151
|
Hopkins J, Pierre O, Kazmierczak T, Gruber V, Frugier F, Clement M, Frendo P, Herouart D, Boncompagni E. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2014; 37:658-69. [PMID: 23961805 DOI: 10.1111/pce.12185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.
Collapse
Affiliation(s)
- Julie Hopkins
- INRA 1355, UMR 'Institut Sophia Agrobiotech', Sophia-Antipolis Cedex, F-06903, France; CNRS 7254, UMR 'Institut Sophia Agrobiotech', Sophia-Antipolis Cedex, F-06903, France; UMR 'Institut Sophia Agrobiotech' Université de Nice-Sophia Antipolis (UNS), Cedex, F-06903, France
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Gallego-Giraldo L, Bhattarai K, Pislariu CI, Nakashima J, Jikumaru Y, Kamiya Y, Udvardi MK, Monteros MJ, Dixon RA. Lignin modification leads to increased nodule numbers in alfalfa. PLANT PHYSIOLOGY 2014; 164:1139-50. [PMID: 24406794 PMCID: PMC3938609 DOI: 10.1104/pp.113.232421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/08/2014] [Indexed: 05/11/2023]
Abstract
Reduction of lignin levels in the forage legume alfalfa (Medicago sativa) by down-regulation of the monolignol biosynthetic enzyme hydroxycinnamoyl coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) results in strongly increased digestibility and processing ability of lignocellulose. However, these modifications are often also associated with dwarfing and other changes in plant growth. Given the importance of nitrogen fixation for legume growth, we evaluated the impact of constitutively targeted lignin modification on the belowground organs (roots and nodules) of alfalfa plants. HCT down-regulated alfalfa plants exhibit a striking reduction in root growth accompanied by an unexpected increase in nodule numbers when grown in the greenhouse or in the field. This phenotype is associated with increased levels of gibberellins and certain flavonoid compounds in roots. Although HCT down-regulation reduced biomass yields in both the greenhouse and field experiments, the impact on the allocation of nitrogen to shoots or roots was minimal. It is unlikely, therefore, that the altered growth phenotype of reduced-lignin alfalfa is a direct result of changes in nodulation or nitrogen fixation efficiency. Furthermore, HCT down-regulation has no measurable effect on carbon allocation to roots in either greenhouse or 3-year field trials.
Collapse
Affiliation(s)
| | - Kishor Bhattarai
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Catalina I. Pislariu
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Jin Nakashima
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Yusuke Jikumaru
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Yuji Kamiya
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Michael K. Udvardi
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Maria J. Monteros
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | | |
Collapse
|
153
|
Istvánek J, Jaros M, Krenek A, Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:327-37. [PMID: 24500806 DOI: 10.3732/ajb.1300340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PREMISE OF THE STUDY Red clover (Trifolium pratense) is an important forage plant from the legume family with great importance in agronomy and livestock nourishment. Nevertheless, assembling its medium-sized genome presents a challenge, given current hardware and software possibilities. Next-generation sequencing technologies enable us to generate large amounts of sequence data at low cost. In this study, the genome assembly and red clover genome features are presented. METHODS First, assembly software was assessed using data sets from a closely related species to find the best possible combination of assembler plus error correction program to assemble the red clover genome. The newly sequenced genome was characterized by repetitive content, number of protein-coding and nonprotein-coding genes, and gene families and functions. Genome features were also compared with those of other sequenced plant species. KEY RESULTS Abyss with Echo correction was used for de novo assembly of the red clover genome. The presented assembly comprises ∼314.6 Mbp. In contrast to leguminous species with comparable genome sizes, the genome of T. pratense contains a larger repetitive portion and more abundant retrotransposons and DNA transposons. Overall, 47 398 protein-coding genes were annotated from 64 761 predicted genes. Comparative analysis revealed several gene families that are characteristic for T. pratense. Resistance genes, leghemoglobins, and nodule-specific cystein-rich peptides were identified and compared with other sequenced species. CONCLUSIONS The presented red clover genomic data constitute a resource for improvement through molecular breeding and for comparison to other sequenced plant species.
Collapse
Affiliation(s)
- Jan Istvánek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | | |
Collapse
|
154
|
Dam S, Dyrlund TF, Ussatjuk A, Jochimsen B, Nielsen K, Goffard N, Ventosa M, Lorentzen A, Gupta V, Andersen SU, Enghild JJ, Ronson CW, Roepstorff P, Stougaard J. Proteome reference maps of the Lotus japonicus nodule and root. Proteomics 2014; 14:230-40. [PMID: 24293220 DOI: 10.1002/pmic.201300353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
Abstract
Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.
Collapse
Affiliation(s)
- Svend Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
A Comparative Study of Phase States of the Peribacteroid Membrane from Yellow Lupin and Broad Bean Nodules. Res Lett Biochem 2014; 2014:527393. [PMID: 24804101 PMCID: PMC3996879 DOI: 10.1155/2014/527393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022] Open
Abstract
A comparative study of the lipid bilayer phase status and structure of the outer membrane of free-living Bradyrhizobium strain 359a (Nod+Fix+) and 400 (Nod+FixL) or Rhizobium leguminosarum 97 (Nod+Fix+, effective) and 87 (Nod+FixL, ineffective) has been carried out. Also, the effect of the symbiotic pair combination on the lipid bilayer structure of the bacteroid outer membrane and peribacteroid membrane, isolated from the nodules of Lupinus luteus L. or Vicia faba L., has been studied. As a result, it is shown that the lipid bilayer status of the bacteroid outer membrane is mainly determined by microsymbiont, but not the host plant. In the contrast, the lipid bilayer status of the peribacteroid membrane and, as a consequence, its properties depend on interaction of both symbiotic partners.
