151
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
152
|
Gao FY, Chen XF, Cui LX, Zhai YJ, Liu JL, Gao CC, Fang YC, Huang TH, Wen J, Zhou TT. Gut microbiota mediates the pharmacokinetics of Zhi-zi-chi decoction for the personalized treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115934. [PMID: 36414216 DOI: 10.1016/j.jep.2022.115934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-zi-chi decoction (ZZCD), from "Treatise on Febrile Diseases", is a typical traditional Chinese medicine herb pair, which consists of Gardeniae Fructus (GF) and Semen Sojae Praeparatu (SSP). In clinical research, ZZCD was widely used to fight depression, remove annoyance. Many studies have reported that gut microbiota is critical target for the influence of depress through gut-brain axis, and our previously studies have found that ZZCD exhibiting antidepressant effect was through the gut-brain axis. However, the specific mechanism by which gut microbiota mediates the pharmacokinetics parameters of active compounds from ZZCD during the process of depression treatment has not yet been studied. AIM OF THE STUDY To explore the differences in pharmacokinetics characters of bioactive iridoids from ZZCD and study the changes of gut microbiota at different stages of depression with the personalized medicine of ZZCD. MATERIALS AND METHODS A new strategy exploring the relationship among disease phenotypes (D), intestinal microbiota (I), enzymes (E) and traits of metabolism (T) named as "DIET" was established. Firstly, a fast, selective and sensitive ultra-performance liquid chromatography coupled with tandem mass spectrometer (UPLC-MS/MS) was established and validated to quality the main bioactive compounds from ZZCD and compare the pharmacokinetics and bioavailability of different iridoids prototypes and metabolites from ZZCD between normal and chronic unpredictable mild stress rats. Subsequently, the activity of corresponding metabolic enzymes of anti-depressive compounds, β-glucosidases and sulfotransferases, were analyzed by ρ-nitrophenyl-β -D-glucopyranoside and sulfotransferases ELISA kits, respectively. Finally, 16S rRNA gene sequencing was adopt to analyze intestinal bacteria composition for the treatment of depression by ZZCD. RESULTS The antidepressant effect of ZZCD was promoted due to the increased exposures and reduced eliminations of anti-depressive compounds, especially geniposide and genipin 1-gentiobioside, under the depression state. With the ZZCD treatment, the depression was improved, but the exposures of anti-depressive compounds from ZZCD gradually decreased. Meanwhile, there were the corresponding decreased trends on the activity of β-glucosidases and sulfotransferases. With the consumption of ZZDC and the improvement of depression, the exposures of anti-depressive iridoid glycosides decreased and the activity of metabolism enzymes restored. Meanwhile, the dysbiosis of pathogenic bacteria (Bacteroidota) induced by depression was ameliorated and the probiotics (Firmicutes) at the phylum and genus level raised, the two phyla are closely related to the production of β-glucosidase and sulfotransferases. CONCLUSIONS It is the first proposed that ZZCD could personalized to treat depression at different stages targeting gut microbiota and gut microbiome could emerged as a potential diagnostic and therapeutic biomarker in depression.
Collapse
Affiliation(s)
- Fang-Yuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China.
| | - Xue-Feng Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Sunshine LAKE Pharma Co.,ltd, No. 368 Zhenan Middle Road, Changan, Dongguan, Guangdong, 523846, China.
| | - Li-Xun Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Yu-Jia Zhai
- Naval Medical Center, Naval Medical University, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China.
| | - Jia-Lin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Cong-Cong Gao
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Yi-Chao Fang
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | | | - Jun Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| | - Ting-Ting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
153
|
Urbelienė N, Tiškus M, Tamulaitienė G, Gasparavičiūtė R, Lapinskaitė R, Jauniškis V, Sūdžius J, Meškienė R, Tauraitė D, Skrodenytė E, Urbelis G, Vaitekūnas J, Meškys R. Cytidine deaminases catalyze the conversion of N( S, O) 4-substituted pyrimidine nucleosides. SCIENCE ADVANCES 2023; 9:eade4361. [PMID: 36735785 PMCID: PMC9897663 DOI: 10.1126/sciadv.ade4361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of N4-acyl-cytidines, N4-alkyl-cytidines, and N4-alkyloxycarbonyl-cytidines, and S4-alkylthio-uridines and O4-alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible β3α3 loop of CDAs. We propose that CDAs that are active toward a wide range of substrates participate in salvage and/or catabolism of variously modified pyrimidine nucleosides. This identified promiscuity of CDAs expands the knowledge about the cellular turnover of cytidine derivatives, including the pharmacokinetics of pyrimidine-based prodrugs.
Collapse
Affiliation(s)
- Nina Urbelienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Matas Tiškus
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Ringailė Lapinskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Vykintas Jauniškis
- UAB Biomatter Designs (Biomatter), Žirmūnų st. 139A, 09120 Vilnius, Lithuania
| | - Jurgis Sūdžius
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Emilija Skrodenytė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Gintaras Urbelis
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| |
Collapse
|
154
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
155
|
Zhang NN, Jiang ZM, Li SZ, Yang X, Liu EH. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol 2023; 949:175557. [PMID: 36716810 DOI: 10.1016/j.ejphar.2023.175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Growing evidence suggests gut microbiota status affects human health, and microbiota imbalance will induce multiple disorders. Natural products are gaining increasing attention for their therapeutical effects and less side effects. The emerging studies support that the activities of many natural products are dependent on gut microbiota, meanwhile gut microbiota is modulated by natural products. In this review, we summarized the interplay between the gut microbiota and host disease, and the emerging molecular mechanisms of the interaction between natural products and gut microbiota. Focusing on gut microbiota metabolite of various natural products, and the effects of natural products on gut microbiota, we summarized the biotransformation pathways of natural products, and discussed the effect of natural products on the composition modulation of gut microbiota, protection of gut mucosal barrier and modulation of the gut microbiota metabolites. Dissecting the interplay between gut microbiota and natural products will help elucidate the therapeutic mechanisms of natural products.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shang-Zhen Li
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
156
|
Li B, Kwok LY, Wang D, Li L, Guo S, Chen Y. Integrating metabolomics, bionics, and culturomics to study probiotics-driven drug metabolism. Front Pharmacol 2023; 14:1047863. [PMID: 36778014 PMCID: PMC9908756 DOI: 10.3389/fphar.2023.1047863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Many drugs have been shown to be metabolized by the human gut microbiome, but probiotic-driven drug-metabolizing capacity is rarely explored. Here, we developed an integrated metabolomics, culturomics, and bionics framework for systematically studying probiotics-driven drug metabolism. We discovered that 75% (27/36 of the assayed drugs) were metabolized by five selected probiotics, and drugs containing nitro or azo groups were more readily metabolized. As proof-of-principle experiments, we showed that Lacticaseibacillus casei Zhang (LCZ) could metabolize racecadotril to its active products, S-acetylthiorphan and thiorphan, in monoculture, in a near-real simulated human digestion system, and in an ex vivo fecal co-culture system. However, a personalized effect was observed in the racecadotril-metabolizing activity of L. casei Zhang, depending on the individual's host gut microbiome composition. Based on data generated by our workflow, we proposed a possible mechanism of interactions among L. casei Zhang, racecadotril, and host gut microbiome, providing practical guidance for probiotic-drug co-treatment and novel insights into precision probiotics.
