151
|
Laschke MW, Karschnia P, Scheuer C, Heß A, Metzger W, Menger MD. Effects of cryopreservation on adipose tissue‐derived microvascular fragments. J Tissue Eng Regen Med 2017; 12:1020-1030. [DOI: 10.1002/term.2591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/04/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Philipp Karschnia
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Alexander Heß
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand, and Reconstructive SurgerySaarland University Homburg/Saar Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| |
Collapse
|
152
|
Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue. Animal 2017; 12:1435-1441. [PMID: 29143709 DOI: 10.1017/s1751731117002981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal's response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.
Collapse
|
153
|
Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res 2017; 27:1309-1326. [PMID: 29039412 PMCID: PMC5674160 DOI: 10.1038/cr.2017.126] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.
Collapse
|
154
|
Frank AP, Palmer BF, Clegg DJ. Do estrogens enhance activation of brown and beiging of adipose tissues? Physiol Behav 2017; 187:24-31. [PMID: 28988965 DOI: 10.1016/j.physbeh.2017.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023]
Abstract
Obesity and its associated co-morbidities are worldwide public health concerns. Obesity is characterized by excessive adipose tissue accumulation; however, it is important to recognize that human and rodent adipose tissues are made up of several distinct adipose tissue sub-types. White adipose tissue (WAT) is considered the prototypical fat cell, due to its capacity and capability to store large amounts of lipid. In contrast, brown adipose tissue (BAT) oxidizes substrates to generate heat. BAT contains more mitochondria than WAT and express uncoupling protein-1 (UCP1), which mediates BAT thermogenesis. A third sub-type of adipose tissue, Brown-in-white (BRITE)/beige adipocytes arise from WAT upon adrenergic stimulation and resembles BAT functionally. The energy burning feature of BAT/beige cells, combined with evidence of an inverse-correlation between BAT/beige adipose tissue and obesity have given rise to the hypothesis that obesity may be linked to BAT/beige 'malfunction'. Females have more BAT and perhaps an enhanced capacity to beige their adipose tissue when compared to males. Multiple signal pathways are capable of activating BAT thermogenesis and beiging of WAT; here, we discuss the potential role of estrogens in enhancing and mediating these factors to enhance adipose tissue thermogenesis.
Collapse
Affiliation(s)
- Aaron P Frank
- Biomedical Research Division, Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Deborah J Clegg
- Biomedical Research Division, Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
155
|
Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners? Biosci Rep 2017; 37:BSR20171087. [PMID: 28831023 PMCID: PMC5617911 DOI: 10.1042/bsr20171087] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022] Open
Abstract
There are two well-described thermogenic sites; brown adipose tissue (BAT) and skeletal muscle, which utilize distinct mechanisms of heat production. In BAT, mitochondrial metabolism is the molecular basis of heat generation, while it serves only a secondary role in supplying energy for thermogenesis in muscle. Here, we wanted to document changes in mitochondrial ultrastructure in these two tissue types based upon adaptation to mild (16°C) and severe (4°C) cold in mice. When reared at thermoneutrality (29°C), mitochondria in both tissues were loosely packed with irregular cristae. Interestingly, adaptation to even mild cold initiated ultrastructural remodeling of mitochondria including acquisition of more elaborate cristae structure in both thermogenic sites. The shape of mitochondria in the BAT remained mostly circular, whereas the intermyofibrilar mitochondria in the skeletal muscle became more elongated and tubular. The most dramatic remodeling of mitochondrial architecture was observed upon adaptation to severe cold. In addition, we report cold-induced alteration in levels of humoral factors: fibroblast growth factor 21 (FGF21), IL1α, peptide YY (PYY), tumor necrosis factor α (TNFα), and interleukin 6 (IL6) were all induced whereas both insulin and leptin were down-regulated. In summary, adaptation to cold leads to enhanced cristae formation in mitochondria in skeletal muscle as well as the BAT. Further, the present study indicates that circulating cytokines might play an important role in the synergistic recruitment of the thermogenic program including cross-talk between muscle and BAT.
Collapse
|
156
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
157
|
Adipose angiotensin II type 1 receptor-associated protein ameliorates metabolic disorders via promoting adipose tissue adipogenesis and browning. Eur J Cell Biol 2017; 96:567-578. [DOI: 10.1016/j.ejcb.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/24/2022] Open
|
158
|
Bal NC, Singh S, Reis FCG, Maurya SK, Pani S, Rowland LA, Periasamy M. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 2017; 292:16616-16625. [PMID: 28794154 DOI: 10.1074/jbc.m117.790451] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Thermogenesis is an important homeostatic mechanism essential for survival and normal physiological functions in mammals. Both brown adipose tissue (BAT) (i.e. uncoupling protein 1 (UCP1)-based) and skeletal muscle (i.e. sarcolipin (SLN)-based) thermogenesis processes play important roles in temperature homeostasis, but their relative contributions differ from small to large mammals. In this study, we investigated the functional interplay between skeletal muscle- and BAT-based thermogenesis under mild versus severe cold adaptation by employing UCP1-/- and SLN-/- mice. Interestingly, adaptation of SLN-/- mice to mild cold conditions (16 °C) significantly increased UCP1 expression, suggesting increased reliance on BAT-based thermogenesis. This was also evident from structural alterations in BAT morphology, including mitochondrial architecture, increased expression of electron transport chain proteins, and depletion of fat droplets. Similarly, UCP1-/- mice adapted to mild cold up-regulated muscle-based thermogenesis, indicated by increases in muscle succinate dehydrogenase activity, SLN expression, mitochondrial content, and neovascularization, compared with WT mice. These results further confirm that SLN-based thermogenesis is a key player in muscle non-shivering thermogenesis (NST) and can compensate for loss of BAT activity. We also present evidence that the increased reliance on BAT-based NST depends on increased autonomic input, as indicated by abundant levels of tyrosine hydroxylase and neuropeptide Y. Our findings demonstrate that both BAT and muscle-based NST are equally recruited during mild and severe cold adaptation and that loss of heat production from one thermogenic pathway leads to increased recruitment of the other, indicating a functional interplay between these two thermogenic processes.
Collapse
Affiliation(s)
- Naresh C Bal
- From the School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India, .,the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and.,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Sushant Singh
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and.,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Felipe C G Reis
- the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Santosh K Maurya
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and.,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Sunil Pani
- From the School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Leslie A Rowland
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and
| | - Muthu Periasamy
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and .,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|
159
|
Scheele C, Nielsen S. Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biol 2017; 12:770-775. [PMID: 28431377 PMCID: PMC5397125 DOI: 10.1016/j.redox.2017.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/02/2022] Open
Abstract
Activation of brown adipose tissue (BAT) in adult humans increase glucose and fatty acid clearance as well as resting metabolic rate, whereas a prolonged elevation of BAT activity improves insulin sensitivity. However, substantial reductions in body weight following BAT activation has not yet been shown in humans. This observation raise the possibility for feedback mechanisms in adult humans in terms of a brown fat-brain crosstalk, possibly mediated by batokines, factors produced by and secreted from brown fat. Batokines also seems to be involved in BAT recruitment by stimulating proliferation and differentiation of brown fat progenitors. Increasing human BAT capacity could thus include inducing brown fat biogenesis as well as identifying novel batokines. Another attractive approach would be to induce a brown fat phenotype, the so-called brite or beige fat, within the white fat depots. In adult humans, white fat tissue transformation into beige has been observed in patients with pheochromocytoma, a norepinephrine-producing tumor. Interestingly, human beige fat is predominantly induced in regions that were BAT during early childhood, possibly reflecting that a presence of human beige progenitors is depot specific and originating from BAT. In conclusion, to utilize the anti-obesity potential of human BAT focus should be directed towards identifying novel regulators of brown and beige fat progenitor cells, as well as feedback mechanisms of BAT activation. This would allow for identification of novel anti-obesity targets.
