151
|
Mesquita A, Cardenal-Muñoz E, Dominguez E, Muñoz-Braceras S, Nuñez-Corcuera B, Phillips BA, Tábara LC, Xiong Q, Coria R, Eichinger L, Golstein P, King JS, Soldati T, Vincent O, Escalante R. Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model. Autophagy 2016; 13:24-40. [PMID: 27715405 DOI: 10.1080/15548627.2016.1226737] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autophagy is a fast-moving field with an enormous impact on human health and disease. Understanding the complexity of the mechanism and regulation of this process often benefits from the use of simple experimental models such as the social amoeba Dictyostelium discoideum. Since the publication of the first review describing the potential of D. discoideum in autophagy, significant advances have been made that demonstrate both the experimental advantages and interest in using this model. Since our previous review, research in D. discoideum has shed light on the mechanisms that regulate autophagosome formation and contributed significantly to the study of autophagy-related pathologies. Here, we review these advances, as well as the current techniques to monitor autophagy in D. discoideum. The comprehensive bioinformatics search of autophagic proteins that was a substantial part of the previous review has not been revisited here except for those aspects that challenged previous predictions such as the composition of the Atg1 complex. In recent years our understanding of, and ability to investigate, autophagy in D. discoideum has evolved significantly and will surely enable and accelerate future research using this model.
Collapse
Affiliation(s)
- Ana Mesquita
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain.,b University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Elena Cardenal-Muñoz
- c Départment de Biochimie , Faculté des Sciences, Université de Genève , Switzerland
| | - Eunice Dominguez
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain.,d Departamento de Genética Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , México
| | - Sandra Muñoz-Braceras
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | | | - Ben A Phillips
- e Department of Biomedical Sciences , University of Sheffield , UK
| | - Luis C Tábara
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | - Qiuhong Xiong
- f Center for Biochemistry, Medical Faculty, University of Cologne , Cologne , Germany
| | - Roberto Coria
- d Departamento de Genética Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , México
| | - Ludwig Eichinger
- f Center for Biochemistry, Medical Faculty, University of Cologne , Cologne , Germany
| | - Pierre Golstein
- g Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , Inserm, U1104, CNRS UMR7280, Marseille , France
| | - Jason S King
- e Department of Biomedical Sciences , University of Sheffield , UK
| | - Thierry Soldati
- c Départment de Biochimie , Faculté des Sciences, Université de Genève , Switzerland
| | - Olivier Vincent
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | - Ricardo Escalante
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| |
Collapse
|
152
|
Suzuki H, Osawa T, Fujioka Y, Noda NN. Structural biology of the core autophagy machinery. Curr Opin Struct Biol 2016; 43:10-17. [PMID: 27723509 DOI: 10.1016/j.sbi.2016.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
In autophagy, which is an intracellular degradation system that is conserved among eukaryotes, degradation targets are sequestered through the de novo synthesis of a double-membrane organelle, the autophagosome, which delivers them to the lysosomes for degradation. The core autophagy machinery comprising 18 autophagy-related (Atg) proteins in yeast plays an essential role in autophagosome formation; however, the molecular role of each Atg factor and the mechanism of autophagosome formation remain elusive. Recent years have seen remarkable progress in structural biological studies on the core autophagy machinery, opening new avenues for autophagy research. This review summarizes recent advances in structural biological and mechanistic studies on the core autophagy machinery and discusses the molecular mechanisms of autophagosome formation.
Collapse
Affiliation(s)
- Hironori Suzuki
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Takuo Osawa
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yuko Fujioka
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
153
|
Schaaf MBE, Keulers TG, Vooijs MA, Rouschop KMA. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J 2016; 30:3961-3978. [PMID: 27601442 DOI: 10.1096/fj.201600698r] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions.
Collapse
Affiliation(s)
- Marco B E Schaaf
- Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tom G Keulers
- Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
154
|
Shatz O, Holland P, Elazar Z, Simonsen A. Complex Relations Between Phospholipids, Autophagy, and Neutral Lipids. Trends Biochem Sci 2016; 41:907-923. [PMID: 27595473 DOI: 10.1016/j.tibs.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Research in the past decade has established the importance of autophagy to a large number of physiological processes and pathophysiological conditions. Originally characterized as a pathway responsible for protein turnover and recycling of amino acids in times of starvation, it has been recently recognized as a major regulator of lipid metabolism. Different lipid species play various roles in the regulation of autophagosomal biogenesis, both as membrane constituents and as signaling platforms. Distinct types of autophagy, in turn, facilitate specific steps in metabolic pathways of different lipid classes, best exemplified in recent studies on neutral lipid dynamics. We review the emerging notion of intricate links between phospholipids, autophagy, and neutral lipids.