Collapse
Affiliation(s)
- Bohai Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Dandan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China,*Correspondence: Yongfu Chen,
| |
Collapse
|
157
|
Celis AI, Relman DA, Huang KC. The impact of iron and heme availability on the healthy human gut microbiome in vivo and in vitro. Cell Chem Biol 2023; 30:110-126.e3. [PMID: 36603582 PMCID: PMC9913275 DOI: 10.1016/j.chembiol.2022.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Responses of the indigenous human gut commensal microbiota to iron are poorly understood because of an emphasis on in vitro studies of pathogen iron sensitivity. In a study of iron supplementation in healthy humans, we identified gradual microbiota shifts in some participants correlated with bacterial iron internalization. To identify direct effects due to taxon-specific iron sensitivity, we used participant stool samples to derive diverse in vitro communities. Iron supplementation of these communities caused small compositional shifts, mimicking those in vivo, whereas iron deprivation dramatically inhibited growth with irreversible, cumulative reduction in diversity and replacement of dominant species. Sensitivity of individual species to iron deprivation in axenic culture generally predicted iron dependency in a community. Finally, exogenous heme acted as a source of inorganic iron to prevent depletion of some species. Our results highlight the complementarity of in vivo and in vitro studies in understanding how environmental factors affect gut microbiotas.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
158
|
Aranda-Díaz A, Willis L, Nguyen TH, Ho PY, Vila J, Thomsen T, Chavez T, Yan R, Yu FB, Neff N, Sanchez A, Estrela S, Huang KC. Assembly of gut-derived bacterial communities follows "early-bird" resource utilization dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523996. [PMID: 36711771 PMCID: PMC9882107 DOI: 10.1101/2023.01.13.523996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human feces to uncover simple assembly rules and develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Community membership was largely determined by the donor feces, whereas relative abundances were determined by the supplemental carbon source. The absolute abundance of most taxa was independent of the supplementing nutrient, due to the ability of fast-growing organisms to quickly exhaust their niche in the complex medium and then exploit and monopolize the supplemental carbon source. Relative abundances of dominant taxa could be predicted from the nutritional preferences and growth dynamics of species in isolation, and exceptions were consistent with strain-level variation in growth capabilities. Our study reveals that community assembly follows simple rules of nutrient utilization dynamics and provides a predictive framework for manipulating gut commensal communities through nutritional perturbations.
Collapse
|
159
|
Lightfoot HL, Smith GF. Targeting RNA with small molecules-A safety perspective. Br J Pharmacol 2023. [PMID: 36631428 DOI: 10.1111/bph.16027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
RNA is a major player in cellular function, and consequently can drive a number of disease pathologies. Over the past several years, small molecule-RNA targeting (smRNA targeting) has developed into a promising drug discovery approach. Numerous techniques, tools, and assays have been developed to support this field, and significant investments have been made by pharmaceutical and biotechnology companies. To date, the focus has been on identifying disease validated primary targets for smRNA drug development, yet RNA as a secondary (off) target for all small molecule drug programs largely has been unexplored. In this perspective, we discuss structure, target, and mechanism-driven safety aspects of smRNAs and highlight how these parameters can be evaluated in drug discovery programs to produce potentially safer drugs.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Safety and Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Graham F Smith
- Data Science and AI, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
160
|
Shouval R, Waters NR, Gomes ALC, Zuanelli Brambilla C, Fei T, Devlin SM, Nguyen CL, Markey KA, Dai A, Slingerland JB, Clurman AG, Fontana E, Amoretti LA, Wright RJ, Hohl TM, Taur Y, Sung AD, Weber D, Hashimoto D, Teshima T, Chao NJ, Holler E, Scordo M, Giralt SA, Perales MA, Peled JU, van den Brink MRM. Conditioning Regimens are Associated with Distinct Patterns of Microbiota Injury in Allogeneic Hematopoietic Cell Transplantation. Clin Cancer Res 2023; 29:165-173. [PMID: 36322005 PMCID: PMC9812902 DOI: 10.1158/1078-0432.ccr-22-1254] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The gut microbiota is subject to multiple insults in allogeneic hematopoietic cell transplantation (allo-HCT) recipients. We hypothesized that preparative conditioning regimens contribute to microbiota perturbation in allo-HCT. EXPERIMENTAL DESIGN This was a retrospective study that evaluated the relationship between conditioning regimens exposure in 1,188 allo-HCT recipients and the gut microbiome. Stool samples collected from 20 days before transplantation up to 30 days after were profiled using 16S rRNA sequencing. Microbiota injury was quantified by changes in α-diversity. RESULTS We identified distinct patterns of microbiota injury that varied by conditioning regimen. Diversity loss was graded into three levels of conditioning-associated microbiota injury (CMBI) in a multivariable model that included antibiotic exposures. High-intensity regimens, such as total body irradiation (TBI)-thiotepa-cyclophosphamide, were associated with the greatest injury (CMBI III). In contrast, the nonmyeloablative regimen fludarabine-cyclophosphamide with low-dose TBI (Flu/Cy/TBI200) had a low-grade injury (CMBI I). The risk of acute GVHD correlated with CMBI degree. Pretransplant microbial compositions were best preserved with Flu/Cy/TBI200, whereas other regimens were associated with loss of commensal bacteria and expansion of Enterococcus. CONCLUSIONS Our findings support an interaction between conditioning at the regimen level and the extent of microbiota injury.
Collapse
Affiliation(s)
- Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas R. Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio L. C. Gomes
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corrado Zuanelli Brambilla
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Hematology Unit, Department of Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M. Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chi L. Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John B Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annelie G Clurman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Fontana
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luigi A Amoretti
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberta J Wright
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Taur
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Daniela Weber
- Department of Internal Medicine, University Medical Center, University of Regensburg, Regensburg, Germany
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ernst Holler
- Department of Internal Medicine, University Medical Center, University of Regensburg, Regensburg, Germany
| | - Michael Scordo
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marcel R. M. van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
161
|
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J Control Release 2023; 353:1107-1126. [PMID: 36528195 DOI: 10.1016/j.jconrel.2022.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/26/2022]
Abstract
Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics.
Collapse
Affiliation(s)
- Laura E McCoubrey
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alessia Favaron
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Atheer Awad
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Mine Orlu
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Simon Gaisford
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Abdul W Basit
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
162
|
Xia Y, Tian Y, Zhou D, Zhang L, Cai Y, Fu S, Zhang X, Gao Y, Chen Q, Gao P. Gut microbiota involved in spermatogenic function of Sancai Lianmei granules in obese mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:83-97. [PMID: 36125532 DOI: 10.1007/s00210-022-02296-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 01/29/2023]
Abstract
Obesity is a well-established cause of reduced fertility and semen quality in men. Current evidence suggests that Sancai Lianmei granules (SCLM) effectively improve sexual function and semen quality in diabetic patients, while the gut microbiota can influence disease metabolism through various mechanisms. However, the effect of SCLM on the obesity-induced decrease in semen quality and on the gut microbiota is unclear. This study aimed to investigate the effects of SCLM on spermatogenic function and gut microbiota in obese mice. Obese mice were induced by a high-fat diet, and lipid metabolism, spermatogenic function, inflammatory factors, oxidative stress, and autophagy were analyzed to determine the effects of SCLM and SCLM-fecal microbiota transplantation (FMT). In addition, changes in the gut microbiota of mice were analyzed. SCLM and SCLM + FMT could effectively reduce the levels of total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL); decrease the expression of oxidative stress products malondialdehyde (MDA) and 8-hydroxyde-oxyguanosine (8-OHdG); and increase sperm density and sperm viability in obese mice while inhibiting the inflammatory responses and excessive cellular autophagy, indicating that SCLM and SCLM + FMT exerted a protective effect on spermatogenic functions. Furthermore, SCLM affected the gut microbiota composition in mice. This study determined that obesity can lead to reduced sperm motility and affect the composition of the gut microbiota, while SCLM can regulate blood lipids in mice directly or indirectly by regulating gut microbiota changes, and may improve sperm motility in obese mice by reducing oxidative stress and autophagy. In addition, FMT enhanced this effect, which may be related to the diversity of gut microbiota.