Collapse
|
156
|
Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5395-409. [PMID: 24259455 DOI: 10.1093/jxb/ert369] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of MtCEP1, a member of the CEP (C-terminally encoded peptide) signaling peptide family, was examined in Medicago truncatula root development. MtCEP1 was expressed in root tips, vascular tissue, and young lateral organs, and was up-regulated by low nitrogen levels and, independently, by elevated CO2. Overexpressing MtCEP1 or applying MtCEP1 peptide to roots elicited developmental phenotypes: inhibition of lateral root formation, enhancement of nodulation, and the induction of periodic circumferential root swellings, which arose from cortical, epidermal, and pericycle cell divisions and featured an additional cortical cell layer. MtCEP peptide addition to other legume species induced similar phenotypes. The enhancement of nodulation by MtCEP1 is partially tolerant to high nitrate, which normally strongly suppresses nodulation. These nodules develop faster, are larger, and fix more nitrogen in the absence and presence of inhibiting nitrate levels. At 25mM nitrate, nodules formed on pre-existing swelling sites induced by MtCEP1 overexpression. RNA interference-mediated silencing of several MtCEP genes revealed a negative correlation between transcript levels of MtCEP1 and MtCEP2 with the number of lateral roots. MtCEP1 peptide-dependent phenotypes were abolished or attenuated by altering or deleting key residues in its 15 amino acid domain. RNA-Seq analysis revealed that 89 and 116 genes were significantly up- and down-regulated, respectively, by MtCEP1 overexpression, including transcription factors WRKY, bZIP, ERF, and MYB, homologues of LOB29, SUPERROOT2, and BABY BOOM. Taken together, the data suggest that the MtCEP1 peptide modulates lateral root and nodule development in M. truncatula.
Collapse
MESH Headings
- Carbon Dioxide/metabolism
- Gene Expression Regulation, Plant
- Genes, Reporter
- Medicago truncatula/cytology
- Medicago truncatula/genetics
- Medicago truncatula/growth & development
- Medicago truncatula/physiology
- Nitrogen/metabolism
- Nitrogen Fixation
- Peptides/genetics
- Peptides/pharmacology
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Root Nodulation
- Plant Roots/cytology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/physiology
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA, Plant/chemistry
- RNA, Plant/genetics
- Root Nodules, Plant/cytology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/physiology
- Sequence Analysis, RNA
- Signal Transduction
- Sinorhizobium meliloti/physiology
- Symbiosis
Collapse
Affiliation(s)
- Nijat Imin
- Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
157
|
Pierre O, Engler G, Hopkins J, Brau F, Boncompagni E, Hérouart D. Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2013; 36:2059-2070. [PMID: 23586685 DOI: 10.1111/pce.12116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen-fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2 -fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH-sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.
Collapse
Affiliation(s)
- Olivier Pierre
- UMR INRA 1355-CNRS 7254-Université de Nice Sophia-Antipolis, Institut Sophia Agrobiotech, 400 route des Chappes, F-06903, Sophia Antipolis, France
| | | | | | | | | | | |
Collapse
|
158
|
Boscari A, Meilhoc E, Castella C, Bruand C, Puppo A, Brouquisse R. Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate? FRONTIERS IN PLANT SCIENCE 2013; 4:384. [PMID: 24130563 PMCID: PMC3793596 DOI: 10.3389/fpls.2013.00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
The interaction between legumes and rhizobia leads to the establishment of a symbiotic relationship characterized by the formation of new organs called nodules, in which bacteria have the ability to fix atmospheric nitrogen (N2) via the nitrogenase activity. Significant nitric oxide (NO) production was evidenced in the N2-fixing nodules suggesting that it may impact the symbiotic process. Indeed, NO was shown to be a potent inhibitor of nitrogenase activity and symbiotic N2 fixation. It has also been shown that NO production is increased in hypoxic nodules and this production was supposed to be linked - via a nitrate/NO respiration process - with improved capacity of the nodules to maintain their energy status under hypoxic conditions. Other data suggest that NO might be a developmental signal involved in the induction of nodule senescence. Hence, the questions were raised of the toxic effects versus signaling/metabolic functions of NO, and of the regulation of NO levels compatible with nitrogenase activity. The present review analyses the different roles of NO in functioning nodules, and discusses the role of plant and bacterial (flavo)hemoglobins in the control of NO level in nodules.
Collapse
Affiliation(s)
- Alexandre Boscari
- Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, UMR 1355Sophia Antipolis, France
- Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, UMR 7254Sophia Antipolis, France
- Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Eliane Meilhoc
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Claude Castella
- Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, UMR 1355Sophia Antipolis, France
- Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, UMR 7254Sophia Antipolis, France
- Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Claude Bruand
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Alain Puppo
- Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, UMR 1355Sophia Antipolis, France
- Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, UMR 7254Sophia Antipolis, France
- Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Renaud Brouquisse
- Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, UMR 1355Sophia Antipolis, France
- Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, UMR 7254Sophia Antipolis, France
- Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
- *Correspondence: Renaud Brouquisse, UMR INRA 1355 - CNRS 7254 - Université Nice Sophia Antipolis - Interactions Biotiques et Santé Végétale, Institut Agrobiotech, 400 route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France e-mail:
| |
Collapse
|
159
|
Soto G, Fox AR, Ayub ND. Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes. J Mol Evol 2013; 77:3-7. [DOI: 10.1007/s00239-013-9578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|
160
|
Boyd ES, Peters JW. New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 2013; 4:201. [PMID: 23935594 PMCID: PMC3733012 DOI: 10.3389/fmicb.2013.00201] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3), accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of biological N2 fixation. One key question is whether the limited availability of fixed nitrogen was a factor in life's origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth's biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained through phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex life sustaining process.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Chemistry and Biochemistry and Department of Microbiology, Montana State University Bozeman, MT, USA
| | | |
Collapse
|
161
|
Hauser F, Chen W, Deinlein U, Chang K, Ossowski S, Fitz J, Hannon GJ, Schroeder JI. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. THE PLANT CELL 2013; 25:2848-63. [PMID: 23956262 PMCID: PMC3784584 DOI: 10.1105/tpc.113.112805] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Traditional forward genetic screens are limited in the identification of homologous genes with overlapping functions. Here, we report the analyses and assembly of genome-wide protein family definitions that comprise the largest estimate for the potentially redundant gene space in Arabidopsis thaliana. On this basis, a computational design of genome-wide family-specific artificial microRNAs (amiRNAs) was performed using high-performance computing resources. The amiRNA designs are searchable online (http://phantomdb.ucsd.edu). A computationally derived library of 22,000 amiRNAs was synthesized in 10 sublibraries of 1505 to 4082 amiRNAs, each targeting defined functional protein classes. For example, 2964 amiRNAs target annotated DNA and RNA binding protein families and 1777 target transporter proteins, and another sublibrary targets proteins of unknown function. To evaluate the potential of an amiRNA-based screen, we tested 122 amiRNAs targeting transcription factor, protein kinase, and protein phosphatase families. Several amiRNA lines showed morphological phenotypes, either comparable to known phenotypes of single and double/triple mutants or caused by overexpression of microRNAs. Moreover, novel morphological and abscisic acid-insensitive seed germination mutants were identified for amiRNAs targeting zinc finger homeodomain transcription factors and mitogen-activated protein kinase kinase kinases, respectively. These resources provide an approach for genome-wide genetic screens of the functionally redundant gene space in Arabidopsis.
