, Cai Q, Zhao Z, Peng X, He B, Zhang P, Shi S, Wang X. A Novel Model Based on Genomic Instability-Associated Long Non-Coding RNAs for Predicting Prognosis and Response to Immunotherapy in Patients With Lung Adenocarcinoma. Front Genet 2021; 12:720013. [PMID: 34777461 PMCID: PMC8585772 DOI: 10.3389/fgene.2021.720013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Emerging scientific evidence has shown that long non-coding RNAs (lncRNAs) exert critical roles in genomic instability (GI), which is considered a hallmark of cancer. To date, the prognostic value of GI-associated lncRNAs (GI-lncRNAs) remains largely unexplored in lung adenocarcinoma (LUAC). The aims of this study were to identify GI-lncRNAs associated with the survival of LUAC patients, and to develop a novel GI-lncRNA-based prognostic model (GI-lncRNA model) for LUAC. Methods: Clinicopathological data of LUAC patients, and their expression profiles of lncRNAs and somatic mutations were obtained from The Cancer Genome Atlas database. Pearson correlation analysis was conducted to identify the co-expressed mRNAs of GI-lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to determine the main biological function and molecular pathways of the differentially expressed GI-lncRNAs. Univariate and multivariate Cox proportional hazard regression analyses were performed to identify GI-lncRNAs significantly related to overall survival (OS) for construction of the GI-lncRNA model. Kaplan–Meier survival analysis and receiver operating characteristic curve analysis were performed to evaluate the predictive accuracy. The performance of the newly developed GI-lncRNA model was compared with the recently published lncRNA-based prognostic index models. Results: A total of 19 GI-lncRNAs were found to be significantly associated with OS, of which 9 were identified by multivariate analysis to construct the GI-lncRNA model. Notably, the GI-lncRNA model showed a prognostic value independent of key clinical characteristics. Further performance evaluation indicated that the area under the curve (AUC) of the GI-lncRNA model was 0.771, which was greater than that of the TP53 mutation status and three existing lncRNA-based models in predicting the prognosis of patients with LUAC. In addition, the GI-lncRNA model was highly correlated with programed death ligand 1 (PD-L1) expression and tumor mutational burden in immunotherapy for LUAC. Conclusion: The GI-lncRNA model was established and its performance was found to be superior to existing lncRNA-based models. As such, the GI-lncRNA model holds promise as a more accurate prognostic tool for the prediction of prognosis and response to immunotherapy in patients with LUAC.
Collapse
Affiliation(s)
- Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
170
|
Loh JJ, Li TW, Zhou L, Wong TL, Liu X, Ma VWS, Lo CM, Man K, Lee TK, Ning W, Tong M, Ma S. FSTL1 Secreted by Activated Fibroblasts Promotes Hepatocellular Carcinoma Metastasis and Stemness. Cancer Res 2021; 81:5692-5705. [PMID: 34551961 DOI: 10.1158/0008-5472.can-20-4226] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/26/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a critical role in maintaining the immature phenotype of tumor-initiating cells (TIC) to promote cancer. Hepatocellular carcinoma (HCC) is a unique disease in that it develops in the setting of fibrosis and cirrhosis. This pathologic state commonly shows an enrichment of stromal myofibroblasts, which constitute the bulk of the tumor microenvironment and contribute to disease progression. Follistatin-like 1 (FSTL1) has been widely reported as a proinflammatory mediator in different fibrosis-related and inflammatory diseases. Here we show FSTL1 expression to be closely correlated with activated fibroblasts and to be elevated in regenerative, fibrotic, and disease liver states in various mouse models. Consistently, FSTL1 lineage cells gave rise to myofibroblasts in a CCL4-induced hepatic fibrosis mouse model. Clinically, high FSTL1 in fibroblast activation protein-positive (FAP+) fibroblasts were significantly correlated with more advanced tumors in patients with HCC. Although FSTL1 was expressed in primary fibroblasts derived from patients with HCC, it was barely detectable in HCC cell lines. Functional investigations revealed that treatment of HCC cells and patient-derived 3D organoids with recombinant FSTL1 or with conditioned medium collected from hepatic stellate cells or from cells overexpressing FSTL1 could promote HCC growth and metastasis. FSTL1 bound to TLR4 receptor, resulting in activation of AKT/mTOR/4EBP1 signaling. In a preclinical mouse model, blockade of FSTL1 mitigated HCC malignancy and metastasis, sensitized HCC tumors to sorafenib, prolonged survival, and eradicated the TIC subset. Collectively, these data suggest that FSTL1 may serve as an important novel diagnostic/prognostic biomarker and therapeutic target in HCC. SIGNIFICANCE: This study shows that FSTL1 secreted by activated fibroblasts in the liver microenvironment augments hepatocellular carcinoma malignancy, providing a potential new strategy to improve treatment of this aggressive disease.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tsz-Wai Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Victor W S Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chung-Mau Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,The University of Hong Kong-Shenzhen Hospital, Pok Fu Lam, Hong Kong
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,The University of Hong Kong-Shenzhen Hospital, Pok Fu Lam, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,The University of Hong Kong-Shenzhen Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
171
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
172
|
Yang Y, Gu J, Li X, Xue C, Ba L, Gao Y, Zhou J, Bai C, Sun Z, Zhao RC. HIF-1α promotes the migration and invasion of cancer-associated fibroblasts by miR-210. Aging Dis 2021; 12:1794-1807. [PMID: 34631221 PMCID: PMC8460292 DOI: 10.14336/ad.2021.0315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the major cause of death in colorectal cancer (CRC) patients. Inhibition of metastasis will prolong the survival of patients with CRC. Cancer cells bring their own soil, cancer-associated fibroblasts (CAFs), to metastasize together, promoting the survival and colonization of circulating cancer cells. However, the mechanism by which CAFs metastasize remains unclear. In this study, CAFs were derived from adipose mesenchymal stem cells (MSCs) after co-culture with CRC cell lines. Transwell assays showed that CAFs have stronger migration and invasion abilities than MSCs. In a nude mouse subcutaneous xenograft model, CAFs metastasized from the primary tumour to the lung and promoted the formation of CRC metastases. The expression of HIF-1α was upregulated when MSCs differentiated into CAFs. Inhibition of HIF-1α expression inhibited the migration and invasion of CAFs. Western blot and ChIP assays were used to identify the genes regulated by HIF-1α. HIF-1α regulated the migration and invasion of CAFs by upregulating miR-210 transcription. Bioinformatics analysis and luciferase reporter assays revealed that miR-210 specifically targeted the 3'UTR of VMP1 and regulated its expression. Downregulation of VMP1 enhanced the migration and invasion of CAFs. In vivo, inhibition of miR-210 expression in CAFs reduced the metastasis of CAFs and tumour cells. Therefore, the HIF-1α/miR-210/VMP1 pathway might regulate the migration and invasion of CAFs in CRC. Inhibition of CAF metastasis might reduce CRC metastasis.