Collapse
Affiliation(s)
- Yuguo Xia
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Tian
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongqi Zhou
- Department of Traditional Chinese Medicine, Sichuan Taikang Southwest Hospital, Chengdu, China
| | - Lei Zhang
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, China
| | - Shunlian Fu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, China
| | - Xiaoran Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, China
| | - Yang Gao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, China.
| | - Ping Gao
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
163
|
Jia L, Huang S, Sun B, Shang Y, Zhu C. Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Front Endocrinol (Lausanne) 2023; 14:1149256. [PMID: 37033254 PMCID: PMC10076675 DOI: 10.3389/fendo.2023.1149256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a major driver of mortality worldwide, is more likely to develop other cardiometabolic risk factors, ultimately leading to diabetes-related mortality. Although a set of measures including lifestyle intervention and antidiabetic drugs have been proposed to manage T2DM, problems associated with potential side-effects and drug resistance are still unresolved. Pharmacomicrobiomics is an emerging field that investigates the interactions between the gut microbiome and drug response variability or drug toxicity. In recent years, increasing evidence supports that the gut microbiome, as the second genome, can serve as an attractive target for improving drug efficacy and safety by manipulating its composition. In this review, we outline the different composition of gut microbiome in T2DM and highlight how these microbiomes actually play a vital role in its development. Furthermore, we also investigate current state-of-the-art knowledge on pharmacomicrobiomics and microbiome's role in modulating the response to antidiabetic drugs, as well as provide innovative potential personalized treatments, including approaches for predicting response to treatment and for modulating the microbiome to improve drug efficacy or reduce drug toxicity.
Collapse
Affiliation(s)
- Liyang Jia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Boyu Sun
- Department of Pharmacy, The Third People’s Hospital of Qingdao, Qingdao, China
| | - Yongguang Shang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| |
Collapse
|
164
|
Fekete EE, Figeys D, Zhang X. Microbiota-directed biotherapeutics: considerations for quality and functional assessment. Gut Microbes 2023; 15:2186671. [PMID: 36896938 PMCID: PMC10012963 DOI: 10.1080/19490976.2023.2186671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Mounting evidence points to causative or correlative roles of gut microbiome in the development of a myriad of diseases ranging from gastrointestinal diseases, metabolic diseases to neurological disorders and cancers. Consequently, efforts have been made to develop and apply therapeutics targeting the human microbiome, in particular the gut microbiota, for treating diseases and maintaining wellness. Here we summarize the current development of gut microbiota-directed therapeutics with a focus on novel biotherapeutics, elaborate the need of advanced -omics approaches for evaluating the microbiota-type biotherapeutics, and discuss the clinical and regulatory challenges. We also discuss the development and potential application of ex vivo microbiome assays and in vitro intestinal cellular models in this context. Altogether, this review aims to provide a broad view of promises and challenges of the emerging field of microbiome-directed human healthcare.
Collapse
Affiliation(s)
- Emily Ef Fekete
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
165
|
Gut-oriented disease modifying therapy for Parkinson's disease. J Formos Med Assoc 2023; 122:9-18. [PMID: 36182642 DOI: 10.1016/j.jfma.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023]
Abstract
Neuropathology studies have shown that the pathognomonic feature of Parkinson's disease (PD), one of the most common neurodegenerative disorders, may start from the gut enteric nervous system and then spread to the central dopaminergic neurons through the gut-brain axis. With the advent of metagenomic sequencing and metabolomic analysis, a plethora of evidence has revealed different gut microbiomes and gut metabolites in patients with PD compared with unaffected controls. Currently, although dopaminergic treatments and deep brain stimulation can provide some symptomatic benefits for motor symptoms of the disease, their long-term use is problematic. A mechanism-targeted therapy to halt the neurodegeneration is lacking. The recently observed gut microenvironmental changes in the early stages of the disease play a vital role in the PD pathogenesis. Patients whose disease begins in the gut may benefit most from interventions that target the gut microenvironments. In this review, we will summarize the current studies demonstrating multifunctional roles of gut microbiota in the gut-brain axis of PD and the currently available evidence for targeting the gut microbiota as a novel approach to potential disease-modifying therapy in PD.
Collapse
|
166
|
Wu S, Yang S, Wang M, Song N, Feng J, Wu H, Yang A, Liu C, Li Y, Guo F, Qiao J. Quorum sensing-based interactions among drugs, microbes, and diseases. SCIENCE CHINA. LIFE SCIENCES 2023; 66:137-151. [PMID: 35933489 DOI: 10.1007/s11427-021-2121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
Many diseases and health conditions are closely related to various microbes, which participate in complex interactions with diverse drugs; nonetheless, the detailed targets of such drugs remain to be elucidated. Many existing studies have reported causal associations among drugs, gut microbes, or diseases, calling for a workflow to reveal their intricate interactions. In this study, we developed a systematic workflow comprising three modules to construct a Quorum Sensing-based Drug-Microbe-Disease (QS-DMD) database ( http://www.qsdmd.lbci.net/ ), which includes diverse interactions for more than 8,000 drugs, 163 microbes, and 42 common diseases. Potential interactions between microbes and more than 8,000 drugs have been systematically studied by targeting microbial QS receptors combined with a docking-based virtual screening technique and in vitro experimental validations. Furthermore, we have constructed a QS-based drug-receptor interaction network, proposed a systematic framework including various drug-receptor-microbe-disease connections, and mapped a paradigmatic circular interaction network based on the QS-DMD, which can provide the underlying QS-based mechanisms for the reported causal associations. The QS-DMD will promote an understanding of personalized medicine and the development of potential therapies for diverse diseases. This work contributes to a paradigm for the construction of a molecule-receptor-microbe-disease interaction network for human health that may form one of the key knowledge maps of precision medicine in the future.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shujuan Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Manman Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- Institute of Shaoxing, Tianjin University, Shaoxing, 312300, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China. .,Institute of Shaoxing, Tianjin University, Shaoxing, 312300, China.
