151
|
Zhang JW, Pang B, Zhao Q, Chang Y, Wang YL, Jiang YD, Jing L. Hyperhomocysteinemia induces injury in olfactory bulb neurons by downregulating Hes1 and Hes5 expression. Neural Regen Res 2018; 13:272-279. [PMID: 29557377 PMCID: PMC5879899 DOI: 10.4103/1673-5374.220779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hyperhomocysteinemia has been shown to be associated with neurodegenerative diseases; however, lesions or histological changes and mechanisms underlying homocysteine-induced injury in olfactory bulb neurons remain unclear. In this study, hyperhomocysteinemia was induced in apolipoprotein E-deficient mice with 1.7% methionine. Pathological changes in the olfactory bulb were observed through hematoxylin-eosin and Pischingert staining. Cell apoptosis in the olfactory bulb was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Transmission electron microscopy revealed an abnormal ultrastructure of neurons. Furthermore, immunoreactivity and expression of the hairy enhancer of the split 1 (Hes1) and Hes5 were measured using immunohistochemistry, immunofluorescence, and western blot assay. Our results revealed no significant structural abnormality in the olfactory bulb of hyperhomocysteinemic mice. However, the number of TUNEL-positive cells increased in the olfactory bulb, lipofuscin and vacuolization were visible in mitochondria, and the expression of Hes1 and Hes5 decreased. These findings confirm that hyperhomocysteinemia induces injury in olfactory bulb neurons by downregulating Hes1 and Hes5 expression.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region; Institute of Immunopathology, Medical School, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Pang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qi Zhao
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yue Chang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yi-Li Wang
- Institute of Immunopathology, Medical School, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi-Deng Jiang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li Jing
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
152
|
Kageyama R, Shimojo H, Isomura A. Oscillatory Control of Notch Signaling in Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:265-277. [DOI: 10.1007/978-3-319-89512-3_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
153
|
Vollersen N, Hermans-Borgmeyer I, Cornils K, Fehse B, Rolvien T, Triviai I, Jeschke A, Oheim R, Amling M, Schinke T, Yorgan TA. High Bone Turnover in Mice Carrying a Pathogenic Notch2 Mutation Causing Hajdu-Cheney Syndrome. J Bone Miner Res 2018; 33:70-83. [PMID: 28856714 DOI: 10.1002/jbmr.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 08/27/2017] [Indexed: 01/08/2023]
Abstract
Hajdu-Cheney syndrome (HCS) is a rare autosomal-dominant disorder primarily characterized by acro-osteolysis and early-onset osteoporosis. Genetically, HCS is caused by nonsense or deletion mutations within exon 34 of the NOTCH2 gene, resulting in premature translational termination and production of C-terminally truncated NOTCH2 proteins that are predicted to activate NOTCH2-dependent signaling. To understand the role of Notch2 in bone remodeling, we developed a mouse model of HCS by introducing a pathogenic mutation (6272delT) into the murine Notch2 gene. By μCT and undecalcified histology, we observed generalized osteopenia in two independent mouse lines derived by injection of different targeted embryonic stem (ES) cell clones, yet acro-osteolysis did not occur until the age of 52 weeks. Cellular and dynamic histomorphometry revealed a high bone turnover situation in Notch2+/HCS mice, since osteoblast and osteoclast indices were significantly increased compared with wild-type littermates. Whereas ex vivo cultures failed to uncover cell-autonomous gain-of-functions within the osteoclast or osteoblast lineage, an unbiased RNA sequencing approach identified Tnfsf11 and Il6 as Notch-signaling target genes in bone marrow cells cultured under osteogenic conditions. Because we further observed that the high-turnover pathology of Notch2+/HCS mice was fully normalized by alendronate treatment, our results demonstrate that mutational activation of Notch2 does not directly control osteoblast activity but favors a pro-osteoclastic gene expression pattern, which in turn triggers high bone turnover. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioanna Triviai
- Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
154
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
155
|
Zhang JW, Yan R, Tang YS, Guo YZ, Chang Y, Jing L, Wang YL, Zhang JZ. Hyperhomocysteinemia-induced autophagy and apoptosis with downregulation of hairy enhancer of split 1/5 in cortical neurons in mice. Int J Immunopathol Pharmacol 2017; 30:371-382. [PMID: 29171783 PMCID: PMC5806807 DOI: 10.1177/0394632017740061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been reported that hyperhomocysteinemia (HHcy) is associated with neurodegenerative and cardiovascular diseases. However, little is known about brain histomorphology, neuronal organelles, and hairy enhancer of split (hes) expression under HHcy. In this study, non-HHcy and HHcy induced by high-methionine diet in apolipoprotein E–deficient (Apo E−/−) mice were comparatively investigated. The histomorphology, ultrastructure, autophagosomes, apoptosis, and expression of proteins, HES1, HES5 and P62, were designed to assess the effects of HHcy on brain. The results showed that compared to the non-HHcy mice, the HHcy group had an increase in autophagosomes, vacuolization in mitochondria, and neuron apoptosis; treatment with folate and vitamin B12 reduced the extent of these lesions. However, the elementary histomorphology, the numbers of cortical neurons, and Nissl bodies had no significant difference between the HHcy and the non-HHcy groups or the group treated with folate and vitamin B12. Immunohistochemistry and immunofluorescence demonstrated a decrease in HES1- or HES5-positive neurons in the HHcy group when compared to the non-HHcy groups, wild-type, and Apo E−/− controls, or the HHcy mice with folate and vitamin B12 supplement. Western blots showed that HHcy induced a decreased expression of HES1 and HES5, or P62, in which the expression of HES1 and P62 was elevated by treating with folate and vitamin B12 supplement. These results suggest that HHcy-enhanced brain damage is associated with increased autophagy and neuronal apoptosis in Apo E−/− mice, in which downregulation of hes1 and hes5 is involved.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- 1 Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Immunopathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,3 Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu-Sheng Tang
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yong-Zhen Guo
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yue Chang
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Li Jing
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yi-Li Wang
- 1 Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Immunopathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Zhong Zhang
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,4 Department of Pathology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
156
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
157
|
Urbanek K, Lesiak M, Krakowian D, Koryciak-Komarska H, Likus W, Czekaj P, Kusz D, Sieroń AL. Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. J Transl Med 2017; 97:1225-1234. [PMID: 28805807 DOI: 10.1038/labinvest.2017.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Notch signaling is a key signaling pathway for cell proliferation and differentiation. Therefore, we formulated a working hypothesis that Notch signaling can be used to detect early osteoblastic differentiation of mesenchymal stromal cells. Changes in expression and distribution of Notch 1, 2, 3, and Delta1 in the cytoplasm and nuclei of rat liver-derived mesenchymal stromal cells differentiating into osteoblasts were investigated, together with the displacement of intracellular domains (ICDs) of the receptors. In addition, an oligonucleotide microarray was used to determine the expression of genes known to be linked to selected signaling pathways. Statistically significant changes in the number of cells expressing Notch1, Notch2, and Delta1, but not Notch3, and their activated forms were detected within 24 h of culture under osteogenic conditions. Although the number of cells expressing Notch3 remained unchanged, the number of cells with the activated receptor was significantly elevated. The number of cells positive for Notch3 was higher than that for the other Notch receptors even after 48 h of differentiation; however, a smaller fraction of cells contained activated Notch3. Culture mineralization was detected on day 4 of differentiation, and all analyzed receptors were present in the cells at that time, but only Delta1 was activated in twice as many cells than that before differentiation. Thus, the three analyzed receptors and ligand can serve as markers of very early stages of osteogenesis in stromal cells. These early changes in activation of the Notch signaling pathway were correlated with the transcription of several genes linked to osteogenesis, such as Bmps, Mmps, and Egfr, and with the regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Ksymena Urbanek