Collapse
Affiliation(s)
- Oren Shatz
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Petter Holland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Zvulun Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
155
|
Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, Zhong Q, Diao J. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol 2016; 60:97-104. [PMID: 27422330 DOI: 10.1016/j.semcdb.2016.07.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022]
Abstract
Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy.
Collapse
Affiliation(s)
- Yongyao Wang
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Linsen Li
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Lab of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Chen Hou
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
156
|
Turco E, Martens S. Insights into autophagosome biogenesis from in vitro reconstitutions. J Struct Biol 2016; 196:29-36. [PMID: 27251905 PMCID: PMC5039013 DOI: 10.1016/j.jsb.2016.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Macro-autophagy (autophagy) is a conserved catabolic pathway for the degradation of cytoplasmic material in the lysosomal system. This is achieved by the sequestration of the cytoplasmic cargo material within double membrane-bound vesicles that fuse with lysosomes, wherein the vesicle’s inner membrane and the cargo are degraded. Autophagosomes form in a de novo manner and their precursors are initially detected as small membrane structures that are referred to as isolation membranes. The isolation membranes gradually expand and subsequently close to give rise to autophagosomes. Many proteins required to form autophagosomes have been identified but how they act mechanistically is still enigmatic. Here we critically review reconstitution approaches employed to decipher the inner working of the fascinating autophagy machinery.
Collapse
Affiliation(s)
- Eleonora Turco
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
157
|
Ra EA, Lee TA, Won Kim S, Park A, Choi HJ, Jang I, Kang S, Hee Cheon J, Cho JW, Eun Lee J, Lee S, Park B. TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nat Commun 2016; 7:11726. [PMID: 27216961 PMCID: PMC4890305 DOI: 10.1038/ncomms11726] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023] Open
Abstract
Autophagy is responsible for the bulk degradation of cytosolic constituents and plays an essential role in the intestinal epithelium by controlling beneficial host-bacterial relationships. Atg5 and Atg7 are thought to be critical for autophagy. However, Atg5- or Atg7-deficient cells still form autophagosomes and autolysosomes, and are capable of removing proteins or bacteria. Here, we report that human TRIM31 (tripartite motif), an intestine-specific protein localized in mitochondria, is essential for promoting lipopolysaccharide-induced Atg5/Atg7-independent autophagy. TRIM31 directly interacts with phosphatidylethanolamine in a palmitoylation-dependent manner, leading to induction of autolysosome formation. Depletion of endogenous TRIM31 significantly increases the number of intestinal epithelial cells containing invasive bacteria. Crohn's disease patients display TRIM31 downregulation. Human cytomegalovirus-infected intestinal cells show a decrease in TRIM31 expression as well as a significant increase in bacterial load, reversible by the introduction of wild-type TRIM31. We provide insight into an alternative autophagy pathway that protects against intestinal pathogenic bacterial infection.
Collapse
Affiliation(s)
- Eun A. Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Taeyun A. Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hyun jin Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Insook Jang
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea
| | - Ji Eun Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
- Samsung Genome Institute (SGI), Samsung Medical Center, Seoul 06351, South Korea
| | - Sungwook Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
158
|
Structural Basis of the Differential Function of the Two C. elegans Atg8 Homologs, LGG-1 and LGG-2, in Autophagy. Mol Cell 2016; 60:914-29. [PMID: 26687600 DOI: 10.1016/j.molcel.2015.11.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022]
Abstract
Multicellular organisms have multiple homologs of the yeast ATG8 gene, but the differential roles of these homologs in autophagy during development remain largely unknown. Here we investigated structure/function relationships in the two C. elegans Atg8 homologs, LGG-1 and LGG-2. lgg-1 is essential for degradation of protein aggregates, while lgg-2 has cargo-specific and developmental-stage-specific roles in aggregate degradation. Crystallography revealed that the N-terminal tails of LGG-1 and LGG-2 adopt the closed and open form, respectively. LGG-1 and LGG-2 interact differentially with autophagy substrates and Atg proteins, many of which carry a LIR motif. LGG-1 and LGG-2 have structurally distinct substrate binding pockets that prefer different residues in the interacting LIR motif, thus influencing binding specificity. Lipidated LGG-1 and LGG-2 possess distinct membrane tethering and fusion activities, which may result from the N-terminal differences. Our study reveals the differential function of two ATG8 homologs in autophagy during C. elegans development.
Collapse
|
159
|
Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy 2016; 11:585-94. [PMID: 25906181 DOI: 10.1080/15548627.2015.1017187] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.