| |
Collapse
|
167
|
Braccia DJ, Minabou Ndjite G, Weiss A, Levy S, Abeysinghe S, Jiang X, Pop M, Hall B. Gut Microbiome-Wide Search for Bacterial Azoreductases Reveals Potentially Uncharacterized Azoreductases Encoded in the Human Gut Microbiome. Drug Metab Dispos 2023; 51:142-153. [PMID: 36116790 PMCID: PMC11022935 DOI: 10.1124/dmd.122.000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
The human gut is home to trillions of microorganisms that are responsible for the modification of many orally administered drugs, leading to a wide range of therapeutic outcomes. Prodrugs bearing an azo bond are designed to treat inflammatory bowel disease and colorectal cancer via microbial azo reduction, allowing for topical application of therapeutic moieties to the diseased tissue in the intestines. Despite the inextricable link between microbial azo reduction and the efficacy of azo prodrugs, the prevalence, abundance, and distribution of azoreductases have not been systematically examined across the gut microbiome. Here, we curated and clustered amino acid sequences of experimentally confirmed bacterial azoreductases and conducted a hidden Markov model-driven homolog search for these enzymes across 4644 genome sequences present in the representative Unified Human Gastrointestinal Genomes collection. We identified 1958 putative azo-reducing species, corroborating previous findings that azo reduction appears to be a ubiquitous function of the gut microbiome. However, through a systematic comparison of predicted and confirmed azo-reducing strains, we hypothesize the presence of uncharacterized azoreductases in 25 prominent strains of the human gut microbiome. Finally, we confirmed the azo reduction of Acid Orange 7 by multiple strains of Fusobacterium nucleatum, Bacteroides fragilis, and Clostridium clostridioforme Together, these results suggest the presence and activity of many uncharacterized azoreductases in the human gut microbiome and motivate future studies aimed at characterizing azoreductase genes in prominent members of the human gut microbiome. SIGNIFICANCE STATEMENT: This work systematically examined the prevalence, abundance, and distribution of azoreductases across the healthy and inflammatory bowel disease human gut microbiome, revealing potentially uncharacterized azoreductase genes. It also confirmed the reduction of Acid Orange 7 by strains of Fusobacterium nucleatum, Bacteroides fragilis, and Clostridium clostridioforme.
Collapse
Affiliation(s)
- Domenick J Braccia
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Glory Minabou Ndjite
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Ashley Weiss
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Sophia Levy
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Stephenie Abeysinghe
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Xiaofang Jiang
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Brantley Hall
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| |
Collapse
|
168
|
Wang L, Gou X, Ding Y, Liu J, Wang Y, Wang Y, Zhang J, Du L, Peng W, Fan G. The interplay between herbal medicines and gut microbiota in metabolic diseases. Front Pharmacol 2023; 14:1105405. [PMID: 37033634 PMCID: PMC10079915 DOI: 10.3389/fphar.2023.1105405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Globally, metabolic diseases are becoming a major public health problem. Herbal medicines are medicinal materials or preparations derived from plants and are widely used in the treatment of metabolic diseases due to their good curative effects and minimal side effects. Recent studies have shown that gut microbiota plays an important role in the herbal treatment of metabolic diseases. However, the mechanisms involved are still not fully understood. This review provides a timely and comprehensive summary of the interactions between herbal medicines and gut microbiota in metabolic diseases. Mechanisms by which herbal medicines treat metabolic diseases include their effects on the gut microbial composition, the intestinal barrier, inflammation, and microbial metabolites (e.g., short-chain fatty acids and bile acids). Herbal medicines can increase the abundance of beneficial bacteria (e.g., Akkermansia and Blautia), reduce the abundance of harmful bacteria (e.g., Escherichia-Shigella), protect the intestinal barrier, and alleviate inflammation. In turn, gut microbes can metabolize herbal compounds and thereby increase their bioavailability and bioactivity, in addition to reducing their toxicity. These findings suggest that the therapeutic effects of herbal medicines on metabolic diseases are closely related to their interactions with the gut microbiota. In addition, some methods, and techniques for studying the bidirectional interaction between herbal medicines and gut microbiota are proposed and discussed. The information presented in this review will help with a better understanding of the therapeutic mechanisms of herbal medicines and the key role of gut microbiota.
Collapse
Affiliation(s)
- Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoling Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingye Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaqian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leilei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Gang Fan, ; Wei Peng, ; Leilei Du,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Gang Fan, ; Wei Peng, ; Leilei Du,
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Gang Fan, ; Wei Peng, ; Leilei Du,
| |
Collapse
|
169
|
Conti G, D’Amico F, Fabbrini M, Brigidi P, Barone M, Turroni S. Pharmacomicrobiomics in Anticancer Therapies: Why the Gut Microbiota Should Be Pointed Out. Genes (Basel) 2022; 14:55. [PMID: 36672796 PMCID: PMC9859289 DOI: 10.3390/genes14010055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota-drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies.
Collapse
Affiliation(s)
- Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
170
|
Li J, Liang J, Zeng M, Sun K, Luo Y, Zheng H, Li F, Yuan W, Zhou H, Liu J, Sun H. Oxymatrine ameliorates white matter injury by modulating gut microbiota after intracerebral hemorrhage in mice. CNS Neurosci Ther 2022. [PMID: 36550632 DOI: 10.1111/cns.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION White matter injury (WMI) significantly affects neurobehavioral recovery in intracerebral hemorrhage (ICH) patients. Gut dysbiosis plays an important role in the pathogenesis of neurological disorders. Oxymatrine (OMT) has therapeutic effects on inflammation-mediated diseases. Whether OMT exerts therapeutic effects on WMI after ICH and the role of gut microbiota involved in this process is largely unknown. METHODS Neurological deficits, WMI, gut microbial composition, intestinal barrier function, and systemic inflammation were investigated after ICH. Fecal microbiota transplantation (FMT) was performed to elucidate the role of gut microbiota in the pathogenesis of ICH. RESULTS OMT promoted long-term neurological function recovery and ameliorated WMI in the peri-hematoma region and distal corticospinal tract (CST) region after ICH. ICH induced significant and persistent gut dysbiosis, which was obviously regulated by OMT. In addition, OMT alleviated intestinal barrier dysfunction and systemic inflammation. Correlation analysis revealed that gut microbiota alteration was significantly correlated with inflammation, intestinal barrier permeability, and neurological deficits after ICH. Moreover, OMT-induced gut microbiota alteration could confer protection against neurological deficits and intestinal barrier disruption. CONCLUSIONS Our study demonstrates that OMT ameliorates ICH-induced WMI and neurological deficits by modulating gut microbiota.
Collapse
Affiliation(s)
- Jing Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaijian Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhao Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huaping Zheng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Yuan
- Laboratory Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junshan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and BrainInspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
171
|
TCA and SSRI Antidepressants Exert Selection Pressure for Efflux-Dependent Antibiotic Resistance Mechanisms in Escherichia coli. mBio 2022; 13:e0219122. [PMID: 36374097 PMCID: PMC9765716 DOI: 10.1128/mbio.02191-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial diversity is reduced in the gut microbiota of animals and humans treated with selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs). The mechanisms driving the changes in microbial composition, while largely unknown, is critical to understand considering that the gut microbiota plays important roles in drug metabolism and brain function. Using Escherichia coli, we show that the SSRI fluoxetine and the TCA amitriptyline exert strong selection pressure for enhanced efflux activity of the AcrAB-TolC pump, a member of the resistance-nodulation-cell division (RND) superfamily of transporters. Sequencing spontaneous fluoxetine- and amitriptyline-resistant mutants revealed mutations in marR and lon, negative regulators of AcrAB-TolC expression. In line with the broad specificity of AcrAB-TolC pumps these mutants conferred resistance to several classes of antibiotics. We show that the converse also occurs, as spontaneous chloramphenicol-resistant mutants displayed cross-resistance to SSRIs and TCAs. Chemical-genomic screens identified deletions in marR and lon, confirming the results observed for the spontaneous resistant mutants. In addition, deletions in 35 genes with no known role in drug resistance were identified that conferred cross-resistance to antibiotics and several displayed enhanced efflux activities. These results indicate that combinations of specific antidepressants and antibiotics may have important effects when both are used simultaneously or successively as they can impose selection for common mechanisms of resistance. Our work suggests that selection for enhanced efflux activities is an important factor to consider in understanding the microbial diversity changes associated with antidepressant treatments. IMPORTANCE Antidepressants are prescribed broadly for psychiatric conditions to alter neuronal levels of synaptic neurotransmitters such as serotonin and norepinephrine. Two categories of antidepressants are selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs); both are among the most prescribed drugs in the United States. While it is well-established that antidepressants inhibit reuptake of neurotransmitters there is evidence that they also impact microbial diversity in the gastrointestinal tract. However, the mechanisms and therefore biological and clinical effects remain obscure. We demonstrate antidepressants may influence microbial diversity through strong selection for mutant bacteria with increased AcrAB-TolC activity, an efflux pump that removes antibiotics from cells. Furthermore, we identify a new group of genes that contribute to cross-resistance between antidepressants and antibiotics, several act by regulating efflux activity, underscoring overlapping mechanisms. Overall, this work provides new insights into bacterial responses to antidepressants important for understanding antidepressant treatment effects.