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniel Krakowian
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Halina Koryciak-Komarska
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
158
|
Notch-out for breast cancer therapies. N Biotechnol 2017; 39:215-221. [DOI: 10.1016/j.nbt.2017.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/07/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
|
159
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
160
|
Nagel AC, Auer JS, Schulz A, Pfannstiel J, Yuan Z, Collins CE, Kovall RA, Preiss A. Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Sci Rep 2017; 7:11820. [PMID: 28928428 PMCID: PMC5605572 DOI: 10.1038/s41598-017-11952-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signalling activity governs cellular differentiation in higher metazoa, where Notch signals are transduced by the transcription factor CSL, called Suppressor of Hairless [Su(H)] in Drosophila. Su(H) operates as molecular switch on Notch target genes: within activator complexes, including intracellular Notch, or within repressor complexes, including the antagonist Hairless. Mass spectrometry identified phosphorylation on Serine 269 in Su(H), potentially serving as a point of cross-regulation by other signalling pathways. To address the biological significance, we generated phospho-deficient [Su(H)S269A] and phospho-mimetic [Su(H)S269D] variants: the latter displayed reduced transcriptional activity despite unaltered protein interactions with co-activators and -repressors. Based on the Su(H) structure, Ser269 phosphorylation may interfere with DNA-binding, which we confirmed by electro-mobility shift assay and isothermal titration calorimetry. Overexpression of Su(H)S269D during fly development demonstrated reduced transcriptional regulatory activity, similar to the previously reported DNA-binding defective mutant Su(H)R266H. As both are able to bind Hairless and Notch proteins, Su(H)S269D and Su(H)R266H provoked dominant negative effects upon overexpression. Our data imply that Ser269 phosphorylation impacts Notch signalling activity by inhibiting DNA-binding of Su(H), potentially affecting both activation and repression. Ser269 is highly conserved in vertebrate CSL homologues, opening the possibility of a general and novel mechanism of modulating Notch signalling activity.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Jasmin S Auer
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit University of Hohenheim, 70599, Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anette Preiss
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
161
|
Bhattacharya A, Li K, Quiquand M, Rimesso G, Baker NE. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 2017; 431:309-320. [PMID: 28919436 DOI: 10.1016/j.ydbio.2017.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
162
|
Hall ET, Pradhan-Sundd T, Samnani F, Verheyen EM. The protein phosphatase 4 complex promotes the Notch pathway and wingless transcription. Biol Open 2017; 6:1165-1173. [PMID: 28652317 PMCID: PMC5576076 DOI: 10.1242/bio.025221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Wnt/Wingless (Wg) pathway controls cell fate specification, tissue differentiation and organ development across organisms. Using an in vivo RNAi screen to identify novel kinase and phosphatase regulators of the Wg pathway, we identified subunits of the serine threonine phosphatase Protein Phosphatase 4 (PP4). Knockdown of the catalytic and regulatory subunits of PP4 cause reductions in the Wg pathway targets Senseless and Distal-less. We find that PP4 regulates the Wg pathway by controlling Notch-driven wg transcription. Genetic interaction experiments identified that PP4 likely promotes Notch signaling within the nucleus of the Notch-receiving cell. Although the PP4 complex is implicated in various cellular processes, its role in the regulation of Wg and Notch pathways was previously uncharacterized. Our study identifies a novel role of PP4 in regulating Notch pathway, resulting in aberrations in Notch-mediated transcriptional regulation of the Wingless ligand. Furthermore, we show that PP4 regulates proliferation independent of its interaction with Notch. Summary: The protein phosphatase 4 complex promotes Notch signaling and target gene expression during Drosophila wing development.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Faaria Samnani
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| |
Collapse
|
163
|
Abstract
Stem cells self-renew and produce progenitors with limited proliferative potential. Reporting in Developmental Cell, Liu et al. (2017) demonstrate that in some neural stem cells, Notch activity is asymmetrically amplified by a positive feedback loop with the super elongation complex (SEC) to quickly differentiate between stem cells and progenitors.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
164
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
165
|
Zanotti S, Yu J, Sanjay A, Schilling L, Schoenherr C, Economides AN, Canalis E. Sustained Notch2 signaling in osteoblasts, but not in osteoclasts, is linked to osteopenia in a mouse model of Hajdu-Cheney syndrome. J Biol Chem 2017; 292:12232-12244. [PMID: 28592489 DOI: 10.1074/jbc.m117.786129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
Individuals with Hajdu-Cheney syndrome (HCS) present with osteoporosis, and HCS is associated with NOTCH2 mutations causing deletions of the proline-, glutamic acid-, serine-, and threonine-rich (PEST) domain that are predicted to enhance NOTCH2 stability and cause gain-of-function. Previously, we demonstrated that mice harboring Notch2 mutations analogous to those in HCS (Notch2HCS) are severely osteopenic because of enhanced bone resorption. We attributed this phenotype to osteoclastic sensitization to the receptor activator of nuclear factor-κB ligand and increased osteoblastic tumor necrosis factor superfamily member 11 (Tnfsf11) expression. Here, to determine the individual contributions of osteoclasts and osteoblasts to HCS osteopenia, we created a conditional-by-inversion (Notch2COIN ) model in which Cre recombination generates a Notch2ΔPEST allele expressing a Notch2 mutant lacking the PEST domain. Germ line Notch2COIN inversion phenocopied the Notch2HCS mutant, validating the model. To activate Notch2 in osteoclasts or osteoblasts, Notch2COIN mice were bred with mice expressing Cre from the Lyz2 or the BGLAP promoter, respectively. These crosses created experimental mice harboring a Notch2ΔPEST allele in Cre-expressing cells and control littermates expressing a wild-type Notch2 transcript. Notch2COIN inversion in Lyz2-expressing cells had no skeletal consequences and did not affect the capacity of bone marrow macrophages to form osteoclasts in vitro In contrast, Notch2COIN inversion in osteoblasts led to generalized osteopenia associated with enhanced bone resorption in the cancellous bone compartment and with suppressed endocortical mineral apposition rate. Accordingly, Notch2 activation in osteoblast-enriched cultures from Notch2COIN mice induced Tnfsf11 expression. In conclusion, introduction of the HCS mutation in osteoblasts, but not in osteoclasts, causes osteopenia.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030; Department of Medicine, UConn Health, Farmington, Connecticut 06030; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | | | | | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030; Department of Medicine, UConn Health, Farmington, Connecticut 06030; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030.
