151
|
Muro-Villanueva F, Mao X, Chapple C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol 2019; 56:202-208. [PMID: 30677701 DOI: 10.1016/j.copbio.2018.12.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
Abstract
Lignin, a polymer found in the plant secondary cell wall, is a major contributor to biomass' recalcitrance toward saccharification. Because of this negative impact toward the value of lignocellulosic crops, there is a special interest in modifying the content and composition of this important plant biopolymer. For many years this endeavor has been hindered by the plant growth inhibition that is often associated with manipulations to phenylpropanoid metabolism. Although the actual mechanism by which dwarfism arises remains unknown, recent advances in tissue-specific lignin complementation and better understanding of phenylpropanoid transcriptional regulation has made it possible to disentangle lignin modification from perturbations in plant development.
Collapse
Affiliation(s)
- Fabiola Muro-Villanueva
- Department of Biochemistry and the Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States
| | - Xiangying Mao
- Department of Biochemistry and the Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States
| | - Clint Chapple
- Department of Biochemistry and the Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
152
|
Hou S, Liu Z, Shen H, Wu D. Damage-Associated Molecular Pattern-Triggered Immunity in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:646. [PMID: 31191574 PMCID: PMC6547358 DOI: 10.3389/fpls.2019.00646] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 05/14/2023]
Abstract
As a universal process in multicellular organisms, including animals and plants, cells usually emit danger signals when suffering from attacks of microbes and herbivores, or physical damage. These signals, termed as damage-associated molecular patterns (DAMPs), mainly include cell wall or extracellular protein fragments, peptides, nucleotides, and amino acids. Once exposed on cell surfaces, DAMPs are detected by plasma membrane-localized receptors of surrounding cells to regulate immune responses against the invading organisms and promote damage repair. DAMPs may also act as long-distance mobile signals to mediate systemic wounding responses. Generation, release, and perception of DAMPs, and signaling events downstream of DAMP perception are all rigorously modulated by plants. These processes integrate together to determine intricate mechanisms of DAMP-triggered immunity in plants. In this review, we present an extensive overview on our current understanding of DAMPs in plant immune system.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- *Correspondence: Shuguo Hou,
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Daoji Wu,
| |
Collapse
|
153
|
Traas J. Organogenesis at the Shoot Apical Meristem. PLANTS 2018; 8:plants8010006. [PMID: 30597849 PMCID: PMC6358984 DOI: 10.3390/plants8010006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
Lateral organ initiation at the shoot apical meristem involves complex changes in growth rates and directions, ultimately leading to the formation of leaves, stems and flowers. Extensive molecular analysis identifies auxin and downstream transcriptional regulation as major elements in this process. This molecular regulatory network must somehow interfere with the structural elements of the cell, in particular the cell wall, to induce specific morphogenetic events. The cell wall is composed of a network of rigid cellulose microfibrils embedded in a matrix composed of water, polysaccharides such as pectins and hemicelluloses, proteins, and ions. I will discuss here current views on how auxin dependent pathways modulate wall structure to set particular growth rates and growth directions. This involves complex feedbacks with both the cytoskeleton and the cell wall.
Collapse
Affiliation(s)
- Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon CEDEX O7, France.
| |
Collapse
|
154
|
Zhou K. GPI-anchored SKS proteins regulate root development through controlling cell polar expansion and cell wall synthesis. Biochem Biophys Res Commun 2018; 509:119-124. [PMID: 30578078 DOI: 10.1016/j.bbrc.2018.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins were reported to be involved in many developmental progresses in Arabidopsis. Here I report that, a group of homologous glycosylphosphatidylinositol-anchored proteins from SKU5-Similar family regulate seedling root development of Arabidopsis through controlling cell polar expansion and cell wall synthesis. Due to the irregular expansion of root cells and the defective synthesis of cell walls, their knockout mutants generated shorter roots with irregularly shaped root cells, and thicker cell walls.
Collapse
Affiliation(s)
- Ke Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
155
|
Fritz MA, Rosa S, Sicard A. Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Front Genet 2018; 9:478. [PMID: 30405690 PMCID: PMC6207588 DOI: 10.3389/fgene.2018.00478] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation.
Collapse
Affiliation(s)
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
156
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
157
|
Oelmüller R. Sensing environmental and developmental signals via cellooligomers. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:1-6. [PMID: 30005268 DOI: 10.1016/j.jplph.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Roots respond to a cocktail of chemicals from microbes in the rhizosphere. Infochemicals in nmol concentrations activate receptor-mediated signal pathways, which reprogram the plant responses to environmental changes. The microbial signals have to pass the cell wall to activate pattern recognition receptors at the surface of the plant plasma membrane. The structure of the cell wall is not only a barrier for the signaling molecules, but also changes permanently during growth and development, as well as in response to microbial attacks or abiotic stress. Recently, cellooligomers (COMs) were identified as novel chemical mediators in Arabidopsis thaliana, which inform the cell about the alterations in and around the cell wall. They can be of microbial and plant origin and represent novel invasion patterns (Cook et al., 2015). COMs initiate Ca2+-dependent signaling events that reprogram the cell and adjust the expression and metabolite profiles as well as innate immunity in response to changes in their rhizosphere environment and the state of the cell wall. COMs operate synergistically with other signals or their recognition machineries and activates local and systemic responses in the entire plant. They also adjust the performance of the areal parts of the plant to signals perceived by the roots. Here, I summarize our current knowledge about COMs and propose strategies for future investigations.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
158
|
Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y. FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Curr Biol 2018; 28:3316-3324.e6. [PMID: 30270181 DOI: 10.1016/j.cub.2018.07.078] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
Bacterial pathogens use effectors and phytotoxins to facilitate infection of host plants. Coronatine (COR) is one of the phytotoxins produced in bacterial pathogens, such as Pseudomonas syringae pv. tomato DC3000 (pst DC3000). COR structurally and functionally mimics the active form of the plant hormone jasmonic acid (JA), JA-isoleucine (JA-Ile), and can hijack the host JA-signaling pathway to achieve host disease susceptibility [1]. COR utilizes the transcription factor MYC2, a master regulator of JA signaling, to activate NAC transcription factors, which functions to inhibit accumulation of salicylic acid (SA) and thus compromise host immunity [2]. It has been demonstrated that SA can antagonize JA signaling through NONEXPRESSOR of PATHOGENESIS-RELATED GENE1 (NPR1) [3] and downstream transcription factors TGAs [4] and WRKYs [5, 6]. However, the detailed mechanism by which host plants counteract COR-mediated susceptibility is largely unknown. Here, we show that the receptor kinase FERONIA (FER) functions to inhibit JA and COR signaling by phosphorylating and destabilizing MYC2, thereby positively regulating immunity. Conversely, the peptide ligand RALF23 acts through FER to stabilize MYC2 and elevate JA signaling, negatively contributing to plant immunity. Our results establish the RALF23-FER-MYC2 signaling module and provide a previously unknown mechanism by which host plants utilize FER signaling to counteract COR-mediated host disease susceptibility.