Collapse
|
172
|
Simpson JB, Redinbo MR. Multi-omic analysis of host-microbial interactions central to the gut-brain axis. Mol Omics 2022; 18:896-907. [PMID: 36169030 DOI: 10.1039/d2mo00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gut microbiota impact numerous aspects of human physiology, including the central nervous system (CNS). Emerging work is now focusing on the microbial factors underlying the bi-directional communication network linking host and microbial systems within the gastrointestinal tract to the CNS, the "gut-brain axis". Neurotransmitters are key coordinators of this network, and their dysregulation has been linked to numerous neurological disease states. As the bioavailability of neurotransmitters is modified by gut microbes, it is critical to unravel the influence of the microbiota on neurotransmitters in the context of the gut-brain axis. Here we review foundational studies that defined molecular relationships between the microbiota, neurotransmitters, and the gut-brain axis. We examine links between the gut microbiome, behavior, and neurological diseases, as well as microbial influences on neurotransmitter bioavailability and physiology. Finally, we review multi-omics technologies uniquely applicable to this area, including high-throughput genetics, modern metabolomics, structure-guided metagenomics, targeted proteomics, and chemogenetics. Interdisciplinary studies will continue to drive the discovery of molecular mechanisms linking the gut microbiota to clinical manifestations of neurobiology.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
- Department of Biochemistry & Biophysics, Department of Microbiology & Immunology, and the Integrated Program in Biological & Genome Sciences, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
173
|
Dodd D, Cann I. Tutorial: Microbiome studies in drug metabolism. Clin Transl Sci 2022; 15:2812-2837. [PMID: 36099474 PMCID: PMC9747132 DOI: 10.1111/cts.13416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
The human gastrointestinal tract is home to a dense population of microorganisms whose metabolism impacts human health and physiology. The gut microbiome encodes millions of genes, the products of which endow our bodies with unique biochemical activities. In the context of drug metabolism, microbial biochemistry in the gut influences humans in two major ways: (1) by producing small molecules that modulate expression and activity of human phase I and II pathways; and (2) by directly modifying drugs administered to humans to yield active, inactive, or toxic metabolites. Although the capacity of the microbiome to modulate drug metabolism has long been known, recent studies have explored these interactions on a much broader scale and have revealed an unprecedented scope of microbial drug metabolism. The implication of this work is that we might be able to predict the capacity of an individual's microbiome to metabolize drugs and use this information to avoid toxicity and inform proper dosing. Here, we provide a tutorial of how to study the microbiome in the context of drug metabolism, focusing on in vitro, rodent, and human studies. We then highlight some limitations and opportunities for the field.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA,Department of Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Isaac Cann
- Department of Animal ScienceUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme)University of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Center for East Asian & Pacific StudiesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
174
|
Bhosle A, Wang Y, Franzosa EA, Huttenhower C. Progress and opportunities in microbial community metabolomics. Curr Opin Microbiol 2022; 70:102195. [PMID: 36063685 DOI: 10.1016/j.mib.2022.102195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023]
Abstract
The metabolome lies at the interface of host-microbiome crosstalk. Previous work has established links between chemically diverse microbial metabolites and a myriad of host physiological processes and diseases. Coupled with scalable and cost-effective technologies, metabolomics is thus gaining popularity as a tool for characterization of microbial communities, particularly when combined with metagenomics as a window into microbiome function. A systematic interrogation of microbial community metabolomes can uncover key microbial compounds, metabolic capabilities of the microbiome, and also provide critical mechanistic insights into microbiome-linked host phenotypes. In this review, we discuss methods and accompanying resources that have been developed for these purposes. The accomplishments of these methods demonstrate that metabolomes can be used to functionally characterize microbial communities, and that microbial properties can be used to identify and investigate chemical compounds.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ya Wang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
175
|
The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J Control Release 2022; 352:840-860. [PMID: 36334860 DOI: 10.1016/j.jconrel.2022.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
While there have been rapid advances in developing new and more targeted drugs to treat cancer, much less progress has been made in individualizing dosing. Even though the introduction of immunotherapies such as CAR T-cells and checkpoint inhibitors, as well as personalized therapies that target specific mutations, have transformed clinical treatment of cancers, chemotherapy remains a mainstay in oncology. Chemotherapies are typically dosed on either a body surface area (BSA) or weight basis, which fails to account for pharmacokinetic differences between patients. Drug absorption, distribution, metabolism, and excretion rates can vary between patients, resulting in considerable differences in exposure to the active drugs. These differences result in suboptimal dosing, which can reduce efficacy and increase side-effects. Therapeutic drug monitoring (TDM), genotype guided dosing, and chronomodulation have been developed to address this challenge; however, despite improving clinical outcomes, they are rarely implemented in clinical practice for chemotherapies. Thus, there is a need to develop interventions that allow for individualized drug dosing of chemotherapies, which can help maximize the number of patients that reach the most efficacious level of drug in the blood while mitigating the risks of underdosing or overdosing. In this review, we discuss the history of the development of chemotherapies, their mechanisms of action and how they are dosed. We discuss substantial intraindividual and interindividual variability in chemotherapy pharmacokinetics. We then propose potential engineering solutions that could enable individualized dosing of chemotherapies, such as closed-loop drug delivery systems and bioresponsive biomaterials.