Collapse
Affiliation(s)
- Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark.
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark
| |
Collapse
|
160
|
Palmer BF, Clegg DJ. Non-shivering thermogenesis as a mechanism to facilitate sustainable weight loss. Obes Rev 2017; 18:819-831. [PMID: 28547916 DOI: 10.1111/obr.12563] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023]
Abstract
Currently, there is a significant percentage of the population who are or will be classified as obese, necessitating novel strategies to facilitate sustainable weight loss. Reductions in basal metabolic rate occur in the face of weight loss and pose formidable barriers to individuals attempting to sustain meaningful weight reductions. Here, we discuss the mechanisms by which non-shivering thermogenesis may provide insight into metabolic pathways that can become druggable targets to facilitate sustainable weight loss. Specifically, we highlight the fact that non-shivering thermogenesis results in activation and expansion of brown and beige adipose tissues as well as activates pathways in skeletal muscle which increase metabolic flux and activity of muscle fibres through futile calcium cycling across the endoplasmic reticulum all facilitating an increase in metabolism. Finally, we highlight the fact there are sexual dimorphisms with respect to these metabolic processes in keeping with the National Institutes of Health mandate of treating sex as a biologic variable.
Collapse
Affiliation(s)
- B F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - D J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
161
|
Hu J, Christian M. Hormonal factors in the control of the browning of white adipose tissue. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0017. [PMID: 28731853 DOI: 10.1515/hmbci-2017-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
Adipose tissue has been historically classified into anabolic white adipose tissue (WAT) and catabolic brown adipose tissue (BAT). Recent studies have revealed the plasticity of WAT, where white adipocytes can be induced into 'brown-like' heat-producing adipocytes (BRITE or beige adipocytes). Recruiting and activating BRITE adipocytes in WAT (so-called 'browning') is believed to provide new avenues for the treatment of obesity-related diseases. A number of hormonal factors have been found to regulate BRITE adipose development and activity through autocrine, paracrine and systemic mechanisms. In this mini-review we will discuss the impact of these factors on the browning process, especially those hormonal factors identified with direct effects on white adipocytes.
Collapse
Affiliation(s)
- Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
| | - Mark Christian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| |
Collapse
|
162
|
Abstract
Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after β-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels. HIF-1α accumulation was dependent on uncoupling protein 1 and generation of mitochondrial reactive oxygen species. Expression of key glycolytic enzymes was reduced after knockdown of HIF-1α in mature brown adipocytes. Glucose consumption, lactate export and glycolytic capacity were reduced in brown adipocytes depleted of Hif-1α. Finally, we observed a decreased β-adrenergically induced oxygen consumption in Hif-1α knockdown adipocytes cultured in medium with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes.
Collapse
|
163
|
Ferreira R, Nogueira-Ferreira R, Vitorino R, Santos LL, Moreira-Gonçalves D. The impact of exercise training on adipose tissue remodelling in cancer cachexia. Porto Biomed J 2017; 2:333-339. [PMID: 32258790 DOI: 10.1016/j.pbj.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/22/2017] [Indexed: 01/10/2023] Open
Abstract
Cachexia affects the majority of patients with advanced cancer and no effective treatment is currently available to address this paraneoplastic syndrome. It is characterized by a reduction in body weight due to the loss of white adipose tissue (WAT) and skeletal muscle. The loss of WAT seems to occur at an earlier time point than skeletal muscle proteolysis, with recent evidence suggesting that the browning of WAT may be a major contributor to this process. Several factors seem to modulate WAT browning including pro-inflammatory cytokines; however, the underlying molecular pathways are poorly characterized. Exercise training is currently recommended for the clinical management of low-grade inflammatory conditions as cancer cachexia. While it seems to counterbalance the impairment of skeletal muscle function and attenuate the loss of muscle mass, little is known regarding its effects in adipose tissue. The browning of WAT is one of the mechanisms through which exercise improves body composition in overweight/obese individuals. While this effect is obviously advantageous in this clinical setting, it remains to be clarified if exercise training could protect or exacerbate the cachexia-related catabolic phenotype occurring in adipose tissue of cancer patients. Herein, we overview the molecular players involved in adipose tissue remodelling in cancer cachexia and in exercise training and hypothesize on the mechanisms modulated by the synergetic effect of these conditions. A better understanding of how physical activity regulates body composition will certainly help in the development of successful multimodal therapeutic strategies for the clinical management of cancer cachexia.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, IPO-Porto, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, IPO-Porto, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| |
Collapse
|
164
|
Kwan HY, Wu J, Su T, Chao XJ, Liu B, Fu X, Chan CL, Lau RHY, Tse AKW, Han QB, Fong WF, Yu ZL. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep 2017; 7:2447. [PMID: 28550279 PMCID: PMC5446408 DOI: 10.1038/s41598-017-02263-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
Browning is the process of increasing the number of brite cells, which helps to increase energy expenditure and reduce obesity. Consumption of natural and non-toxic herbal extracts that possess the browning effect is an attractive anti-obesity strategy. In this study, we examined the browning effect of cinnamon extract. We found that cinnamon extract (CE) induced typical brown adipocyte multiocular phenotype in 3T3-L1 adipocytes. The treatment also increased brown adipocytes markers and reduced white adipocytes markers in the 3T3-L1 adipocytes. In ex vivo studies, we found that CE increased brown adipocytes markers in the subcutaneous adipocytes isolated from db/db mice and diet-induced obesity (DIO) mice. However, CE did not significantly affect UCP1 expression in the adipocytes isolated from perinephric adipose tissue and epididymal adipose tissue. β3-adernergic receptor (β3-AR) antagonist reduced the CE-enhanced UCP1 expression, suggesting an involvement of the β3-AR activity. Oral administration of CE significantly increased UCP1 expression in the subcutaneous adipose tissue in vivo and reduced the body weight of the DIO mice. Taken together, our data suggest that CE has a browning effect in subcutaneous adipocytes. Our study suggests a natural non-toxic herbal remedy to reduce obesity.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| | - Jiahui Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiao-Juan Chao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuqiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Chi Leung Chan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Rebecca Hiu Ying Lau
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Quan Bin Han
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Wang Fun Fong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
165
|
Hypoxia in Obesity and Diabetes: Potential Therapeutic Effects of Hyperoxia and Nitrate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5350267. [PMID: 28607631 PMCID: PMC5457776 DOI: 10.1155/2017/5350267] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The prevalence of obesity and diabetes is increasing worldwide. Obesity and diabetes are associated with oxidative stress, inflammation, endothelial dysfunction, insulin resistance, and glucose intolerance. Obesity, a chronic hypoxic state that is associated with decreased nitric oxide (NO) bioavailability, is one of the main causes of type 2 diabetes. The hypoxia-inducible factor-1α (HIF-1α) is involved in the regulation of several genes of the metabolic pathways including proinflammatory adipokines, endothelial NO synthase (eNOS), and insulin signaling components. It seems that adipose tissue hypoxia and NO-dependent vascular and cellular dysfunctions are responsible for other consequences linked to obesity-related disorders. Although hyperoxia could reverse hypoxic-related disorders, it increases the production of reactive oxygen species (ROS) and decreases the production of NO. Nitrate can restore NO depletion and has antioxidant properties, and recent data support the beneficial effects of nitrate therapy in obesity and diabetes. Although it seems reasonable to combine hyperoxia and nitrate treatments for managing obesity/diabetes, the combined effects have not been investigated yet. This review discusses some aspects of tissue oxygenation and the potential effects of hyperoxia and nitrate interventions on obesity/diabetes management. It can be proposed that concomitant use of hyperoxia and nitrate is justified for managing obesity and diabetes.