Collapse
Key Words
- ATG16L1
- ATG16L1, autophagy-related 16-like 1 (S. cerevisiae)
- BCL2, B-cell CLL/lymphoma 2
- Crohn disease
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GWAS, genome-wide association studies
- IBD, inflammatory bowel disease
- MDP, muramyl dipeptide
- MTOR, mechanistic target of rapamycin
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- NOD2
- NOD2, nucleotide-binding oligomerization domain containing 2
- RIPK2, receptor-interacting serine-threonine kinase 2
- SNP, single-nucleotide polymorphism
- T300A, threonine-to-alanine substitution at amino acid position 300
- TNF/TNF-α, tumor necrosis factor
- UC, ulcerative colitis
- ULK1, unc-51 like autophagy-activating kinase 1
- XBP1, X-box binding protein 1
- autophagy
- bacterial clearance
- endoplasmic reticulum stress
Collapse
Affiliation(s)
- Mohammad Salem
- a Department of Gastroenterology ; Medical Section; Herlev Hospital; University of Copenhagen ; Copenhagen , Denmark
| | | | | | | | | |
Collapse
|
160
|
Mechanistically Dissecting Autophagy: Insights from In Vitro Reconstitution. J Mol Biol 2016; 428:1700-13. [PMID: 26946034 DOI: 10.1016/j.jmb.2016.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Autophagy is a fundamental cellular mechanism responsible for bulk turnover of cytoplasmic components. It is broadly related to many cellular activities, physiological processes, and pathological conditions. Autophagy entails a spatiotemporal interaction between cytosolic factors and membranes that are remodeled to encapsulate autophagic cargo within an autophagosome. Although majority of the factors [autophagy-related gene (Atg) proteins] involved in autophagy have been identified by genetic studies, the mechanism accounting for how these factors act upon the membrane to remodel it and efficiently recruit cargo for degradation is unclear. In vitro reconstitution of several different aspects of autophagy has provided important insights into the understanding of the mechanistic details underlying autophagic membrane remodeling and cargo recruitment. Here, we highlight these efforts toward studying autophagy through in vitro approaches.
Collapse
|
161
|
Habisov S, Huber J, Ichimura Y, Akutsu M, Rogova N, Loehr F, McEwan DG, Johansen T, Dikic I, Doetsch V, Komatsu M, Rogov VV, Kirkin V. Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation. J Biol Chem 2016; 291:9025-41. [PMID: 26929408 DOI: 10.1074/jbc.m116.715474] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway.
Collapse
Affiliation(s)
- Sabrina Habisov
- From Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany, the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, the BMLS Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Jessica Huber
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Yoshinobu Ichimura
- the Department of Biochemistry, School of Medicine, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Masato Akutsu
- the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, the BMLS Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Natalia Rogova
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Frank Loehr
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - David G McEwan
- the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, the Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 4HN United Kingdom, and
| | - Terje Johansen
- the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ivan Dikic
- the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, the BMLS Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Volker Doetsch
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Masaaki Komatsu
- the Department of Biochemistry, School of Medicine, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Vladimir V Rogov
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany,
| | - Vladimir Kirkin
- From Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany,
| |
Collapse
|
162
|
Kimura T, Mandell M, Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family. J Cell Sci 2016; 129:881-91. [PMID: 26906420 DOI: 10.1242/jcs.163758] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective autophagy entails cooperation between target recognition and assembly of the autophagic apparatus. Target recognition is conducted by receptors that often recognize tags, such as ubiquitin and galectins, although examples of selective autophagy independent of these tags are emerging. It is less known how receptors cooperate with the upstream autophagic regulators, beyond the well-characterized association of receptors with Atg8 or its homologs, such as LC3B (encoded by MAP1LC3B), on autophagic membranes. The molecular details of the emerging role in autophagy of the family of proteins called TRIMs shed light on the coordination between cargo recognition and the assembly and activation of the principal autophagy regulators. In their autophagy roles, TRIMs act both as receptors and as platforms ('receptor regulators') for the assembly of the core autophagy regulators, such as ULK1 and Beclin 1 in their activated state. As autophagic receptors, TRIMs can directly recognize endogenous or exogenous targets, obviating a need for intermediary autophagic tags, such as ubiquitin and galectins. The receptor and regulatory features embodied within the same entity allow TRIMs to govern cargo degradation in a highly exact process termed 'precision autophagy'.
Collapse
Affiliation(s)
- Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michael Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
163
|
Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. Mammalian Autophagy: How Does It Work? Annu Rev Biochem 2016; 85:685-713. [PMID: 26865532 DOI: 10.1146/annurev-biochem-060815-014556] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.
