151
|
Gao Z, Chen X, Fan Y, Zhu K, Shi M, Ding G. Sirt6 attenuates hypoxia-induced tubular epithelial cell injury via targeting G2/M phase arrest. J Cell Physiol 2019; 235:3463-3473. [PMID: 31603249 DOI: 10.1002/jcp.29235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a condition that has a high incidence and death rate. Unfortunately, the kidney may not recover completely after AKI, which then develops to chronic kidney disease (CKD). Therefore, it is necessary to identify potential curative targets to avoid its development to CKD. As an NAD+ -dependent deacetylase, sirtuin 6 (Sirt6) has been linked to different types of biological processes. In the present work, our group investigated the role of Sirt6 in tubular epithelial cells (TECs) under hypoxic stress. Sirt6 expression was examined in mouse kidney following ischemia/reperfusion (IR) injury and hypoxia-challenged TECs. Using Sirt6 plasmid and small interfering RNA, we also investigated how, in regard to inflammation and epithelial-to-mesenchymal transition, Sirt6 affects hypoxia-triggered injury. In addition, cell cycle was detected in hypoxia-challenged TECs. Sirt6 was downregulated in the kidney of mice with IR injury and hypoxia-challenged TECs. Consequently, Sirt6 depletion aggravated hypoxia-induced injury and G2/M phase arrest. Sirt6 overexpression attenuated hypoxia-triggered damage and G2/M phase arrest in TECs. Sirt6 prevented hypoxia-triggered TEC damage via suppressing G2/M phase arrest. Thus, Sirt6 is a possible candidate for alleviating the effects of kidney injury.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xinghua Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqin Fan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
152
|
Zhang J, Tao J, Ling Y, Li F, Zhu X, Xu L, Wang M, Zhang S, McCall CE, Liu TF. Switch of NAD Salvage to de novo Biosynthesis Sustains SIRT1-RelB-Dependent Inflammatory Tolerance. Front Immunol 2019; 10:2358. [PMID: 31681271 PMCID: PMC6797595 DOI: 10.3389/fimmu.2019.02358] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
A typical inflammatory response sequentially progresses from pro-inflammatory, immune suppressive to inflammatory repairing phases. Although the physiological inflammatory response resolves in time, severe acute inflammation usually sustains immune tolerance and leads to high mortality, yet the underlying mechanism is not completely understood. Here, using the leukemia-derived THP-1 human monocytes, healthy and septic human peripheral blood mononuclear cells (PBMC), we report that endotoxin dose-dependent switch of nicotinamide adenine dinucleotide (NAD) biosynthesis pathways sustain immune tolerant status. Low dose endotoxin triggered nicotinamide phosphoribosyltransferase (NAMPT)-dependent NAD salvage activity to adapt pro-inflammation. In contrast, high dose endotoxin drove a shift of NAD synthesis pathway from early NAMPT-dependent NAD salvage to late indoleamine 2,3-dioxygenase-1 (IDO1)-dependent NAD de novo biosynthesis, leading to persistent immune suppression. This is resulted from the IDO1-dependent expansion of nuclear NAD pool and nuclear NAD-dependent prolongation of sirtuin1 (SIRT1)-directed epigenetics of immune tolerance. Inhibition of IDO1 activity predominantly decreased nuclear NAD level, which promoted sequential dissociations of immunosuppressive SIRT1 and RelB from the promoter of pro-inflammatory TNF-α gene and broke endotoxin tolerance. Thus, NAMPT-NAD-SIRT1 axis adapts pro-inflammation, but IDO1-NAD-SIRT1-RelB axis sustains endotoxin tolerance during acute inflammatory response. Remarkably, in contrast to the prevention of sepsis death of animal model by IDO1 inhibition before sepsis initiation, we demonstrated that the combination therapy of IDO1 inhibition by 1-methyl-D-tryptophan (1-MT) and tryptophan supplementation rather than 1-MT administration alone after sepsis onset rescued sepsis animals, highlighting the translational significance of tryptophan restoration in IDO1 targeting therapy of severe inflammatory diseases like sepsis.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yun Ling
- Department of Infection Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Critical Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuewei Zhu
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei Wang
- Department of Critical Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Charles E. McCall
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
153
|
Mahmoud AR, Ali FEM, Abd-Elhamid TH, Hassanein EHM. Coenzyme Q 10 protects hepatocytes from ischemia reperfusion-induced apoptosis and oxidative stress via regulation of Bax/Bcl-2/PUMA and Nrf-2/FOXO-3/Sirt-1 signaling pathways. Tissue Cell 2019; 60:1-13. [PMID: 31582012 DOI: 10.1016/j.tice.2019.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Coenzyme Q10 (CoQ10) is a component of the mitochondrial electron transport chain and regarded as a strong anti-oxidant agent. In this study, we focused on the mechanistic insights involved in the hepato-protective effects of CoQ10 against hepatic ischemia reperfusion (IR) injury. Our results revealed that CoQ10 significantly improved hepatic dysfunctions and oxidative stress caused by IR injury. Interestingly, as compared to IR subjected rat, CoQ10 inhibited apoptosis by marked down-regulation of both Bax and PUMA genes while the level of Bcl-2 gene was significantly increased. Moreover, CoQ10 up-regulated PI3K, Akt and mTOR protein expressions while it inhibited the expression of both GSK-3β and β-catenin. Additionally, CoQ10 restored oxidant/antioxidant balance via marked activated Nrf-2 protein as well as up-regulation of both Sirt-1 and FOXO-3 genes. Moreover, CoQ10 strongly inhibited inflammatory response through down-regulation of NF-κB-p65 and decrease both JAK1 and STAT-3 protein expressions with a subsequent modulating circulating inflammatory cytokines. Furthermore, histopathological analysis showed that CoQ10 remarkably ameliorated the histopathological damage induced by IR injury. Taken together, our results suggested and proved that CoQ10 provided a hepato-protection against hepatic IR injury via inhibition of apoptosis, oxidative stress, inflammation and their closed related pathways.