Collapse
Affiliation(s)
- Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA; Data2Bio, Ames, IA 50011-3650, USA
| | - Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Jiani Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, USA; Data2Bio, Ames, IA 50011-3650, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
159
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
160
|
Liu P, Haruta M, Minkoff BB, Sussman MR. Probing a Plant Plasma Membrane Receptor Kinase’s Three-Dimensional Structure Using Mass Spectrometry-Based Protein Footprinting. Biochemistry 2018; 57:5159-5168. [DOI: 10.1021/acs.biochem.8b00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pei Liu
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Miyoshi Haruta
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Benjamin B. Minkoff
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael R. Sussman
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
161
|
Richter J, Watson JM, Stasnik P, Borowska M, Neuhold J, Berger M, Stolt-Bergner P, Schoft V, Hauser MT. Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci Rep 2018; 8:12182. [PMID: 30111865 PMCID: PMC6093868 DOI: 10.1038/s41598-018-30711-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Resolving functions of closely linked genes is challenging or nearly impossible with classical genetic tools. Four members of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) family are clustered on Arabidopsis chromosome five. To resolve the potentially redundant functions of this subclass of CrRLK1Ls named MEDOS1 to 4 (MDS1 to 4), we generated a single CRISPR/Cas9 transformation vector using a Golden Gate based cloning system to target all four genes simultaneously. We introduce single mutations within and deletions between MDS genes as well as knock-outs of the whole 11 kb gene cluster. The large MDS cluster deletion was inherited in up to 25% of plants lacking the CRISPR/Cas9 construct in the T2 generation. In contrast to described phenotypes of already characterized CrRLK1L mutants, quadruple mds knock-outs were fully fertile, developed normal root hairs and trichomes and responded to pharmacological inhibition of cellulose biosynthesis similar to wildtype. Recently, we demonstrated the role of four CrRLK1L in growth adaptation to metal ion stress. Here we show the involvement of MDS genes in response to Ni2+ during hypocotyl elongation and to Cd2+ and Zn2+ during root growth. Our finding supports the model of an organ specific network of positively and negatively acting CrRLK1Ls.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - James Matthew Watson
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Peter Stasnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Monika Borowska
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Jana Neuhold
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Matthias Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Vera Schoft
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria.
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
162
|
Zhao F, Chen W, Traas J. Mechanical signaling in plant morphogenesis. Curr Opin Genet Dev 2018; 51:26-30. [DOI: 10.1016/j.gde.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
163
|
Doblas VG, Gonneau M, Höfte H. Cell wall integrity signaling in plants: Malectin-domain kinases and lessons from other kingdoms. ACTA ACUST UNITED AC 2018; 3:1-11. [PMID: 32743130 PMCID: PMC7389452 DOI: 10.1016/j.tcsw.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022]
Key Words
- AFM, atomic force microscopy
- Animals
- CWI sensing, cell wall integrity sensing
- Cell wall
- Cell wall rheology
- CrRLK1L
- CrRLK1L, Catharanthus roseus receptor-like kinase 1-like protein
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- GFP, green fluorescent protein
- GPI-AP, glycosylphosphatidylinositol-anchored protein
- Immunity
- LRR, leucine-rich repeat
- Mechanosensing
- PME, pectin methylesterases
- PTI, pathogen-associated molecular pattern (PAMP)-triggered immunity
- Plant growth
- RALF, rapid alkalinisation factor
- RK, receptor kinase
- RLCK, receptor-like cytoplasmic kinase
- ROP, Rho-GTPase of plants
- ROS, reactive oxygen species
- Signaling
- TGF-β, transforming growth factor β
- Yeast
Collapse
Affiliation(s)
- Verónica G Doblas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
164
|
Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Höfte H. Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Curr Biol 2018; 28:2452-2458.e4. [PMID: 30057301 DOI: 10.1016/j.cub.2018.05.075] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/05/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022]
Abstract
The growth of plants, like that of other walled organisms, depends on the ability of the cell wall to yield without losing its integrity. In this context, plant cells can sense the perturbation of their walls and trigger adaptive modifications in cell wall polymer interactions. Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1) was previously shown in Arabidopsis to trigger growth inhibition and defense responses upon perturbation of the cell wall, but so far, neither the ligand nor the role of the receptor in normal development was known. Here, we report that THE1 is a receptor for the peptide rapid alkalinization factor (RALF) 34 and that this signaling module has a role in the fine-tuning of lateral root initiation. We also show that RALF34-THE1 signaling depends, at least for some responses, on FERONIA (FER), another RALF receptor involved in a variety of processes, including immune signaling, mechanosensing, and reproduction [1]. Together, the results show that RALF34 and THE1 are part of a signaling network that integrates information on the integrity of the cell wall with the coordination of normal morphogenesis.