Collapse
Affiliation(s)
- Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Ghita Ghislat
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Avraham Ashkenazi
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
164
|
Rao Y, Matscheko N, Wollert T. Autophagy in the test tube: In vitro reconstitution of aspects of autophagosome biogenesis. FEBS J 2016; 283:2034-43. [PMID: 26797728 DOI: 10.1111/febs.13661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023]
Abstract
Autophagy is a versatile recycling pathway that delivers cytoplasmic contents to lysosomal compartments for degradation. It involves the formation of a cup-shaped membrane that expands to capture cargo. After the cargo has been entirely enclosed, the membrane is sealed to generate a double-membrane-enclosed compartment, termed the autophagosome. Depending on the physiological state of the cell, the cargo is selected either specifically or non-specifically. The process involves a highly conserved set of autophagy-related proteins. Reconstitution of their action on model membranes in vitro has contributed tremendously to our understanding of autophagosome biogenesis. This review will focus on various in vitro techniques that have been employed to decipher the function of the autophagic core machinery.
Collapse
Affiliation(s)
- Yijian Rao
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nena Matscheko
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Wollert
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
165
|
Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, Deretic V. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol 2015; 210:973-89. [PMID: 26347139 PMCID: PMC4576868 DOI: 10.1083/jcb.201503023] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TRIM20 and TRIM21 are mediators of IFN-γ–induced autophagy, which act as autophagic receptor regulators that target specific inflammasome components and type I interferon response regulators for degradation by precision autophagy. The present paradigms of selective autophagy in mammalian cells cannot fully explain the specificity and selectivity of autophagic degradation. In this paper, we report that a subset of tripartite motif (TRIM) proteins act as specialized receptors for highly specific autophagy (precision autophagy) of key components of the inflammasome and type I interferon response systems. TRIM20 targets the inflammasome components, including NLRP3, NLRP1, and pro–caspase 1, for autophagic degradation, whereas TRIM21 targets IRF3. TRIM20 and TRIM21 directly bind their respective cargo and recruit autophagic machinery to execute degradation. The autophagic function of TRIM20 is affected by mutations associated with familial Mediterranean fever. These findings broaden the concept of TRIMs acting as autophagic receptor regulators executing precision autophagy of specific cytoplasmic targets. In the case of TRIM20 and TRIM21, precision autophagy controls the hub signaling machineries and key factors, inflammasome and type I interferon, directing cardinal innate immunity response systems in humans.
Collapse
|
166
|
Weng Z, Gao H, Hu J, Fan Y, Wang H, Li L. Isoalantolactone induces autophagic cell death in SKOV₃ human ovarian carcinoma cells via upregulation of PEA-15. Oncol Rep 2015; 35:833-40. [PMID: 26718904 DOI: 10.3892/or.2015.4461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of isoalantolactone on cell growth inhibition and underlying cell death mechanisms in SKOV3 human ovarian cancer cells. The effects of isoalantolactone on cell proliferation and cell cycle were examined by EdU incorporation assay and DNA content assay. Western blotting was performed to determine the protein expression effects of isoalantolactone on cell cycle‑related proteins, autophagic regulators and PEA‑15. Autophagic vacuoles were observed by acridine orange staining. PEA‑15 knockdown by siRNA was used to confirm that PEA‑15 was involved in isoalantolactone‑induced autophagy of SKOV3 cells. Isoalantolactone inhibited the viability and proliferation of SKOV3 cells in a dose‑ and time‑dependent fashion. Isoalantolactone induced cell cycle arrest at G2/M phase and decreased the expression of cell cycle‑related proteins cyclin B1 and CDK1 in SKOV3 cells. Accordingly, isoalantolactone also induced SKOV3 cell autophagy via accumulation of autophagic vacuoles in the cytoplasm, increased Beclin1 protein expression, and increased LC3 cleavage. Furthermore, we observed that isoalantolactone‑induced autophagy was through increased PEA‑15 expression and the phosphorylation of ERK, whereas less change was observed to autophagy on SKOV3 cells through PEA‑15 knockdown by siRNA. Isoalantolactone‑induced autophagic cell death was further confirmed by pretreatment with the autophagy inhibitor 3‑methyladenine (3‑MA). In conclusion, isoalantolactone induced cell cycle arrest and autophagy and inhibited cell proliferation of SKOV3 cells via the upregulated PEA‑15 expression and the phosphorylation of ERK.