Collapse
|
166
|
EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells. Differentiation 2017; 95:21-30. [DOI: 10.1016/j.diff.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
|
167
|
Gill J, La Merrill MA. An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx009. [PMID: 29492311 PMCID: PMC5804549 DOI: 10.1093/eep/dvx009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
Abstract
Metabolic disease is a leading cause of death worldwide, and obesity, a central risk factor, is reaching epidemic proportions. Energy expenditure and brown adipose tissue (BAT) thermogenesis are implicated in metabolic disease, and it is becoming evident that impaired BAT activity is regulated by gene/environment interactions. Peroxisome proliferator-activated receptor γ coactivator 1α (Pgc-1α) is a critical regulator of BAT thermogenesis, which is highly inducible by environmental stimuli such as cold and diet. This review focuses on the environmentally mediated epigenetic and transcriptional regulation of Pgc-1α gene expression during BAT thermogenesis. We illustrate interactions between histone modifications and transcription factors at the Pgc-1α promoter that cause BAT Pgc-1α transcription in response to cold. Histone modifications also modulate BAT Pgc-1α transcription in response to nutrients though diet has been less characterized than cold with respect to regulation of Pgc-1α transcription. Pgc-1α DNA methylation and RNA expression were also correlated to indicators of adiposity and glucose homeostasis across numerous human tissues. Although post-translational modification of Pgc-1α protein has been well-characterized across diverse tissues and environments, comparatively little is known of the epigenetic mechanisms regulating Pgc-1α transcription, particularly in BAT thermogenesis.
Collapse
Affiliation(s)
- J.A. Gill
- Department of Environmental Toxicology, Genome Center, and Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, Genome Center, and Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
168
|
Wang B, Fu X, Liang X, Wang Z, Yang Q, Zou T, Nie W, Zhao J, Gao P, Zhu MJ, de Avila JM, Maricelli J, Rodgers BD, Du M. Maternal Retinoids Increase PDGFRα + Progenitor Population and Beige Adipogenesis in Progeny by Stimulating Vascular Development. EBioMedicine 2017; 18:288-299. [PMID: 28408241 PMCID: PMC5405191 DOI: 10.1016/j.ebiom.2017.03.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Maternal vitamin A intake varies but its impact on offspring metabolic health is unknown. Here we found that maternal vitamin A or retinoic acid (RA) administration expanded PDGFRα+ adipose progenitor population in progeny, accompanied by increased blood vessel density and enhanced brown-like (beige) phenotype in adipose tissue, protecting offspring from obesity. Blockage of retinoic acid signaling by either BMS493 or negative RA receptor (RARαDN) over-expression abolished the increase in blood vessel density, adipose progenitor population, and beige adipogenesis stimulated by RA. Furthermore, RA-induced beige adipogenesis was blocked following vascular endothelial growth factor receptor (VEGFR) 2 knock out in PDGFRα+ cells, suggesting its mediatory role. Our data reveal an intrinsic link between maternal retinoid level and offspring health via promoting beige adipogenesis. Thus, enhancing maternal retinoids is an amiable therapeutic strategy to prevent obesity in offspring, especially for those born to obese mothers which account for one third of all pregnancies. Maternal vitamin A supplementation increases blood vessel density and expands adipose progenitor population in progeny. Maternal vitamin A supplementation enhances brown-like phenotype in adipose tissues. Maternal vitamin A supplementation protects offspring from diet induced obesity.
Vitamin A and its metabolite, retinoic acid, play key roles in adipogenesis and energy expenditure of adipose tissues. In mice and humans, vitamin A intake is inversely correlated with adiposity. This study has uncovered a role for maternal retinoids in fetal adipose development. Maternal vitamin A supplementation or RA administration increases adipose progenitor population and promotes beige adipogenesis, which protects offspring from diet induced obesity in later life.
Collapse
Affiliation(s)
- Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xingwei Liang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Zhixiu Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Tiande Zou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Wei Nie
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Junxing Zhao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Pengfei Gao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, United States
| | - Jeanene M de Avila
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Joseph Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
169
|
Olsen JM, Csikasz RI, Dehvari N, Lu L, Sandström A, Öberg AI, Nedergaard J, Stone-Elander S, Bengtsson T. β 3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: Mediation through the mTOR pathway. Mol Metab 2017; 6:611-619. [PMID: 28580291 PMCID: PMC5444022 DOI: 10.1016/j.molmet.2017.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023] Open
Abstract
Objective Today, the presence and activity of brown adipose tissue (BAT) in adult humans is generally equated with the induced accumulation of [2-18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) in adipose tissues, as investigated by positron emission tomography (PET) scanning. In reality, PET-FDG is currently the only method available for in vivo quantification of BAT activity in adult humans. The underlying assumption is that the glucose uptake reflects the thermogenic activity of the tissue. Methods To examine this basic assumption, we here followed [18F]FDG uptake by PET and by tissue [3H]-2-deoxy-d-glucose uptake in wildtype and UCP1(−/−) mice, i.e. in mice that do or do not possess the unique thermogenic and calorie-consuming ability of BAT. Results Unexpectedly, we found that β3-adrenergically induced (by CL-316,243) glucose uptake was UCP1-independent. Thus, whereas PET-FDG scans adequately reflect glucose uptake, this acute glucose uptake is not secondary to thermogenesis but is governed by an independent cellular signalling, here demonstrated to be mediated via the previously described KU-0063794-sensitive mTOR pathway. Conclusions Thus, PET-FDG scans do not exclusively reveal active BAT deposits but rather any tissue possessing an adrenergically-mediated glucose uptake pathway. In contrast, we found that the marked glucose uptake-ameliorating effect of prolonged β3-adrenergic treatment was UCP1 dependent. Thus, therapeutically, UCP1 activity is required for any anti-diabetic effect of BAT activation. β3-adrenergically glucose uptake in BAT is UCP1-independent. Glucose uptake is not secondary to thermogenesis but is through the mTOR pathway. Both glucose uptake and thermogenesis are needed to fully effect glucose homeostasis.