Collapse
|
176
|
Sallam IE, Rolle-Kampczyk U, Schäpe SS, Zaghloul SS, El-Dine RS, Shao P, von Bergen M, Farag MA. Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism. Molecules 2022; 27:7568. [PMID: 36364395 PMCID: PMC9653959 DOI: 10.3390/molecules27217568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Opuntia ficus-indica biological effects are attributed to several bioactive metabolites. However, these actions could be altered in vivo by biotransformation reactions mainly via gut microbiota. This study assessed gut microbiota effect on the biotransformation of O. ficus-indica metabolites both in vitro and ex vivo. Two-time aliquots (0.5 and 24 h) from the in vitro assay were harvested post incubation of O. ficus-indica methanol extract with microbial consortium, while untreated and treated samples with fecal bacterial culture from the ex vivo assay were prepared. Metabolites were analyzed using UHPLC-QTOF-MS, with flavonoid glycosides completely hydrolyzed in vitro at 24 h being converted to two major metabolites, 3-(4-hydroxyphenyl)propanoic acid and phloroglucinol, concurrent with an increase in the gallic acid level. In case of the ex vivo assay, detected flavonoid glycosides in untreated sample were completely absent from treated counterpart with few flavonoid aglycones and 3-(4-hydroxyphenyl)propanoic acid in parallel to an increase in piscidic acid. In both assays, fatty and organic acids were completely hydrolyzed being used as energy units for bacterial growth. Chemometric tools were employed revealing malic and (iso)citric acids as the main discriminating metabolites in vitro showing an increased abundance at 0.5 h, whereas in ex vivo assay, (iso)citric, aconitic and mesaconic acids showed an increase at untreated sample. Piscidic acid was a significant marker for the ex vivo treated sample. DPPH, ORAC and FRAP assays were further employed to determine whether these changes could be associated with changes in antioxidant activity, and all assays showed a decline in antioxidant potential post biotransformation.
Collapse
Affiliation(s)
- Ibrahim E. Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza 12566, Egypt
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Stephanie Serena Schäpe
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Soumaya S. Zaghloul
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza 12566, Egypt
| | - Riham S. El-Dine
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
177
|
Zhou J, Ouyang J, Gao Z, Qin H, Jun W, Shi T. MagMD: database summarizing the Metabolic action of gut Microbiota to Drugs. Comput Struct Biotechnol J 2022; 20:6427-6430. [DOI: 10.1016/j.csbj.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|
178
|
Changes in antibiotic residues and the gut microbiota during ciprofloxacin administration throughout Silkie chicken development. Poult Sci 2022; 102:102267. [PMID: 36442306 PMCID: PMC9709234 DOI: 10.1016/j.psj.2022.102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The use of antibiotics leads to antibiotic residues in livestock and poultry products, adversely affecting human health. Ciprofloxacin (CFX) is a broad-spectrum antibiotic shared between animals and humans that is useful in treatments besides infections. However, changes in the gut microbiota caused by CFX and the possible link with the elimination of CFX residues have not been investigated. Herein, we used the Silkie chicken model to study the changes in the gut microbiota during the entire CFX-metabolic repertoire. We detected CFX residues in different tissues and showed that the elimination time of CFX from different tissues was dissimilar (liver > kidney > chest muscle > skin). Analysis of liver and kidney injury biomarkers and plasma antioxidant indices indicated slight hepatotoxicity and nephrotoxicity in the Silkie chickens. Importantly, the changes in the gut microbial community predominantly occurred early in the metabolic process. Correlation analysis revealed that the particular bacterial microbiota were associated with the pharmacokinetics of CFX in different Silkie chicken tissues (e.g., aerobic bacteria, including Escherichia and Coprococcus, and anaerobic bacteria, including Fusobacterium, Ruminococcus, Bifidobacterium, and Eubacterium). Collectively, certain microbiota may boost antibiotic metabolism and participate in restoring the microbial consortia after CFX is metabolized. Therefore, regulating the core intestinal microbiota may reduce foodborne antibiotics and accelerate the development of drug resistance.
Collapse
|
179
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
180
|
Ivleva EA, Grivennikov SI. Microbiota-driven mechanisms at different stages of cancer development. Neoplasia 2022; 32:100829. [PMID: 35933824 PMCID: PMC9364013 DOI: 10.1016/j.neo.2022.100829] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
A myriad of microbes living together with the host constitutes the microbiota, and the microbiota exerts very diverse functions in the regulation of host physiology. Microbiota regulates cancer initiation, progression, metastasis, and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic functions of microbiota, and mechanisms of how microbes can shape tumor microenvironment and affect cancer cells as well as activation and functionality of immune and stromal cells within the tumor. While some of these mechanisms are distal, often distinct members of microbiota travel with and establish colonization with the tumors in the distant organs. We further briefly describe recent findings regarding microbiota composition in metastasis and highlight important future directions and considerations for the manipulation of microbiota for cancer treatment.
Collapse
Affiliation(s)
- Elena A Ivleva
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
181
|
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, Bradley PH, Lee JV, Melamed J, Malig YNA, Lam KN, Gempis D, Sandy M, Kidder W, Van Blarigan EL, Atreya CE, Venook A, Gerona RR, Goga A, Pollard KS, Turnbaugh PJ. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat Microbiol 2022; 7:1605-1620. [PMID: 36138165 PMCID: PMC9530025 DOI: 10.1038/s41564-022-01226-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Pharmaceuticals have extensive reciprocal interactions with the microbiome, but whether bacterial drug sensitivity and metabolism is driven by pathways conserved in host cells remains unclear. Here we show that anti-cancer fluoropyrimidine drugs inhibit the growth of gut bacterial strains from 6 phyla. In both Escherichia coli and mammalian cells, fluoropyrimidines disrupt pyrimidine metabolism. Proteobacteria and Firmicutes metabolized 5-fluorouracil to its inactive metabolite dihydrofluorouracil, mimicking the major host mechanism for drug clearance. The preTA operon was necessary and sufficient for 5-fluorouracil inactivation by E. coli, exhibited high catalytic efficiency for the reductive reaction, decreased the bioavailability and efficacy of oral fluoropyrimidine treatment in mice and was prevalent in the gut microbiomes of colorectal cancer patients. The conservation of both the targets and enzymes for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug efficacy and side-effect profiles.
Collapse
Affiliation(s)
- Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Than S Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Ben G H Guthrie
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick H Bradley
- Gladstone Institutes, San Francisco, CA, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Joyce V Lee
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Melamed
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Ysabella Noelle Amora Malig
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Kathy N Lam
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Daryll Gempis
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Moriah Sandy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wesley Kidder
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Erin L Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Chloe E Atreya
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Alan Venook
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
182
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
183
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
184
|
Robinson CM, Short NE, Riglar DT. Achieving spatially precise diagnosis and therapy in the mammalian gut using synthetic microbial gene circuits. Front Bioeng Biotechnol 2022; 10:959441. [PMID: 36118573 PMCID: PMC9478464 DOI: 10.3389/fbioe.2022.959441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian gut and its microbiome form a temporally dynamic and spatially heterogeneous environment. The inaccessibility of the gut and the spatially restricted nature of many gut diseases translate into difficulties in diagnosis and therapy for which novel tools are needed. Engineered bacterial whole-cell biosensors and therapeutics have shown early promise at addressing these challenges. Natural and engineered sensing systems can be repurposed in synthetic genetic circuits to detect spatially specific biomarkers during health and disease. Heat, light, and magnetic signals can also activate gene circuit function with externally directed spatial precision. The resulting engineered bacteria can report on conditions in situ within the complex gut environment or produce biotherapeutics that specifically target host or microbiome activity. Here, we review the current approaches to engineering spatial precision for in vivo bacterial diagnostics and therapeutics using synthetic circuits, and the challenges and opportunities this technology presents.