Collapse
Affiliation(s)
- Zhiyong Weng
- Department of Cell Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongguo Gao
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing 163001, P.R. China
| | - Jiehua Hu
- Educational Technologies and Simulation Training Centre, Naval University of Engineering Tianjin Campus, Tianjin 300450, P.R. China
| | - Yonggang Fan
- Department of Cell Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongyan Wang
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing 163001, P.R. China
| | - Lihua Li
- Department of Cell Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
167
|
Li R, Jen N, Wu L, Lee J, Fang K, Quigley K, Lee K, Wang S, Zhou B, Vergnes L, Chen YR, Li Z, Reue K, Ann DK, Hsiai TK. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxid Redox Signal 2015; 23:1207-19. [PMID: 26120766 PMCID: PMC4657520 DOI: 10.1089/ars.2014.5896] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2(•-)) production. RESULTS In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of autophagic flux, whereas in the pulsatile shear stress (PSS)-exposed descending aorta, p62 was attenuated. OSS significantly increased (i) microtubule-associated protein light chain 3 (LC3) II to I ratios in human aortic endothelial cells, (ii) autophagosome formation as quantified by green fluorescent protein (GFP)-LC3 dots per cell, and (iii) p62 protein levels, whereas manganese superoxide dismutase (MnSOD) overexpression by recombinant adenovirus, N-acetyl cysteine treatment, or c-Jun N-terminal kinase (JNK) inhibition reduced OSS-mediated LC3-II/LC3-I ratios and mitochondrial DNA damage. Introducing bafilomycin to Earle's balanced salt solution or to OSS condition incrementally increased both LC3-II/LC3-I ratios and p62 levels, implicating impaired autophagic flux. In the OSS-exposed aortic arch, both anti-phospho-JNK and anti-8-hydroxy-2'-deoxyguanosine (8-OHdG) staining for DNA damage were prominent, whereas in the PSS-exposed descending aorta, the staining was nearly absent. Knockdown of ATG5 with siRNA increased OSS-mediated mtO2(•-), whereas starvation or rapamycin-induced autophagy reduced OSS-mediated mtO2(•-), mitochondrial respiration, and complex II activity. INNOVATION Disturbed flow-mediated oxidative stress and JNK activation induce autophagy. CONCLUSION OSS impairs autophagic flux to interfere with mitochondrial homeostasis. Antioxid. Redox Signal. 23, 1207-1219.
Collapse
Affiliation(s)
- Rongsong Li
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Nelson Jen
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Lan Wu
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Juhyun Lee
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Karen Fang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Quigley
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Lee
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Sky Wang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Bill Zhou
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Laurent Vergnes
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Yun-Ru Chen
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Zhaoping Li
- 5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Karen Reue
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - David K Ann
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Tzung K Hsiai
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California.,2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California.,5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| |
Collapse
|
168
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
169
|
Picazarri K, Nakada-Tsukui K, Tsuboi K, Miyamoto E, Watanabe N, Kawakami E, Nozaki T. Atg8 is involved in endosomal and phagosomal acidification in the parasitic protist Entamoeba histolytica. Cell Microbiol 2015; 17:1510-22. [PMID: 25923949 PMCID: PMC4744732 DOI: 10.1111/cmi.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023]
Abstract
Autophagy is one of two major bulk protein degradation systems and is conserved throughout eukaryotes. The protozoan Entamoeba histolytica, which is a human intestinal parasite, possesses a restricted set of autophagy‐related (Atg) proteins compared with other eukaryotes and thus represents a suitable model organism for studying the minimal essential components and ancestral functions of autophagy. E. histolytica possesses two conjugation systems: Atg8 and Atg5/12, although a gene encoding Atg12 is missing in the genome. Atg8 is considered to be the central and authentic marker of autophagosomes, but recent studies have demonstrated that Atg8 is not exclusively involved in autophagy per se, but other fundamental mechanisms of vesicular traffic. To investigate this question in E. histolytica, we studied on Atg8 during the proliferative stage. Atg8 was constitutively expressed in both laboratory‐maintained and recently established clinical isolates and appeared to be lipid‐modified in logarithmic growth phase, suggesting a role of Atg8 in non‐stress and proliferative conditions. These findings are in contrast to those for Entamoeba invadens, in which autophagy is markedly induced during an early phase of differentiation from the trophozoite into the cyst. The repression of Atg8 gene expression in En. histolytica by antisense small RNA‐mediated transcriptional gene silencing resulted in growth retardation, delayed endocytosis and reduced acidification of endosomes and phagosomes. Taken together, these results suggest that Atg8 and the Atg8 conjugation pathway have some roles in the biogenesis of endosomes and phagosomes in this primitive eukaryote.
Collapse
Affiliation(s)
- Karina Picazarri
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Tsuboi
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Naoko Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Laboratory for Disease Systems Modeling, RIKEN Center for integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
170
|
Abstract
The metabolism of malignant cells is profoundly altered in order to maintain their survival and proliferation in adverse microenvironmental conditions. Autophagy is an intracellular recycling process that maintains basal levels of metabolites and biosynthetic intermediates under starvation or other forms of stress, hence serving as an important mechanism for metabolic adaptation in cancer cells. Although it is widely acknowledged that autophagy sustains metabolism in neoplastic cells under duress, many questions remain with regard to the mutual relationship between autophagy and metabolism in cancer. Importantly, autophagy has often been described as a "double-edged sword" that can either impede or promote cancer initiation and progression. Here, we overview such a dual function of autophagy in tumorigenesis and our current understanding of the coordinated regulation of autophagy and cancer cell metabolism in the control of tumor growth, progression, and resistance to therapy.