Collapse
Affiliation(s)
- Jessica M Olsen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Robert I Csikasz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Nodi Dehvari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Li Lu
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden.,Department of Clinical Neurosciences, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Anna Sandström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anette I Öberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sharon Stone-Elander
- Department of Clinical Neurosciences, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital Solna, SE-171 76, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
170
|
van der Stelt I, Hoevenaars F, Široká J, de Ronde L, Friedecký D, Keijer J, van Schothorst E. Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality. Front Physiol 2017; 8:179. [PMID: 28386236 PMCID: PMC5362617 DOI: 10.3389/fphys.2017.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/08/2017] [Indexed: 01/29/2023] Open
Abstract
Housing of laboratory mice at room temperature (22°C) might be considered a constant cold stress, which induces a thermogenic program in brown adipose tissue (BAT). However, the early adaptive response of white adipose tissue (WAT), the fat storage organ of the body, to a change from thermoneutrality to room temperature is not known. This was investigated here for various WAT depots, focusing on epididymal WAT (eWAT), widely used as reference depot. Male adult diet-induced obese (DIO) C57BL/6JOlaHsd mice housed at thermoneutrality (29°C), were for 5 days either switched to room temperature (22°C) or remained at thermoneutrality. Energy metabolism was continuously measured using indirect calorimetry. At the end of the study, serum metabolomics and WAT transcriptomics were performed. We confirmed activation of the thermogenic program in 22°C housed mice. Body weight and total fat mass were reduced. Whole body energy expenditure (EE) was increased, with a higher fatty acid to carbohydrate oxidation ratio and increased serum acylcarnitine levels, while energy intake was not significantly different between the two groups. Transcriptome analysis of eWAT identified tissue remodeling and inflammation as the most affected processes. Expression of pro-inflammatory M1 macrophage-related genes, and M1 over M2 macrophage ratio were decreased, which might be linked to an increased insulin sensitivity. Markers of thermogenesis were not altered in eWAT. Decreased expression of tryptophan hydroxylase 2 (Tph2) and cholecystokinin (Cck) might represent altered neuroendocrine signaling. eWAT itself does not show increased fatty acid oxidation. The three measured WATs, epididymal, mesenteric, and retroperitoneal, showed mainly similar responses; reduced inflammation (s100a8), decreased carbohydrate oxidation, and no or small differences in fatty acid oxidation. However, Ucp1 was only expressed and increased in rWAT in 22°C housed mice. Cck expression was decreased in the three WATs, significantly in eWAT and rWAT, in contrast to Tph2, which was decreased in eWAT while not expressed in mWAT and rWAT. Our data show that tissue remodeling, inflammation and neuroendocrine signaling are early responses in WAT to a moderate decrease in environmental temperature.
Collapse
Affiliation(s)
- Inge van der Stelt
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - Femke Hoevenaars
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - Jitka Široká
- Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc Olomouc, Czechia
| | - Lidwien de Ronde
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - David Friedecký
- Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc Olomouc, Czechia
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | | |
Collapse
|
171
|
Yang X, Sui W, Zhang M, Dong M, Lim S, Seki T, Guo Z, Fischer C, Lu H, Zhang C, Yang J, Zhang M, Wang Y, Cao C, Gao Y, Zhao X, Sun M, Sun Y, Zhuang R, Samani NJ, Zhang Y, Cao Y. Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions. JCI Insight 2017; 2:e89044. [PMID: 28239649 PMCID: PMC5313060 DOI: 10.1172/jci.insight.89044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/05/2017] [Indexed: 01/16/2023] Open
Abstract
Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature-dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet-fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning-related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature-increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat-associated obesity and diabetes.
Collapse
Affiliation(s)
- Xiaoyan Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ziheng Guo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Carina Fischer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caixia Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Gao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingguo Zhao
- Department of Otolaryngology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Rujie Zhuang
- The TCM Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yihai Cao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
172
|
Vink RG, Roumans NJ, Čajlaković M, Cleutjens JPM, Boekschoten MV, Fazelzadeh P, Vogel MAA, Blaak EE, Mariman EC, van Baak MA, Goossens GH. Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans. Int J Obes (Lond) 2017; 41:722-728. [PMID: 28179648 DOI: 10.1038/ijo.2017.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Although adipose tissue (AT) hypoxia is present in rodent models of obesity, evidence for this in humans is limited. Here, we investigated the effects of diet-induced weight loss (WL) on abdominal subcutaneous AT oxygen tension (pO2), AT blood flow (ATBF), AT capillary density, AT morphology and transcriptome, systemic inflammatory markers and insulin sensitivity in humans. SUBJECTS/METHODS Fifteen overweight and obese individuals underwent a dietary intervention (DI), consisting of a 5-week very-low-calorie diet (VLCD, 500 kcal day-1; WL), and a subsequent 4-week weight stable diet (WS). Body composition, AT pO2 (optochemical monitoring), ATBF (133Xe washout), and whole-body insulin sensitivity were determined, and AT biopsies were collected at baseline, end of WL (week 5) and end of WS (week 9). RESULTS Body weight, body fat percentage and adipocyte size decreased significantly during the DI period. The DI markedly decreased AT pO2 and improved insulin sensitivity, but did not alter ATBF. Finally, the DI increased AT gene expression of pathways related to mitochondrial biogenesis and non-mitochondrial oxygen consumption. CONCLUSIONS VLCD-induced WL markedly decreases abdominal subcutaneous AT pO2, which is paralleled by a reduction in adipocyte size, increased AT gene expression of mitochondrial biogenesis markers and non-mitochondrial oxygen consumption pathways, and improved whole-body insulin sensitivity in humans.
Collapse
Affiliation(s)
- R G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - N J Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M Čajlaković
- Joanneum Research Forschungsgesellschaft mbH, MATERIALS - Institute for Surface Technologies and Photonic, Sensorsystems, Weiz, Austria
| | - J P M Cleutjens
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - P Fazelzadeh
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - M A A Vogel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
173
|
Vargas D, Camacho J, Duque J, Carreño M, Acero E, Pérez M, Ramirez S, Umaña J, Obando C, Guerrero A, Sandoval N, Rodríguez G, Lizcano F. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue. Int J Endocrinol 2017; 2017:2945012. [PMID: 29209367 PMCID: PMC5676446 DOI: 10.1155/2017/2945012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 12/24/2022] Open
Abstract
Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.