Collapse
Affiliation(s)
- Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Wenxiao Chen
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Ulrich Deinlein
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Kenneth Chang
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Joffrey Fitz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
- Address correspondence to
| |
Collapse
|
162
|
Blossfeld S, Schreiber CM, Liebsch G, Kuhn AJ, Hinsinger P. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes. ANNALS OF BOTANY 2013; 112:267-76. [PMID: 23532048 PMCID: PMC3698388 DOI: 10.1093/aob/mct047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/16/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism-environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant-soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root-soil interactions. METHODS pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea. KEY RESULTS Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root-soil interactions. CONCLUSIONS This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.
Collapse
Affiliation(s)
- Stephan Blossfeld
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant sciences, Jülich, Germany.
| | | | | | | | | |
Collapse
|
163
|
Kim YK, Kim S, Um JH, Kim K, Choi SK, Um BH, Kang SW, Kim JW, Takaichi S, Song SB, Lee CH, Kim HS, Kim KW, Nam KH, Lee SH, Kim YH, Park HM, Ha SH, Verma DPS, Cheon CI. Functional implication of β-carotene hydroxylases in soybean nodulation. PLANT PHYSIOLOGY 2013; 162:1420-33. [PMID: 23700351 PMCID: PMC3707551 DOI: 10.1104/pp.113.215020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/14/2013] [Indexed: 05/27/2023]
Abstract
Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative β-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum. In this work, we extended our study to three GmBCHs to examine their possible role(s) in nodule development, as they were additionally identified as nodule specific, along with the completion of the soybean genome. In situ hybridization revealed the expression of three GmBCHs (GmBCH1, GmBCH2, and GmBCH3) in the infected cells of root nodules, and their enzymatic activities were confirmed by functional assays in Escherichia coli. Localization of GmBCHs by transfecting Arabidopsis (Arabidopsis thaliana) protoplasts with green fluorescent protein fusions and by electron microscopic immunogold detection in soybean nodules indicated that GmBCH2 and GmBCH3 were present in plastids, while GmBCH1 appeared to be cytosolic. RNA interference of the GmBCHs severely impaired nitrogen fixation as well as nodule development. Surprisingly, we failed to detect zeaxanthin, a product of GmBCH, or any other carotenoids in nodules. Therefore, we examined the possibility that most of the carotenoids in nodules are converted or cleaved to other compounds. We detected the expression of some carotenoid cleavage dioxygenases (GmCCDs) in wild-type nodules and also a reduced amount of zeaxanthin in GmCCD8-expressing E. coli, suggesting cleavage of the carotenoid. In view of these findings, we propose that carotenoids such as zeaxanthin synthesized in root nodules are cleaved by GmCCDs, and we discuss the possible roles of the carotenoid cleavage products in nodulation.
Collapse
Affiliation(s)
| | | | - Ji-Hyun Um
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Kyunga Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Sun-Kang Choi
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Byung-Hun Um
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Suk-Woo Kang
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Jee-Woong Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Shinichi Takaichi
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Seok-Bo Song
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Choon-Hwan Lee
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Ho-Seung Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Ki Woo Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Kyoung Hee Nam
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Suk-Ha Lee
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Yul-Ho Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Hyang-Mi Park
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Sun-Hwa Ha
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Desh Pal S. Verma
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | | |
Collapse
|
164
|
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R. Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 2013; 18:2202-19. [PMID: 23249379 DOI: 10.1089/ars.2012.5136] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE During the Legume-Rhizobium symbiosis, hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) appear to play an important signaling role in the establishment and the functioning of this interaction. Modifications of the levels of these reactive species in both partners impair either the development of the nodules (new root organs formed on the interaction) or their N(2)-fixing activity. RECENT ADVANCES NADPH oxidases (Noxs) have been recently described as major sources of H(2)O(2) production, via superoxide anion dismutation, during symbiosis. Nitrate reductases (NR) and electron transfer chains from both partners were found to significantly contribute to NO production in N(2)-fixing nodules. Both S-sulfenylated and S-nitrosylated proteins have been detected during early interaction and in functioning nodules, linking reactive oxygen species (ROS)/NO production to redox-based protein regulation. NO was also found to play a metabolic role in nodule energy metabolism. CRITICAL ISSUES H(2)O(2) may control the infection process and the subsequent bacterial differentiation into the symbiotic form. NO is required for an optimal establishment of symbiosis and appears to be a key player in nodule senescence. FUTURE DIRECTIONS A challenging question is to define more precisely when and where reactive species are generated and to develop adapted tools to detect their production in vivo. To investigate the role of Noxs and NRs in the production of H(2)O(2) and NO, respectively, the use of mutants under the control of organ-specific promoters will be of crucial interest. The balance between ROS and NO production appears to be a key point to understand the redox regulation of symbiosis.
Collapse
Affiliation(s)
- Alain Puppo
- Institut Sophia Agrobiotech, TGU INRA 1355-CNRS 7254, Université de Nice-Sophia Antipolis, Sophia-Antipolis, France.
| | | | | | | | | |
Collapse
|
165
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
166
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium–legume symbiosis. FEMS Microbiol Rev 2013; 37:364-83. [DOI: 10.1111/1574-6976.12003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
|
167
|
Orozco-Mosqueda MDC, Macías-Rodríguez LI, Santoyo G, Farías-Rodríguez R, Valencia-Cantero E. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti. Folia Microbiol (Praha) 2013; 58:579-85. [PMID: 23564626 DOI: 10.1007/s12223-013-0243-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Medicago truncatula represents a model plant species for understanding legume-bacteria interactions. M. truncatula roots form a specific root-nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via "Strategy I," which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.