Collapse
|
171
|
Qiao S, Dennis M, Song X, Vadysirisack DD, Salunke D, Nash Z, Yang Z, Liesa M, Yoshioka J, Matsuzawa SI, Shirihai OS, Lee RT, Reed JC, Ellisen LW. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun 2015; 6:7014. [PMID: 25916556 PMCID: PMC4421852 DOI: 10.1038/ncomms8014] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1−/− mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy. Stress-induced macroautophagy is initiated by the induction of reactive oxygen species (ROS). Here Qiao et al. show that the mTOR inhibitor REDD1 in a complex with pro-oxidant protein TXNIP induces ROS formation, leading to ATG4B suppression and autophagy activation in a largely mTOR-independent manner.
Collapse
Affiliation(s)
- Shuxi Qiao
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Dennis
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Xiufeng Song
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Douangsone D Vadysirisack
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Devika Salunke
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Zachary Nash
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Zhifen Yang
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Marc Liesa
- Department of Medicine, Evans Center, Mitochondria ARC, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Jun Yoshioka
- 1] Harvard Medical School, Boston, Massachusetts 02115, USA [2] Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Shu-Ichi Matsuzawa
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Orian S Shirihai
- 1] Department of Medicine, Evans Center, Mitochondria ARC, Boston University School of Medicine, Boston, Massachusetts 02118, USA [2] Department of Clinical Biochemistry, Faculty of Medicine, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Richard T Lee
- 1] Harvard Medical School, Boston, Massachusetts 02115, USA [2] Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - John C Reed
- 1] Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA [2] Roche Pharmaceutical Research and Early Development, Basel 4070, Switzerland
| | - Leif W Ellisen
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
172
|
Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy 2015. [PMID: 25906181 DOI: 10.1080/+15548627.2015.1017187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.
Collapse
Key Words
- ATG16L1
- ATG16L1, autophagy-related 16-like 1 (S. cerevisiae)
- BCL2, B-cell CLL/lymphoma 2
- Crohn disease
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GWAS, genome-wide association studies
- IBD, inflammatory bowel disease
- MDP, muramyl dipeptide
- MTOR, mechanistic target of rapamycin
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- NOD2
- NOD2, nucleotide-binding oligomerization domain containing 2
- RIPK2, receptor-interacting serine-threonine kinase 2
- SNP, single-nucleotide polymorphism
- T300A, threonine-to-alanine substitution at amino acid position 300
- TNF/TNF-α, tumor necrosis factor
- UC, ulcerative colitis
- ULK1, unc-51 like autophagy-activating kinase 1
- XBP1, X-box binding protein 1
- autophagy
- bacterial clearance
- endoplasmic reticulum stress
Collapse
Affiliation(s)
- Mohammad Salem
- a Department of Gastroenterology ; Medical Section; Herlev Hospital; University of Copenhagen ; Copenhagen , Denmark
| | | | | | | | | |
Collapse
|
173
|
Zhen C, Feng X, Li Z, Wang Y, Li B, Li L, Quan M, Wang G, Guo L. Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation. J Neuroimmunol 2015; 280:1-7. [DOI: 10.1016/j.jneuroim.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
|
174
|
Abstract
The formation of the autophagosome, a landmark event in autophagy, is accomplished by the concerted actions of Atg proteins. The initial step of starvation-induced autophagy in yeast is the assembly of the Atg1 complex, which, with the help of other Atg groups, recruits Atg conjugation systems and initiates the formation of the autophagosome. In this review, we describe from a structural-biological point of view the structure, interaction, and molecular roles of Atg proteins, especially those in the Atg1 complex and in the Atg conjugation systems.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan;
| | | |
Collapse
|
175
|
Juris L, Montino M, Rube P, Schlotterhose P, Thumm M, Krick R. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J 2015; 34:955-73. [PMID: 25691244 DOI: 10.15252/embj.201488957] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/28/2015] [Indexed: 11/09/2022] Open
Abstract
Autophagosome biogenesis requires two ubiquitin-like conjugation systems. One couples ubiquitin-like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin-like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P-containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β-propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled-coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6-motif in the N-terminal helical domain of Atg8, but not its AIM-binding site. Accordingly, the Atg8 AIM-binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P-dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.