Collapse
Affiliation(s)
- Ying Yang
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junjie Gu
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xuechun Li
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Chunling Xue
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Li Ba
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Yang Gao
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianfeng Zhou
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chunmei Bai
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhao Sun
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Robert Chunhua Zhao
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| |
Collapse
|
173
|
Asif PJ, Longobardi C, Hahne M, Medema JP. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel) 2021; 13:4720. [PMID: 34572947 PMCID: PMC8472587 DOI: 10.3390/cancers13184720] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in cancer progression by contributing to extracellular matrix (ECM) deposition and remodeling, extensive crosstalk with cancer cells, epithelial-to-mesenchymal transition (EMT), invasion, metastasis, and therapy resistance. As metastasis is a main reason for cancer-related deaths, it is crucial to understand the role of CAFs in this process. Colorectal cancer (CRC) is a heterogeneous disease and lethality is especially common in a subtype of CRC with high stromal infiltration. A key component of stroma is cancer-associated fibroblasts (CAFs). To provide new perspectives for research on CAFs and CAF-targeted therapeutics, especially in CRC, we discuss the mechanisms, crosstalk, and functions involved in CAF-mediated cancer invasion, metastasis, and protection. This summary can serve as a framework for future studies elucidating these roles of CAFs.
Collapse
Affiliation(s)
- Paris Jabeen Asif
- Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.J.A.); (C.L.)
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ciro Longobardi
- Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.J.A.); (C.L.)
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michael Hahne
- Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, 34090 Montpellier, France;
| | - Jan Paul Medema
- Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.J.A.); (C.L.)
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
174
|
Yoon CI, Ahn SG, Cha YJ, Kim D, Bae SJ, Lee JH, Ooshima A, Yang KM, Park SH, Kim SJ, Jeong J. Metastasis Risk Assessment Using BAG2 Expression by Cancer-Associated Fibroblast and Tumor Cells in Patients with Breast Cancer. Cancers (Basel) 2021; 13:cancers13184654. [PMID: 34572878 PMCID: PMC8470501 DOI: 10.3390/cancers13184654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) promote tumor progression and play an important role in evading immune surveillance. The previous study showed that BAG2 could be elevated in cancer associated fibroblasts (CAFs). Here, we evaluated BAG2 expression of CAF and tumor cells and assessed metastasis risk in patients with breast cancer. We found that patients with either BAG2-high or BAG2(+) CAF had significantly worse distant metastasis-free survival than those with BAG2-double negative. Evaluation of BAG2 expression on both CAFs and tumor cells could be helpful to estimate the risk of metastasis in breast cancer. Abstract Few studies have examined the role of BAG2 in malignancies. We investigated the prognostic value of BAG2-expression in cancer-associated fibroblasts (CAFs) and tumor cells in predicting metastasis-free survival in patients with breast cancer. Tissue-microarray was constructed using human breast cancer tissues obtained by surgical resection between 1992 and 2015. BAG2 expression was evaluated by immunohistochemistry in CAFs or the tumor cells. BAG2 expression in the CAFs and cytoplasm of tumor cells was classified as positive and negative, and low and high, respectively. BAG2-CAF was evaluated in 310 patients and was positive in 67 (21.6%) patients. Kaplan–Meier plots showed that distant metastasis-free survival (DMFS) was lesser in patients with BAG2(+) CAF than in patients with BAG2(−) CAF (p = 0.039). Additionally, we classified the 310 patients into two groups: 109 in either BAG2-high or BAG2(+) CAF and 201 in BAG2-low and BAG2(−) CAF. DMFS was significantly reduced in patients with either BAG2-high or BAG2(+) CAF than in the patients of the other group (p = 0.005). Multivariable analysis demonstrated that DMFS was prolonged in patients with BAG2(−) CAF or BAG2-low. Evaluation of BAG2 expression on both CAFs and tumor cells could help in determining the risk of metastasis in breast cancer.
Collapse
Affiliation(s)
- Chang-Ik Yoon
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (C.-I.Y.); (D.K.)
| | - Sung-Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.-G.A.); (S.-J.B.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yoon-Jin Cha
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Dooreh Kim
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (C.-I.Y.); (D.K.)
| | - Soong-June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.-G.A.); (S.-J.B.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (J.-H.L.); (S.-H.P.)
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul 06668, Korea; (A.O.); (K.-M.Y.); (S.-J.K.)
- Medpacto Inc., Seocho-gu, Seoul 06668, Korea
| | - Kyung-Min Yang
- GILO Institute, GILO Foundation, Seoul 06668, Korea; (A.O.); (K.-M.Y.); (S.-J.K.)
- Medpacto Inc., Seocho-gu, Seoul 06668, Korea
| | - Seok-Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (J.-H.L.); (S.-H.P.)
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Korea; (A.O.); (K.-M.Y.); (S.-J.K.)