| |
Collapse
|
166
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
167
|
The role of Notch signaling in gastric carcinoma: molecular pathogenesis and novel therapeutic targets. Oncotarget 2017; 8:53839-53853. [PMID: 28881855 PMCID: PMC5581154 DOI: 10.18632/oncotarget.17809] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade system, is involved in promoting the progression of different types of cancers. Within the past decades, the Notch signaling pathway has increasingly been shown to have a primary role in deciding the fate of cancer cells and cancer stem cells in the stomach. Most components of Notch signaling are strongly expressed at different levels in gastric carcinoma tissue samples and are associated with a considerable number of clinical parameters. Moreover, crosstalk signaling between the Notch pathway and the Wnt, Ras, and NF-κB pathways promotes the process of gastric carcinogenesis. Consequently, this increases proliferation and prevents apoptosis in gastric cancer cells, and it contributes to the induction of angiogenesis and accelerates the progression of the epithelial-to-mesenchymal transition. Although the Notch signaling pathway presents novel therapeutic targets for cancer therapeutic intervention, there is still a dearth of in-depth understanding of the molecular mechanisms of Notch signaling in gastric carcinoma. In this review, we summarize the landscape of the Notch signaling pathway and recent findings on Notch signaling in gastric cancer. Furthermore, advanced studies and clinical treatments targeting the Notch signaling pathway arediscussed.
Collapse
|
168
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
169
|
Zhao J, Wang Y, Mu C, Xu Y, Sang J. MAGEA1 interacts with FBXW7 and regulates ubiquitin ligase-mediated turnover of NICD1 in breast and ovarian cancer cells. Oncogene 2017; 36:5023-5034. [DOI: 10.1038/onc.2017.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
|
170
|
Liu XJ, Jiang X, Huang SN, Sun JY, Zhao F, Zeng WB, Luo MH. Human cytomegalovirus infection dysregulates neural progenitor cell fate by disrupting Hes1 rhythm and down-regulating its expression. Virol Sin 2017; 32:188-198. [PMID: 28451898 DOI: 10.1007/s12250-017-3956-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily affecting the central nervous system and causing its maldevelopment. As the essential downstream effector of Notch signaling pathway, Hes1, and its dynamic expression, plays an essential role on maintaining neural progenitor /stem cells (NPCs) cell fate and fetal brain development. In the present study, we reported the first observation of Hes1 oscillatory expression in human NPCs, with an approximately 1.5 hour periodicity and a Hes1 protein half-life of about 17 (17.6 ± 0.2) minutes. HCMV infection disrupts the Hes1 rhythm and down-regulates its expression. Furthermore, we discovered that depleting Hes1 protein disturbed NPCs cell fate by suppressing NPCs proliferation and neurosphere formation, and driving NPCs abnormal differentiation. These results suggested a novel mechanism linking disruption of Hes1 rhythm and down-regulation of Hes1 expression to neurodevelopmental disorders caused by congenital HCMV infection.
Collapse
Affiliation(s)
- Xi-Juan Liu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,The Joint Center of Translational Precision Medicine; Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510000, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
171
|
Regulation of Notch Signaling by the Heterogeneous Nuclear Ribonucleoprotein Hrp48 and Deltex in Drosophila melanogaster. Genetics 2017; 206:905-918. [PMID: 28396507 DOI: 10.1534/genetics.116.198879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that is found to be involved in a number of cellular events throughout development. The deployment of the Notch signaling pathway in numerous cellular contexts is possible due to its regulation at multiple levels. In an effort to identify the novel components integrated into the molecular circuitry affecting Notch signaling, we carried out a protein-protein interaction screen based on the identification of cellular protein complexes using co-immunoprecipitation followed by mass-spectrometry. We identified Hrp48, a heterogeneous nuclear ribonucleoprotein in Drosophila, as a novel interacting partner of Deltex (Dx), a cytoplasmic modulator of Notch signaling. Immunocytochemical analysis revealed that Dx and Hrp48 colocalize in cytoplasmic vesicles. The dx mutant also showed strong genetic interactions with hrp48 mutant alleles. The coexpression of Dx and Hrp48 resulted in the depletion of cytoplasmic Notch in larval wing imaginal discs and downregulation of Notch targets cut and wingless Previously, it has been shown that Sex-lethal (Sxl), on binding with Notch mRNA, negatively regulates Notch signaling. The overexpression of Hrp48 was found to inhibit Sxl expression and consequently rescued Notch signaling activity. In the present study, we observed that Dx together with Hrp48 can regulate Notch signaling in an Sxl-independent manner. In addition, Dx and Hrp48 displayed a synergistic effect on caspase-mediated cell death. Our results suggest that Dx and Hrp48 together negatively regulate Notch signaling in Drosophila melanogaster.