Collapse
Affiliation(s)
- Maria del Carmen Orozco-Mosqueda
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B5 Ciudad Universitaria, Morelia, Michoacán, Mexico, C.P. 58030
| | | | | | | | | |
Collapse
|
168
|
Rosic NN, Leggat W, Kaniewska P, Dove S, Hoegh-Guldberg O. New-old hemoglobin-like proteins of symbiotic dinoflagellates. Ecol Evol 2013; 3:822-34. [PMID: 23610627 PMCID: PMC3631397 DOI: 10.1002/ece3.498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/24/2022] Open
Abstract
Symbiotic dinoflagellates are unicellular photosynthetic algae that live in mutualistic symbioses with many marine organisms. Within the transcriptome of coral endosymbionts Symbiodinium sp. (type C3), we discovered the sequences of two novel and highly polymorphic hemoglobin-like genes and proposed their 3D protein structures. At the protein level, four isoforms shared between 87 and 97% sequence identity for Hb-1 and 78-99% for Hb-2, whereas between Hb-1 and Hb-2 proteins, only 15-21% sequence homology has been preserved. Phylogenetic analyses of the dinoflagellate encoding Hb sequences have revealed a separate evolutionary origin of the discovered globin genes and indicated the possibility of horizontal gene transfer. Transcriptional regulation of the Hb-like genes was studied in the reef-building coral Acropora aspera exposed to elevated temperatures (6-7°C above average sea temperature) over a 24-h period and a 72-h period, as well as to nutrient stress. Exposure to elevated temperatures resulted in an increased Hb-1 gene expression of 31% after 72 h only, whereas transcript abundance of the Hb-2 gene was enhanced by up to 59% by both 1-day and 3-day thermal stress conditions. Nutrient stress also increased gene expression of Hb-2 gene by 70%. Our findings describe the differential expression patterns of two novel Hb genes from symbiotic dinoflagellates and their polymorphic nature. Furthermore, the inducible nature of Hb-2 gene by both thermal and nutrient stressors indicates a prospective role of this form of hemoglobin in the initial coral-algal responses to changes in environmental conditions. This novel hemoglobin has potential use as a stress biomarker.
Collapse
Affiliation(s)
- Nedeljka N Rosic
- School of Biological Sciences, The University of Queensland St. Lucia, Qld, 4072, Australia
| | | | | | | | | |
Collapse
|
169
|
Matilla AJ, Rodríguez-Gacio MDC. Non-symbiotic hemoglobins in the life of seeds. PHYTOCHEMISTRY 2013; 87:7-15. [PMID: 23286879 DOI: 10.1016/j.phytochem.2012.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/13/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Non-symbiotic hemoglobins (nsHbs), ancestors of symbiotic-Hbs, are hexacoordinated dimeric proteins, for which the crystal structure is well described. According to the extent of hexacoordination, nsHbs are classified as belonging to class-1 (nsHbs1) or class-2 (nsHbs2). The nsHbs1 show weak hexacoordination, moderate rates of O(2)-binding, very small rates of O(2) dissociation, and a remarkably high affinity for O(2), all suggesting a function involving O(2) scavenging. In contrast, the nsHbs2 exhibit strong hexacoordination, low rates of O(2)-binding and moderately low O(2) dissociation and affinity, suggesting a sensing role for sustained low (μM) levels of O(2). The existence of spatial and specific expression of nsHbs1 suggests that nsHbs play tissue-specific rather than housekeeping functions. The permeation of O(2) into seeds is usually prevented during the desiccation phase and early imbibition, generating an internal hypoxic environment that leads to ATP limitation. During evolution, the seed has acquired mechanisms to prevent or reduce this hypoxic stress. The nsHbs1/NO cycle appear to be involved in modulating the redox state in the seed and in maintaining an active metabolism. Under O(2) deficit, NADH and NO are synthesized in the seed and nsHbs1 scavenges O(2), which is used to transform NO into NO(3)(-) with concomitant formation of Fe(3+)-nsHbs1. Expression of nsHbs1 is not detectable in dry viable seeds. However, in the seeds cross-talk occurs between nsHbs1 and NO during germination. This review considers the current status of our knowledge of seed nsHbs and considers key issues of further work to better understand their role in seed physiology.
Collapse
Affiliation(s)
- Angel J Matilla
- Department of Plant Physiology, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
170
|
Um JH, Kim S, Kim YK, Song SB, Lee SH, Verma DPS, Cheon CI. RNA interference-mediated repression of S6 kinase 1 impairs root nodule development in soybean. Mol Cells 2013; 35:243-8. [PMID: 23475423 PMCID: PMC3887909 DOI: 10.1007/s10059-013-2315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 12/31/2022] Open
Abstract
Symbiotic nodule formation on legume roots is characterized with a series of developmental reprograming in root tissues, including extensive proliferation of cortical cells. We examined a possible involvement of the target of rapamycin (TOR) pathway, a central regulator of cell growth and proliferation in animals and yeasts, during soybean nodule development. Our results show that transcription of both GmTOR and its key downstream effector, GmS6K1, are activated during nodulation, which is paralleled with higher kinase activities of these gene products as well. RNAi-mediated knockdown of GmS6K1 impaired the nodule development with severely reduced nodule weight and numbers. In addition, expression of a few nodulins including leghemoglobin was also decreased, and consequently nitrogen fixation was found to be reduced by half. Proteomic analysis of the GmS6K1-RNAi nodules identified glutamine synthetase (GS), an essential enzyme for nitrogen assimilation in nodules, as one of the proteins that are significantly down regulated. These results appear to provide solid evidence for a functional link between GmS6K1 and nodule development.