Collapse
Affiliation(s)
- Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Anatomy, Unaizah College of Medicine, Qassim University, Unaizah Al Qassim Region, Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
154
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
155
|
Liu H, Li P, Lin J, Chen W, Guo H, Lin J, Liu J, Lu Z, Yao X, Chen Y, Lin B. Danhong Huayu Koufuye prevents venous thrombosis through antiinflammation via Sirtuin 1/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111975. [PMID: 31141719 DOI: 10.1016/j.jep.2019.111975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong Huayu Koufuye (DHK), a compound traditional Chinese medicine, is composed of Salvia miltiorrhiza radix (Salvia miltiorrhiza Bge.), Angelicae Sinensis radix (Angelicae Sinensis (Oliv.) Diels.), Chuanxiong rhizoma (Ligusticum chuanxiong Hort.), Persicae semen (Prunus persica (L.) Batsch), Carthami flos (Carthamus tinctorius L.), Bupleuri radix (Bupleurum chinense DC.) and Aurantii fructus (Citrus aurantium L.). DHK prevents deep vein thrombosis (DVT) through antiinflammation. However, the antiinflammatory mechanism of DHK is still unknown. OBJECTIVE The aim of this study was to evaluate whether DHK prevented venous thrombosis through antiinflammation via Sirtuin 1 (SIRT1)/NF-κB signaling pathway. METHODS Inferior vena cava (IVC) stenosis-induced DVT rat model was established. Rats were administered with DHK (1.6, 3.2 or 6.4 mL/kg/d, p.o.), heparin (200 U/kg/d, i.v.), clopidogrel (25 mg/kg/d, p.o.), resveratrol (50 mg/kg/d, p.o.) or vehicle (p.o.) once daily for two days. Blood coagulation, blood fibrinolysis, blood viscosity, blood cell counts and platelet activity were evaluated. Serum levels of inflammatory cytokines were analyzed by enzyme-linked immunosorbent assay. Pathological changes were observed by hematoxylin-eosin (HE) staining. Protein expressions in thrombosed IVCs were evaluated by Western blot and/or immunofluorescence analyses. SIRT1 mRNA expression was analyzed by real-time quantitative polymerase chain reaction. Besides, SIRT1-specific inhibitor EX527 was pretreated to confirm the role of SIRT1/NF-κB signaling pathway in the antithrombotic effect of DHK. RESULTS DHK remarkably prevented DVT. DHK had no effects on blood coagulation, blood fibrinolysis, blood viscosity, blood cell counts or platelet activity. But DHK significantly up-regulated protein and mRNA expressions of SIRT1, and reduced leukocytes infiltration into thrombus and vein wall, serum levels of inflammatory cytokines, and protein expressions of acetylated p65 (Ace-p65), phosphorylated p65 (p-p65) and tissue factor (TF). Moreover, the antithrombotic effect of DHK was significantly abolished by EX527. CONCLUSION DHK may prevent DVT by inhibiting inflammation via SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juan Lin
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, Guangdong, 510515, China
| | - Wenpei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haibiao Guo
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, Guangdong, 510515, China
| | - Jianyun Lin
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, Guangdong, 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ziqi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaolan Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Baoqin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
156
|
Jiang C, Sun ZM, Hu JN, Jin Y, Guo Q, Xu JJ, Chen ZX, Jiang RH, Wu YS. Cyanidin ameliorates the progression of osteoarthritis via the Sirt6/NF-κB axis in vitro and in vivo. Food Funct 2019; 10:5873-5885. [PMID: 31464310 DOI: 10.1039/c9fo00742c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is the most prevalent form of human arthritis which is characterized by the degradation of cartilage and inflammation. As a rare Sirt6 activator, cyanidin is the major component of anthocyanins commonly found in the Mediterranean diet, and increasing evidence has shown that cyanidin exhibits anti-inflammatory effects in a variety of diseases. However, the anti-inflammatory effects of cyanidin on OA have not been reported. In the present study, we identified that cyanidin treatment could strongly suppress the expression of NO, PGE2, TNF-α, IL-6, iNOs, COX-2, ADAMTS5 and MMP13, and reduce the degradation of aggrecan and collagen II in IL-1β-induced human OA chondrocytes, indicating the anti-inflammatory effect of cyanidin. Further investigation of the mechanism involved revealed that cyanidin could upregulate the Sirt6 level in a dose-dependent manner and Sirt6 silencing abolished the effect of cyanidin in IL-1β-stimulated human OA chondrocytes, indicating a stimulatory effect of cyanidin on Sirt6 activation. Meanwhile, we found that cyanidin could inhibit the NF-κB pathway in IL-1β-stimulated human OA chondrocytes and its effect may to some extent depend on Sirt6 activation, suggesting that cyanidin may exert a protective effect through regulating the Sirt6/NF-κB signaling axis. Moreover, the in vivo study also proved that cyanidin ameliorated the development of OA in surgical destabilization of the medial meniscus (DMM) mouse OA models. In conclusion, these results demonstrate that cyanidin may have therapeutic potential for the treatment of OA.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ze-Ming Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jia-Ning Hu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jia-Jing Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ze-Xin Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ren-Hao Jiang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China