Collapse
|
172
|
Marcel N, Perumalsamy LR, Shukla SK, Sarin A. The lysine deacetylase Sirtuin 1 modulates the localization and function of the Notch1 receptor in regulatory T cells. Sci Signal 2017; 10:10/473/eaah4679. [PMID: 28377411 DOI: 10.1126/scisignal.aah4679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to tune cellular functions in response to nutrient availability has important consequences for immune homeostasis. The activity of the receptor Notch in regulatory T (Treg) cells, which suppress the functions of effector T cells, is indispensable for Treg cell survival under conditions of diminished nutrient supply. Anti-apoptotic signaling induced by the Notch1 intracellular domain (NIC) originates from the cytoplasm and is spatially decoupled from the nuclear, largely transcriptional functions of NIC. We showed that Sirtuin 1 (Sirt1), which is an NAD+ (nicotinamide adenine dinucleotide)-dependent lysine deacetylase that inhibits NIC-dependent gene transcription, stabilized NIC proximal to the plasma membrane to promote the survival and function of activated Treg cells. Sirt1 was required for NIC-dependent protection from apoptosis in cell lines but not for the activity of the anti-apoptotic protein Bcl-xL. In addition, a variant NIC protein in which four lysines were mutated to arginines (NIC4KR) retained anti-apoptotic activity, but was not regulated by Sirt1, and reconstituted the functions of nonnuclear NIC in Notch1-deficient Treg cells. Loss of Sirt1 compromised Treg cell survival, resulting in antigen-induced T cell proliferation and inflammation in two mouse models. Thus, the Sirt1-Notch interaction may constitute an important checkpoint that tunes noncanonical Notch1 signaling.
Collapse
Affiliation(s)
- Nimi Marcel
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India.,Manipal University, Manipal, Karnataka, India
| | | | - Sanjay K Shukla
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India.,Manipal University, Manipal, Karnataka, India
| | - Apurva Sarin
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Bengaluru, Karnataka 560065, India
| |
Collapse
|
173
|
Lee TV, Pandey A, Jafar-Nejad H. Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila. PLoS Genet 2017; 13:e1006723. [PMID: 28394891 PMCID: PMC5402982 DOI: 10.1371/journal.pgen.1006723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/24/2017] [Accepted: 03/29/2017] [Indexed: 01/02/2023] Open
Abstract
The Drosophila glucoside xylosyltransferase Shams xylosylates Notch and inhibits Notch signaling in specific contexts including wing vein development. However, the molecular mechanisms underlying context-specificity of the shams phenotype is not known. Considering the role of Delta-Notch signaling in wing vein formation, we hypothesized that Shams might affect Delta-mediated Notch signaling in Drosophila. Using genetic interaction studies, we find that altering the gene dosage of Delta affects the wing vein and head bristle phenotypes caused by loss of Shams or by mutations in the Notch xylosylation sites. Clonal analysis suggests that loss of shams promotes Delta-mediated Notch activation. Further, Notch trans-activation by ectopically overexpressed Delta shows a dramatic increase upon loss of shams. In agreement with the above in vivo observations, cell aggregation and ligand-receptor binding assays show that shams knock-down in Notch-expressing cells enhances the binding between Notch and trans-Delta without affecting the binding between Notch and trans-Serrate and cell surface levels of Notch. Loss of Shams does not impair the cis-inhibition of Notch by ectopic overexpression of ligands in vivo or the interaction of Notch and cis-ligands in S2 cells. Nevertheless, removing one copy of endogenous ligands mimics the effects of loss shams on Notch trans-activation by ectopic Delta. This favors the notion that trans-activation of Notch by Delta overcomes the cis-inhibition of Notch by endogenous ligands upon loss of shams. Taken together, our data suggest that xylosylation selectively impedes the binding of Notch with trans-Delta without affecting its binding with cis-ligands and thereby assists in determining the balance of Notch receptor's response to cis-ligands vs. trans-Delta during Drosophila development.
Collapse
Affiliation(s)
- Tom V. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
174
|
Canalis E, Sanjay A, Yu J, Zanotti S. An Antibody to Notch2 Reverses the Osteopenic Phenotype of Hajdu-Cheney Mutant Male Mice. Endocrinology 2017; 158:730-742. [PMID: 28323963 PMCID: PMC5460801 DOI: 10.1210/en.2016-1787] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022]
Abstract
Notch receptors play a central role in skeletal development and bone remodeling. Hajdu-Cheney syndrome (HCS), a disease characterized by osteoporosis and fractures, is associated with gain-of-NOTCH2 function mutations. To study HCS, we created a mouse model harboring a point 6955C>T mutation in the Notch2 locus upstream of the proline, glutamic acid, serine, and threonine domain, leading to a Q2319X change at the amino acid level. Notch2Q2319X heterozygous mutants exhibited cancellous and cortical bone osteopenia. Microcomputed tomography demonstrated that the cancellous and cortical osteopenic phenotype was reversed by the administration of antibodies generated against the negative regulatory region (NRR) of Notch2, previously shown to neutralize Notch2 activity. Bone histomorphometry revealed that anti-Notch2 NRR antibodies decreased the osteoclast number and eroded surface in cancellous bone of Notch2Q2319X mice. An increase in osteoclasts on the endocortical surface of Notch2Q2319X mice was not observed in the presence of anti-Notch2 NRR antibodies. The anti-Notch2 NRR antibody decreased the induction of Notch target genes and Tnfsf11 messenger RNA levels in bone extracts and osteoblasts from Notch2Q2319X mice. In vitro experiments demonstrated increased osteoclastogenesis in Notch2Q2319X mutants in response to macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, and these effects were suppressed by the anti-Notch2 NRR. In conclusion, Notch2Q2319X mice exhibit cancellous and cortical bone osteopenia that can be corrected by the administration of anti-Notch2 NRR antibodies.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and
- Medicine and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Archana Sanjay
- Departments of Orthopaedic Surgery and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Jungeun Yu
- Departments of Orthopaedic Surgery and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and
- Medicine and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
175
|
Deatherage CL, Lu Z, Kroncke BM, Ma S, Smith JA, Voehler MW, McFeeters RL, Sanders CR. Structural and biochemical differences between the Notch and the amyloid precursor protein transmembrane domains. SCIENCE ADVANCES 2017; 3:e1602794. [PMID: 28439555 PMCID: PMC5389784 DOI: 10.1126/sciadv.1602794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 05/11/2023]
Abstract
γ-Secretase cleavage of the Notch receptor transmembrane domain is a critical signaling event for various cellular processes. Efforts to develop inhibitors of γ-secretase cleavage of the amyloid-β precursor C99 protein as potential Alzheimer's disease therapeutics have been confounded by toxicity resulting from the inhibition of normal cleavage of Notch. We present biochemical and structural data for the combined transmembrane and juxtamembrane Notch domains (Notch-TMD) that illuminate Notch signaling and that can be compared and contrasted with the corresponding traits of C99. The Notch-TMD and C99 have very different conformations, adapt differently to changes in model membrane hydrophobic span, and exhibit different cholesterol-binding properties. These differences may be exploited in the design of agents that inhibit cleavage of C99 while allowing Notch cleavage.