Collapse
Affiliation(s)
| | | | - David T. Riglar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
185
|
Schlesinger N, Brunetti L, Androulakis I. Does seasonality of the microbiota contribute to the seasonality of acute gout flare? Clin Exp Rheumatol 2022; 40:1793-1800. [PMID: 35383564 PMCID: PMC9869072 DOI: 10.55563/clinexprheumatol/hdtge7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 01/26/2023]
Abstract
Gout, the most common inflammatory arthritis worldwide, is an auto-inflammatory metabolic disease that leads to monosodium urate crystal deposition. Hyperuricaemia is a significant risk factor for the development of gout; however, hyperuricaemia alone is not sufficient to induce gout.Gout flares have circadian rhythms. Gout flares vary during the day and have strong seasonality, with flares being more common in the spring. The reasons for the predominance of flares in the spring are unclear since serum urate (SU) levels show seasonal variation; however, SU levels are highest in the summer.Immune function varies significantly throughout the year, with enhanced immune responses increasing during the winter. In addition, chronic disruption of circadian rhythms is associated with metabolic syndrome and diseases driven by metabolism. The most telling example relates to Xanthine oxidase (XOD/XDH). The analysis of XOD/XDH established its circadian regulation and demonstrated that inhibition of the activity of XOD is characterised by distinct, crossregulating diurnal/seasonal patterns of activity.The gastrointestinal microbiota of gout patients is highly distinct from healthy individuals. In a small series of gout patients, Bacteroides caccae and Bacteroides xylanisolvens were found to be enriched. Bacteroidales levels were highest during the spring and summer, and loading values were highest in the spring.Our review discusses gout's circadian rhythm and seasonality, possible influences of the microbiome on gout due to our new knowledge that Bacteroidales levels were highest during spring when gout is most common, and potential opportunities for treatment based on our current understanding of this interaction.
Collapse
Affiliation(s)
- N. Schlesinger
- Division of Rheumatology and Gout Center, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - L. Brunetti
- Ernest Mario School of Pharmacy, Piscataway, NJ
| | - I.P. Androulakis
- Biomedical Engineering Department, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
186
|
Effects of microbiota on anticancer drugs: Current knowledge and potential applications. EBioMedicine 2022; 83:104197. [PMID: 35933808 PMCID: PMC9358415 DOI: 10.1016/j.ebiom.2022.104197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last decade, mounting evidence has revealed the key roles of gut microbiota in modulating the efficacy and toxicity of anticancer drugs, via mechanisms such as immunomodulation and microbial enzymatic degradation. As such, human microbiota presents as an exciting prospect for developing biomarkers for predicting treatment outcomes and interventional approaches for improving therapeutic effects. In this review, we analyze the current knowledge of the interplays among gut microorganisms, host responses and anticancer therapies (including cytotoxic chemotherapy and targeted therapy), with an emphasis on the immunomodulation function of microbiota which facilitates the efficacy of immune checkpoint inhibitors. Moreover, we propose several microbiota-modulating strategies including fecal microbiota transplantation and probiotics, which can be pursued to optimize the use and development of anticancer treatments. We anticipate that future clinical and preclinical studies will highlight the significance of human microbiome as a promising target towards precision medicine in cancer therapies. Funding National Key Research and Development Program of China (2020YFA0907800), Shenzhen Science and Technology Innovation Program (KQTD20200820145822023) and National Natural Science Foundation of China (31900056 and 32000096).
Collapse
|
187
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
188
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
189
|
Lee JE, Kim KS, Koh H, Lee DW, Kang NJ. Diet-Induced Host-Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Curr Dev Nutr 2022; 6:nzac110. [PMID: 36060223 PMCID: PMC9429970 DOI: 10.1093/cdn/nzac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease. Environmental sanitization, modern lifestyles, advanced medicines, ethnic origins, host genetics and immune systems, mucosal barrier function, and the gut microbiota have been delineated to explain how they cause mucosal inflammation. However, the pathogenesis of IBD and its therapeutic targets remain elusive. Recent studies have highlighted the importance of the human gut microbiota in health and disease, suggesting that the pathogenesis of IBD is highly associated with imbalances of the gut microbiota or alterations of epithelial barrier function in the gastrointestinal (GI) tract. Moreover, diet-induced alterations of the gut microbiota in the GI tract modulate immune responses and perturb metabolic homeostasis. This review summarizes recent findings on IBD and its association with diet-induced changes in the gut microbiota; furthermore, it discusses how diets can modulate host gut microbes and immune systems, potentiating the impact of personalized diets on therapeutic targets for IBD.
Collapse
Affiliation(s)
- Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
190
|
Yang T, Mei X, Tackie-Yarboi E, Akere MT, Kyoung J, Mell B, Yeo JY, Cheng X, Zubcevic J, Richards EM, Pepine CJ, Raizada MK, Schiefer IT, Joe B. Identification of a Gut Commensal That Compromises the Blood Pressure-Lowering Effect of Ester Angiotensin-Converting Enzyme Inhibitors. Hypertension 2022; 79:1591-1601. [PMID: 35538603 PMCID: PMC9278702 DOI: 10.1161/hypertensionaha.121.18711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Despite the availability of various classes of antihypertensive medications, a large proportion of hypertensive individuals remain resistant to treatments. The reason for what contributes to low efficacy of antihypertensive medications in these individuals is elusive. The knowledge that gut microbiota is involved in pathophysiology of hypertension and drug metabolism led us to hypothesize that gut microbiota catabolize antihypertensive medications and compromised their blood pressure (BP)-lowering effects. Methods and Results: To test this hypothesis, we examined the BP responses to a representative ACE (angiotensin-converting enzyme) inhibitor quinapril in spontaneously hypertensive rats (SHR) with or without antibiotics. BP-lowering effect of quinapril was more pronounced in the SHR+antibiotics, indicating that gut microbiota of SHR lowered the antihypertensive effect of quinapril. Depletion of gut microbiota in the SHR+antibiotics was associated with decreased gut microbial catabolism of quinapril as well as significant reduction in the bacterial genus Coprococcus. C. comes, an anaerobic species of Coprococcus, harbored esterase activity and catabolized the ester quinapril in vitro. Co-administration of quinapril with C. comes reduced the antihypertensive effect of quinapril in the SHR. Importantly, C. comes selectively reduced the antihypertensive effects of ester ramipril but not nonester lisinopril. Conclusions: Our study revealed a previously unrecognized mechanism by which human commensal C. comes catabolizes ester ACE inhibitors in the gut and lowers its antihypertensive effect.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Xue Mei
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Ethel Tackie-Yarboi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH.,Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH.,Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH
| | - Jun Kyoung
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Blair Mell
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Ji-Youn Yeo
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Xi Cheng
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Elaine M Richards
- Department of Physiology and Functional Genomics (E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine (C.J.P.), University of Florida College of Medicine, Gainesville
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics (E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH.,Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH
| | - Bina Joe
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| |
Collapse
|
191
|
Abstract
The interaction between the metabolic activities of the intestinal microbiome and its host forms an important part of health. The basis of this interaction is in part mediated by the release of microbially-derived metabolites that enter the circulation. These products of microbial metabolism thereby interface with the immune, metabolic, or nervous systems of the host to influence physiology. Here, we review the interactions between the metabolic activities of the microbiome and the systemic metabolism of the host. The concept that the endocrine system includes more than just the eukaryotic host component enables the rational design of exogenous interventions that shape human metabolism. An improved mechanistic understanding of the metabolic microbiome-host interaction may therefore pioneer actionable microbiota-based diagnostics or therapeutics that allow the control of host systemic metabolism via the microbiome.