- Medpacto Inc., Seocho-gu, Seoul 06668, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.-G.A.); (S.-J.B.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: ; Tel.: +82-2-2019-3379
| |
Collapse
|
175
|
Liu FS, Zheng BW, Zhang TL, Li J, Lv GH, Yan YG, Huang W, Zou MX. Clinicopathological and Prognostic Characteristics in Dedifferentiated/Poorly Differentiated Chordomas: A Pooled Analysis of Individual Patient Data From 58 Studies and Comparison With Conventional Chordomas. Front Oncol 2021; 11:686565. [PMID: 34490087 PMCID: PMC8418060 DOI: 10.3389/fonc.2021.686565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Currently, the clinicopathological and prognostic characteristics of dedifferentiated chordoma (DC) and poorly differentiated chordoma (PDC) remain poorly understood. In this study, we sought to characterize clinicopathological parameters in a large PDC/DC cohort and determine their correlations with progression-free survival (PFS) and overall survival (OS) of patients. We also attempted to compare clinical features between PDC/DC and conventional chordoma (CC). Methods Literature searches (from inception to June 01, 2020) using Medline, Embase, Google Scholar and Wanfang databases were conducted to identify eligible studies according to predefined criteria. The local database at our center was also retrospectively reviewed to include CC patients for comparative analysis. Results Fifty-eight studies from the literature and 90 CC patients from our local institute were identified; in total, 54 PDC patients and 96 DC patients were analyzed. Overall, PDC or DC had distinct characteristics from CC, while PDC and DC shared similar clinical features. Adjuvant radiotherapy and chemotherapy were associated with both PFS and OS in PDC patients in the univariate and/or multivariate analyses. In the DC cohort, tumor resection type, adjuvant chemotherapy and tumor dedifferentiation components significantly affected PFS, whereas none of them were predictive of outcome in the multivariate analysis. By analyzing OS, we found that surgery, resection type and the time to dedifferentiation predicted the survival of DC patients; however, only surgery remained significant after adjusting for other covariables. Conclusions These data may offer useful information to better understand the clinical characteristics of PDC/DC and may be helpful in improving the outcome prediction of patients.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo-Wen Zheng
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao-Lan Zhang
- Department of Radiation Oncology, Indiana University School of Medicine, IU Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wei Huang
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
176
|
Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B 2021; 11:2726-2737. [PMID: 34589393 PMCID: PMC8463276 DOI: 10.1016/j.apsb.2021.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell–extracellular matrix and cell–cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.
Collapse
Key Words
- ADAMs, adisintegrin and metalloproteases
- AJ, adherens junctions
- Antagonists
- CAFs, cancer-associated fibroblasts
- CAR, chimeric antigen receptor
- CRC, colorectal cancer
- CSC, cancer stem cell
- Clinical trial
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial–mesenchymal transition
- ERK, extracellular regulated kinase
- Extracellular matrix
- FAK, focal adhesion kinase
- FDA, U.S. Food and Drug Administration
- HIF-1α, hypoxia-inducible factor-1α
- HUVECs, human umbilical vein endothelial cells
- ICAMs, intercellular adhesion molecules
- IGFR, insulin-like growth factor receptor
- IMD, integrin-mediated death
- Integrins
- JNK, c-Jun N-terminal kinase 16
- MAPK, mitogen-activated protein kinase
- MMP2, matrix metalloprotease 2
- NF-κB, nuclear factor-κB
- NSCLC, non-small cell lung cancer
- PDGFR, platelet-derived growth factor receptor
- PI3K, phosphatidylinositol 3-kinase
- RGD, Arg-Gly-Asp
- RTKs, receptor tyrosine kinases
- SAPKs, stress-activated MAP kinases
- SDF-1, stromal cell-derived factor-1
- SH2, Src homology 2
- STAT3, signal transducer and activator of transcription 3
- TCGA, The Cancer Genome Atlas
- TICs, tumor initiating cells
- TNF, tumor necrosis factor
- Targeted drug
- Tumor progression
- VCAMs, vascular cell adhesion molecules
- VEGFR, vascular endothelial growth factor receptor
- mAb, monoclonal antibodies
- sdCAR-T, switchable dual-receptor CAR-engineered T
- siRNA, small interference RNA
- uPA, urokinase-type plasminogen activator
Collapse
|
177
|
Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28:984-999. [PMID: 33712707 DOI: 10.1038/s41417-021-00318-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
Tumors are one of the main causes of death in humans. The development of safe and effective methods for early diagnosis and treatment of tumors is a difficult problem that needs to be solved urgently. It is well established that the occurrence of tumors involves complex biological mechanisms, and the tumor microenvironment (TME) plays an important role in regulating the biological behavior of tumors. Cancer-associated fibroblasts (CAFs) are a group of activated fibroblasts with significant heterogeneity and plasticity in the tumor microenvironment. They secrete a variety of active factors to regulate tumor occurrence, development, metastasis, and therapeutic resistance. Although most studies suggest that CAFs have significant tumor-promoting functions, some evidence indicates that they may have certain tumor-suppressive functions in the early stage of tumors. Current research on CAFs continues to face many challenges, and the heterogeneity of their origin, phenotype, and function is a major difficulty and hot spot. To provide new perspectives for the research on CAFs and tumor diagnosis and treatment, this review summarizes the definition, origin, biomarkers, generation mechanism, functions, heterogeneity, plasticity, subpopulations, pre-metastasis niches (PMN), immune microenvironment, and targeted therapy of CAFs, describes the research progress and challenges, and proposes possible future research directions based on existing reports.
Collapse
|
178
|
Xi L, Peng M, Liu S, Liu Y, Wan X, Hou Y, Qin Y, Yang L, Chen S, Zeng H, Teng Y, Cui X, Liu M. Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion. J Extracell Vesicles 2021; 10:e12146. [PMID: 34545708 PMCID: PMC8452512 DOI: 10.1002/jev2.12146] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) as a predominant cell component in the tumour microenvironment (TME) play an essential role in tumour progression. Our earlier studies revealed oxidized ATM activation in breast CAFs, which is independent of DNA double-strand breaks (DSBs). Oxidized ATM has been found to serve as a redox sensor to maintain cellular redox homeostasis. However, whether and how oxidized ATM in breast CAFs regulates breast cancer progression remains poorly understood. In this study, we found that oxidized ATM phosphorylates BNIP3 to induce autophagosome accumulation and exosome release from hypoxic breast CAFs. Inhibition of oxidized ATM kinase by KU60019 (a small-molecule inhibitor of activated ATM) or shRNA-mediated knockdown of endogenous ATM or BNIP3 blocks autophagy and exosome release from hypoxic CAFs. We also show that oxidized ATM phosphorylates ATP6V1G1, a core proton pump in maintaining lysosomal acidification, leading to lysosomal dysfunction and autophagosome fusion with multi-vesicular bodies (MVB) but not lysosomes to facilitate exosome release. Furthermore, autophagy-associated GPR64 is enriched in hypoxic CAFs-derived exosomes, which stimulates the non-canonical NF-κB signalling to upregulate MMP9 and IL-8 in recipient breast cancer cells, enabling cancer cells to acquire enhanced invasive abilities. Collectively, these results provide novel insights into the role of stromal CAFs in promoting tumour progression and reveal a new function of oxidized ATM in regulating autophagy and exosome release.