Collapse
Affiliation(s)
- Catherine L. Deatherage
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Brett M. Kroncke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Sirui Ma
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jarrod A. Smith
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Markus W. Voehler
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert L. McFeeters
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding author.
| |
Collapse
|
176
|
Cigliano A, Wang J, Chen X, Calvisi DF. Role of the Notch signaling in cholangiocarcinoma. Expert Opin Ther Targets 2017; 21:471-483. [PMID: 28326864 DOI: 10.1080/14728222.2017.1310842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an emerging cancer entity of the liver, associated with poor outcome and characterized by resistance to conventional chemotherapeutic treatments. In the last decade, many signaling pathways associated with CCA development and progression have been identified and are currently under intense investigation. Cumulating evidence indicates that the Notch cascade, a highly-conserved pathway in most multicellular organisms, is a critical player both in liver malignant transformation and tumor aggressiveness, thus representing a potential therapeutic target in this pernicious disease. Areas covered: In the present review article, we comprehensively summarize and critically discuss the current knowledge on the Notch pathway, its specific and key roles in cholangiocarcinogenesis, the treatment strategies aimed at suppressing this signaling cascade in cancer, and the encouraging results coming from preclinical trials. Expert opinion: The Notch pathway represents a major driver of carcinogenesis and a promising therapeutic target in human CCA. A better understanding of the molecular mechanisms triggered by the Notch pathway as well as its functional crosstalk with other signaling cascade will be highly helpful for the design of innovative therapies against human CCA.
Collapse
Affiliation(s)
- Antonio Cigliano
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| | - Jingxiao Wang
- b Second Clinical Medical School , Beijing University of Chinese Medicine , Beijing , China.,c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Xin Chen
- c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Diego F Calvisi
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| |
Collapse
|
177
|
Canalis E, Zanotti S. Hairy and Enhancer of Split-Related With YRPW Motif-Like (HeyL) Is Dispensable for Bone Remodeling in Mice. J Cell Biochem 2017; 118:1819-1826. [PMID: 28019674 DOI: 10.1002/jcb.25859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Notch induces Hairy Enhancer of Split (Hes)1 and Hes-related with YRPW motif (Hey) Hey1, Hey2 and Hey-like (HeyL) expression in osteoblasts, but it is not known whether any of these target genes mediates the effect of Notch in the skeleton. We demonstrated that Notch1 activation in osteoblasts/osteocytes induces Hes1, Hey1, Hey2, and HeyL, but HeyL was induced to a greater extent than other target genes. To characterize HeyL null mice for their skeletal phenotype, microcomputed tomography (µCT) and histomorphometric analysis of HeyL null and sex-matched littermate controls was performed. µCT demonstrated modest cancellous bone osteopenia in 1 month old male mice and normal microarchitecture in 3 month old male HeyL null mice. Female HeyL null mice were not different from controls at either 1 or 3 months of age. Bone histomorphometry did not demonstrate differences between HeyL null mice of either sex and littermate controls. In conclusion, HeyL null mice do not exhibit an obvious skeletal phenotype demonstrating that HeyL is dispensable for skeletal homeostasis. J. Cell. Biochem. 118: 1819-1826, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, 06030-5456
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, 06030-5456
| |
Collapse
|
178
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
179
|
Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development 2017; 144:905-915. [PMID: 28174239 DOI: 10.1242/dev.140657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Abstract
The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report functional analysis of Drosophila Ataxin 2-binding protein 1 (A2BP1) during this process. Its human ortholog is linked to type 2 spinocerebellar ataxia and other complex neuronal disorders. Downregulation of Drosophila A2BP1 in the proneural cluster increases adult sensory bristle number, whereas its overexpression results in loss of bristles. We show that A2BP1 regulates sensory organ specification by potentiating Notch signaling. Supporting its direct involvement, biochemical analysis shows that A2BP1 is part of the Suppressor of Hairless [Su(H)] complex in the presence and absence of Notch. However, in the absence of Notch signaling, the A2BP1 interacting fraction of Su(H) does not associate with the repressor proteins Groucho and CtBP. We propose a model explaining the requirement of A2BP1 as a positive regulator of context-specific Notch activity.
Collapse
Affiliation(s)
- Jay Prakash Shukla
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Girish Deshpande
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.,Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
180
|
Krauss RS, Joseph GA, Goel AJ. Keep Your Friends Close: Cell-Cell Contact and Skeletal Myogenesis. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029298. [PMID: 28062562 DOI: 10.1101/cshperspect.a029298] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of skeletal muscle is a multistage process that includes lineage commitment of multipotent progenitor cells, differentiation and fusion of myoblasts into multinucleated myofibers, and maturation of myofibers into distinct types. Lineage-specific transcriptional regulation lies at the core of this process, but myogenesis is also regulated by extracellular cues. Some of these cues are initiated by direct cell-cell contact between muscle precursor cells themselves or between muscle precursors and cells of other lineages. Examples of the latter include interaction of migrating neural crest cells with multipotent muscle progenitor cells, muscle interstitial cells with myoblasts, and neurons with myofibers. Among the signaling factors involved are Notch ligands and receptors, cadherins, Ig superfamily members, and Ephrins and Eph receptors. In this article we describe recent progress in this area and highlight open questions raised by the findings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
181
|
Notch signalling in placental development and gestational diseases. Placenta 2017; 56:65-72. [PMID: 28117145 DOI: 10.1016/j.placenta.2017.01.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/14/2023]
Abstract
Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about Notch signalling in murine and human placentation and discuss its potential role in the pathophysiology of gestational disorders. Studies in mice suggest that Notch controls trophectoderm formation, decidualization, placental branching morphogenesis and endovascular trophoblast invasion. In humans, the particular signalling cascade promotes formation of the extravillous trophoblast lineage and regulates trophoblast proliferation, survival and differentiation. Expression patterns as well as functional analyses indicate distinct roles of Notch receptors in different trophoblast subtypes. Altered effects of Notch signalling have been detected in choriocarcinoma cells, consistent with its role in cancer development and progression. Moreover, deregulation of Notch signalling components were observed in pregnancy disorders such as preeclampsia and fetal growth restriction. In summary, Notch plays fundamental roles in different developmental processes of the placenta. Abnormal signalling through this pathway could contribute to the pathogenesis of gestational diseases with aberrant placentation and trophoblast function.