| |
Collapse
|
157
|
Zhu C, Cai Y, Zhu J, Zhang L, Xing A, Pan L, Jia H, Mo S, Feng CG, Shen H, Chen X, Zhang Z. Histone deacetylase inhibitors impair the host immune response against Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2019; 118:101861. [PMID: 31526947 DOI: 10.1016/j.tube.2019.101861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 01/14/2023]
Abstract
Histone deacetylase inhibitors (HDACi), a novel class of anti-cancer drug, have been recently reported to suppress host immunity and increase susceptibility to infection. Tuberculosis, a leading infectious disease killer caused by Mycobacterium tuberculosis (M.tb), is basically the product of the interaction between bacterial virulence and host resistance. However, the effects of HDACi in host immunity against M.tb is largely unknown. In this study, we found that HDACi including Trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) significantly impaired phagocytosis and killing activity of macrophage. In line with these findings, we noted that M.tb induced reactive oxygen species (ROS) production and autophagy are significantly suppressed by TSA. Transcriptome analysis revealed that the suppression of autophagy by TSA might due to its inhibiting autophagy-regulating genes such as CACNA2D3, which regulates intracellular Ca2+ levels. Finally, we confirmed that HDACi including TSA and SAHA significantly exacerbated the histopathological damage and M.tb load in the lung of M.tb infected mice. Taken together, our results indicated that HDACi at least TSA and SAHA significantly impaired macrophage immunity against M.tb and therefore increase susceptibility to TB, our findings raised the concern that the potential side effects of HDACi on latent TB reactivation should be considered in clinic.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yi Cai
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Jialou Zhu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Lanyue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Aiying Xing
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongyan Jia
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Siwei Mo
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Carl G Feng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China; Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hongbo Shen
- Unit of Anti-Tuberculosis Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinchun Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China.
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
158
|
Protective role of AGK2 on thioacetamide-induced acute liver failure in mice. Life Sci 2019; 230:68-75. [PMID: 31129140 DOI: 10.1016/j.lfs.2019.05.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
159
|
Grewal AK, Singh N, Singh TG. Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 2019; 97:1094-1101. [PMID: 31340128 DOI: 10.1139/cjpp-2019-0188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence has demonstrated that resveratrol preconditioning exhibits neuroprotection against cerebral ischemia-reperfusion (IR) injury. The current investigation aimed to explore whether pharmacological postconditioning, by administering resveratrol, after a sustained ischemia and prior to prolonged reperfusion abrogates cerebral IR injury. Cerebral IR-induced injury mice model was employed in this study to evaluate the neuroprotective effects of pharmacological postconditioning with resveratrol (30 mg/kg; i.p.) administered 5 min before reperfusion. We administered sirtinol, a SIRT1/2 selective inhibitor (10 mg/kg; i.p.) 10 min before ischemia (17 min) and reperfusion (24 h), to elucidate whether the neuroprotection with resveratrol postconditioning depends on SIRT1 activation. Various biochemical and behavioural parameters and histopathological changes were assessed to examine the effect of pharmacological postconditioning. Infarct size is estimated using TTC staining. It was established that resveratrol postconditioning abrogated the deleterious effects of IR injury expressed with regard to biochemical parameters of oxidative stress (TBARS, SOD, GSH), acetylcholinesterase activity, behavioural parameters (memory, motor coordination), infarct size, and histopathological changes. Sirtinol significantly reversed the effect of resveratrol postconditioning. We conclude that induced neuroprotective benefits of resveratrol postconditioning may be the consequence of SIRT1 activation and resveratrol can be considered, for further studies, as potential agent inducing pharmacological postconditioning in clinical situations.