Collapse
Affiliation(s)
- Martine Gonneau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Thierry Desprez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Marjolaine Martin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Verónica G Doblas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Fabien Miart
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Kian Hématy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Julien Renou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Benoit Landrein
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
165
|
Ke M, Gao Z, Chen J, Qiu Y, Zhang L, Chen X. Auxin controls circadian flower opening and closure in the waterlily. BMC PLANT BIOLOGY 2018; 18:143. [PMID: 29996787 PMCID: PMC6042438 DOI: 10.1186/s12870-018-1357-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Flowers open at sunrise and close at sunset, establishing a circadian floral movement rhythm to facilitate pollination as part of reproduction. By the coordination of endogenous factors and environmental stimuli, such as circadian clock, photoperiod, light and temperature, an appropriate floral movement rhythm has been established; however, the underlying mechanisms remain unclear. RESULTS In our study, we use waterlily as a model which represents an early-diverging grade of flowering plants, and we aim to reveal the general mechanism of flower actions. We found that the intermediate segment of petal cells of waterlily are highly flexible, followed by a circadian cell expansion upon photoperiod stimuli. Auxin causes constitutively flower opening while auxin inhibitor suppresses opening event. Subsequent transcriptome profiles generated from waterlily's intermediate segment of petals at different day-time points showed that auxin is a crucial phytohormone required for floral movement rhythm via the coordination of YUCCA-controlled auxin synthesis, GH3-mediated auxin homeostasis, PIN and ABCB-dependent auxin efflux as well as TIR/AFB-AUX/IAA- and SAUR-triggered auxin signaling. Genes involved in cell wall organization were downstream of auxin events, resulting in the output phenotypes of rapid cell expansion during flower opening and cell shrinkage at flower closure stage. CONCLUSIONS Collectively, our data demonstrate a central regulatory role of auxin in floral movement rhythm and provide a global understanding of flower action in waterlily, which could be a conserved feature of angiosperms.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhen Gao
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianqing Chen
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Yuting Qiu
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liangsheng Zhang
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xu Chen
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
166
|
Moussu S, Augustin S, Roman AO, Broyart C, Santiago J. Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr D Struct Biol 2018; 74:671-680. [PMID: 29968676 PMCID: PMC6038381 DOI: 10.1107/s205979831800774x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023] Open
Abstract
Complex cell-to-cell communication between the male pollen tube and the female reproductive organs is required for plant fertilization. A family of Catharanthus roseus receptor kinase 1-like (CrRLK1L) membrane receptors has been genetically implicated in this process. Here, crystal structures of the CrRLK1Ls ANXUR1 and ANXUR2 are reported at 1.48 and 1.1 Å resolution, respectively. The structures reveal a novel arrangement of two malectin-like domains connected by a short β-hairpin linker and stabilized by calcium ions. The canonical carbohydrate-interaction surfaces of related animal and bacterial carbohydrate-binding modules are not conserved in plant CrRLK1Ls. In line with this, the binding of chemically diverse oligosaccharides to ANXUR1 and HERCULES1 could not be detected. Instead, CrRLK1Ls have evolved a protein-protein interface between their malectin domains which forms a deep cleft lined by highly conserved aromatic and polar residues. Analysis of the glycosylation patterns of different CrRLK1Ls and their oligomeric states suggests that this cleft could resemble a binding site for a ligand required for receptor activation of CrRLK1Ls.
Collapse
Affiliation(s)
- Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
167
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
168
|
Cao W, Luo L, Yi M, Jia Y. A theoretical study on the cross-talk of stress regulatory pathways in root cells. Biophys Chem 2018; 240:82-87. [PMID: 29945014 DOI: 10.1016/j.bpc.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 11/29/2022]
Abstract
The plants developed more dedicated regulatory pathways than the animals did to response various environment stresses, since they could not run away. The cross-talk among the pathways generally introduce non-trivial regulatory behaviors, from which the plants may benefit. For better understanding the regulatory mechanism due to cross-talk, we study in this work two entangled stress regulatory pathways in root cells. A quantitative model of the regulatory network is constructed in the simplest fashion. An analytic parameter-free approach is then employed to analyse the response tendencies. It leads us to a simple constraint on the non-linear regulatory exponents. Under the constraint, a transition to the non-monotonic growth inhibition happens at finite concentration of ABA, due to which the plants could survive from cold/heat stress. The parameter-free tendency analysis would also be applied to further experiments, especially in the case of insufficient data for multi-parameter fitting.