Collapse
|
182
|
Moosavi M, Hatam GR. The Sleep in Caenorhabditis elegans: What We Know Until Now. Mol Neurobiol 2017; 55:879-889. [PMID: 28078538 DOI: 10.1007/s12035-016-0362-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Sleep, as one of the most important requirements of our brain, has a mystical nature. Despite long-standing studies, the molecular mechanisms and physiological properties of sleep have not been defined well as the complexity of the mammals' brain make it difficult to investigate the mechanisms and properties of sleep. Although some features of sleep have changed during evolution, its existence in such a simple animal, Caenorhabditis elegans, not only signifies the importance of sleep in even simple animals, but also allows the scientist to assess the core mechanism and biological events in an uncomplicated organism. This article reviews the information which exists about the characteristics of sleep in C. elegans, its circadian rhythm, the neurons and neurotransmitters responsible for each state, and the signaling molecules involved. Although much still remains to be resolved about the sleep of C. elegans, the available knowledge helps the scientists to recognize the properties better of this mysterious function of the brain.
Collapse
Affiliation(s)
- Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Physiology, Medical School, Shiraz University of Medical sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
183
|
Dorot O, Steller H, Segal D, Horowitz M. Past1 Modulates Drosophila Eye Development. PLoS One 2017; 12:e0169639. [PMID: 28060904 PMCID: PMC5218476 DOI: 10.1371/journal.pone.0169639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
Endocytosis is a multi-step process involving a large number of proteins, both general factors, such as clathrin and adaptor protein complexes, and unique proteins, which modulate specialized endocytic processes, like the EHD proteins. EHDs are a family of Eps15 Homology Domain containing proteins that consists of four mammalian homologs, one C. elegans, one Drosophila melanogaster and two plants orthologs. These membrane-associated proteins are involved in different steps of endocytic trafficking pathways. We have previously shown that the Drosophila EHD ortholog, PAST1, associates predominantly with the plasma membrane. Mutations in Past1 result in defects in endocytosis, male sterility, temperature sensitivity and premature death of the flies. Also, Past1 genetically interacts with Notch. In the present study, we investigated the role of PAST1 in the developing fly eye. In mutant flies lacking PAST1, abnormal differentiation of photoreceptors R1, R6 and R7 was evident, with partial penetrance. Likewise, five cone cells were present instead of four. Expression of transgenic PAST1 resulted in a dominant negative effect, with a phenotype similar to that of the deletion mutant, and appearance of additional inter-ommatidial pigment cells. Our results strongly suggest a role for PAST1 in differentiation of photoreceptors R1/R6/R7 and cone cells of the fly ommatidia.
Collapse
Affiliation(s)
- Orly Dorot
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Hermann Steller
- Howard Hughes Medical Institute, Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
184
|
Luo J, Wang P, Wang R, Wang J, Liu M, Xiong S, Li Y, Cheng B. The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget 2017; 7:9525-37. [PMID: 26848615 PMCID: PMC4891057 DOI: 10.18632/oncotarget.6672] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
CD90 has been identified as a marker for liver cancer stem cells (CSCs) that are responsible for tumorigenic activity, but it is not known how CD90+ cells contribute to tumor initiation and progression. Our data demonstrated that high expression of CD90 in Hepatocellular Carcinoma (HCC) tissues correlated with venous filtration in HCC patients. CD90+ cells isolated from HCC cell lines exhibited increased tumorigenicity, chemoresistance, tumor invasion and metastasis. Notch pathway was activated in CD90+ cells and we found that inhibition of Notch pathway in CD90+ CSCs decreased tumorigenicity, cell invasion, migration and expression of stem cell related genes. Activation of Notch pathway in CD90− cells induced self-renewal, invasion and migration. Furthermore, we observed that cancer stem cell features were facilitated by stimulating G1-S transition in the cell cycle phase and inhibiting apoptosis mediated by Notch pathway. Our findings suggested CD90 could be used as a potential biomarker for HCC CSCs, and that cancer stem cell activity was elevated through up activated Notch pathway in CD90+ CSCs.
Collapse
Affiliation(s)
- Jing Luo
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.,Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Peng Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jinlin Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
185
|
Alshehri MM, Robbins SM, Senger DL. The Role of Neurotrophin Signaling in Gliomagenesis: A Focus on the p75 Neurotrophin Receptor (p75 NTR/CD271). VITAMINS AND HORMONES 2017; 104:367-404. [PMID: 28215302 DOI: 10.1016/bs.vh.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p75 neurotrophin receptor (p75NTR, a.k.a. CD271), a transmembrane glycoprotein and a member of the tumor necrosis family (TNF) of receptors, was originally identified as a nerve growth factor receptor in the mid-1980s. While p75NTR is recognized to have important roles during neural development, its presence in both neural and nonneural tissues clearly supports the potential to mediate a broad range of functions depending on cellular context. Using an unbiased in vivo selection paradigm for genes underlying the invasive behavior of glioma, a critical characteristic that contributes to poor clinical outcome for glioma patients, we identified p75NTR as a central regulator of glioma invasion. Herein we review the expanding role that p75NTR plays in glioma progression with an emphasis on how p75NTR may contribute to the treatment refractory nature of glioma. Based on the observation that p75NTR is expressed and functional in two critical glioma disease reservoirs, namely, the highly infiltrative cells that evade surgical resection, and the radiation- and chemotherapy-resistant brain tumor-initiating cells (also referred to as brain tumor stem cells), we propose that p75NTR and its myriad of downstream signaling effectors represent rationale therapeutic targets for this devastating disease. Lastly, we provide the provocative hypothesis that, in addition to the well-documented cell autonomous signaling functions, the neurotrophins, and their respective receptors, contribute in a cell nonautonomous manner to drive the complex cellular and molecular composition of the brain tumor microenvironment, an environment that fuels tumorigenesis.
Collapse
Affiliation(s)
- M M Alshehri
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - S M Robbins
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - D L Senger
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
186
|
Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2017. [PMID: 27869648 DOI: 10.1172/jci88486.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.
Collapse
|
187
|
Fundamental Pathways in Breast Cancer 4: Signaling to Chromatin in Breast Development. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
188
|
Liu S, Boulianne GL. The NHR domains of Neuralized and related proteins: Beyond Notch signalling. Cell Signal 2017; 29:62-68. [DOI: 10.1016/j.cellsig.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
189
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
190
|
Hong YG, Roh S, Paik D, Jeong S. Development of a Reporter System for In Vivo Monitoring of γ-Secretase Activity in Drosophila. Mol Cells 2017; 40:73-81. [PMID: 28152299 PMCID: PMC5303891 DOI: 10.14348/molcells.2017.2294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/25/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022] Open
Abstract
The γ-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the β-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the γ-secretase catalytic component, presenilin, which lead to increased amyloid βpeptide production, are responsible for early-onset familial Alzheimer's disease. β-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of γ-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate γ-secretase activity and/or APPL metabolism.