Collapse
Affiliation(s)
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | | |
Collapse
|
160
|
Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019; 8:cells8070691. [PMID: 31324021 PMCID: PMC6678635 DOI: 10.3390/cells8070691] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
161
|
Gulmez C, Atakisi O. Kumiss Supplementation Reduces Oxidative Stress and Activates Sirtuin Deacetylases by Regulating Antioxidant System. Nutr Cancer 2019; 72:495-503. [DOI: 10.1080/01635581.2019.1635628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational High School, Igdir University, Igdir, Turkey
| | - Onur Atakisi
- Department of Chemistry, Faculty Science and Letter, Kafkas University, Kars, Turkey
| |
Collapse
|
162
|
Lee HJ, Kang MG, Cha HY, Kim YM, Lim Y, Yang SJ. Effects of Piceatannol and Resveratrol on Sirtuins and Hepatic Inflammation in High-Fat Diet-Fed Mice. J Med Food 2019; 22:833-840. [PMID: 31268397 DOI: 10.1089/jmf.2018.4261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Piceatannol (PIC) is a natural hydroxylated analog of resveratrol (RSV) and considered as a potential metabolic regulator. The purpose of this study was to compare the effects of PIC and RSV on parameters affecting inflammation, oxidative stress, and sirtuins (Sirt). Male C57BL/6J mice, 20 weeks old, were assigned to the following groups; (1) lean control, (2) high-fat diet control (HF), (3) HF_PIC, and (4) HF_RSV. Oral administration of PIC and RSV (10 mg/kg/day) for 4 weeks improved glucose control as shown by decreasing levels of area under the curve (AUC) during the oral glucose tolerance test compared with HF group. PIC improved glycemic control by increasing hepatic levels of insulin receptor and AMP-activated protein kinase. PIC increased the levels of Sirt1, Sirt3, and Sirt6 and also increased two downstream targets of Sirt, peroxisome proliferator-activated receptor gamma coactivator 1-alpha and forkhead box O1, in the liver. The inflammatory markers, interleukin (IL)-1 and IL-6, in the liver were downregulated by RSV treatment. Exposure to PIC and RSV significantly lowered hepatic levels of tumor necrosis factor-alpha. However, PIC and RSV treatments showed minimal effects on hepatic markers of oxidative stress. The levels of antioxidant enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), were only increased in livers of RSV-treated mice compared with HF control mice. In conclusion, PIC was superior to an equal concentration of RSV in the regulation of Sirt and its downstream targets as well as insulin signaling-related parameters, while RSV potentially suppressed levels of proinflammatory markers and increased NQO1 protein levels.
Collapse
Affiliation(s)
- Hee Jae Lee
- 1Department of Food and Nutrition, Seoul Women's University, Seoul, Republic of Korea
| | - Min-Gyung Kang
- 2Department of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Hee Yun Cha
- 1Department of Food and Nutrition, Seoul Women's University, Seoul, Republic of Korea
| | - Youn Mi Kim
- 3Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Yunsook Lim
- 3Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Soo Jin Yang
- 1Department of Food and Nutrition, Seoul Women's University, Seoul, Republic of Korea
| |
Collapse
|
163
|
Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? J Clin Med 2019; 8:jcm8050753. [PMID: 31137815 PMCID: PMC6572063 DOI: 10.3390/jcm8050753] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
The metabolic rewiring of tumor cells and immune cells has been viewed as a promising source of novel drug targets. Many of the molecular pathways implicated in rheumatoid arthritis (RA) directly modify synovium metabolism and transform the resident cells, such as the fibroblast-like synoviocytes (FLS), and the synovial tissue macrophages (STM), toward an overproduction of enzymes, which degrade cartilage and bone, and cytokines, which promote immune cell infiltration. Recent studies have shown metabolic changes in stromal and immune cells from RA patients. Metabolic disruption in the synovium provide the opportunity to use in vivo metabolism-based imaging techniques for patient stratification and to monitor treatment response. In addition, these metabolic changes may be therapeutically targetable. Thus, resetting metabolism of the synovial membrane offers additional opportunities for disease modulation and restoration of homeostasis in RA. In fact, rheumatologists already use the antimetabolite methotrexate, a chemotherapy agent, for the treatment of patients with inflammatory arthritis. Metabolic targets that do not compromise systemic homeostasis or corresponding metabolic functions in normal cells could increase the drug armamentarium in rheumatic diseases for combination therapy independent of systemic immunosuppression. This article summarizes what is known about metabolism in synovial tissue cells and highlights chemotherapies that target metabolism as potential future therapeutic strategies for RA.
Collapse
|
164
|
SIRT2 Contributes to the Resistance of Melanoma Cells to the Multikinase Inhibitor Dasatinib. Cancers (Basel) 2019; 11:cancers11050673. [PMID: 31091806 PMCID: PMC6562913 DOI: 10.3390/cancers11050673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Malignant melanoma is the most aggressive skin cancer and can only be cured if detected early. Unfortunately, later stages of the disease do not guarantee success due to the rapid rate of melanoma cell metastasis and their high resistance to applied therapies. The search for new molecular targets and targeted therapy may represent the future in the development of effective methods for combating this cancer. SIRT2 is a promising target; thus, we downregulated SIRT2 expression in melanoma cells in vertical growth and metastatic phases and demonstrated that sirtuin acts as regulator of the basic functions of melanoma cells. A detailed transcriptomic analysis showed that SIRT2 regulates the expression of multiple genes encoding the tyrosine kinase pathways that are molecular targets of dasatinib. Indeed, cells with low SIRT2 expression were more susceptible to dasatinib, as demonstrated by multiple techniques, e.g., neutral red uptake, 3/7 caspase activity, colony formation assay, and in vitro scratch assay. Furthermore, these cells showed an altered phosphorylation profile for proteins playing roles in the response to dasatinib. Thus, our research indicates new, previously unknown SIRT2 functions in the regulation of gene expression, which is of key clinical significance.