Collapse
Affiliation(s)
- Timothy O Cox
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirti Nath
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
192
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
193
|
Jin Z, Ng A, Maurice CF, Juncker D. The Mini Colon Model: a benchtop multi-bioreactor system to investigate the gut microbiome. Gut Microbes 2022; 14:2096993. [PMID: 35844189 PMCID: PMC9291644 DOI: 10.1080/19490976.2022.2096993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vitro fermentation systems allow for the investigation of gut microbial communities with precise control of various physiological parameters while decoupling confounding factors from the human host. Current systems, such as the SHIME and Robogut, are large in footprint, lack multiplexing, and have low experimental throughput. Alternatives which address these shortcomings, such as the Mini Bioreactor Array system, are often reliant on expensive specialized equipment, which hinders wide replication across labs. Here, we present the Mini Colon Model (MiCoMo), a low-cost, benchtop multi-bioreactor system that simulates the human colon environment with physiologically relevant conditions. The device consists of triplicate bioreactors working independently of an anaerobic chamber and equipped with automated pH, temperature, and fluidic control. We conducted 14-d experiments and found that MiCoMo was able to support a stable complex microbiota community with a Shannon Index of 3.17 ± 0.65, from individual fecal samples after only 3-5 d of inoculation. MiCoMo also retained inter-sample microbial differences by developing closely related communities unique to each donor, while maintaining both minimal variations between replicate reactors (average Bray-Curtis similarity 0.72 ± 0.13) andday-to-day variations (average Bray-Curtis similarity 0.81±0.10) after this short stabilization period. Together, these results establish MiCoMo as an accessible system for studying gut microbial communities with high throughput and multiplexing capabilities.
Collapse
Affiliation(s)
- Zijie Jin
- Department of Biomedical Engineering, McGill University, Montreal, QuebecCanada,McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Andy Ng
- Department of Biomedical Engineering, McGill University, Montreal, QuebecCanada,McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology and Immunology, McGill University, Montreal, QCCanada,CONTACT Corinne F. Maurice Life Sciences Complex Room 332, Bellini Building 3649 Promenade Sir William Osler Montreal, QC, H3G 0B1, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QuebecCanada,McGill Genome Centre, McGill University, Montreal, QC, Canada,David JunckerMcgill Genome Center, 740 Dr. Penfield Ave, Room 6500Montreal, QC, H3A 0G1, Canada
| |
Collapse
|
194
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
195
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
196
|
Lopez LR, Ahn JH, Alves T, Arthur JC. Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:934619. [PMID: 35959366 PMCID: PMC9362432 DOI: 10.3389/fcimb.2022.934619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a significant global health problem that involves chronic intestinal inflammation and can involve severe comorbidities, including intestinal fibrosis and inflammation-associated colorectal cancer (CRC). Disease-associated alterations to the intestinal microbiota often include fecal enrichment of Enterobacteriaceae, which are strongly implicated in IBD development. This dysbiosis of intestinal flora accompanies changes in microbial metabolites, shaping host:microbe interactions and disease risk. While there have been numerous studies linking specific bacterial taxa with IBD development, our understanding of microbial function in the context of IBD is limited. Several classes of microbial metabolites have been directly implicated in IBD disease progression, including bacterial siderophores and genotoxins. Yet, our microbiota still harbors thousands of uncharacterized microbial products. In-depth discovery and characterization of disease-associated microbial metabolites is necessary to target these products in IBD treatment strategies. Towards improving our understanding of microbiota metabolites in IBD, it is important to recognize how host relevant factors influence microbiota function. For example, changes in host inflammation status, metal availability, interbacterial community structure, and xenobiotics all play an important role in shaping gut microbial ecology. In this minireview, we outline how each of these factors influences gut microbial function, with a specific focus on IBD-associated Enterobacteriaceae metabolites. Importantly, we discuss how altering the intestinal microenvironment could improve the treatment of intestinal inflammation and associated disorders, like intestinal fibrosis and CRC.
Collapse
Affiliation(s)
- Lacey R. Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Janelle C. Arthur,
| |
Collapse
|
197
|
Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, Goas A, Gross G, Kleerebezem M, Lane J, Maukonen J, Penna ALB, Pot B, Valdes AM, Walton G, Weiss A, Zanzer YC, Venlet NV, Miani M. Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Adv Nutr 2022; 13:1450-1461. [PMID: 35776947 PMCID: PMC9526856 DOI: 10.1093/advances/nmac075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023] Open
Abstract
Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.
Collapse
Affiliation(s)
| | - Thomas Gurry
- Pharmaceutical Biochemistry group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (PSI-WS), University of Geneva/University of Lausanne, Geneva, Switzerland
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Veerle Dam
- Sensus BV (Royal Cosun), Roosendaal, The Netherlands
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Almudena Goas
- Department of Food, Nutrition, and Exercise Sciences, University of Surrey, Guildford, United Kingdom
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt| Mead Johnson Nutrition Institute, Nijmegen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jonathan Lane
- Health and Happiness Group, H&H Research, Cork, Ireland
| | | | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University, São José do Rio Preto, Brazil
| | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | - Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Adrienne Weiss
- Yili Innovation Center Europe, Wageningen, The Netherlands
| | | | - Naomi V Venlet
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| |
Collapse
|
198
|
Ma Y, Liu X, Wang J. Small molecules in the big picture of gut microbiome-host cross-talk. EBioMedicine 2022; 81:104085. [PMID: 35636316 PMCID: PMC9156878 DOI: 10.1016/j.ebiom.2022.104085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the gut microbiome and related diseases is rapidly growing with the development of sequencing technologies. An increasing number of studies offer new perspectives on disease development or treatment. Among these, the mechanisms of gut microbial metabolite-mediated effects merit better understanding. In this review, we first summarize the shifts in gut microbial metabolites within complex diseases, in which metabolites have correlational and occasionally causal effects on diseases and discuss the reported mechanisms. We further investigate the interactions between gut microbes and drugs, providing insights for precision medication as well as limitations of current research. Finally, we provide new research directions and research strategies for the development of drugs from gut microbial metabolites. FUNDING STATEMENT: None.
Collapse
Affiliation(s)
- Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
199
|
Lindell AE, Zimmermann-Kogadeeva M, Patil KR. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 2022; 20:431-443. [PMID: 35102308 PMCID: PMC7615390 DOI: 10.1038/s41579-022-00681-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota contributes to diverse aspects of host physiology, ranging from immunomodulation to drug metabolism. Changes in the gut microbiota composition are associated with various diseases as well as with the response to medications. It is therefore important to understand how different lifestyle and environmental factors shape gut microbiota composition. Beyond the commonly considered factor of diet, small-molecule drugs have recently been identified as major effectors of the microbiota composition. Other xenobiotics, such as environmental or chemical pollutants, can also impact gut bacterial communities. Here, we review the mechanisms of interactions between gut bacteria and antibiotics, host-targeted drugs, natural food compounds, food additives and environmental pollutants. While xenobiotics can impact bacterial growth and metabolism, bacteria in turn can bioaccumulate or chemically modify these compounds. These reciprocal interactions can manifest in complex xenobiotic-microbiota-host relationships. Our Review highlights the need to study mechanisms underlying interactions with pollutants and food additives towards deciphering the dynamics and evolution of the gut microbiota.
Collapse
Affiliation(s)
- Anna E Lindell
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Kiran R Patil
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
200
|
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18:476-495. [PMID: 35750883 DOI: 10.1038/s41582-022-00681-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome-gut-brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut-brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|