Collapse
Affiliation(s)
- Ji-Hyun Um
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Yun-Kyoung Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Seok-Bo Song
- Department of Functional Crop, National Institute of Crop Science, Milyang 627-130,
Korea
| | - Suk-Ha Lee
- Department of Plant Science, Seoul National University, Seoul 151–742,
Korea
| | - Desh Pal S. Verma
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210,
USA
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| |
Collapse
|
171
|
Talano MA, Cejas RB, González PS, Agostini E. Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:8-14. [PMID: 23228549 DOI: 10.1016/j.plaphy.2012.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
Soybean (Glycine max) is often being cultivated in soils with moderate to high arsenic (As) concentrations or under irrigation with As contaminated groundwater. The purpose of this study was to determine the effect of As on soybean germination, development and nodulation in soybean-Bradyrhizobium japonicum E109 symbiosis, as a first-step approach to evaluate the impact of As on soybean production. Semi-hydroponic assays were conducted using soybean seedlings inoculated and non-inoculated with B. japonicum E109 and treated with arsenate or arsenite. Soybean germination and development, at early stage of growth, were significantly reduced from 10 μM arsenate or arsenite. This also was seen for soybean seedlings inoculated with B. japonicum mainly with arsenite where, in addition, the number of effective nodules was reduced, despite that the microorganism tolerated the metalloid. This minor nodulation could be due to a reduced motility (swarming and swimming) of the microorganism in presence of As. Arsenic concentration in roots was about 250-times higher than in shoots. Transference coefficient values indicated that As translocation to aerial parts was low and As accumulated mainly in roots, without significant differences between inoculated and non-inoculated plants. The presence of As restricted soybean-B. japonicum symbiosis and hence, the efficiency of most used commercial inoculants for soybean. Thus, water and/or soils containing As would negatively impact on soybean production, even in plants inoculated with B. japonicum E109.
Collapse
Affiliation(s)
- Melina A Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | | | | | | |
Collapse
|
172
|
|
173
|
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems.
Collapse
Affiliation(s)
- Michael Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
174
|
Brígido C, Robledo M, Menéndez E, Mateos PF, Oliveira S. A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1594-1604. [PMID: 23134119 DOI: 10.1094/mpmi-05-12-0140-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several molecular chaperones are known to be involved in bacteria stress response. To investigate the role of chaperone ClpB in rhizobia stress tolerance as well as in the rhizobia-plant symbiosis process, the clpB gene from a chickpea microsymbiont, strain Mesorhizobium ciceri LMS-1, was identified and a knockout mutant was obtained. The ClpB knockout mutant was tested to several abiotic stresses, showing that it was unable to grow after a heat shock and it was more sensitive to acid shock than the wild-type strain. A plant-growth assay performed to evaluate the symbiotic performance of the clpB mutant showed a higher proportion of ineffective root nodules obtained with the mutant than with the wild-type strain. Nodulation kinetics analysis showed a 6- to 8-day delay in nodule appearance in plants inoculated with the ΔclpB mutant. Analysis of nodC gene expression showed lower levels of transcript in the ΔclpB mutant strain. Analysis of histological sections of nodules formed by the clpB mutant showed that most of the nodules presented a low number of bacteroids. No differences in the root infection abilities of green fluorescent protein-tagged clpB mutant and wild-type strains were detected. To our knowledge, this is the first study that presents evidence of the involvement of the chaperone ClpB from rhizobia in the symbiotic nodulation process.
Collapse
|
175
|
De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. PLANT PHYSIOLOGY 2012; 160:2137-54. [PMID: 23071252 PMCID: PMC3510137 DOI: 10.1104/pp.112.204883] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/08/2012] [Indexed: 05/18/2023]
Abstract
Legumes overcome nitrogen shortage by developing root nodules in which symbiotic bacteria fix atmospheric nitrogen in exchange for host-derived carbohydrates and mineral nutrients. Nodule development involves the distinct processes of nodule organogenesis, bacterial infection, and the onset of nitrogen fixation. These entail profound, dynamic gene expression changes, notably contributed to by microRNAs (miRNAs). Here, we used deep-sequencing, candidate-based expression studies and a selection of Lotus japonicus mutants uncoupling different symbiosis stages to identify miRNAs involved in symbiotic nitrogen fixation. Induction of a noncanonical miR171 isoform, which targets the key nodulation transcription factor Nodulation Signaling Pathway2, correlates with bacterial infection in nodules. A second candidate, miR397, is systemically induced in the presence of active, nitrogen-fixing nodules but not in that of noninfected or inactive nodule organs. It is involved in nitrogen fixation-related copper homeostasis and targets a member of the laccase copper protein family. These findings thus identify two miRNAs specifically responding to symbiotic infection and nodule function in legumes.
Collapse
|
176
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium-legume symbiosis. FEMS Microbiol Rev 2012. [DOI: 10.1111/1574-6976.2012.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andreas F. Haag
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Markus F. F. Arnold
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Kamila K. Myka
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Bernhard Kerscher
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Sergio Dall'Angelo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique; Gif-sur-Yvette Cedex; France
| | - Gail P. Ferguson
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| |
Collapse
|
177
|
Balestrini R, Ott T, Güther M, Bonfante P, Udvardi MK, De Tullio MC. Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:71-9. [PMID: 22863656 DOI: 10.1016/j.plaphy.2012.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 05/20/2023]
Abstract
Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed.
Collapse
|
178
|
Yuan S, Zhu H, Gou H, Fu W, Liu L, Chen T, Ke D, Kang H, Xie Q, Hong Z, Zhang Z. A ubiquitin ligase of symbiosis receptor kinase involved in nodule organogenesis. PLANT PHYSIOLOGY 2012; 160:106-17. [PMID: 22822209 PMCID: PMC3440188 DOI: 10.1104/pp.112.199000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The symbiosis receptor kinase (SymRK) is required for morphological changes of legume root hairs triggered by rhizobial infection. How protein turnover of SymRK is regulated and how the nodulation factor signals are transduced downstream of SymRK are not known. In this report, a SymRK-interacting E3 ubiquitin ligase (SIE3) was shown to bind and ubiquitinate SymRK. The SIE3-SymRK interaction and the ubiquitination of SymRK were shown to occur in vitro and in planta. SIE3 represents a new class of plant-specific E3 ligases that contain a unique pattern of the conserved CTLH (for C-terminal to LisH), CRA (for CT11-RanBPM), and RING (for Really Interesting New Gene) domains. Expression of SIE3 was detected in all tested tissues of Lotus japonicus plants, and its transcript level in roots was enhanced by rhizobial infection. The SIE3 protein was localized to multiple subcellular locations including the nuclei and plasma membrane, where the SIE3-SymRK interaction took place. Overexpression of SIE3 promoted nodulation in transgenic hairy roots, whereas downregulation of SIE3 transcripts by RNA interference inhibited infection thread development and nodule organogenesis. These results suggest that SIE3 represents a new class of E3 ubiquitin ligase, acts as a regulator of SymRK, and is involved in rhizobial infection and nodulation in L. japonicus.