Collapse
Affiliation(s)
- Lei Xi
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Meixi Peng
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Shuiqing Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Xueying Wan
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Yixuan Hou
- Experimental Teaching & Lab Management CenterChongqing Medical UniversityChongqingChina
| | - Yilu Qin
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Liping Yang
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huan Zeng
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Yong Teng
- Department of Hematology and Medical OncologyWinship Cancer InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Xiaojiang Cui
- Department of SurgeryDepartment of Obstetrics and GynecologyCedars‐Sinai Medical CenterSamuel Oschin Comprehensive Cancer InstituteLos AngelesCaliforniaUSA
| | - Manran Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingChina
| |
Collapse
|
179
|
Aboulkheyr Es H, Zhand S, Thiery JP, Warkiani ME. Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta. Integr Biol (Camb) 2021; 12:188-197. [PMID: 32638026 DOI: 10.1093/intbio/zyaa014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Various factors in the tumor microenvironment (TME) regulate the expression of PD-L1 in carcinoma cells. The cancer-associated fibroblasts (CAFs) play a crucial role in regulating and rewiring TME to enhance their immune suppressive function and to favor the invasion of the malignant cells. Tumor progression may be retarded by targeting CAFs in the TME. Various studies highlighted the ability of targeting CAF with pirfenidone (PFD), leading to increased efficacy of chemotherapy. However, its potential for the reduction of immune-suppression capacity of CAFs remains to be elusive. Here, we assessed the effect of PFD on the expression of PD-L1 on CAF cells. Besides migration inhibitory effects of PFD on CAFs, the expression level of PD-L1 reduced in CAFs after treatment with PFD. The downstream analysis of released cytokines from CAFs showed that PFD significantly dropped the secretion of CCL17 and TNF-β, where a positive association between PFD-targeted proteins and PD-L1 was observed. These data suggest that the treatment of CAF within TME through the PFD may reduce the acquisition of CAF-mediated invasive and immune-suppressive capacity of breast carcinoma cells.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sareh Zhand
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jean Paul Thiery
- Department of Medical Oncology, Inserm Unit 981, Comprehensive Cancer Center, Institute Gustave Roussy, Villejuif, France.,Department of Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou Regenerative Medicine and Health, Guangzhou, China
| | - Majid Ebrahimi Warkiani
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
180
|
Chen J, Wang Y, Zhang W, Zhao D, Zhang L, Zhang J, Fan J, Zhan Q. NOX5 mediates the crosstalk between tumor cells and cancer-associated fibroblasts via regulating cytokine network. Clin Transl Med 2021; 11:e472. [PMID: 34459125 PMCID: PMC8329696 DOI: 10.1002/ctm2.472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of cancer-associated fibroblasts (CAFs) is a crucial feature for tumor malignancy. The reciprocal interplay between tumor cells and CAFs not only facilitates tumor progression and metastasis but also sustains the tumor-promoting function of CAFs. Nevertheless, how tumor cells readily adapt to these functional CAFs is still unclear. NADPH oxidase 5 (NOX5) is a strong reactive oxygen species producer overexpressed in esophageal squamous cell carcinoma (ESCC) cells. In this study, we showed that NOX5-positive ESCC cells induced normal fibroblasts (NFs) or adipose-derived mesenchymal stem cells (MSCs) to express the marker of CAFs-α smooth muscle actin. Moreover, these tumor cells reprogrammed the cytokine profile of the activated CAFs, which further stimulated NFs or MSCs to CAFs and induced lymphangiogenesis to facilitate ESCC malignancy. NOX5 activated intratumoral Src/nuclear factor-κB signaling to stimulate secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and lactate from tumor cells. Subsequently, TNF-α, IL-1β, and lactate activated CAFs, and facilitated the secretion of IL-6, IL-7, IL-8, CCL5, and transforming growth factor-β1 from CAFs. These CAFs-derived cytokines reciprocally induced the progression of NOX5-positive ESCC cells. Our findings together indicate that NOX5 serves as the driving oncoprotein to provide a niche that is beneficial for tumor malignant progression.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
181
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
182
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
183
|
Zhang Q, He L, Jiang Q, Zhu H, Kong D, Zhang H, Cheng Z, Deng H, Zheng Y, Ying X. Systems Pharmacology-Based Dissection of Anti-Cancer Mechanism of Traditional Chinese Herb Saussurea involucrata. Front Pharmacol 2021; 12:678203. [PMID: 34248628 PMCID: PMC8267469 DOI: 10.3389/fphar.2021.678203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer has the highest mortality in humans worldwide, and the development of effective drugs remains a key issue. Traditional Chinese medicine Saussurea involucrata (SI) exhibits a series of effects, such as anti-cancer, but the action mechanisms are still unclear. Here, systems pharmacology was applied to reveal its anti-cancer mechanism. First, we screened the active compounds of SI. Then, the compound–target network, target–disease network, and target–pathway network were constructed. DAVID was applied for GOBP analysis and KEGG pathway enrichment analysis on cancer-related targets. Seven potential compounds and 187 targets were identified. The target–disease classification network showed that compounds mainly regulated proteins related to cancer, nervous system diseases, and cardiovascular system diseases. Also, SI anti-tumor effect mainly associated with the regulation of NO production, angiogenesis, MAPK, and PKB from GOBP enrichment. Additionally, KEGG pathway enrichment indicated that targets involved in anti-inflammatory action, inhibiting angiogenesis and anti-proliferation or inducing apoptosis. Experimental validation showed that four active compounds could inhibit cell proliferation and promote apoptosis in A549 (except for kaempferol), PC-3, and C6 cells. This study not only provides experimental evidence for further research on SI in cancer treatment but also promotes the development of potential drugs of SI in modern medicine.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi University, Xinjiang, China
| | - Lanyu He
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi University, Xinjiang, China
| | - Qingqing Jiang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi University, Xinjiang, China
| | - Hongqing Zhu
- School of Pharmaceutial Sciences/Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Dehua Kong
- School of Pharmaceutial Sciences/Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Hua Zhang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi University, Xinjiang, China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hongtao Deng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi University, Xinjiang, China
| | - Yaxin Zheng
- School of Pharmaceutial Sciences/Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Xue Ying
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, Shihezi University, Xinjiang, China.,School of Pharmaceutial Sciences/Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| |
Collapse
|
184
|
Ilkhani K, Bastami M, Delgir S, Safi A, Talebian S, Alivand MR. The Engaged Role of Tumor Microenvironment in Cancer Metabolism: Focusing on Cancer-Associated Fibroblast and Exosome Mediators. Anticancer Agents Med Chem 2021; 21:254-266. [PMID: 32914721 DOI: 10.2174/1871520620666200910123428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells. Cancer- Associated Fibroblasts (CAFs), as the most dominant cells of TME, play a crucial role in the aberrant metabolism of cancer. Furthermore, the stated relationship can affect survival, progression, and metastasis in cancer development. Recently, exosomes are considered one of the most prominent factors in cellular communications considering effective content and bidirectional mediatory effect between tumor and stromal cells. In this regard, CAF-Derived Exosomes (CDE) exhibit an efficient obligation to induce metabolic reprogramming for promoting growth and metastasis of cancer cells. The understanding of cancer metabolism, including factors related to TME, could lead to the discovery of a potential biomarker for diagnostic and therapeutic approaches in cancer management. This review focuses on the association between metabolic reprogramming and engaged microenvironmental, factors such as CAFs, and the associated derived exosomes.