Collapse
Affiliation(s)
- Young Gi Hong
- Department of Molecular Biology, Chonbuk National University, Jeonju 54896,
Korea
| | - Seyun Roh
- Department of Molecular Biology, Chonbuk National University, Jeonju 54896,
Korea
| | - Donggi Paik
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605,
USA
| | - Sangyun Jeong
- Department of Molecular Biology, Chonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
191
|
Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2016; 127:137-152. [PMID: 27869648 DOI: 10.1172/jci88486] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Cycle Proteins
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Hippo Signaling Pathway
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Serine-Threonine Kinase 3
- Wnt Signaling Pathway
- YAP-Signaling Proteins
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
|
192
|
He C, Chiam KH, Chew LY. Comparison of cellular oscillations driven by noise or deterministic mechanisms under cell-size scaling. Phys Rev E 2016; 94:042425. [PMID: 27841613 DOI: 10.1103/physreve.94.042425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 11/07/2022]
Abstract
Ultradian cycles are frequently observed in biological systems. They serve important roles in regulating, for example, cell fate and the development of the organism. Many mathematical models have been developed to analyze their behavior. Generally, these models can be classified into two classes: Deterministic models that generate oscillatory behavior by incorporating time delays or Hopf bifurcations, and stochastic models that generate oscillatory behavior by noise driven resonance. However, it is still unclear which of these two mechanisms applies to cellular oscillations. In this paper, we show through theoretical analysis and numerical simulation that we can distinguish which of these two mechanisms govern cellular oscillations, by measuring statistics of oscillation amplitudes for cells of different sizes. We found that, for oscillations driven deterministically, the normalized average amplitude is constant with respect to cell size, while the coefficient of variation of the amplitude scales with cell size with an exponent of -0.5. On the other hand, for oscillations driven stochastically, the coefficient of variation of the amplitude is constant with respect to cell size, while the normalized average amplitude scales with cell size with an exponent of -0.5. Our results provide a theoretical basis to discern whether a particular oscillatory behavior is governed by a deterministic or stochastic mechanism.
Collapse
Affiliation(s)
- Chong He
- School of Physical & Mathematical Science, Nanyang Technological University, 21 Nanyang Link, SPMS-PAP-04-04, Singapore 637371, Singapore
| | - Keng-Hwee Chiam
- Mechanobiology Institute, Level 10, T-Lab, National University of Singapore, Singapore 117411, Singapore.,A*STAR Bioinformatics Institute, 07-01 Matrix, Singapore 138671, Singapore
| | - Lock Yue Chew
- School of Physical & Mathematical Science, Nanyang Technological University, 21 Nanyang Link, SPMS-PAP-04-04, Singapore 637371, Singapore.,Complexity Institute, Nanyang Technological University, Singapore 637723, Singapore
| |
Collapse
|
193
|
Adami G, Rossini M, Gatti D, Orsolini G, Idolazzi L, Viapiana O, Scarpa A, Canalis E. Hajdu Cheney Syndrome; report of a novel NOTCH2 mutation and treatment with denosumab. Bone 2016; 92:150-156. [PMID: 27592446 PMCID: PMC5056853 DOI: 10.1016/j.bone.2016.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/28/2022]
Abstract
Notch receptors play a central role in skeletal development and homeostasis. Hajdu Cheney Syndrome (HCS) is a rare disease associated with mutations of NOTCH2 that lead to the translation of a truncated, presumably stable, NOTCH2 protein. As a consequence, a gain-of-NOTCH2 function is manifested. We report a subject presenting with HCS and her child, both harboring a new heterozygous mutation in Exon 34 of NOTCH2 upstream of the PEST domain. The subject presented with osteoporosis, fractures, acroosteolysis and splenomegaly but did not have neurological complications, cardiovascular defects or polycystic kidneys. Sequencing of genomic DNA revealed a previously unreported mutation at nucleotide 6667C>T leading to a Gln2223Ter protein product in the subject and her son. Preclinical studies have demonstrated that the bone loss in HCS is secondary to enhanced osteoclastogenesis and bone resorption, and the same mechanism may operate in humans. Accordingly, the case we report was treated and responded to therapy with denosumab with an increase in bone mineral density (BMD). However, acroosteolysis progressed and was not modified by denosumab. In conclusion, we report a case of HCS associated with a novel mutation in NOTCH2 and its response to denosumab on BMD.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, Department of Medicine, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy.
| | - Maurizio Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
| | - Giovanni Orsolini
- Rheumatology Unit, Department of Medicine, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
| | - Luca Idolazzi
- Rheumatology Unit, Department of Medicine, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
| | - Ombretta Viapiana
- Rheumatology Unit, Department of Medicine, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, the UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States
| |
Collapse
|
194
|
Li J, Qu W, Jiang Y, Sun Y, Cheng Y, Zou T, Du S. miR-489 Suppresses Proliferation and Invasion of Human Bladder Cancer Cells. Oncol Res 2016; 24:391-398. [PMID: 28281959 PMCID: PMC7838638 DOI: 10.3727/096504016x14666990347518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to be involved in bladder cancer progression. miR-489 (also known as miR-489-3p) was recently reported to be a tumor suppressor in several cancers. However, its exact role and mechanism in the progression of bladder cancer are largely unknown. In this study, we explore the role of miR-489 in the proliferation and invasion of human bladder cancer cells. The miR-489 expression levels were detected in bladder cancer and normal adjacent tissues, as well as in human normal bladder epithelial cells and bladder cancer cell lines. The results showed that miR-489 was sharply reduced in bladder cancer tissues and cell lines. Then the miR-489 mimic or oligo anta-miR-489 was transfected into T24 and UMUC3 bladder cancer cell lines. The results showed that the miR-489 mimic greatly increased the miR-489 level and significantly decreased the proliferation and invasion of T24 and UMUC3 cells. In contrast, the anta-miR-489 had a completely opposite effect on miR-489 expression, cell proliferation, and cell invasion. Moreover, bioinformatics and luciferase reporter gene assays confirmed that miR-489 targeted the mRNA 3'-untranslated region (3'-UTR) region of Jagged1 (JAG1), a Notch ligand. In conclusion, miR-489 suppressed proliferation and invasion of human bladder cancer cells.