Collapse
|
179
|
Benyamina SM, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, de Lajudie P, Rouhier N, Jacquot JP, Alloing G, Puppo A, Frendo P. TwoSinorhizobium melilotiglutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation. Environ Microbiol 2012; 15:795-810. [DOI: 10.1111/j.1462-2920.2012.02835.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
180
|
Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R. The evolution of land plant hemoglobins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:71-81. [PMID: 22682566 DOI: 10.1016/j.plantsci.2012.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 05/04/2023]
Abstract
This review discusses the evolution of land plant hemoglobins within the broader context of eukaryote hemoglobins and the three families of bacterial globins. Most eukaryote hemoglobins, including metazoan globins and the symbiotic and non-symbiotic plant hemoglobins, are homologous to the bacterial 3/3-fold flavohemoglobins. The remaining plant hemoglobins are homologous to the bacterial 2/2-fold group 2 hemoglobins. We have proposed that all eukaryote globins were acquired via horizontal gene transfer concomitant with the endosymbiotic events responsible for the origin of mitochondria and chloroplasts. Although the 3/3 hemoglobins originated in the ancestor of green algae and plants prior to the emergence of embryophytes at about 450 mya, the 2/2 hemoglobins appear to have originated via horizontal gene transfer from a bacterium ancestral to present day Chloroflexi. Unlike the 2/2 hemoglobins, the evolution of the 3/3 hemoglobins was accompanied by duplication, diversification, and functional adaptations. Duplication of the ancestral plant nshb gene into the nshb-1 and nshb-2 lineages occurred prior to the monocot-dicot divergence at ca. 140 mya. It was followed by the emergence of symbiotic hemoglobins from a non-symbiotic hemoglobin precursor and further specialization, leading to leghemoglobins in N₂-fixing legume nodules concomitant with the origin of nodulation at ca. 60 mya. The transition of non-symbiotic to symbiotic hemoglobins (including to leghemoglobins) was accompanied by the alteration of heme-Fe coordination from hexa- to penta-coordination. Additional genomic information about Charophyte algae, the sister group to land plants, is required for the further clarification of plant globin phylogeny.
Collapse
Affiliation(s)
- Consuelo Vázquez-Limón
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
181
|
Pislariu CI, D. Murray J, Wen J, Cosson V, Muni RRD, Wang M, A. Benedito V, Andriankaja A, Cheng X, Jerez IT, Mondy S, Zhang S, Taylor ME, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. PLANT PHYSIOLOGY 2012; 159:1686-99. [PMID: 22679222 PMCID: PMC3425206 DOI: 10.1104/pp.112.197061] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/01/2012] [Indexed: 05/20/2023]
Abstract
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.
Collapse
Affiliation(s)
| | | | - JiangQi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Viviane Cosson
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - RajaSekhara Reddy Duvvuru Muni
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Mingyi Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Vagner A. Benedito
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Andry Andriankaja
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Xiaofei Cheng
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Ivone Torres Jerez
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Samuel Mondy
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Shulan Zhang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Mark E. Taylor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Million Tadege
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Pascal Ratet
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Michael K. Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| |
Collapse
|
182
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
183
|
Zhao H, Li M, Fang K, Chen W, Wang J. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction. PLoS One 2012; 7:e31287. [PMID: 22319621 PMCID: PMC3272708 DOI: 10.1371/journal.pone.0031287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/05/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. RESULTS Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. CONCLUSIONS As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.
Collapse
Affiliation(s)
- Hansheng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mao Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- * E-mail: (WC); (JW)
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (WC); (JW)
| |
Collapse
|
184
|
Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K, Petersen TR, Sandal N, Stougaard J, Udvardi MK, Tamaoki M, Kawaguchi M, Kouchi H, Suganuma N. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. PLANT & CELL PHYSIOLOGY 2012; 53:225-36. [PMID: 22123791 DOI: 10.1093/pcp/pcr167] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.
Collapse
Affiliation(s)
- Tsuneo Hakoyama
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Schwachtje J, Karojet S, Thormählen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Köhl K, van Dongen JT. A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS One 2011; 6:e29382. [PMID: 22216267 PMCID: PMC3247267 DOI: 10.1371/journal.pone.0029382] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022] Open
Abstract
Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion.
Collapse
Affiliation(s)
- Jens Schwachtje
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail: (JS); (JTvD)
| | - Silke Karojet
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ina Thormählen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Carolin Bernholz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sabine Kunz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stephan Brouwer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Melanie Schwochow
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joost T. van Dongen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail: (JS); (JTvD)
| |
Collapse
|
186
|
Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R. Nitric oxide in legume-rhizobium symbiosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:573-81. [PMID: 21893254 DOI: 10.1016/j.plantsci.2011.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with a broad spectrum of regulatory functions in plant growth and development. NO has been found to be involved in various pathogenic or symbiotic plant-microbe interactions. During the last decade, increasing evidence of the occurrence of NO during legume-rhizobium symbioses has been reported, from early steps of plant-bacteria interaction, to the nitrogen-fixing step in mature nodules. This review focuses on recent advances on NO production and function in nitrogen-fixing symbiosis. First, the potential plant and bacterial sources of NO, including NO synthase-like, nitrate reductase or electron transfer chains of both partners, are presented. Then responses of plant and bacterial cells to the presence of NO are presented in the context of the N(2)-fixing symbiosis. Finally, the roles of NO as either a regulatory signal of development, or a toxic compound with inhibitory effects on nitrogen fixation, or an intermediate involved in energy metabolism, during symbiosis establishment and nodule functioning are discussed.