Collapse
Affiliation(s)
- Lisa Juris
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Marco Montino
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Peter Rube
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Petra Schlotterhose
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Michael Thumm
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Roswitha Krick
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| |
Collapse
|
176
|
Szalai P, Hagen LK, Sætre F, Luhr M, Sponheim M, Øverbye A, Mills IG, Seglen PO, Engedal N. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 2015; 333:21-38. [PMID: 25684710 DOI: 10.1016/j.yexcr.2015.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/09/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
LC3, a mammalian homologue of yeast Atg8, is assumed to play an important part in bulk sequestration and degradation of cytoplasm (macroautophagy), and is widely used as an indicator of this process. To critically examine its role, we followed the autophagic flux of LC3 in rat hepatocytes during conditions of maximal macroautophagic activity (amino acid depletion), combined with analyses of macroautophagic cargo sequestration, measured as transfer of the cytosolic protein lactate dehydrogenase (LDH) to sedimentable organelles. To accurately determine LC3 turnover we developed a quantitative immunoblotting procedure that corrects for differential immunoreactivity of cytosolic and membrane-associated LC3 forms, and we included cycloheximide to block influx of newly synthesized LC3. As expected, LC3 was initially degraded by the autophagic-lysosomal pathway, but, surprisingly, autophagic LC3-flux ceased after ~2h. In contrast, macroautophagic cargo flux was well maintained, and density gradient analysis showed that sequestered LDH partly accumulated in LC3-free autophagic vacuoles. Hepatocytic macroautophagy could thus proceed independently of LC3. Silencing of either of the two mammalian Atg8 subfamilies in LNCaP prostate cancer cells exposed to macroautophagy-inducing conditions (starvation or the mTOR-inhibitor Torin1) confirmed that macroautophagic sequestration did not require the LC3 subfamily, but, intriguingly, we found the GABARAP subfamily to be essential.
Collapse
Affiliation(s)
- Paula Szalai
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway
| | - Linda Korseberg Hagen
- Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Frank Sætre
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway; Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Morten Luhr
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway
| | - Marianne Sponheim
- Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anders Øverbye
- Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway; Department of Urology, Oslo University Hospital, N-0310 Oslo, Norway; Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Per O Seglen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway; Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway.
| | - Nikolai Engedal
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway.
| |
Collapse
|
177
|
Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci U S A 2015; 112:1434-9. [PMID: 25605918 DOI: 10.1073/pnas.1409476112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autophagy, an evolutionarily conserved intracellular catabolic process, leads to the degradation of cytosolic proteins and organelles in the vacuole/lysosome. Different forms of selective autophagy have recently been described. Starvation-induced protein degradation, however, is considered to be nonselective. Here we describe a novel interaction between autophagy-related protein 8 (Atg8) and fatty acid synthase (FAS), a pivotal enzymatic complex responsible for the entire synthesis of C16- and C18-fatty acids in yeast. We show that although FAS possesses housekeeping functions, under starvation conditions it is delivered to the vacuole for degradation by autophagy in a Vac8- and Atg24-dependent manner. We also provide evidence that FAS degradation is essential for survival under nitrogen deprivation. Our results imply that during nitrogen starvation specific proteins are preferentially recruited into autophagosomes.
Collapse
|
178
|
Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 2015; 11:88-99. [PMID: 25484071 PMCID: PMC4502810 DOI: 10.4161/15548627.2014.984277] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 02/01/2023] Open
Abstract
Recently a noncanonical activity of autophagy proteins has been discovered that targets lipidation of microtubule-associated protein 1 light chain 3 (LC3) onto macroendocytic vacuoles, including macropinosomes, phagosomes, and entotic vacuoles. While this pathway is distinct from canonical autophagy, the mechanism of how these nonautophagic membranes are targeted for LC3 lipidation remains unclear. Here we present evidence that this pathway requires activity of the vacuolar-type H(+)-ATPase (V-ATPase) and is induced by osmotic imbalances within endolysosomal compartments. LC3 lipidation by this mechanism is induced by treatment of cells with the lysosomotropic agent chloroquine, and through exposure to the Heliobacter pylori pore-forming toxin VacA. These data add novel mechanistic insights into the regulation of noncanonical LC3 lipidation and its associated processes, including LC3-associated phagocytosis (LAP), and demonstrate that the widely and therapeutically used drug chloroquine, which is conventionally used to inhibit autophagy flux, is an inducer of LC3 lipidation.