Collapse
Affiliation(s)
- Khandan Ilkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delgir
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Safi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
185
|
Fernández-Nogueira P, Fuster G, Gutierrez-Uzquiza Á, Gascón P, Carbó N, Bragado P. Cancer-Associated Fibroblasts in Breast Cancer Treatment Response and Metastasis. Cancers (Basel) 2021; 13:3146. [PMID: 34201840 PMCID: PMC8268405 DOI: 10.3390/cancers13133146] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biomedicine, School of Medicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biochemistry & Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Department of Biosciences, Faculty of Sciences and Technology, University of Vic, 08500 Vic, Spain
| | - Álvaro Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
186
|
Oh BS, Im E, Lee HJ, Sim DY, Park JE, Park WY, Park Y, Koo J, Pak JN, Kim DH, Shim BS, Kim SH. Inhibition of TMPRSS4 mediated epithelial-mesenchymal transition is critically involved in antimetastatic effect of melatonin in colorectal cancers. Phytother Res 2021; 35:4538-4546. [PMID: 34114707 DOI: 10.1002/ptr.7156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
In the current study, the underlying anti-metastatic mechanism of melatonin contained in some edible plants was explored in association with transmembrane protease serine 4 (TMPRSS4) mediated metastasis and epithelial-mesenchymal transition (EMT) signaling in human HCT15 and SW620 colorectal cancer cells. Here, TMPRSS4 was highly expressed in HCT15, but was weakly expressed in SW620 cells. Melatonin exerted weak cytotoxicity, decreased invasion, adhesion, and migration, and attenuated the expression of TMPRSS4, cyclin E, pro-urokinase-type plasminogen activator (pro-uPA), p-signal transducer and activator of transcription 3 (p-STAT3), p-focal adhesion kinase (p-FAK), Snail and increased the expression of E-cadherin, p27, pp38 and p-Jun N-terminal kinases (p-JNK) in HCT15 cells. Conversely, overexpression of TMPRSS4 reduced the ability of melatonin to activate E-cadherin and reduce Snail. Furthermore, even in SW620 cells transfected with TMPRSS4-overexpression plasmid, melatonin effectively suppressed invasion and migration along with decreased expression of Snail, cyclin A, cyclin E, pro-uPA and p-FAK and increased expression of E-cadherin and p27. Overall, these findings provide evidence that melatonin suppresses metastasis in colon cancer cells via inhibition of TMPRSS4 mediated EMT.
Collapse
Affiliation(s)
- Bum Suk Oh
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngsang Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsuk Koo
- Division of Horticulture & Medicinal Plant, Andong National University, Andong, Republic of Korea
| | - Ji-Na Pak
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong Hee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
187
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
188
|
Wang Z, Liu J, Huang H, Ye M, Li X, Wu R, Liu H, Song Y. Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark Res 2021; 9:47. [PMID: 34112258 PMCID: PMC8194104 DOI: 10.1186/s40364-021-00305-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis suggests a poor prognosis for cancer patients, and treatment strategies for metastatic cancer are still very limited. Numerous studies have shown that cancer-associated fibroblasts (CAFs), a large component of the tumor microenvironment, contribute to tumor metastasis. Stromal fibroblasts at metastatic sites are different from CAFs within primary tumors and can be termed metastasis-associated fibroblasts (MAFs), and they also make great contributions to the establishment of metastatic lesions and the therapeutic resistance of metastatic tumors. MAFs are capable of remodeling the extracellular matrix of metastatic tumors, modulating immune cells in the tumor microenvironment, promoting angiogenesis and enhancing malignant tumor phenotypes. Thus, MAFs can help establish premetastatic niches and mediate resistance to therapeutic strategies, including immunotherapy and antiangiogenic therapy. The results of preclinical studies suggest that targeting MAFs can alleviate the progression of metastatic cancer and mitigate therapeutic resistance, indicating that MAFs are a promising target for metastatic cancer. Here, we comprehensively summarize the existing evidence on MAFs and discuss their origins, generation, functions and related therapeutic strategies in an effort to provide a better understanding of MAFs and offer treatment perspectives for metastatic cancer.