Collapse
Affiliation(s)
- Eliane Meilhoc
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
187
|
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1300-9. [PMID: 21995798 DOI: 10.1094/mpmi-06-11-0152] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
Collapse
|
188
|
El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, Hérouart D, Frendo P. Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. THE NEW PHYTOLOGIST 2011; 192:496-506. [PMID: 21726232 DOI: 10.1111/j.1469-8137.2011.03810.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Legumes form a symbiotic interaction with bacteria of the Rhizobiaceae family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We examined the importance of glutathione (GSH) and homoglutathione (hGSH) during the nitrogen fixation process. Spatial patterns of the expression of the genes involved in the biosynthesis of both thiols were studied using promoter-GUS fusion analysis. Genetic approaches using the nodule nitrogen-fixing zone-specific nodule cysteine rich (NCR001) promoter were employed to determine the importance of (h)GSH in biological nitrogen fixation (BNF). The (h)GSH synthesis genes showed a tissue-specific expression pattern in the nodule. Down-regulation of the γ-glutamylcysteine synthetase (γECS) gene by RNA interference resulted in significantly lower BNF associated with a significant reduction in the expression of the leghemoglobin and thioredoxin S1 genes. Moreover, this lower (h)GSH content was correlated with a reduction in the nodule size. Conversely, γECS overexpression resulted in an elevated GSH content which was correlated with increased BNF and significantly higher expression of the sucrose synthase-1 and leghemoglobin genes. Taken together, these data show that the plant (h)GSH content of the nodule nitrogen-fixing zone modulates the efficiency of the BNF process, demonstrating their important role in the regulation of this process.
Collapse
Affiliation(s)
- Sarra El Msehli
- UMR Interactions Biotiques et Santé Végétale, Université de Nice-Sophia Antipolis, Sophia-Antipolis cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Spyrakis F, Bruno S, Bidon-Chanal A, Luque FJ, Abbruzzetti S, Viappiani C, Dominici P, Mozzarelli A. Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life 2011; 63:355-62. [PMID: 21618402 DOI: 10.1002/iub.470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Sujkowska M, Górska-Czekaj M, Bederska M, Borucki W. Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules. Symbiosis 2011; 54:1-16. [PMID: 21957326 PMCID: PMC3168758 DOI: 10.1007/s13199-011-0126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 07/20/2011] [Indexed: 10/26/2022]
Abstract
Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces.Immunolocalization studies proved higher expression of endo-β-1,4-glucanases within expanding cells of the outer cortex of pea nodules comparing with nodule endodermis or nodule parenchyma, so it is suggested that (1) endo-glucanases are involved in growth related modifications of cell walls and (2) enlarged cells decrease nodule conductance to oxygen.
Collapse
Affiliation(s)
- Marzena Sujkowska
- Department of Botany, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, Warsaw, 02-776 Poland
| | - Magdalena Górska-Czekaj
- Department of Botany, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, Warsaw, 02-776 Poland
| | - Magdalena Bederska
- Department of Botany, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, Warsaw, 02-776 Poland
| | - Wojciech Borucki
- Department of Botany, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, Warsaw, 02-776 Poland
| |
Collapse
|
191
|
Yokota K, Hayashi M. Function and evolution of nodulation genes in legumes. Cell Mol Life Sci 2011; 68:1341-51. [PMID: 21380559 PMCID: PMC11114672 DOI: 10.1007/s00018-011-0651-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Root nodule (RN) symbiosis has a unique feature in which symbiotic bacteria fix atmospheric nitrogen. The symbiosis is established with a limited species of land plants, including legumes. How RN symbiosis evolved is still a mystery, but recent findings on legumes genes that are necessary for RN symbiosis may give us a clue.
Collapse
Affiliation(s)
- Keisuke Yokota
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
192
|
Bustos-Sanmamed P, Tovar-Méndez A, Crespi M, Sato S, Tabata S, Becana M. Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. THE NEW PHYTOLOGIST 2011; 189:765-776. [PMID: 21073469 DOI: 10.1111/j.1469-8137.2010.03527.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• In legumes, symbiotic leghemoglobins facilitate oxygen diffusion to the bacteroids, but the roles of nonsymbiotic and truncated hemoglobins are largely unknown. Here the five hemoglobin genes of Lotus japonicus have been functionally characterized to gain insight into their regulatory mechanisms. • Plants were exposed to nitric oxide donors, stressful conditions, and hormones. Gene expression profiling was determined by quantitative PCR, and gene activities were localized using in situ hybridization and promoter-reporter gene fusions. • The LjGLB1-1, LjGLB2, and LjGLB3-1 mRNA expression levels were very high in nodules relative to other plant organs. The expression of these genes was localized in the vascular bundles, cortex, and infected tissue. LjGLB1-1 was the only gene induced by nitric oxide. Cytokinins caused nearly complete inactivation of LjGLB2 and LjGLB3-1 in nodules and induction of LjGLB1-1 in roots. Abscisic acid induced LjGLB1-1 in nodules and LjGLB1-2 and LjGLB2 in roots, whereas polyamines and jasmonic acid induced LjGLB1-1 only in roots. • The enhanced expression of the three types of hemoglobins in nodules, the colocalization of gene activities in nodule and root tissues with high metabolic rates, and their distinct regulatory mechanisms point out complementary roles of hemoglobins and strongly support the hypothesis that LjGLB1-1, LjGLB2, and LjGLB3-1 are required for symbiosis.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Alejandro Tovar-Méndez
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Martin Crespi
- Institut des Sciences du Végétal, CNRS, 1 Avenue de la Terrase, 91198 Gif-sur-Yvette Cedex, France
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
193
|
Ghysels B, Franck F. Hydrogen photo-evolution upon S deprivation stepwise: an illustration of microalgal photosynthetic and metabolic flexibility and a step stone for future biotechnological methods of renewable H(2) production. PHOTOSYNTHESIS RESEARCH 2010; 106:145-54. [PMID: 20658193 DOI: 10.1007/s11120-010-9582-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/01/2010] [Indexed: 05/04/2023]
Abstract
The metabolic flexibility of some photosynthetic microalgae enables them to survive periods of anaerobiosis in the light by developing a particular photofermentative metabolism. The latter entails compounds of the photosynthetic electron transfer chain and an oxygen-sensitive hydrogenase in order to reoxidize reducing equivalents and to generate ATP for maintaining basal metabolic function. This pathway results in the photo-evolution of hydrogen gas by the algae. A decade ago, Melis and coworkers managed to reproduce such a condition in a laboratory context by depletion of sulfur in the algal culture media, making the photo-evolution by the algae sustainable for several days (Melis et al. in Plant Physiol 122:127-136, 2000). This observation boosted research in algal H(2) evolution. A feature, which due to its transient nature was long time considered as a curiosity of algal photosynthesis suddenly became a phenomenon with biotechnological potential. Although the Melis procedure has not been developed into a biotechnological process of renewable H(2) generation so far, it has been a useful tool for studying microalgal metabolic and photosynthetic flexibility and a possible step stone for future H(2) production procedures. Ten years later most of the critical steps and limitations of H(2) production by this protocol have been studied from different angles particularly with the model organism Chlamydomonas reinhardtii, by introducing various changes in culture conditions and making use of mutants issued from different screens or by reverse genomic approaches. A synthesis of these observations with the most important conclusions driven from recent studies will be presented in this review.