Collapse
Affiliation(s)
- Wei Cao
- Department of Physics, Institute of Biophysics, Huazhong Normal University, Wuhan 430070, China; Department of Physics, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Luo
- Department of Physics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Yi
- Department of Physics, Huazhong Agricultural University, Wuhan 430070, China; Institute of Applied Physics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ya Jia
- Department of Physics, Institute of Biophysics, Huazhong Normal University, Wuhan 430070, China
| |
Collapse
|
169
|
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 2018; 11:11/536/eaao3070. [PMID: 29945884 DOI: 10.1126/scisignal.aao3070] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell walls surround all plant cells, and their composition and structure are modified in a tightly controlled, adaptive manner to meet sometimes opposing functional requirements during growth and development. The plant cell wall integrity (CWI) maintenance mechanism controls these functional modifications, as well as responses to cell wall damage (CWD). We investigated how the CWI system mediates responses to CWD in Arabidopsis thaliana CWD induced by cell wall-degrading enzymes or an inhibitor of cellulose biosynthesis elicited similar, turgor-sensitive stress responses. Phenotypic clustering with 27 genotypes identified a core group of receptor-like kinases (RLKs) and ion channels required for the activation of CWD responses. A genetic analysis showed that the RLK FEI2 and the plasma membrane-localized mechanosensitive Ca2+ channel MCA1 functioned downstream of the RLK THE1 in CWD perception. In contrast, pattern-triggered immunity (PTI) signaling components, including the receptors for plant elicitor peptides (AtPeps) PEPR1 and PEPR2, repressed responses to CWD. CWD induced the expression of PROPEP1 and PROPEP3, which encode the precursors of AtPep1 and AtPep3, and the release of PROPEP3 into the growth medium. Application of AtPep1 and AtPep3 repressed CWD-induced phytohormone accumulation in a concentration-dependent manner. These results suggest that AtPep-mediated signaling suppresses CWD-induced defense responses controlled by the CWI mechanism. This suppression was alleviated when PTI signaling downstream of PEPR1 and PEPR2 was impaired. Defense responses controlled by the CWI maintenance mechanism might thus compensate to some extent for the loss of PTI signaling elements.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Manikandan Veerabagu
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Joseph F McKenna
- Department of Biology, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Frauke Augstein
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
170
|
Robinson S, Kuhlemeier C. Global Compression Reorients Cortical Microtubules in Arabidopsis Hypocotyl Epidermis and Promotes Growth. Curr Biol 2018; 28:1794-1802.e2. [DOI: 10.1016/j.cub.2018.04.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
|
171
|
Zhang L, Wang M, Li N, Wang H, Qiu P, Pei L, Xu Z, Wang T, Gao E, Liu J, Liu S, Hu Q, Miao Y, Lindsey K, Tu L, Zhu L, Zhang X. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1172-1185. [PMID: 29149461 PMCID: PMC5978870 DOI: 10.1111/pbi.12861] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) have several known functions in plant development, but their possible roles in responding to plant disease remain largely unresolved. In this study, we described a comprehensive disease-responding lncRNA profiles in defence against a cotton fungal disease Verticillium dahliae. We further revealed the conserved and specific characters of disease-responding process between two cotton species. Conservatively for two cotton species, we found the expression dominance of induced lncRNAs in the Dt subgenome, indicating a biased induction pattern in the co-existing subgenomes of allotetraploid cotton. Comparative analysis of lncRNA expression and their proposed functions in resistant Gossypium barbadense cv. '7124' versus susceptible Gossypium hirsutum cv. 'YZ1' revealed their distinct disease response mechanisms. Species-specific (LS) lncRNAs containing more SNPs displayed a fiercer inducing level postinfection than the species-conserved (core) lncRNAs. Gene Ontology enrichment of LS lncRNAs and core lncRNAs indicates distinct roles in the process of biotic stimulus. Further functional analysis showed that two core lncRNAs, GhlncNAT-ANX2- and GhlncNAT-RLP7-silenced seedlings, displayed an enhanced resistance towards V. dahliae and Botrytis cinerea, possibly associated with the increased expression of LOX1 and LOX2. This study represents the first characterization of lncRNAs involved in resistance to fungal disease and provides new clues to elucidate cotton disease response mechanism.
Collapse
Affiliation(s)
- Lin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Nannan Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Honglei Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Ping Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zheng Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tianyi Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Erlin Gao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Junxia Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shiming Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Keith Lindsey
- Integrative Cell Biology LaboratorySchool of Biological and Biomedical SciencesDurham UniversityDurhamUK
| | - Lili Tu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
172
|
Hu H, Zhang R, Feng S, Wang Y, Wang Y, Fan C, Li Y, Liu Z, Schneider R, Xia T, Ding S, Persson S, Peng L. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:976-988. [PMID: 28944540 PMCID: PMC5902768 DOI: 10.1111/pbi.12842] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ran Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shengqiu Feng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Youmei Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunfen Fan
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zengyu Liu
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - René Schneider
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shi‐You Ding
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Staffan Persson
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
173
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
174
|
Reem NT, Chen HY, Hur M, Zhao X, Wurtele ES, Li X, Li L, Zabotina O. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations. PLANT MOLECULAR BIOLOGY 2018; 96:509-529. [PMID: 29502299 DOI: 10.1007/s11103-018-0714-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.
Collapse
Affiliation(s)
- Nathan T Reem
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - Han-Yi Chen
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Manhoi Hur
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, USA
- Information Technology, College of Liberal Arts and Sciences, Iowa State University, Ames, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
| | - Xu Li
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Ling Li
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
- Department of Biological Sciences, Mississippi State University, Starkville, USA
| | - Olga Zabotina
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA.
| |
Collapse
|
175
|
Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, De Smet I, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr Biol 2018; 28:722-732.e6. [PMID: 29478854 DOI: 10.1016/j.cub.2018.01.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell wall. However, the exact cell wall regulators in root hairs controlled by auxin have yet to be determined. In this study, we describe the characterization of ERULUS (ERU), an auxin-induced Arabidopsis receptor-like kinase, whose expression is directly regulated by ARF7 and ARF19 transcription factors. ERU belongs to the Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensor proteins. Imaging of a fluorescent fusion protein revealed that ERU is localized to the apical root hair plasma membrane. ERU regulates cell wall composition in root hairs and modulates pectin dynamics through negative control of pectin methylesterase (PME) activity. Mutant eru (-/-) root hairs accumulate de-esterified homogalacturonan and exhibit aberrant pectin Ca2+-binding site oscillations and increased PME activity. Up to 80% of the eru root hair phenotype is rescued by pharmacological supplementation with a PME-inhibiting catechin extract. ERU transcription is altered in specific cell wall-related root hair mutants, suggesting that it is a target for feedback regulation. Loss of ERU alters the phosphorylation status of FERONIA and H+-ATPases 1/2, regulators of apoplastic pH. Furthermore, H+-ATPases 1/2 and ERU are differentially phosphorylated in response to auxin. We conclude that ERULUS is a key auxin-controlled regulator of cell wall composition and pectin dynamics during root hair tip growth.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gordon Breen
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Malgorzata Zdanio
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, ERL3559 CNRS, Saclay Plant Sciences, Route de St Cyr, 78026 Versailles, France
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Jaesung Oh
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Cell Systems Group, Department of Molecular Biotechnology, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Technological Educational Institute of Crete, Stavromenos PC 71410, Heraklion, Crete, Greece.
| |
Collapse
|
176
|
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca 2+ Signaling. Curr Biol 2018; 28:666-675.e5. [PMID: 29456142 PMCID: PMC5894116 DOI: 10.1016/j.cub.2018.01.023] [Citation(s) in RCA: 439] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
Abstract
Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind diglucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall.