Collapse
Affiliation(s)
- Zimu Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, #305, East Zhongshan Road, 210002, Nanjing, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, #305, East Zhongshan Road, 210002, Nanjing, Jiangsu, China
| | - Hairong Huang
- Department of Cardiothoracic Surgery, Jinling Hospital, 210002, Nanjing, China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, #305, East Zhongshan Road, 210002, Nanjing, Jiangsu, China
| | - Xinying Li
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 210008, Nanjing, Jiangsu, China
| | - Ranpu Wu
- Department of Respiratory Medicine, Jinling Hospital, Southeast University of Medicine, 210009, Nanjing, Jiangsu, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, #305, East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, #305, East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| |
Collapse
|
189
|
Huang Q, Hsueh CY, Shen YJ, Guo Y, Huang JM, Zhang YF, Li JY, Gong HL, Zhou L. Small extracellular vesicle-packaged TGFβ1 promotes the reprogramming of normal fibroblasts into cancer-associated fibroblasts by regulating fibronectin in head and neck squamous cell carcinoma. Cancer Lett 2021; 517:1-13. [PMID: 34089808 DOI: 10.1016/j.canlet.2021.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023]
Abstract
Tumor development and progression hinge upon ongoing coevolution and crosstalk with the tumor microenvironment. In particular, fibroblasts in the tumor stroma are coopted to support tumor growth and survival through interactions with tumor cells. Despite their significant importance, there is no consensus on the origin of cancer-associated fibroblasts (CAFs) in head and neck squamous cell carcinoma (HNSCC). In this study, we demonstrated that small extracellular vesicle (sEV)-packaged TGFβ1 can reprogram normal fibroblasts (NFs) into CAFs both in vitro and in vivo. Mechanistically, TGFβ1 in sEV activated NFs by regulating fibronectin, rather than modulating the canonical TGFβ-Smad signal pathway. Furthermore, TGFβ1 and fibronectin are related to HNSCC clinicopathologic features. Plasma sEV TGFβ1 may serve as a potential diagnostic biomarker for HNSCC. This hitherto unknown mechanism of reprogramming of NFs into CAFs by a unique pathway has major implications for underlying cancer-recruited stroma responses.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yu-Jie Shen
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yang Guo
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jia-Meng Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yi-Fan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jiao-Yu Li
- Department of Pediatric, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Hong-Li Gong
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
190
|
Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, Zhao L, Wang P. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol 2021; 9:667645. [PMID: 34095135 PMCID: PMC8172974 DOI: 10.3389/fcell.2021.667645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Small-cell lung cancer (SCLC) is aggressive, with early metastasis. Cytokines secreted by cancer-associated fibroblasts (CAFs) within various tumors influences these features, but the function in particular of TGFβ1 (transforming growth factor beta 1) is controversial and unknown in SCLC. This study explored the influence of TGFβ1 in CAFs on the development, immune microenvironment, and radiotherapy sensitivity of SCLC. Methods SCLC specimens were collected from 90 patients who had received no treatment before surgery. Tumor and tumor stroma were subjected to multiplex immunohistochemistry to quantitate TGFβ1 and other immune factors in CAFs. Cell proliferation and flow cytometry apoptosis assays were used to investigate associations between TGFβ1 and proliferation and radiotherapy sensitivity. The immune factors in tumors were detected by immunohistochemistry in vitro and in vivo (mice). Results TGFβ1 levels on CAFs lower or higher than the median were found, respectively, in 52.2 and 47.8% of patients; overall survival of patients with TGFβ1-high levels (53.9 mo) was significantly longer than that of the TGFβ1-low group (26.9 mo; P = 0.037). The univariate and multivariate analyses indicated that a TGFβ1-high level was an independent predictor of increased survival time. TGFβ1-high levels in CAFs were associated with inhibition of growth, proliferation, antitumor immunity, and enhanced radiotherapeutic sensitivity and tumor immunity of tumor. TGFβ1-low levels promoted tumor cell growth and radiotherapy sensitivity in vivo and in vitro. Conclusion High levels of TGFβ1 in CAFs were associated with longer overall survival in patients with SCLC and enhanced radiotherapy sensitivity.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jing Qi
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Wei
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin, China
| | - Yuanyuan Lei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hao Yu
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
191
|
Mehdi SJ, Moerman-Herzog A, Wong HK. Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer 2021; 21:492. [PMID: 33941102 PMCID: PMC8091512 DOI: 10.1186/s12885-021-08142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mycosis fungoides (MF) is a primary cutaneous T-cell lymphoma (CTCL) that transforms from mature, skin-homing T cells and progresses during the early stages in the skin. The role of the skin microenvironment in MF development is unclear, but recent findings in a variety of cancers have highlighted the role of stromal fibroblasts in promoting or inhibiting tumorigenesis. Stromal fibroblasts are an important part of the cutaneous tumor microenvironment (TME) in MF. Here we describe studies into the interaction of TME-fibroblasts and malignant T cells to gain insight into their role in CTCL. METHODS Skin from normal (n = 3) and MF patients (n = 3) were analyzed for FAPα by immunohistochemistry. MyLa is a CTCL cell line that retains expression of biomarkers TWIST1 and TOX that are frequently detected in CTCL patients. MyLa cells were cultured in the presence or absence of normal or MF skin derived fibroblasts for 5 days, trypsinized to detached MyL a cells, and gene expression analyzed by RT-PCR for MF biomarkers (TWIST1 and TOX), Th1 markers (IFNG, TBX21), Th2 markers (GATA3, IL16), and proliferation marker (MKI67). Purified fibroblasts were assayed for VIM and ACTA2 gene expression. Cellular senescence assay was performed to assess senescence. RESULTS MF skin fibroblast showed increased expression of FAP-α with increasing stage compared to normal. Normal fibroblasts co-cultured with MyLa cells suppressed expression of TWIST1 (p < 0.0006), and TOX (p < 0.03), GATA3 (p < 0.02) and IL16 (p < 0.03), and increased expression of IFNG (p < 0.03) and TBX21 (p < 0.03) in MyLa cells. In contrast, MyLa cells cultured with MF fibroblasts retained high expression of TWIST1, TOX and GATA3. MF fibroblasts co-culture with MyLa cells increased expression of IL16 (p < 0.01) and IL4 (p < 0.02), and suppressed IFNG and TBX21 in MyLa cells. Furthermore, expression of MKI67 in MyLa cells was suppressed by normal fibroblasts compared to MF fibroblasts. CONCLUSION Skin fibroblasts represent important components of the TME in MF. In co-culture model, normal and MF fibroblasts have differential influence on T-cell phenotype in modulating expression of Th1 cytokine and CTCL biomarker genes to reveal distinct roles with implications in MF progression.