Collapse
|
165
|
Abstract
![]()
Various
mechanisms for regulated cell death include the formation of oxidative mediators
such as lipid peroxides and nitric oxide (NO). In this respect, 15-lipoxygenase-1
(15-LOX-1) is a key enzyme that catalyzes the formation of lipid peroxides.
The actions of these peroxides are interconnected with nuclear factor-κB
signaling and NO production. Inhibition of 15-LOX-1 holds promise
to interfere with regulated cell death in inflammatory conditions.
In this study, a novel potent 15-LOX-1 inhibitor, 9c (i472), was developed and structure–activity relationships
were explored. In vitro, this inhibitor protected cells from lipopolysaccharide-induced
cell death, inhibiting NO formation and lipid peroxidation. Thus,
we provide a novel 15-LOX-1 inhibitor that inhibits cellular NO production
and lipid peroxidation, which set the stage for further exploration
of these mechanisms.
Collapse
|
166
|
Li H, Wang J, Liu X, Cheng Q. MicroRNA-204-5p suppresses IL6-mediated inflammatory response and chemokine generation in HK-2 renal tubular epithelial cells by targeting IL6R. Biochem Cell Biol 2019; 97:109-117. [PMID: 30110560 DOI: 10.1139/bcb-2018-0141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During the pathogenetic process of varied kidney diseases, renal tubules are the major sites in response to detrimental insults, including pro-inflammatory stimuli. MicroRNA-204-5p (miR-204-5p) can be detected in the renal tubular epithelial cells in the normal kidney; its expression, however, is downregulated in the kidney with pathological changes. This study aimed to investigate the role of miR-204-5p in interleukin 6 (IL6) mediated inflammatory response and chemokine production in HK-2 renal tubular cells. In HK-2 cells, the expression of miR-204-5p was downregulated in response to exogenous pro-inflammatory stimulus, tumor necrosis factor α (TNFα), or IL1β, while that of IL6 receptor α (IL6R) was upregulated. Dual-luciferase results confirmed that miRNA-204-5p directly targeted IL6R. In addition to suppressing IL6R expression, miRNA-204-5p agomir also inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in HK-2 cells exposed to exogenous IL6. Further, miRNA-204-5p suppressed the overproduction of pro-inflammatory mediators (cyclooxygenase 2 and prostaglandin E2) and chemokines (C–C motif chemokine ligand 2 and C–X–C motif chemokine ligand 8). The anti-inflammatory effects of miRNA-204-5p were attenuated when IL6R was reexpressed in HK-2 cells. Collectively, our study reveals that miR-204-5p inhibits the inflammation and chemokine generation in renal tubular epithelial cells by modulating the IL6/IL6R axis.
Collapse
Affiliation(s)
- Hua Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jibo Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaoru Liu
- Department of Medicine, Qingdao University, Qingdao 266071, China
| | - Qiang Cheng
- Department of Geratology, The 401 Hospital of PLA, Qingdao 266071, China
| |
Collapse
|
167
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
168
|
Bartoli-Leonard F, Wilkinson FL, Schiro A, Inglott FS, Alexander MY, Weston R. Suppression of SIRT1 in Diabetic Conditions Induces Osteogenic Differentiation of Human Vascular Smooth Muscle Cells via RUNX2 Signalling. Sci Rep 2019; 9:878. [PMID: 30696833 PMCID: PMC6351547 DOI: 10.1038/s41598-018-37027-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022] Open
Abstract
Vascular calcification is associated with significant morbidity and mortality within diabetes, involving activation of osteogenic regulators and transcription factors. Recent evidence demonstrates the beneficial role of Sirtuin 1 (SIRT1), an NAD+ dependant deacetylase, in improved insulin sensitivity and glucose homeostasis, linking hyperglycaemia and SIRT1 downregulation. This study aimed to determine the role of SIRT1 in vascular smooth muscle cell (vSMC) calcification within the diabetic environment. An 80% reduction in SIRT1 levels was observed in patients with diabetes, both in serum and the arterial smooth muscle layer, whilst both RUNX2 and Osteocalcin levels were elevated. Human vSMCs exposed to hyperglycaemic conditions in vitro demonstrated enhanced calcification, which was positively associated with the induction of cellular senescence, verified by senescence-associated β-galactosidase activity and cell cycle markers p16 and p21. Activation of SIRT1 by SRT1720 reduced Alizarin red staining by a third, via inhibition of the RUNX2 pathway and prevention of senescence. Conversely, inhibition of SIRT1 via Sirtinol and siRNA increased RUNX2 by over 50%. These findings demonstrate the key role that SIRT1 plays in preventing calcification in a diabetic environment, through the inhibition of RUNX2 and senescence pathways, suggesting a downregulation of SIRT1 may be responsible for perpetuating vascular calcification in diabetes.