Collapse
Affiliation(s)
- Wei Feng
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Daniel Kita
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, UMR1318, Institut National pour la Recherche Agronomique-AgroParisTech, Saclay Plant Science, Route de St-Cyr, Versailles 78026, France; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Heather N Cartwright
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Vinh Doan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Qiaohong Duan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jacob Maman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Ina Schmitz-Thom
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA; Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
177
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
178
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
179
|
Lampugnani ER, Khan GA, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci 2018; 131:131/2/jcs207373. [PMID: 29378834 DOI: 10.1242/jcs.207373] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Marc Somssich
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| |
Collapse
|
180
|
Woloszynska M, Gagliardi O, Vandenbussche F, De Groeve S, Alonso Baez L, Neyt P, Le Gall S, Fung J, Mas P, Van Der Straeten D, Van Lijsebettens M. The Elongator complex regulates hypocotyl growth in darkness and during photomorphogenesis. J Cell Sci 2018; 131:jcs.203927. [PMID: 28720596 DOI: 10.1242/jcs.203927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
The Elongator complex (hereafter Elongator) promotes RNA polymerase II-mediated transcript elongation through epigenetic activities such as histone acetylation. Elongator regulates growth, development, immune response and sensitivity to drought and abscisic acid. We demonstrate that elo mutants exhibit defective hypocotyl elongation but have a normal apical hook in darkness and are hyposensitive to light during photomorphogenesis. These elo phenotypes are supported by transcriptome changes, including downregulation of circadian clock components, positive regulators of skoto- or photomorphogenesis, hormonal pathways and cell wall biogenesis-related factors. The downregulated genes LHY, HFR1 and HYH are selectively targeted by Elongator for histone H3K14 acetylation in darkness. The role of Elongator in early seedling development in darkness and light is supported by hypocotyl phenotypes of mutants defective in components of the gene network regulated by Elongator, and by double mutants between elo and mutants in light or darkness signaling components. A model is proposed in which Elongator represses the plant immune response and promotes hypocotyl elongation and photomorphogenesis via transcriptional control of positive photomorphogenesis regulators and a growth-regulatory network that converges on genes involved in cell wall biogenesis and hormone signaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Olimpia Gagliardi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Filip Vandenbussche
- Department of Physiology, Laboratory of Functional Plant Biology, Ghent University, 9000 Ghent, Belgium
| | - Steven De Groeve
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Luis Alonso Baez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pia Neyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sabine Le Gall
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jorge Fung
- Center for Research in AgriGenomics (CRAG), Consortium CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Paloma Mas
- Center for Research in AgriGenomics (CRAG), Consortium CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
181
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
182
|
Shim I, Law R, Kileeg Z, Stronghill P, Northey JGB, Strap JL, Bonetta DT. Alleles Causing Resistance to Isoxaben and Flupoxam Highlight the Significance of Transmembrane Domains for CESA Protein Function. FRONTIERS IN PLANT SCIENCE 2018; 9:1152. [PMID: 30197649 PMCID: PMC6118223 DOI: 10.3389/fpls.2018.01152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 05/13/2023]
Abstract
The cellulose synthase (CESA) proteins in Arabidopsis play an essential role in the production of cellulose in the cell walls. Herbicides such as isoxaben and flupoxam specifically target this production process and are prominent cellulose biosynthesis inhibitors (CBIs). Forward genetic screens in Arabidopsis revealed that mutations that can result in varying degrees of resistance to either isoxaben or flupoxam CBI can be attributed to single amino acid substitutions in primary wall CESAs. Missense mutations were almost exclusively present in the predicted transmembrane regions of CESA1, CESA3, and CESA6. Resistance to isoxaben was also conferred by modification to the catalytic residues of CESA3. This resulted in cellulose deficient phenotypes characterized by reduced crystallinity and dwarfism. However, mapping of mutations to the transmembrane regions also lead to growth phenotypes and altered cellulose crystallinity phenotypes. These results provide further genetic evidence supporting the involvement of CESA transmembrane regions in cellulose biosynthesis.
Collapse
Affiliation(s)
- Isaac Shim
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Robert Law
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Zachary Kileeg
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Patricia Stronghill
- Department of Biological Sciences, University of Toronto Scarborough Campus, Toronto, ON, Canada
| | - Julian G. B. Northey
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Janice L. Strap
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Dario T. Bonetta
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
- *Correspondence: Dario T. Bonetta,
| |
Collapse
|
183
|
Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, Jamoune A, Alipanah L, Novák O, Persson S, Hejatko J, Hamann T. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 2018; 145:dev.166678. [DOI: 10.1242/dev.166678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how coordination is achieved. Here we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmo-sensitive manner. These results were correlated with CWD-induced, osmo-sensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE2 and 3 (CKX2, CKX3), encoding cytokinin-degrading enzymes was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, neither CKX2 and CKX3 transcript levels were increased nor cell cycle gene expression repressed by CWD. Moreover, established CWD-induced responses like jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1- and NIA2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1 and NIA2-mediated process, subsequently attenuating cell cycle gene expression.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Amel Jamoune
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Leila Alipanah
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
| | - Jan Hejatko
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
184
|
Faria-Blanc N, Mortimer JC, Dupree P. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:384. [PMID: 29636762 PMCID: PMC5881139 DOI: 10.3389/fpls.2018.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 05/21/2023]
Abstract
Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.