Collapse
Affiliation(s)
- Bart Ghysels
- Department of Life Sciences, Laboratory of Plant Biochemistry and Photobiology, Université de Liège, B22, 27, Boulevard du Rectorat, 4000 Liège, Belgium.
| | | |
Collapse
|
194
|
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. PLANT & CELL PHYSIOLOGY 2010; 51:1381-97. [PMID: 20660226 PMCID: PMC2938637 DOI: 10.1093/pcp/pcq107] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant-microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant-microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.
Collapse
Affiliation(s)
- Hiroshi Kouchi
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. THE PLANT CELL 2010; 22:2509-26. [PMID: 20675572 PMCID: PMC2929109 DOI: 10.1105/tpc.109.069807] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 05/07/2023]
Abstract
Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant's common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK.
Collapse
Affiliation(s)
- Martin Groth
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Naoya Takeda
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Jillian Perry
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Hisaki Uchida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Stephan Dräxl
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Andreas Brachmann
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masayoshi Kawaguchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Trevor L. Wang
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Martin Parniske
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| |
Collapse
|
196
|
Orikasa Y, Nodasaka Y, Ohyama T, Okuyama H, Ichise N, Yumoto I, Morita N, Wei M, Ohwada T. Enhancement of the nitrogen fixation efficiency of genetically-engineered Rhizobium with high catalase activity. J Biosci Bioeng 2010; 110:397-402. [PMID: 20547375 DOI: 10.1016/j.jbiosc.2010.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/18/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022]
Abstract
The vktA catalase gene, which had been cloned from Vibrio rumoiensis S-1T having extraordinarily high catalase activity, was introduced into the root nodule bacterium, Rhizobium leguminosarum bv. phaseoli USDA 2676. The catalase activity of the vktA-transformed R. leguminosarum cells (free-living) was three orders in magnitude higher than that of the parent cells and this transformant could grow in a higher concentration of exogenous hydrogen peroxide (H2O2). The vktA-transformant was inoculated to the host plant (Phaseolus vulgaris L.) and the nodulation efficiency was evaluated. The results showed that the nitrogen-fixing activity of nodules was increased 1.7 to 2.3 times as compared to the parent. The levels of H2O2 in nodules formed by the vktA-transformant were decreased by around 73%, while those of leghemoglobins (Lba and Lbb) were increased by 1.2 (Lba) and 2.1 (Lbb) times compared with the parent. These results indicated that the increase of catalase activity in rhizobia could be useful to improve the nitrogen-fixing efficiency of nodules by the reduction of H2O2 content concomitantly with the enhancement of leghemoglobins contents.
Collapse
Affiliation(s)
- Yoshitake Orikasa
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho KI. The Frankia alni symbiotic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:593-607. [PMID: 20367468 DOI: 10.1094/mpmi-23-5-0593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
Collapse
|
198
|
Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. PLANT PHYSIOLOGY 2010; 152:1501-13. [PMID: 20089769 PMCID: PMC2832266 DOI: 10.1104/pp.109.150045] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
The role of nitrogen metabolism in the survival of prolonged periods of waterlogging was investigated in highly flood-tolerant, nodulated Lotus japonicus plants. Alanine production revealed to be a critical hypoxic pathway. Alanine is the only amino acid whose biosynthesis is not inhibited by nitrogen deficiency resulting from RNA interference silencing of nodular leghemoglobin. The metabolic changes that were induced following waterlogging can be best explained by the activation of alanine metabolism in combination with the modular operation of a split tricarboxylic acid pathway. The sum result of this metabolic scenario is the accumulation of alanine and succinate and the production of extra ATP under hypoxia. The importance of alanine metabolism is discussed with respect to its ability to regulate the level of pyruvate, and this and all other changes are discussed in the context of current models concerning the regulation of plant metabolism.
Collapse
|
199
|
Amrani S, Noureddine NE, Bhatnagar T, Argandoña M, Nieto JJ, Vargas C. Phenotypic and genotypic characterization of rhizobia associated with Acacia saligna (Labill.) Wendl. in nurseries from Algeria. Syst Appl Microbiol 2010; 33:44-51. [DOI: 10.1016/j.syapm.2009.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Indexed: 10/20/2022]
|
200
|
Bek AS, Sauer J, Thygesen MB, Duus JØ, Petersen BO, Thirup S, James E, Jensen KJ, Stougaard J, Radutoiu S. Improved characterization of nod factors and genetically based variation in LysM Receptor domains identify amino acids expendable for nod factor recognition in Lotus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:58-66. [PMID: 19958139 DOI: 10.1094/mpmi-23-1-0058] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation of functional nodules is a complex process depending on host-microsymbiont compatibility in all developmental stages. This report uses the contrasting symbiotic phenotypes of Lotus japonicus and L. pedunculatus, inoculated with Mesorhizobium loti or the Bradyrhizobium sp. (Lotus), to investigate the role of Nod factor structure and Nod factor receptors (NFR) for rhizobial recognition, infection thread progression, and bacterial persistence within nodule cells. A key contribution was the use of 800 MHz nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for Nod factor analysis. The Nod factor decorations at the nonreducing end differ between Bradyrhizobium sp. (Lotus) and M. loti, and the NFR1/NFR5 extracellular regions of L. pedunculatus and L. japonicus were found to vary in amino acid composition. Genetic transformation experiments using chimeric and wild-type receptors showed that both receptor variants recognize the structurally different Nod factors but the later symbiotic phenotype remained unchanged. These results highlight the importance of additional checkpoints during nitrogen-fixing symbiosis and define several amino acids in the LysM domains as expendable for perception of the two differentially carbamoylated Nod factors.
Collapse
Affiliation(s)
- Anita S Bek
- Centre for Carbohydrate Recognition and signalling, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, Aarhus 8000 C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|