Collapse
Affiliation(s)
- Diana Vargas
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Jaime Camacho
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Juan Duque
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Marisol Carreño
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Edward Acero
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Máximo Pérez
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Sergio Ramirez
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Juan Umaña
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Carlos Obando
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Albert Guerrero
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Néstor Sandoval
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Gina Rodríguez
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| |
Collapse
|
174
|
Abstract
Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Rubén Cereijo
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Joan Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 643, 08028-Barcelona, Catalonia, Spain
| |
Collapse
|
175
|
Fischer AW, Shabalina IG, Mattsson CL, Abreu-Vieira G, Cannon B, Nedergaard J, Petrovic N. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am J Physiol Endocrinol Metab 2017; 312:E72-E87. [PMID: 27923808 DOI: 10.1152/ajpendo.00284.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022]
Abstract
Cidea is a gene highly expressed in thermogenesis-competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue "briteness." Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wild-type and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Charlotte L Mattsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Abreu-Vieira
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
176
|
Inter-organ regulation of adipose tissue browning. Cell Mol Life Sci 2016; 74:1765-1776. [PMID: 27866221 DOI: 10.1007/s00018-016-2420-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/05/2023]
Abstract
Adaptive thermogenesis is an important component of energy expenditure. Brown adipocytes are best known for their ability to convert chemical energy into heat. Beige cells are brown-like adipocytes that arise in white adipose tissue in response to certain environmental cues to dissipate heat and improve metabolic homeostasis. A large body of intrinsic factors and external signals are critical for the function of beige adipocytes. In this review, we discuss recent advances in our understanding of neuronal, hormonal, and metabolic regulation of the development and activation of beige adipocytes, with a focus on the regulation of beige adipocytes by other organs, tissues, and cells. Understanding the cellular and molecular mechanisms of inter-organ regulation of adipose tissue browning may provide an avenue for combating obesity and associated diseases.
Collapse
|
177
|
Wada S, Neinast M, Jang C, Ibrahim YH, Lee G, Babu A, Li J, Hoshino A, Rowe GC, Rhee J, Martina JA, Puertollano R, Blenis J, Morley M, Baur JA, Seale P, Arany Z. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev 2016; 30:2551-2564. [PMID: 27913603 PMCID: PMC5159669 DOI: 10.1101/gad.287953.116] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Noncanonical mechanistic target of rapamycin (mTOR) pathways remain poorly understood. Mutations in the tumor suppressor folliculin (FLCN) cause Birt-Hogg-Dubé syndrome, a hamartomatous disease marked by mitochondria-rich kidney tumors. FLCN functionally interacts with mTOR and is expressed in most tissues, but its role in fat has not been explored. We show here that FLCN regulates adipose tissue browning via mTOR and the transcription factor TFE3. Adipose-specific deletion of FLCN relieves mTOR-dependent cytoplasmic retention of TFE3, leading to direct induction of the PGC-1 transcriptional coactivators, drivers of mitochondrial biogenesis and the browning program. Cytoplasmic retention of TFE3 by mTOR is sensitive to ambient amino acids, is independent of growth factor and tuberous sclerosis complex (TSC) signaling, is driven by RagC/D, and is separable from canonical mTOR signaling to S6K. Codeletion of TFE3 in adipose-specific FLCN knockout animals rescues adipose tissue browning, as does codeletion of PGC-1β. Conversely, inducible expression of PGC-1β in white adipose tissue is sufficient to induce beige fat gene expression in vivo. These data thus unveil a novel FLCN-mTOR-TFE3-PGC-1β pathway-separate from the canonical TSC-mTOR-S6K pathway-that regulates browning of adipose tissue.
Collapse
Affiliation(s)
- Shogo Wada
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael Neinast
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Cholsoon Jang
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yasir H Ibrahim
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York, 10021, USA
| | - Gina Lee
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York, 10021, USA
| | - Apoorva Babu
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jian Li
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Atsushi Hoshino
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama, Birmingham, Alabama 35294, USA
| | - James Rhee
- Department of Anesthesia and Critical Care, Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - José A Martina
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - John Blenis
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York, 10021, USA
| | - Michael Morley
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph A Baur
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Seale
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zoltan Arany
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
178
|
Fukano K, Okamatsu-Ogura Y, Tsubota A, Nio-Kobayashi J, Kimura K. Cold Exposure Induces Proliferation of Mature Brown Adipocyte in a ß3-Adrenergic Receptor-Mediated Pathway. PLoS One 2016; 11:e0166579. [PMID: 27846311 PMCID: PMC5112994 DOI: 10.1371/journal.pone.0166579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022] Open
Abstract
Hyperplasia of brown adipose tissue (BAT) is a fundamental mechanism for adaptation to survive in the cold environment in rodents. To determine which cell types comprising BAT contribute to tissue hyperplasia, immunohistochemical analysis using a proliferative marker Ki67 was performed on the BAT from 6-week-old C57BL/6J mice housed at 23°C (control) or 10°C (cold) for 5 days. Interestingly, in the control group, the cell proliferative marker Ki67 was detected in the nuclei of uncoupling protein 1-positive mature brown adipocytes (7.2% ± 0.4% of brown adipocyte), as well as in the non-adipocyte stromal-vascular (SV) cells (19.6% ± 2.3% of SV cells), which include preadiopocytes. The percentage of Ki67-positive brown adipocytes increased to 25.6% ± 1.8% at Day 1 after cold exposure and was significantly higher than the non-cold acclimated control until Day 5 (21.8% ± 1.7%). On the other hand, the percentage of Ki67-positive SV cells gradually increased by a cold exposure and peaked to 42.1% ± 8.3% at Day 5. Injection of a ß3-adrenergic receptor (ß3-AR) agonist for continuous 5 days increased the number of Ki67-positive brown adipocytes even at Day 1 but not that of SV cells. In addition, the ß3-AR antagonist, but not ß1-AR antagonist, attenuated the cold exposure-induced increase in the number of Ki67-positive brown adipocytes. These results suggest that mature brown adipocytes proliferate immediately after cold exposure in a ß3-AR-mediated pathway. Thus, proliferation of mature brown adipocytes as well as preadipocytes in SV cells may contribute to cold exposure-induced BAT hyperplasia.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/physiology
- Adrenergic beta-3 Receptor Agonists/administration & dosage
- Animals
- Cell Proliferation/genetics
- Cold Temperature
- Gene Expression Regulation
- Hyperplasia/genetics
- Ki-67 Antigen/biosynthesis
- Ki-67 Antigen/genetics
- Mice
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-3/biosynthesis
- Receptors, Adrenergic, beta-3/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Keigo Fukano
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
- * E-mail:
| | - Ayumi Tsubota
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo 065–0013, Japan
| | - Kazuhiro Kimura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| |
Collapse
|
179
|
Abstract
Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli - notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells, and have revealed unanticipated cell-lineage relationships between vascular smooth muscle cells and beige adipocytes, and between skeletal muscle cells and brown fat. In addition, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells, have crucial roles in regulating the differentiation and function of brown and beige fat.
Collapse
Affiliation(s)
- Wenshan Wang
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
180
|
Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, Andersson P, Nakamura M, Näslund E, Ylä-Herttuala S, Sun M, Iwamoto H, Li X, Liu Y, Samani NJ, Cao Y. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun 2016; 7:12152. [PMID: 27492130 PMCID: PMC4980448 DOI: 10.1038/ncomms12152] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases. Cold-induced activation of thermogenesis in white adipose tissue (WAT), or ‘beiging', is associated with WAT angiogenesis. Here the authors show that PDGF-CC is secreted from endothelial cells in the context of WAT angiogenesis and its paracrine action on adipocytes contributes to cold-induced beiging.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Carina Fischer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Jennifer Honek
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm 182 88, Sweden
| | - Seppo Ylä-Herttuala
- Department of Molecular Medicine, A.I. Virtanen Institute, Molecular Sciences University of Eastern Finland, Kuopio 70211, Finland
| | - Meili Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden.,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
181
|
Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, Lou J, Rao RR, Chang MR, Jedrychowski MP, Paulo JA, Gygi SP, Griffin PR, Nomura DK, Spiegelman BM. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell 2016; 166:424-435. [PMID: 27374330 PMCID: PMC4947008 DOI: 10.1016/j.cell.2016.05.071] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders.