Collapse
Affiliation(s)
- Nuno Faria-Blanc
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jenny C. Mortimer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Paul Dupree
| |
Collapse
|
185
|
Li H, Cheng X, Zhang L, Hu J, Zhang F, Chen B, Xu K, Gao G, Li H, Li L, Huang Q, Li Z, Yan G, Wu X. An Integration of Genome-Wide Association Study and Gene Co-expression Network Analysis Identifies Candidate Genes of Stem Lodging-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:796. [PMID: 29946333 PMCID: PMC6006280 DOI: 10.3389/fpls.2018.00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
Lodging is a persistent problem which severely reduce yield and impair seed quality in rapeseed (Brassica napus L.). Enhancing stem strength (SS) has proven to be an effective approach to decrease lodging risk. In the present study, four interrelated stem lodging-related traits, including stem breaking resistance (SBR), stem diameter (SD), SS, and lodging coefficient (LC), were investigated among 472 rapeseed accessions. A genome-wide association study (GWAS) using Brassica 60K SNP array for stem lodging-related traits identified 67 significantly associated quantitative trait loci (QTLs) and 71 candidate genes. In parallel, a gene co-expression network based on transcriptome sequencing was constructed. The module associated with cellulose biosynthesis was highlighted. By integrating GWAS and gene co-expression network analysis, some promising candidate genes, such as ESKIMO1 (ESK1, BnaC08g26920D), CELLULOSE SYNTHASE 6 (CESA6, BnaA09g06990D), and FRAGILE FIBER 8 (FRA8, BnaC04g39510D), were prioritized for further research. These findings revealed the genetic basis underlying stem lodging and provided worthwhile QTLs and genes information for genetic improvement of stem lodging resistance in B. napus.
Collapse
Affiliation(s)
- Hongge Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Liping Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Jihong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Guizhen Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- *Correspondence: Guixin Yan, Xiaoming Wu,
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- *Correspondence: Guixin Yan, Xiaoming Wu,
| |
Collapse
|
186
|
Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu HM, Dresselhaus T, Xiao J, Cheung AY, Qu LJ. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 2017; 358:1596-1600. [PMID: 29242234 DOI: 10.1126/science.aao3642] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube-expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube-female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.
Collapse
Affiliation(s)
- Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Tabata Bergonci
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.,Dep. Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Yuling Zhao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yanjiao Zou
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Shuo Du
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Xingju Luo
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Ruan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Liliana E García-Valencia
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.,Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Daniel S Moura
- Dep. Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China. .,National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
187
|
Kesten C, Menna A, Sánchez-Rodríguez C. Regulation of cellulose synthesis in response to stress. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:106-113. [PMID: 28892802 DOI: 10.1016/j.pbi.2017.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/18/2017] [Indexed: 05/05/2023]
Abstract
The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement.
Collapse
Affiliation(s)
- Christopher Kesten
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Alexandra Menna
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Clara Sánchez-Rodríguez
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
188
|
Aljaafri WAR, McNeece BT, Lawaju BR, Sharma K, Niruala PM, Pant SR, Long DH, Lawrence KS, Lawrence GW, Klink VP. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:161-175. [PMID: 29107936 DOI: 10.1016/j.plaphy.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes.
Collapse
Affiliation(s)
- Weasam A R Aljaafri
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Prakash M Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - David H Long
- Albaugh, LLC, 4060 Dawkins Farm Drive, Olive Branch, MS 38654, United States.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849, United States.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
189
|
Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ, Grolimund D, Begerow D, Neumann U, Haydon MJ, Krämer U. Etiolated Seedling Development Requires Repression of Photomorphogenesis by a Small Cell-Wall-Derived Dark Signal. Curr Biol 2017; 27:3403-3418.e7. [PMID: 29103938 DOI: 10.1016/j.cub.2017.09.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 11/27/2022]
Abstract
Etiolated growth in darkness or the irreversible transition to photomorphogenesis in the light engages alternative developmental programs operating across all organs of a plant seedling. Dark-grown Arabidopsis de-etiolated by zinc (dez) mutants exhibit morphological, cellular, metabolic, and transcriptional characteristics of light-grown seedlings. We identify the causal mutation in TRICHOME BIREFRINGENCE encoding a putative acyl transferase. Pectin acetylation is decreased in dez, as previously found in the reduced wall acetylation2-3 mutant, shown here to phenocopy dez. Moreover, pectin of dez is excessively methylesterified. The addition of very short fragments of homogalacturonan, tri-galacturonate, and tetra-galacturonate, restores skotomorphogenesis in dark-grown dez and similar mutants, suggesting that the mutants are unable to generate these de-methylesterified pectin fragments. In combination with genetic data, we propose a model of spatiotemporally separated photoreceptive and signal-responsive cell types, which contain overlapping subsets of the regulatory network of light-dependent seedling development and communicate via a pectin-derived dark signal.
Collapse
Affiliation(s)
- Scott A Sinclair
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Camille Larue
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Laura Bonk
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany; Geobotany, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Asif Khan
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Hiram Castillo-Michel
- ID21 Beamline, European Synchrotron Radiation Facility, Avenue des Martyrs, 38043 Grenoble, France
| | - Ricardo J Stein
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Dominik Begerow
- Geobotany, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, 50829 Cologne, Germany
| | - Michael J Haydon
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany.
| |
Collapse
|
190
|
Qu S, Zhang X, Song Y, Lin J, Shan X. THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:797-804. [PMID: 28646554 DOI: 10.1111/jipb.12565] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
The plant cell wall is an important interface for sensing pathogen attack and activating signaling pathways that promote plant immune responses. THESEUS1 (THE1) acts as a sensor of cell wall integrity that controls cell elongation during plant growth. However, no specific role for THE1 in plant defense responses has been reported. Here, we found that THE1 interacts with GUANINE EXCHANGE FACTOR4 (GEF4) and that both proteins play regulatory roles in plant resistance to the necrotrophic fungus Botrytis cinerea. Genetic analysis showed that THE1 and GEF4 function in the same genetic pathway to mediate plant defense responses. In addition, using transcriptome analysis, we identified various genes (such as defense-related, secondary metabolite-related, and transcription factor genes) that are likely downstream targets in the THE1-GEF4 signaling pathway. Our results suggest that THE1 functions as an upstream regulator of GEF4 signaling to positively regulate defense responses against B. cinerea in Arabidopsis.