Collapse
Affiliation(s)
- Syed Jafar Mehdi
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Andrea Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA.
| |
Collapse
|
192
|
Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. Cancers (Basel) 2021; 13:2188. [PMID: 34063254 PMCID: PMC8125677 DOI: 10.3390/cancers13092188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
Collapse
Affiliation(s)
- Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
193
|
Abstract
Tumors are equipped with a highly complex machinery of interrelated events so as to adapt to hazardous conditions, preserve a growing cell mass and thrive at the site of metastasis. Tumor cells display metastatic propensity toward specific organs where the stromal milieu is appropriate for their further colonization. Effective colonization relies on the plasticity of tumor cells in adapting to the conditions of the new area by reshaping their epigenetic landscape. Breast cancer cells, for instance, are able to adopt brain-like or epithelial/osteoid features in order to pursue effective metastasis into brain and bone, respectively. The aim of this review is to discuss recent insights into organ tropism in tumor metastasis, outlining potential strategies to address this driver of tumor aggressiveness.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran
| |
Collapse
|
194
|
A novel Lnc408 maintains breast cancer stem cell stemness by recruiting SP3 to suppress CBY1 transcription and increasing nuclear β-catenin levels. Cell Death Dis 2021; 12:437. [PMID: 33934099 PMCID: PMC8088435 DOI: 10.1038/s41419-021-03708-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance. Using lncRNA array, we identified a novel lncRNA (named lnc408) in epithelial-mesenchymal transition-related breast CSCs (BCSCs). The lnc408 is high expressed in BCSCs in vitro and in vivo. The enhanced lnc408 is critical to BCSC characteristics and tumorigenesis. Lnc408 can recruit transcript factor SP3 to CBY1 promoter to serve as an inhibitor in CBY1 transcription in BCSCs. The high expressed CBY1 in non-BCSC interacts with 14-3-3 and β-catenin to form a ternary complex, which leads a translocation of the ternary complex into cytoplasm from nucleus and degradation of β-catenin in phosphorylation-dependent pattern. The lnc408-mediated decrease of CBY1 in BCSCs impairs the formation of 14-3-3/β-catenin/CBY1 complex, and keeps β-catenin in nucleus to promote CSC-associated CD44, SOX2, Nanog, Klf4, and c-Myc expressions and contributes to mammosphere formation; however, restoration of CBY1 expression in tumor cells reduces BCSC and its enrichment, thus lnc408 plays an essential role in maintenance of BCSC stemness. In shortly, these findings highlight that the novel lnc408 functions as an oncogenic factor by recruiting SP3 to inhibit CBY1 expression and β-catenin accumulation in nucleus to maintain stemness properties of BCSCs. Lnc408-CBY1-β-catenin signaling axis might serve as a new diagnostic and therapeutic target for breast cancer.
Collapse
|
195
|
Zhao Y, Zheng X, Zheng Y, Chen Y, Fei W, Wang F, Zheng C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front Oncol 2021; 11:650453. [PMID: 33968752 PMCID: PMC8100244 DOI: 10.3389/fonc.2021.650453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
Collapse
Affiliation(s)
- Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
196
|
Tang R, Liu X, Liang C, Hua J, Xu J, Wang W, Meng Q, Liu J, Zhang B, Yu X, Shi S. Deciphering the Prognostic Implications of the Components and Signatures in the Immune Microenvironment of Pancreatic Ductal Adenocarcinoma. Front Immunol 2021; 12:648917. [PMID: 33777046 PMCID: PMC7987951 DOI: 10.3389/fimmu.2021.648917] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The treatment modalities for pancreatic ductal adenocarcinoma (PDAC) are limited and unsatisfactory. Although many novel drugs targeting the tumor microenvironment, such as immune checkpoint inhibitors, have shown promising efficacy for some tumors, few of them significantly prolong the survival of patients with PDAC due to insufficient knowledge on the tumor microenvironment. Methods: A single-cell RNA sequencing (scRNA-seq) dataset and seven PDAC cohorts with complete clinical and bulk sequencing data were collected for bioinformatics analysis. The relative proportions of each cell type were estimated using the gene set variation analysis (GSVA) algorithm based on the signatures identified by scRNA-seq or previous literature. Results: A meta-analysis of 883 PDAC patients showed that neutrophils are associated with worse overall survival (OS) for PDAC, while CD8+ T cells, CD4+ T cells, and B cells are related to prolonged OS for PDAC, with marginal statistical significance. Seventeen cell categories were identified by clustering analysis based on single-cell sequencing. Among them, CD8+ T cells and NKT cells were universally exhausted by expressing exhaustion-associated molecular markers. Interestingly, signatures of CD8+ T cells and NKT cells predicted prolonged OS for PDAC only in the presence of "targets" for pyroptosis and ferroptosis induction. Moreover, a specific state of T cells with overexpression of ribosome-related proteins was associated with a good prognosis. In addition, the hematopoietic stem cell (HSC)-like signature predicted prolonged OS in PDAC. Weighted gene co-expression network analysis identified 5 hub genes whose downregulation may mediate the observed survival benefits of the HSC-like signature. Moreover, trajectory analysis revealed that myeloid cells evolutionarily consisted of 7 states, and antigen-presenting molecules and complement-associated genes were lost along the pseudotime flow. Consensus clustering based on the differentially expressed genes between two states harboring the longest pseudotime span identified two PDAC groups with prognostic differences, and more infiltrated immune cells and activated immune signatures may account for the survival benefits. Conclusion: This study systematically investigated the prognostic implications of the components of the PDAC tumor microenvironment by integrating single-cell sequencing and bulk sequencing, and future studies are expected to develop novel targeted agents for PDAC treatment.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaomeng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
197
|