Collapse
Affiliation(s)
- Jonathan Z Long
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Katrin J Svensson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leslie A Bateman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hua Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Theodore Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Isha A Lokurkar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jesse Lou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rajesh R Rao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mi Ra Chang
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
182
|
Sakellariou P, Valente A, Carrillo AE, Metsios GS, Nadolnik L, Jamurtas AZ, Koutedakis Y, Boguszewski C, Andrade CMB, Svensson PA, Kawashita NH, Flouris AD. Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health. Med Hypotheses 2016; 93:21-6. [PMID: 27372851 DOI: 10.1016/j.mehy.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Obesity constitutes a serious global health concern reaching pandemic prevalence rates. The existence of functional brown adipose tissue (BAT) in adult humans has provoked intense research interest in the role of this metabolically active tissue in whole-body energy balance and body weight regulation. A number of environmental, physiological, pathological, and pharmacological stimuli have been proposed to induce BAT-mediated thermogenesis and functional thermogenic BAT-like activity in white adipose tissue (WAT), opening new avenues for therapeutic strategies based on enhancing the number of beige adipocytes in WAT. HYPOTHESIS Recent evidence support a role of l-menthol cooling, mediated by TRPM8 receptor, on UCP1-dependent thermogenesis and BAT-like activity in classical WAT depots along with the recruitment of BAT at specific anatomical sites. l-Menthol-induced BAT thermogenesis has been suggested to occur by a β-adrenergic-independent mechanism, avoiding potential side-effects due to extensive β-adrenergic stimulation mediated by available beta receptor agonists. l-Menthol has been also linked to the activation of the cold-gated ion channel TRPA1. However, its role in l-menthol-induced UCP1-dependent thermogenic activity in BAT and WAT remains undetermined. White adipose tissue plasticity has important clinical implications for obesity prevention and/or treatment because higher levels of UCP1-dependent thermogenesis can lead to enhanced energy expenditure at a considerable extent. We hypothesize that chronic dietary l-menthol treatment could induce TRPM8- and TRPA1-dependent WAT adaptations, resembling BAT-like activity, and overall improve whole-body metabolic health in obese and overweight individuals. CONCLUSIONS The putative impact of chronic l-menthol dietary treatment on the stimulation of BAT-like activity in classical WAT depots in humans remains unknown. A detailed experimental design has been proposed to investigate the hypothesized l-menthol-induced browning of WAT. If our hypothesis was to be confirmed, TRPM8/TRPA1-induced metabolic adaptations of WAT to BAT-like activity could provide a promising novel therapeutic approach for increasing energy expenditure, regulating body weight, and preventing obesity and its related co-morbidities in humans.
Collapse
Affiliation(s)
- Paraskevi Sakellariou
- Institute of Research and Technology Thessaly, Centre for Research and Technology Hellas, Trikala, Greece; FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece
| | - Angelica Valente
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece; Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andres E Carrillo
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece; Department of Exercise Science, Chatham University, Pittsburgh, PA, USA
| | - George S Metsios
- Faculty of Education, Health and Wellbeing, Wolverhampton University, Walsall Campus, UK
| | - Liliya Nadolnik
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, Grodno, Belarus
| | - Athanasios Z Jamurtas
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece
| | - Yiannis Koutedakis
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece; Faculty of Education, Health and Wellbeing, Wolverhampton University, Walsall Campus, UK
| | - Cesar Boguszewski
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Parana, Curitiba, Brazil
| | | | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Andreas D Flouris
- Institute of Research and Technology Thessaly, Centre for Research and Technology Hellas, Trikala, Greece; FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece.
| |
Collapse
|
183
|
Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A 2016; 113:5552-7. [PMID: 27140638 DOI: 10.1073/pnas.1603840113] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases.
Collapse
|
184
|
Barreau C, Labit E, Guissard C, Rouquette J, Boizeau ML, Gani Koumassi S, Carrière A, Jeanson Y, Berger-Müller S, Dromard C, Plouraboué F, Casteilla L, Lorsignol A. Regionalization of browning revealed by whole subcutaneous adipose tissue imaging. Obesity (Silver Spring) 2016; 24:1081-9. [PMID: 26999447 DOI: 10.1002/oby.21455] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE White and brown adipose tissues play a major role in the regulation of metabolic functions. With the explosion of obesity and metabolic disorders, the interest in adipocyte biology is growing constantly. While several studies have demonstrated functional differences between adipose fat pads, especially in their involvement in metabolic diseases, there are no data available on possible heterogeneity within an adipose depot. METHODS This study investigated the three-dimensional (3-D) organization of the inguinal fat pad in adult mice by combining adipose tissue clearing and autofluorescence signal acquisition by confocal microscopy. In addition, the study analyzed the expression of genes involved in adipocyte biology and browning at the mARN and protein levels in distinct areas of the inguinal adipose tissue, in control conditions and after cold exposure. RESULTS Semiautomated 3-D image analysis revealed an organization of the fat depot showing two regions: the core was structured into segmented lobules, whereas the periphery appeared unsegmented. Perilipin immunostaining showed that most of the adipocytes located in the core region had smaller lipid droplets, suggesting a brown-like phenotype. qPCR analysis showed a higher expression of the browning markers Ucp1, Prdm16, Ppargc1a, and Cidea in the core region than at the periphery. Finally, cold exposure induced upregulation of thermogenic gene expression associated with an increase of UCP1 protein, specifically in the core region of the inguinal fat depot. CONCLUSIONS Altogether, these data demonstrate a structural and functional heterogeneity of the inguinal fat pad, with an anatomically restricted browning process in the core area.