Collapse
Affiliation(s)
- F Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - F L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - A Schiro
- Vascular Unit, Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - F Serracino Inglott
- Vascular Unit, Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - R Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
169
|
Opstad TB, Kalstad AA, Pettersen AÅ, Arnesen H, Seljeflot I. Novel biomolecules of ageing, sex differences and potential underlying mechanisms of telomere shortening in coronary artery disease. Exp Gerontol 2019; 119:53-60. [PMID: 30684534 DOI: 10.1016/j.exger.2019.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Telomere length (TL), growth differentiate factor (GDF)11, insulin growth factor (IGF)1, sirtuin (SIRT)1 and inflammatory processes have been related to ageing and age-related diseases, like coronary artery disease (CAD). We aimed to investigate the associations between leukocyte TLs (LTLs), chronological age, sex and comorbidities in CAD patients. Any covariations between LTL, GDF11, IGF1, SIRT-1 and pro-inflammatory cytokines were further assessed. METHODS In 300 patients with stable CAD (age 36-81 years, 20% females), DNA and RNA were isolated from whole blood for PCR analysis and relative quantification of LTLs and gene-expression of GDF11, IGF1,SIRT1, IL-12, IL-18 and IFNƴ, respectively. Serum was prepared for the analyses of circulating IL-18, IL-12, IL-6 and TNFα. RESULTS Patients with previous myocardial infarction (MI) presented with 20% shorter LTLs vs. patients without (p = 0.019) indicating LTLs to be of importance for CAD severity. The observation however, was only observed in men (p = 0.009, n = 115), in which the upper LTL quartile associated with 64% lower frequency of previous MI compared to quartile 1-3 (p = 0.005, adjusted). LTLs were not differently distributed according to sex or comorbidities such as hypertension, diabetes type 2 and metabolic syndrome. LTLs and GDF11 were inversely correlated to age (r = -0.17; p = 0.007 and r = -0.16; p = 0.010, respectively), however, separated in gender, LTL only in women (r = -0.37) and GDF11 only in men (r = -0.19) (p = 0.006, both). GDF11 and SIRT1 were strongly inter-correlated (r = 0.56, p ≤ 0.001), suggesting common upstream regulators. LTLs were moderately correlated to GDF11 and SIRT1 in overweight women (BMI ≥ 25 kg/m2) (r = 0.41; p = 0.027 and 0.43; p = 0.020, respectively), which may reflect common life-style influences on LTLs and these markers. In all women, we observed further that the highest LTL quartile associated with higher GDF11 and SIRT expression and lower circulating levels of IL-12, IL-18 and TNFα, as compared to quartile 1, which may indicate lifestyle influences on female LTLs. In men, the highest LTL quartile associated with lower IFNƴ expression and lower circulating TNFα. Overall, the results indicate an association between chronic low-grade inflammation and LTLs. CONCLUSIONS Shorter LTLs in CAD patients with previously suffered MI may indicate telomere attrition as part of its pathophysiology in men. The inverse association between LTLs and age exclusively in women underpins the previously reported decline in attrition rate in men with increasing age. As elevated GDF11 and SIRT1 along with attenuated pro-inflammatory cytokines seem to positively affect LTL in women, we hypothesize a potential sex-dimorphism in LTL regulation, which may implicate sex- adjusted health-preventive therapies.
Collapse
Affiliation(s)
- Trine B Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway.