Collapse
Affiliation(s)
- Shaofeng Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yutong Song
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyi Shan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
191
|
Fang X, Sun J, Leng B, Sheng G, Huang J, Qi X, Chen X, Li L. A brief view of international conference on plant cell wall biology 2017. Sci Bull (Beijing) 2017; 62:1357-1358. [PMID: 36659369 DOI: 10.1016/j.scib.2017.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xin Fang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Juncong Sun
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bing Leng
- Chinese Society for Plant Biology, Shanghai 200031, China
| | - Guoan Sheng
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jirong Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoquan Qi
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaoya Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Chinese Society for Plant Biology, Shanghai 200031, China.
| | - Laigeng Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
192
|
Xu Z, Li S, Zhang C, Zhang B, Zhu K, Zhou Y, Liu Q. Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Sci Rep 2017; 7:12561. [PMID: 28970550 PMCID: PMC5624937 DOI: 10.1038/s41598-017-12903-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Grain yield is a complicated trait, which is highly associated with biomass productivity. The cell wall is a central element of biomass, and its biogenesis contributes to plant architecture and development. However, the genetic link between cell-wall property and grain yield is largely unclear. Here, we report on identification of quantitative trait loci (QTLs) for grain yield-related traits and cell-wall composition with a set of chromosomal segment substitution lines (CSSLs) that were generated by using 9311, an indica cultivar as donor, and Nipponbare, a japonica cultivar as recipient. Nipponbare and 9311 showed significant differences in grain yield-related traits and cell-wall composition. Genotyping with molecular markers, 125 lines covering 95.6% of the whole genome of 9311 were employed for phenotypic and chemical examinations. Thirty-seven QTLs for grain yield-related traits and nineteen QTLs for cell-wall composition have been identified. In addition to correlation analysis, we found overlapped and closely linked QTLs for two sets of traits. Fine-mapping further narrowed a QTL for cellulose content together with HD17, a known QTL for heading date and grain yield, suggesting that plants may regulate cell wall biogenesis and grain yield via related means. Our study provided genetic clues for cloning QTLs for both complicated traits.
Collapse
Affiliation(s)
- Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Shance Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.,Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kongzhi Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
193
|
Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser MT. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements. FRONTIERS IN PLANT SCIENCE 2017; 8:1554. [PMID: 28936224 PMCID: PMC5594065 DOI: 10.3389/fpls.2017.01554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Cell walls are not only a protective barrier surrounding protoplasts but serve as signaling platform between the extracellular environment and the intracellular physiology. Ions of heavy metals and trace elements, summarized to metal ions, bind to cell wall components, trigger their modification and provoke growth responses. To examine if metal ions trigger cell wall sensing receptor like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) family we employed a molecular genetic approach. Quantitative transcription analyses show that HERCULES1 (HERK1), THESEUS1 (THE1), and FERONIA (FER) were differently regulated by cadmium (Cd), nickel (Ni), and lead (Pb). Growth responses were quantified for roots and etiolated hypocotyls of related mutants and overexpressors on Cd, copper (Cu), Ni, Pb, and zinc (Zn) and revealed a complex pattern of gene specific, overlapping and antagonistic responses. Root growth was often inversely affected to hypocotyl elongation. For example, both HERK genes seem to negatively regulate hypocotyl elongation upon Cd, Ni, Zn, and Pb while they support root growth on Cd, Cu, and Ni. The different THE1 alleles exhibited a similar effect between roots and hypocotyls on Ni, where the loss-of-function mutant was more tolerant while the gain of function mutants were hypersensitive indicating that THE1 is mediating Ni specific inhibition of hypocotyl elongation in the dark. In contrast hypocotyl elongation of the knock-out mutant, fer-4, was hypersensitive to Ni but exhibited a higher tolerance to Cd, Cu, Pb, and Zn. These data indicate an antagonistic action between THE1 and FER in relation to hypocotyl elongation upon excess of Ni. FERs function as receptor for rapid alkalinization factors (RALFs) was tested with the indicator bromocresol purple. While fer-4 roots strongly acidified control and metal ion containing media, the etiolated hypocotyls alkalized the media which is consistent with the already shorter hypocotyl of fer-4. No other CrRLK1L mutant exhibited this phenotype except of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall, our findings establish a molecular link between metal ion stress, growth and the cell wall integrity sensors of the CrRLK1L family.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Marie Ploderer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| |
Collapse
|
194
|
Galletti R, Verger S, Hamant O, Ingram GC. Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 2017; 143:3249-58. [PMID: 27624830 DOI: 10.1242/dev.132837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant aerial epidermal tissues, like animal epithelia, act as load-bearing layers and hence play pivotal roles in development. The presence of tension in the epidermis has morphogenetic implications for organ shapes but it also constantly threatens the integrity of this tissue. Here, we explore the multi-scale relationship between tension and cell adhesion in the plant epidermis, and we examine how tensile stress perception may act as a regulatory input to preserve epidermal tissue integrity and thus normal morphogenesis. From this, we identify parallels between plant epidermal and animal epithelial tissues and highlight a list of unexplored questions for future research.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| |
Collapse
|
195
|
Balagué C, Gouget A, Bouchez O, Souriac C, Haget N, Boutet‐Mercey S, Govers F, Roby D, Canut H. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling. MOLECULAR PLANT PATHOLOGY 2017; 18:937-948. [PMID: 27399963 PMCID: PMC6638305 DOI: 10.1111/mpp.12457] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 05/20/2023]
Abstract
On microbial attack, plants can detect invaders and activate plant innate immunity. For the detection of pathogen molecules or cell wall damage, plants employ receptors that trigger the activation of defence responses. Cell surface proteins that belong to large families of lectin receptor kinases are candidates to function as immune receptors. Here, the function of LecRK-I.9 (At5g60300), a legume-type lectin receptor kinase involved in cell wall-plasma membrane contacts and in extracellular ATP (eATP) perception, was studied through biochemical, gene expression and reverse genetics approaches. In Arabidopsis thaliana, LecRK-I.9 expression is rapidly, highly and locally induced on inoculation with avirulent strains of Pseudomonas syringae pv. tomato (Pst). Two allelic lecrk-I.9 knock-out mutants showed decreased resistance to Pst. Conversely, over-expression of LecRK-I.9 led to increased resistance to Pst. The analysis of defence gene expression suggests an alteration of both the salicylic acid (SA) and jasmonic acid (JA) signalling pathways. In particular, LecRK-I.9 expression during plant-pathogen interaction was dependent on COI1 (CORONATINE INSENSITIVE 1) and JAR1 (JASMONATE RESISTANT 1) components, and JA-responsive transcription factors (TFs) showed altered levels of expression in plants over-expressing LecRK-I.9. A similar misregulation of these TFs was obtained by JA treatment. This study identified LecRK-I.9 as necessary for full resistance to Pst and demonstrated its involvement in the control of defence against pathogens through a regulation of JA signalling components. The role of LecRK-I.9 is discussed with regard to the potential molecular mechanisms linking JA signalling to cell wall damage and/or eATP perception.