Collapse
Affiliation(s)
- Corinne Barreau
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| | - Elodie Labit
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| | | | - Jacques Rouquette
- Institut des Techniques Avancées du Vivant, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Laure Boizeau
- Institut des Techniques Avancées du Vivant, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Audrey Carrière
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| | - Yannick Jeanson
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| | | | - Cécile Dromard
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| | - Franck Plouraboué
- Institut de Mécanique des Fluides, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| | - Anne Lorsignol
- Stromalab, Université de Toulouse, CNRS, EFS, INSERM, UPS, Toulouse, France
| |
Collapse
|
185
|
Huber B, Czaja AM, Kluger PJ. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering. Cell Biol Int 2016; 40:569-78. [DOI: 10.1002/cbin.10595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Birgit Huber
- Institute for Interfacial Process Engineering and Plasma Technology; University of Stuttgart; Nobelstraße 12 Stuttgart 70569 Germany
| | - Alina Maria Czaja
- Esslingen University of Applied Sciences; Kanalstraße 33 Esslingen 73728 Germany
| | - Petra Juliane Kluger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstraße 12 Stuttgart 70569 Germany
- Reutlingen University; Alteburgstr. 150 Reutlingen 72762 Germany
| |
Collapse
|
186
|
Luo X, Jia R, Yao Q, Xu Y, Luo Z, Luo X, Wang N. Docosahexaenoic acid attenuates adipose tissue angiogenesis and insulin resistance in high fat diet-fed middle-aged mice via a sirt1-dependent mechanism. Mol Nutr Food Res 2016; 60:871-85. [PMID: 26750093 DOI: 10.1002/mnfr.201500714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Docosahexaenoic acid (DHA; C22: 6, n-3), one of PUFAs, exerts beneficial effects on inflammatory diseases, obesity and diabetes. Angiogenesis in adipose tissue has a major role in the development of obesity and its related metabolic complications. Inhibition of angiogenesis is an emerging strategy for the novel treatment for obesity. Thus, we examined the effect of DHA on angiogenesis in adipose tissues and investigated the underlying mechanisms. METHODS AND RESULTS In high-fat diet (HFD) fed middle-aged mice, DHA inhibited the macrophage-derived inflammation and angiogenesis in adipose tissues, reduced adipocyte size and body fat composition and improved insulin sensitivity. Moreover, DHA reversed the HFD-induced reduction of Sirt1 in adipose tissues. Interestingly, the effects of DHA were attenuated by lentivirus-mediated Sirt1 knockdown with increasing expression of markers of macrophage-derived inflammation and angiogenesis, associated with impaired insulin sensitivity. CONCLUSION Overall, our findings demonstrated that DHA reduced angiogenesis of adipose tissues and attenuated insulin resistance in HFD-induced obese mice via the activation of Sirt1.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Medicine, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Ru Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Department of Prosthodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Qinyu Yao
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yirui Xu
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhenyu Luo
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Nanping Wang
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
187
|
García-Martín R, Alexaki VI, Qin N, Rubín de Celis MF, Economopoulou M, Ziogas A, Gercken B, Kotlabova K, Phieler J, Ehrhart-Bornstein M, Bornstein SR, Eisenhofer G, Breier G, Blüher M, Hampe J, El-Armouche A, Chatzigeorgiou A, Chung KJ, Chavakis T. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation. Mol Cell Biol 2016; 36:376-393. [PMID: 26572826 PMCID: PMC4719429 DOI: 10.1128/mcb.00430-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/21/2015] [Accepted: 11/05/2015] [Indexed: 12/04/2022] Open
Abstract
Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction.
Collapse
Affiliation(s)
- Rubén García-Martín
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Vasileia I Alexaki
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Nan Qin
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - María F Rubín de Celis
- Department of Medicine III, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Matina Economopoulou
- Department of Ophthalmology, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Athanasios Ziogas
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Bettina Gercken
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Klara Kotlabova
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Julia Phieler
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Department of Medicine III, Medical Faculty, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Medicine III, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Georg Breier
- Department of Psychiatry, Medical Faculty, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Matthias Blüher
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Jochen Hampe
- Department of Medicine I, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, and German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kyoung-Jin Chung
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, and German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
188
|
|
189
|
Bhanu Prakash KN, Verma SK, Yaligar J, Goggi J, Gopalan V, Lee SS, Tian X, Sugii S, Leow MKS, Bhakoo K, Velan SS. Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:277-86. [DOI: 10.1007/s10334-015-0514-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
190
|
Mahdaviani K, Chess D, Wu Y, Shirihai O, Aprahamian TR. Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes. Metabolism 2016; 65:26-35. [PMID: 26683794 PMCID: PMC4684900 DOI: 10.1016/j.metabol.2015.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/31/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The obesity epidemic in the United States, as well as the accompanying condition of type 2 diabetes, puts a majority of the population at an increased risk of developing cardiovascular diseases including coronary artery disease, stroke, and myocardial infarction. In contrast to white adipose tissue (WAT), brown adipose tissue (BAT) is well vascularized, rich in mitochondria, and highly oxidative. While it is known that the angiogenic factor VEGF-A is required for brown adipocyte development, the functional consequences and exact mechanism remain to be elucidated. Here, we show that VEGF-A plays an essential autocrine role in the function of BAT. MATERIALS AND METHODS Mouse models were generated with an adipose-specific and macrophage-specific ablation of VEGF-A. Adipose tissue characteristics and thermogenic response were analyzed in vivo, and mitochondrial morphology and oxidative respiration were analyzed in vitro to assess effects of endogenous VEGF-A ablation. RESULTS VEGF-A expression levels are highest in adipocyte precursors compared to immune or endothelial cell populations within both WAT and BAT. Loss of VEGF-A in adipocytes, but not macrophages, results in decreased adipose tissue vascularization, with remarkably diminished thermogenic capacity in vivo. Complete ablation of endogenous VEGF-A decreases oxidative capacity of mitochondria in brown adipocytes. Further, acute ablation of VEGF-A in brown adipocytes in vitro impairs mitochondrial respiration, despite similar mitochondrial mass compared to controls. CONCLUSION These data demonstrate that VEGF-A serves to orchestrate the acquisition of thermogenic capacity of brown adipocytes through mitochondrial function in conjunction with the recruitment of blood vessels.
Collapse
Affiliation(s)
- Kiana Mahdaviani
- Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - David Chess
- Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yuanyuan Wu
- Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Orian Shirihai
- Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tamar R Aprahamian
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
191
|
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front Endocrinol (Lausanne) 2016; 7:30. [PMID: 27148161 PMCID: PMC4829583 DOI: 10.3389/fendo.2016.00030] [Citation(s) in RCA: 757] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.
Collapse
Affiliation(s)
- Sung Sik Choe
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - In Jae Hwang
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jong In Kim
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Sciences, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- *Correspondence: Jae Bum Kim,
| |
Collapse
|
192
|
Palmer BF, Clegg DJ. An Emerging Role of Natriuretic Peptides: Igniting the Fat Furnace to Fuel and Warm the Heart. Mayo Clin Proc 2015; 90:1666-78. [PMID: 26518101 DOI: 10.1016/j.mayocp.2015.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 01/05/2023]
Abstract
Natriuretic peptides are produced in the heart and have been well characterized for their actions in the cardiovascular system to promote diuresis and natriuresis, thereby contributing to maintenance of extracellular fluid volume and vascular tone. For this review, we scanned the literature using PubMed and MEDLINE using the following search terms: beiging, adipose tissue, natriuretic peptides, obesity, and metabolic syndrome. Articles were selected for inclusion if they represented primary data or review articles published from 1980 to 2015 from high-impact journals. With the advent of the newly approved class of drugs that inhibit the breakdown of natriuretic peptides, thereby increasing their circulation, we highlight additional functions for natriuretic peptides that have recently become appreciated, including their ability to drive lipolysis, facilitate beiging of adipose tissues, and promote lipid oxidation and mitochondrial respiration in skeletal muscle. We provide evidence for new roles for natriuretic peptides, emphasizing their ability to participate in body weight regulation and energy homeostasis and discuss how they may lead to novel strategies to treat obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, CA.
| |
Collapse
|
193
|
RNA-Seq and Mass-Spectrometry-Based Lipidomics Reveal Extensive Changes of Glycerolipid Pathways in Brown Adipose Tissue in Response to Cold. Cell Rep 2015; 13:2000-13. [PMID: 26628366 DOI: 10.1016/j.celrep.2015.10.069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/15/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022] Open
Abstract
Cold exposure greatly alters brown adipose tissue (BAT) gene expression and metabolism to increase thermogenic capacity. Here, we used RNA sequencing and mass-spectrometry-based lipidomics to provide a comprehensive resource describing the molecular signature of cold adaptation at the level of the transcriptome and lipidome. We show that short-term (3-day) cold exposure leads to a robust increase in expression of several brown adipocyte genes related to thermogenesis as well as the gene encoding the hormone irisin. However, pathway analysis shows that the most significantly induced genes are those involved in glycerophospholipid synthesis and fatty acid elongation. This is accompanied by significant changes in the acyl chain composition of triacylglycerols (TAGs) as well as subspecies-selective changes of acyl chains in glycerophospholipids. These results indicate that cold adaptation of BAT is associated with significant and highly species-selective remodeling of both TAGs and glycerophospholipids.