| | - Are A Kalstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Alf Åge Pettersen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Ringerike Hospital, Vestre Viken HF, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
170
|
Li Z, Zhang X, Guo Z, Zhong Y, Wang P, Li J, Li Z, Liu P. SIRT6 Suppresses NFATc4 Expression and Activation in Cardiomyocyte Hypertrophy. Front Pharmacol 2019; 9:1519. [PMID: 30670969 PMCID: PMC6331469 DOI: 10.3389/fphar.2018.01519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
NFATc4, a member from the Nuclear Factor of Activated T cells (NFATs) transcription factor family, plays a pivotal role in the development of cardiac hypertrophy. NFATc4 is dephosphorylated by calcineurin and translocated from the cytoplasm to the nucleus to regulate the expression of hypertrophic genes, like brain natriuretic polypeptide (BNP). The present study identified SIRT6, an important subtype of NAD+ dependent class III histone deacetylase, to be a negative regulator of NFATc4 in cardiomyocyte hypertrophy. In phenylephrine (PE)-induced hypertrophic cardiomyocyte model, overexpression of SIRT6 by adenovirus infection or by plasmid transfection repressed the protein and mRNA expressions of NFATc4, elevated its phosphorylation level, prevented its nuclear accumulation, subsequently suppressed its transcriptional activity and downregulated its target gene BNP. By contrast, mutant of SIRT6 without deacetylase activity (H133Y) did not demonstrate these effects, suggesting that the inhibitory effect of SIRT6 on NFATc4 was dependent on its deacetylase activity. Moreover, the effect of SIRT6 overexpression on repressing BNP expression was reversed by NFATc4 replenishment, whereas the effect of SIRT6 deficiency on upregulating BNP was recovered by NFATc4 silencing. Mechanistically, interactions between SIRT6 and NFATc4 might possibly facilitate the deacetylation of NFATc4 by SIRT6, thereby preventing the activation of NFATc4. In conclusion, the present study reveals that SIRT6 suppresses the expression and activation of NFATc4. These findings provide more evidences of the anti-hypertrophic effect of SIRT6 and suggest SIRT6 as a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Shaanxi, China
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao Zhong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, Third People's Hospital of Dongguan, Dongguan, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
171
|
Abstract
Oxidative stress is one of the key mechanisms of sepsis related organ dysfunction including stress hyperglycemia. Silent mating type information regulation 2 homolog 1 (SIRT1) could regulate glucose metabolism through its deacetylase activity. In this study, we aimed to investigate the role of SIRT1/forkhead box protein 1 (FoxO1) pathway on lipopolysaccharide (LPS) induced INS-1 cells dysfunction from aspects of oxidative stress and apoptosis. After being treated with 1 mg/L LPS together with or without SIRT1 activator resveratrol (RSV) or SIRT1 inhibitor EX527, cell viability, ROS generation, malondialdehyde (MDA), superoxide, insulin secretion, and activity of superoxide dismutase (SOD) in INS-1 cells were measured by specific assays. Protein expression of SIRT1, FoxO1, toll-like receptor 4 (TLR4), and acetylated FoxO1 (ac-FoxO1) were detected by western blot analysis. Nuclear and cytoplasmic protein was extracted respectively to analyze SIRT1 and FoxO1 redistribution. Mitochondrial potentials and apoptosis were detected by flow cytometry or observed under fluorescence microscope. Results showed that LPS decreased cell viability and insulin secretion, increased ROS, MDA, and superoxide generation, whereas inhibited SOD activity and FoxO1 nuclear transportation. Activation of SIRT1 by RSV down-regulated TLR4 expression, SIRT1 and FoxO1 nuclear protein expression increased after RSV pretreatment. Additionally, LPS induced decreased mitochondrial membrane potentials and structural abnormalities, which could be partially reversed by RSV. SIRT1/FoxO1 may be one of potential targets which could resist against LPS-induced INS-1 cells from oxidative stress damage and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xingxing Mo
- a Department of Emergency , Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xiao Wang
- a Department of Emergency , Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qinmin Ge
- a Department of Emergency , Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Fan Bian
- b Department of Nephrology , Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
172
|
Lee HJ, Yang SJ. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes. Nutr Res Pract 2018; 13:3-10. [PMID: 30788050 PMCID: PMC6369115 DOI: 10.4162/nrp.2019.13.1.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES The NAD+ precursor nicotinamide riboside (NR) is a type of vitamin B3 found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS A subset of hepatocytes was treated with palmitic acid (PA; 250 µM) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR (10 µM and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor γ coactivator-1α, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.
Collapse
Affiliation(s)
- Hee Jae Lee
- Department of Food and Nutrition, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Korea
| |
Collapse
|
173
|
Miranda-Lara CA, Ortiz MI, Rodríguez-Ramos F, Chávez-Piña AE. Synergistic interaction between docosahexaenoic acid and diclofenac on inflammation, nociception, and gastric security models in rats. Drug Dev Res 2018; 79:239-246. [PMID: 30188586 DOI: 10.1002/ddr.21438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022]
Abstract
Preclinical Research & Development The addition of polyunsaturated fatty acids to nonsteroidal anti-inflammatory drugs can increase their antinociceptive activity and produce a gastroprotective effect. The aim of the present study was to examine the effects of the interaction between docosahexaenoic acid (DHA) and diclofenac on inflammation (fixed ratios 1:1, 1:3, and 3:1), nociception (fixed ratio 1:3), and gastric injury in rats. DHA, diclofenac, or combinations of DHA and diclofenac produced anti-inflammatory and antinociceptive effects in rat. The administration of diclofenac produced significant gastric damage, but this effect was not observed with either DHA or the DHA-diclofenac combinations. Effective dose (ED30 ) values were estimated for each individual drug and analyzed isobolographically. The anti-inflammatory experimental ED30 values were 6.97 mg/kg (1:1 fixed ratio), 1.1 mg/kg (1:3 fixed ratio), and 11.34 mg/kg (3:1 fixed ratio). These values were significantly lower (p < .05) than the theoretical ED30 values: 67.94 mg/kg (1:1), 35.37 mg/kg (1:3), and 100.51 mg/kg (3:1). The antinociceptive experimental value was 1.25 mg/kg (1:3 fixed ratio). This value was lower (p < .05) than the theoretical ED30 , which was predicted to be 15.92 mg/kg. These data indicate that the DHA-diclofenac combinations interact at the systemic level, produce minor gastric damage, and potentially have therapeutic advantages for the clinical treatment of inflammatory pain.