Collapse
Affiliation(s)
- Claudine Balagué
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
| | - Anne Gouget
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| | - Olivier Bouchez
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
| | - Camille Souriac
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| | - Nathalie Haget
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| | - Stéphanie Boutet‐Mercey
- AgroParisTechInstitut Jean‐Pierre Bourgin, Unité Mixte de Recherche 1318, Saclay Plant ScienceVersailles78000France
| | - Francine Govers
- Laboratory of PhytopathologyPlant Sciences Group, Wageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| | - Dominique Roby
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| |
Collapse
|
196
|
Podgórska A, Burian M, Gieczewska K, Ostaszewska-Bugajska M, Zebrowski J, Solecka D, Szal B. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2017; 8:1344. [PMID: 28848567 PMCID: PMC5554365 DOI: 10.3389/fpls.2017.01344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 05/08/2023]
Abstract
Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3-) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna Gieczewska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology and Basic Science, University of RzeszówKolbuszowa, Poland
| | - Danuta Solecka
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| |
Collapse
|
197
|
Merz D, Richter J, Gonneau M, Sanchez-Rodriguez C, Eder T, Sormani R, Martin M, Hématy K, Höfte H, Hauser MT. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4583-4593. [PMID: 28981771 PMCID: PMC5853656 DOI: 10.1093/jxb/erx263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/04/2017] [Indexed: 05/21/2023]
Abstract
Perturbation of cellulose synthesis in plants triggers stress responses, including growth retardation, mediated by the cell wall integrity-sensing receptor-like kinase (RLK) THESEUS1 (THE1). The analysis of two alleles carrying T-DNA insertions at comparable positions has led to conflicting conclusions concerning the impact of THE1 signaling on growth. Here we confirm that, unlike the1-3 and other the1 alleles in which cellular responses to genetic or pharmacological inhibition of cellulose synthesis are attenuated, the1-4 showed enhanced responses, including growth inhibition, ectopic lignification, and stress gene expression. Both the1-3 and the1-4 express a transcript encoding a predicted membrane-associated truncated protein lacking the kinase domain. However, the1-3, in contrast to the1-4, strongly expresses antisense transcripts, which are expected to prevent the expression of the truncated protein as suggested by the genetic interactions between the two alleles. Seedlings overexpressing such a truncated protein react to isoxaben treatment similarly to the1-4 and the full-length THE overexpressor. We conclude that the1-4 is a hypermorphic allele; that THE1 signaling upon cell wall damage has a negative impact on cell expansion; and that caution is required when interpreting the phenotypic effects of T-DNA insertions in RLK genes.
Collapse
Affiliation(s)
- David Merz
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | | | - Tobias Eder
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | - Marjolaine Martin
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | - Kian Hématy
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Corresponding author:
| |
Collapse
|
198
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
199
|
Kou X, Qi K, Qiao X, Yin H, Liu X, Zhang S, Wu J. Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics 2017; 109:290-301. [DOI: 10.1016/j.ygeno.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
|
200
|
Liao H, Tang R, Zhang X, Luan S, Yu F. FERONIA Receptor Kinase at the Crossroads of Hormone Signaling and Stress Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1143-1150. [PMID: 28444222 DOI: 10.1093/pcp/pcx048] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/28/2017] [Indexed: 05/04/2023]
Abstract
Plant receptor-like kinases (RLKs) are involved in nearly all aspects of plant life including growth, development and stress response. Recent studies show that FERONIA (FER), a CrRLK1L subfamily member, is a versatile regulator of cell expansion and serves as a signaling node mediating cross-talk among multiple phytohormones. As a receptor for the RALF (Rapid Alkalinization Factor) peptide ligand, FER triggers a downstream signaling cascade that leads to a rapid cytoplasmic calcium increase and inhibition of cell elongation in plants. Moreover, FER recruits and activates small G proteins through the guanine nucleotide exchange factor-Rho-like GTPase (GEF-ROP) network to regulate both auxin and ABA responses that cross-talk with the RALF signaling pathway. One of the downstream processes is NADPH oxidase-dependent ROS (reactive oxygen species) production that modulates cell expansion and responses to both abiotic and biotic stress responses. Intriguingly, some pathogenic fungi produce RALF-like peptides to activate the host FER-mediated pathway and thus increase their virulence and cause plant disease. Studies so far indicate that FER may serve as a central node of the cell signaling network that integrates a number of regulatory pathways targeting cell expansion, energy metabolism and stress responses. This review focuses on recent findings and their implications in the context of FER action as a modulator that is crucial for hormone signaling and stress responses.
Collapse
Affiliation(s)
- Hongdong Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Xin Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Feng Yu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| |
Collapse
|