Qiu YA, Xiong J, Fu Q, Dong Y, Liu M, Peng M, Jin W, Zhou L, Xu X, Huang X, Fu A, Xu G, Tu G, Yu T. GPER-Induced ERK Signaling Decreases Cell Viability of Hepatocellular Carcinoma. Front Oncol 2021; 11:638171. [PMID: 33767999 PMCID: PMC7985169 DOI: 10.3389/fonc.2021.638171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with a poor prognosis. Effective biomarkers and specific therapeutic targets for HCC are therefore urgently needed. G protein-coupled estrogen receptor (GPER) plays a crucial role in numerous cancer types; however, its functions in HCC require further exploration. In the present study, we found a remarkable difference in GPER staining between tumor tissue (100/141, 70.9%) and matched non-tumor tissue (27/30, 90.0%). Compared with the GPER-negative patients, the GPER-positive patients with HCC were closely associated with female sex, negative hepatitis B surface antigen, small tumor size, low serum alpha fetoprotein level, and longer overall survival. Treatment with GPER-specific agonist G1 led to the sustained and transient activation of the EGFR/ERK and EGFR/AKT signaling pathways, respectively, in the HCC cell lines HCCLM3 and SMMC-7721, which express high levels of GPER. Interestingly, G1-induced EGFR/ERK signaling, rather than EGFR/AKT signaling mediated by GPER, was involved in decreasing cell viability by blocking cell cycle progression, thereby promoting apoptosis and inhibiting cell growth. Clinical analysis indicated that simultaneous high expression of GPER and phosphorylated-ERK (p-ERK) predicted improved prognosis for HCC. Finally, the activation of GPER/ERK signaling remarkably suppressed tumor growth in an HCC xenograft model, and this result was consistent with the in vitro data. Our findings suggest that specific activation of the GPER/ERK axis may serve as a novel tumor-suppressive mechanism and that this axis could be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu-An Qiu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Critical Care Medicine, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Fu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Manran Liu
- Key Laboratory of Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wenjian Jin
- Department of Elderly Oncology, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Lixia Zhou
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Xu
- Department of Ultrasonography, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Xianming Huang
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Airong Fu
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Guohui Xu
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| |
Collapse
|
198
|
Wang Z, Gu J, Yan A, Li K. Downregulation of circ-RANBP9 in laryngeal cancer and its clinical significance. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:484. [PMID: 33850881 PMCID: PMC8039645 DOI: 10.21037/atm-21-567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Laryngeal cancer (LC) is a common malignant tumor of the head and neck. As circular RNAs (circRNAs) and other non-coding RNAs are involved in various malignant processes, we analyzed circRNAs to better understand LC and explored specific tumor markers. Methods High-throughput sequence was performed to analyze the differential circular RNAs in four coupled laryngeal cancers and para-cancerous tissues. The differential expression of selected circ-RANBP9 in laryngeal cancer tissues and cells was verified by RT-qPCR assay. CCK8, EDU, Transwell and wound healing assays were used to confirm the biological function of circ-RANBP9 in laryngeal cancer. Western blot assay was performed to identify the effects of circ-RANBP9 having on the epithelial to mesenchymal transition process. One-way AN0VA was used to analyze the correlation between the expression of circ-RANBP9 and clinicopathological parameters of the included patients. Kaplan-Meier analysis was used to investigate whether the expression level of circ-RANBP9 correlated with survival in LC patients. Bioinformatic analyses were also conducted to predict the functions and possible signaling pathways of the targeted mRNAs of circ-RANBP9 via co-expression and competing endogenous RNA network. Results We found a transcript from RNA sequence data, termed hsa_circ_0001578, which is a circRNA spliced from RANBP9. Circ-RANBP9 was downregulated in the LC cell lines tissues, relating to a better prognosis. Circ-RANBP9 was found to inhibit the proliferation, migration, and invasion ability of LC, exerting a suppressive role in the epithelial to mesenchymal transition process as well. For the diagnostic value of circ-RANBP9, the sensitivity and the specificity were 0.979 and 0.553, respectively. Circ-RANBP9 downregulation was significantly correlated with differentiation (P=0.031), T-stage (P=0.018), lymphatic metastasis (P=0.046), and clinical stage (P=0.003). Circ-RANBP9 was involved in insulin-like growth factor receptor binding, cell polarity, focal adhesion, and MAPK signaling pathways. CeRNA analysis identified the possible involvement of circ-RANBP9 in the ECM-receptor interaction, cAMP, calcium, and Wnt signaling pathways by harboring miRNA genes. Conclusions Circ-RANBP9 was confirmed to play important roles in inhibiting laryngeal cancers. Circ-RANBP9 was also validated to be associated with the clinicopathological parameters and diagnostic value, suggesting that circ-RANBP9 is a promising biomarker for LC prognosis and early diagnosis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Gu
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Aihui Yan
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kai Li
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
199
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
200
|
Chen B, Sang Y, Song X, Zhang D, Wang L, Zhao W, Liang Y, Zhang N, Yang Q. Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Am J Cancer Res 2021; 11:3932-3947. [PMID: 33664871 PMCID: PMC7914354 DOI: 10.7150/thno.53412] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment contributes to tumor progression and metastasis. Cancer-associated fibroblasts (CAFs) form a major cellular component of the tumor microenvironment. In this study, we further explored the mechanisms underlying the tumor-promoting roles of CAFs. Methods: Patient-derived CAFs and normal fibroblasts (NFs) were isolated from breast carcinomas and adjacent normal breast tissue. Exosomes were isolated by ultracentrifugation and CAF-derived exosomal microRNAs were screened using next-generation sequencing technology. MiR-500a-5p expression was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization; Tumor cell proliferation was determined by MTT assays and three-dimensioned (3D) cultures, and tumor metastasis was determined by Transwell assays in vitro. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We confirmed that CAF-derived exosomes significantly promoted the proliferation and metastasis of breast cancer cells. MiR-500a-5p was highly expressed in MDA-MB-231 and MCF7 cells treated with CAF-derived exosomes. The upregulation of miR-500a-5p was also confirmed in CAFs and CAF-derived exosomes. MiR-500a-5p was transferred from CAFs to the cancer cells, and subsequently promoted proliferation and metastasis by binding to ubiquitin-specific peptidase 28 (USP28). Conclusions: The present study demonstrates that CAFs promote breast cancer progression and metastasis via exosomal miR-500a-5p and indicate that inhibiting CAF-derived miR-500a-5p is an alternative modality for the treatment of breast cancer.
Collapse
|