Collapse
Affiliation(s)
- Christopher Allan Miranda-Lara
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Mario I Ortiz
- Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico
| | - Fernando Rodríguez-Ramos
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Cuidad de México, Mexico
| | - Aracely Evangelina Chávez-Piña
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
174
|
Liu SY, Song JY, Fan B, Wang Y, Pan YR, Che L, Sun YJ, Li GY. Resveratrol protects photoreceptors by blocking caspase- and PARP-dependent cell death pathways. Free Radic Biol Med 2018; 129:569-581. [PMID: 30342188 DOI: 10.1016/j.freeradbiomed.2018.10.431] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
Abstract
Retinal degeneration is a major cause of severe vision loss and irreversible blindness and is characterized by progressive damage to retinal photoreceptor cells. Resveratrol (RSV) serves as an activator of the histone deacetylase, Sirt1, and has been shown to exert anti-oxidative properties. In this study, we mimicked retinal degeneration by subjecting photoreceptors (661 W cells) to glucose deprivation (GD) or light exposure. Under these conditions, we investigated the mechanisms underlying GD- or light exposure-induced cell death and the protective effect of RSV. We found that GD and light exposure resulted in mitochondrial dysfunction, oxidative stress, and cell death. Treatment of injured cells with RSV decreased the production of reactive oxygen species (ROS), improved the ratio of reduced/oxidized glutathione (GSH/GSSG), mitochondrial membrane potential and morphology, and reduced apoptosis. We used the caspase inhibitor, z-VAD-fmk, and a lentiviral-mediated shRNA knockdown of PARP-1 to reveal that GD and light exposure-induced cell death have different underlying mechanisms; GD triggered a caspase-dependent cell death pathway, whereas light exposure triggered a PARP-dependent cell death pathway. The level of caspase-9 and caspase-3, upregulated following GD, were reduced by treatment with RSV. Similarly, the level of PARP-1 and AIF, upregulated following light exposure, were decreased by treatment with RSV. Additionally, treatment with RSV elevated the protein expression and enzymatic activity of Sirt1 and a Sirt1 inhibitor reduced the protective effect of RSV against insult-induced cellular injuries, indicating that RSV's protective effect may involve Sirt1 activation. Finally, we investigated the neuroprotection of RSV in vivo. Administration of RSV to mice under extreme light exposure led to a suppression of the light-induced thinning of the outer nuclear layer (ONL) detected by hematoxylin and eosin (H&E) staining and restored retinal function evaluated by electroretinography (ERG). Taken together, our findings provide evidence that treatment with RSV has neuroprotective effects on both GD and light exposure-induced cell death pathways in photoreceptor cells.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Jing-Yao Song
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Ying Wang
- Department of Hemooncolog, Second Hospital of JiLin University, ChangChun 130041, China
| | - Yi-Ran Pan
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Ying-Jian Sun
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China.
| |
Collapse
|
175
|
Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status. Nutrients 2018; 10:nu10111780. [PMID: 30453505 PMCID: PMC6266855 DOI: 10.3390/nu10111780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
A chronic inflammatory state is a major characteristic of the aging process, and physical activity is proposed as a key component for healthy aging. Our aim was to evaluate the body composition, hypertension, lipid profile, and inflammatory status of older adults, and these factors’ association with physical activity. A total of 116 elderly volunteers were categorized into terciles of quantitative metabolic equivalents of task (MET). Subjects in the first and third terciles were defined as sedentary and active subjects, respectively. Anthropometric and biochemical parameters, hemograms, and inflammatory markers were measured in plasma or peripheral mononuclear blood cells (PBMCs). The active groups exercised more than their sedentary counterparts. The practice of physical activity was accompanied by lower weight, fat mass, body mass index, and diastolic blood pressure when compared to a more sedentary life-style. Physical activity also lowered the haematocrit and total leukocyte, neutrophil, and lymphocyte counts. The practice of exercise induced a decrease in the IL-6 circulating levels and the TLR2 protein levels in PBMCs, while the expression of the anti-inflammatory IL-10 was activated in active subjects. The regular practice of physical activity exerts beneficial effects on body composition and the anti-inflammatory status of old people.
Collapse
|
176
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
177
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
178
|
Ávalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 2018; 30:e12598. [PMID: 29645315 DOI: 10.1111/jne.12598] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types, as well as cell and molecular mechanisms, that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Subsequent to the discovery that high-fat diet and saturated fatty acids increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, in addition to the role of inflammation in the pathogenesis of obesity. Recent studies have proposed that the inhibition of pro-inflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches.
Collapse
Affiliation(s)
- Y Ávalos
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B Kerr
- Centro de Estudios Científicos, Valdivia, Chile
| | - M Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile, Santiago, Chile
| | - M Dorfman
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
179
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|