Collapse
|
194
|
Stine RR, Shapira SN, Lim HW, Ishibashi J, Harms M, Won KJ, Seale P. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab 2015; 5:57-65. [PMID: 26844207 PMCID: PMC4703852 DOI: 10.1016/j.molmet.2015.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Objective The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. Methods In addition to primary cell culture studies, we used Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. Results We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. Conclusions Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity. Loss of Ebf2 prevents induction of beige adipocytes in inguinal WAT. Ectopic expression of Ebf2 promotes beige fat induction in inguinal WAT. Ectopic Ebf2 expression protects against high fat diet-induced obesity.
Collapse
Affiliation(s)
- Rachel R Stine
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA
| | - Suzanne N Shapira
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-111, Philadelphia, PA, 19104, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA
| | - Matthew Harms
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-111, Philadelphia, PA, 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-105, Philadelphia, PA, 19104, USA
| |
Collapse
|
195
|
Abstract
Since brown adipose tissue (BAT) dissipates energy through UCP1, BAT has garnered attention as a therapeutic intervention for obesity and metabolic diseases including type 2 diabetes. As we better understand the physiological roles of classical brown and beige adipocytes, it is becoming clear that BAT is not simply a heat-generating organ. Increased beige fat mass in response to a variety of external/internal cues is associated with significant improvements in glucose and lipid homeostasis that may not be entirely mediated by UCP1. We aim to discuss recent insights regarding the developmental lineages, molecular regulation, and new functions for brown and beige adipocytes.
Collapse
Affiliation(s)
- Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA.
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
196
|
Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol 2015; 309:H1793-812. [PMID: 26432837 DOI: 10.1152/ajpheart.00199.2015] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
Abstract
A growing number of extreme climate events are occurring in the setting of ongoing climate change, with an increase in both the intensity and frequency. It has been shown that ambient temperature challenges have a direct and highly varied impact on cardiovascular health. With a rapidly growing amount of literature on this issue, we aim to review the recent publications regarding the impact of cold and heat on human populations with regard to cardiovascular disease (CVD) mortality/morbidity while also examining lag effects, vulnerable subgroups, and relevant mechanisms. Although the relative risk of morbidity/mortality associated with extreme temperature varied greatly across different studies, both cold and hot temperatures were associated with a positive mean excess of cardiovascular deaths or hospital admissions. Cause-specific study of CVD morbidity/mortality indicated that the sensitivity to temperature was disease-specific, with different patterns for acute and chronic ischemic heart disease. Vulnerability to temperature-related mortality was associated with some characteristics of the populations, including sex, age, location, socioeconomic condition, and comorbidities such as cardiac diseases, kidney diseases, diabetes, and hypertension. Temperature-induced damage is thought to be related to enhanced sympathetic reactivity followed by activation of the sympathetic nervous system, renin-angiotensin system, as well as dehydration and a systemic inflammatory response. Future research should focus on multidisciplinary adaptation strategies that incorporate epidemiology, climatology, indoor/building environments, energy usage, labor legislative perfection, and human thermal comfort models. Studies on the underlying mechanism by which temperature challenge induces pathophysiological response and CVD await profound and lasting investigation.
Collapse
Affiliation(s)
- Cuiqing Liu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China; and
| | - Zubin Yavar
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
197
|
Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering. Cell Tissue Res 2015; 362:269-79. [PMID: 26340984 DOI: 10.1007/s00441-015-2274-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023]
Abstract
Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.
Collapse
|
198
|
Zhou H, Lei X, Benson T, Mintz J, Xu X, Harris RB, Weintraub NL, Wang X, Chen W. Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals. J Lipid Res 2015; 56:1912-25. [PMID: 26269358 DOI: 10.1194/jlr.m060244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 11/20/2022] Open
Abstract
Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Georgia Regents University, Augusta, GA 30912
| | - Xinnuo Lei
- Department of Physiology, Georgia Regents University, Augusta, GA 30912
| | - Tyler Benson
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912
| | - James Mintz
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912
| | - Xiaojing Xu
- Georgia Prevention Institute, Department of Pediatrics, Georgia Regents University, Augusta, GA 30912
| | - Ruth B Harris
- Department of Physiology, Georgia Regents University, Augusta, GA 30912
| | - Neal L Weintraub
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Pediatrics, Georgia Regents University, Augusta, GA 30912
| | - Weiqin Chen
- Department of Physiology, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
199
|
Abstract
Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.
Collapse
|
200
|
Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. Int J Obes (Lond) 2015. [PMID: 26219415 PMCID: PMC4703459 DOI: 10.1038/ijo.2015.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective To investigate the impact of transient (2-4 h) hypoxia on metabolic reprogramming of adipocytes. Methods The impact of transient hypoxia on metabolic reprogramming was investigated in 3T3-L1 cells before and after differentiation. Glucose uptake, fatty acid oxidation, lipolysis, and mitochondria were examined to determine the hypoxia effects. Preadipocytes were exposed to transient hypoxia (4h/day) in the course of differentiation. Insulin sensitivity and TG accumulation was examined in the cells at the end of differentiation to determine the reprogramming effects. AMPK activity and gene expression were determined by quantitative RT-PCR and Western blotting in search for mechanism of the reprogramming. Results In acute response to hypoxia, adipocytes exhibited an increase in insulin-dependent and -independent glucose uptake. Fatty acid β-oxidation and pyruvate dehydrogenase (PDH) activity were decreased. Multiple exposures of differentiating adipocytes to transient hypoxia enhanced insulin signaling, TG accumulation, expression of antioxidant genes in differentiated adipocytes in the absence of hypoxia. The metabolic memory was associated with elevated AMPK activity and gene expression (GLUT1, PGC-1α, PPARγ, SREBP, NRF-1, ESRRα, LPL). The enhanced insulin sensitivity was blocked by an AMPK inhibitor. Conclusions Repeated exposure of differentiating adipocytes to transient hypoxia is able to reprogram the cells for increased TG accumulation and enhanced insulin sensitivity. The metabolic alterations were observed in post-differentiated cells under normoxia. The reprogramming involves AMPK activation and gene expression in the metabolic pathways in cytosol and mitochondria.
Collapse
|