Collapse
Affiliation(s)
- Jing Li
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Weixing Qu
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yazhou Jiang
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yi Sun
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yongyi Cheng
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Tiejun Zou
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Shuangkuan Du
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
195
|
Song H, Zhang Y, Liu N, Zhao S, Kong Y, Yuan L. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways. Int J Mol Sci 2016; 17:ijms17111799. [PMID: 27801803 PMCID: PMC5133800 DOI: 10.3390/ijms17111799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs) has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT) assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1)/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways.
Collapse
Affiliation(s)
- Hang Song
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Yao Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Na Liu
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Sheng Zhao
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China.
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China.
| | - Liudi Yuan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
196
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
197
|
Zhou W, He Q, Zhang C, He X, Cui Z, Liu F, Li W. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development. eLife 2016; 5. [PMID: 27719760 PMCID: PMC5094856 DOI: 10.7554/elife.18108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2-/- mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates.
Collapse
Affiliation(s)
- Wenwen Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping He
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunxia Zhang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Beijing Pediatric Research Institute, Beijing, China
| |
Collapse
|
198
|
Uchino Y, Woodward AM, Argüeso P. Differential effect of rebamipide on transmembrane mucin biosynthesis in stratified ocular surface epithelial cells. Exp Eye Res 2016; 153:1-7. [PMID: 27725198 DOI: 10.1016/j.exer.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Mucins are a group of highly glycosylated glycoproteins responsible for the protection of wet-surfaced epithelia. Recent data indicate that transmembrane mucins differ in their contribution to the protective function of the ocular surface, with MUC16 being the most effective barrier on the apical surface glycocalyx. Here, we investigated the role of the mucoprotective drug rebamipide in the regulation of transmembrane mucin biosynthesis using stratified cultures of human corneal and conjunctival epithelial cells. We find that the addition of rebamipide to corneal, but not conjunctival, epithelial cells increased MUC16 protein biosynthesis. Rebamipide did not affect the levels of MUC1, 4 and 20 compared to control. In these experiments, rebamipide had no effect on the expression levels of Notch intracellular domains, suggesting that the rebamipide-induced increase in MUC16 biosynthesis in differentiated corneal cultures is not regulated by Notch signaling. Overall these findings indicate that rebamipide induces the differential upregulation of MUC16 in stratified cultures of human corneal epithelial cells, which may have implications to the proper restoration of barrier function in ocular surface disease.
Collapse
Affiliation(s)
- Yuichi Uchino
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Ashley M Woodward
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
199
|
Yao Z, Sherif ZA. The effect of epigenetic silencing and TP53 mutation on the expression of DLL4 in human cancer stem disorder. Oncotarget 2016; 7:62976-62988. [PMID: 27542210 PMCID: PMC5325341 DOI: 10.18632/oncotarget.11316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 01/30/2023] Open
Abstract
The Li-Fraumeni Syndrome (LFS), a genetically rare heterogeneous cancer syndrome, is characterized primarily by a germline p53 (TP53) gene mutation. We recently discovered a balanced reciprocal chromosomal translocation t(11;15)(q23;q15) in the non-cancerous skin fibroblasts of a bilateral breast cancer patient in LFS family. This prompted us to investigate the breakpoint region of the translocation, which uncovered a gene that encodes a Notch ligand, DLL4, (locus at 15q15.1), a key target in tumor vasculature. We analyzed DLL4 gene expression and protein level in LFS non-cancerous skin fibroblast cell lines and non-LFS cancer cell lines. DLL4 is abrogated in all the LFS cells and drastically down-regulated in breast (MCF7) and brain (IMR32) cancer cells and tumor tissue samples. However, DNA methylation studies revealed that DLL4 promoter is silenced only in MCF7 but not in LFS cells. We further investigated the regulation of DLL4 gene expression by ChIP assays, which demonstrated that p53 binds to DLL4 promoter through its association with CTCF, a chromosomal networking protein CCCTC binding factor. This implies a possible karyotype-phenotype correlation with respect to DLL4 in LFS and breast cancer initiation and progression. The drastic reduction or absence in the expression of DLL4 in LFS as well as breast and brain cancer cells is significant and supports the concept that this ligand may also play a role in cancer immune-surveillance; and its resuscitation in the tumor microenvironment may stimulate T-cell immunity and suppress tumor growth. Therefore, DLL4 may provide a strong platform as an immuno-therapeutic target in LFS and cancer patients.
Collapse
Affiliation(s)
- Zhixing Yao
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington DC, USA
| | - Zaki A. Sherif
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington DC, USA
| |
Collapse
|
200
|
Contreras-Cornejo H, Saucedo-Correa G, Oviedo-Boyso J, Valdez-Alarcón JJ, Baizabal-Aguirre VM, Cajero-Juárez M, Bravo-Patiño A. The CSL proteins, versatile transcription factors and context dependent corepressors of the notch signaling pathway. Cell Div 2016; 11:12. [PMID: 27708688 PMCID: PMC5037638 DOI: 10.1186/s13008-016-0025-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Notch signaling pathway is a reiteratively used cell to cell communication pathway that triggers pleiotropic effects. The correct regulation of the pathway permits the efficient regulation of genes involved in cell fate decision throughout development. This activity relies notably on the CSL proteins, (an acronym for CBF-1/RBPJ-κ in Homo sapiens/Mus musculus respectively, Suppressor of Hairless in Drosophila melanogaster, Lag-1 in Caenorhabditis elegans) which is the unique transcription factor and DNA binding protein involved in this pathway. The CSL proteins have the capacity to recruit activation or repression complexes according to the cellular context. The aim of this review is to describe the different co-repressor proteins that interact directly with CSL proteins to form repression complexes thereby regulating the Notch signaling pathway in animal cells to give insights into the paralogous evolution of these co-repressors in higher eumetazoans and their subsequent effects at developmental processes.
Collapse
Affiliation(s)
- Humberto Contreras-Cornejo
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB) de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| | - Germán Saucedo-Correa
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB) de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| | - Javier Oviedo-Boyso
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB) de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| | - Juan José Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB) de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| | - Víctor Manuel Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB) de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| | - Marcos Cajero-Juárez
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| | - Alejandro Bravo-Patiño
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB) de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria, Km. 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma, C. P. 58890 Tarímbaro, Mich. México
| |
Collapse
|