Collapse
Key Words
- ATG, autophagy-related
- Baf, bafilomycin A1
- CALCOCO2/NDP52, calcium binding and coiled-coil domain 2
- CQ, chloroquine
- ConA, concanamycin A
- FYCO1, FYVE and coiled-coil domain containing 1
- GFP, green fluorescent protein
- Helicobacter pylori
- LAMP1, lysosomal-associated membrane protein 1
- LAP
- LAP, LC3-associated phagocytosis
- LC3
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin
- PIK3C3/VPS34, phosphatidylinositol 3-kinase
- PtdIns3K, phosphatidylinositol 3-kinase
- PtdIns3P, phosphatidylinositol 3-phosphate
- RB1CC1/FIP200, RB1-inducible coiled-coil 1
- SQSTM1/p62, sequestosome 1
- TEM, transmission electron microscopy
- TLR, toll-like receptor
- ULK1/2, unc-51 like autophagy activating kinase 1/2
- V-ATPase
- V-ATPase, vacuolar-type H+-ATPase
- VacA, vacuolating toxin A
- autophagy
- catalytic subunit type 3
- chloroquine
- entosis
- lysosome
- phagocytosis
Collapse
Affiliation(s)
- Oliver Florey
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Signalling Program; The Babraham Institute; Cambridge, UK
| | - Noor Gammoh
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Edinburgh Cancer Research UK Center; Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK
| | - Sung Eun Kim
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Michael Overholtzer
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| |
Collapse
|
179
|
Nikoletopoulou V, Papandreou ME, Tavernarakis N. Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 2014; 22:398-407. [PMID: 25526091 PMCID: PMC4326580 DOI: 10.1038/cdd.2014.204] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023] Open
Abstract
Neurons are highly specialized postmitotic cells that depend on dynamic cellular processes for their proper function.These include among others, neuronal growth and maturation, axonal migration, synapse formation and elimination, all requiring continuous protein synthesis and degradation. Therefore quality-control processes in neurons are directly linked to their physiology. Autophagy is a tightly regulated cellular degradation pathway by which defective or superfluouscytosolic proteins, organelles and other cellular constituents are sequestered in autophagosomes and delivered to lysosomes for degradation. Here we present emerging evidence indicating that constitutive autophagic fluxin neurons has essential roles in key neuronal processes under physiological conditions.Moreover, we discuss how perturbations of the autophagic pathway may underlie diverse pathological phenotypes in neurons associated with neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- V Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece
| | - M-E Papandreou
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71110, Greece
| | - N Tavernarakis
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71110, Greece
| |
Collapse
|
180
|
Zens B, Sawa-Makarska J, Martens S. In vitro systems for Atg8 lipidation. Methods 2014; 75:37-43. [PMID: 25461810 PMCID: PMC4358837 DOI: 10.1016/j.ymeth.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023] Open
Abstract
Atg8 lipidation can be efficiently reconstituted in vitro. Lipidation and de-lipidation of Atg8 by Atg4 can be analyzed. Reconstitution of Atg8-lipidation using giant unilamellar vesicles offers spatial insights. These assays allow determining the effect of modifications on Atg8 lipidation/de-lipidation.
Macroautophagy is a major bulk degradation pathway for cytoplasmic material in eukaryotic cells. During macroautophagy, double membrane-bound organelles called autophagosomes are formed in a de novo manner. In the course of their formation autophagosomes capture cytoplasmic material, which is subsequently degraded upon fusion with the lysosomal system in complex eukaryotes or the vacuole in yeast. Several proteins are required for autophagosome formation. Among these are the components of two ubiquitin-like conjugation reactions that collectively mediate the conjugation of the ubiquitin-like Atg12 to the Atg5 protein and of the ubiquitin-like protein Atg8 to the headgroup of the membrane lipid phosphatidylethanolamine. The lipidated form of Atg8 is membrane-bound and marks the growing autophagosomal membrane as well as the completed autophagosome. Here we describe assays for the in vitro reconstitution of the Atg8 lipidation reaction using recombinantly expressed and purified proteins derived from Saccharomycescerevisiae in combination with small and giant unilamellar vesicles. The assays enable the study of the biochemical mechanisms of action of the Atg8 lipidation machinery and to analyze the impact of mutations and post-translational modifications of the conjugation machinery on Atg8 lipidation.
Collapse
Affiliation(s)
- Bettina Zens
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria
| | - Justyna Sawa-Makarska
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria
| | - Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria.
| |
Collapse
|
181
|
Münz C. Regulation of innate immunity by the molecular machinery of macroautophagy. Cell Microbiol 2014; 16:1627-36. [DOI: 10.1111/cmi.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Christian Münz
- Viral Immunobiology; Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| |
Collapse
|
182
|
Tanida I, Ueno T, Kominami E. In vitro assays of lipidation of Mammalian Atg8 homologs. CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 64:11.20.1-13. [PMID: 25181299 DOI: 10.1002/0471143030.cb1120s64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Atg8 modifier in yeast is conjugated to phosphatidylethanolamine via ubiquitylation-like reactions essential for autophagy. Mammalian Atg8 homologs (Atg8s) including LC3, GABARAP, and GATE-16, are also ubiquitin-like modifiers. The carboxyl termini of mammalian Atg8 homologs are cleaved by Atg4B, a cysteine protease, to expose carboxyl terminal Gly which is essential for this ubiquitylation-like reaction. Thereafter, the Atg8 homologs are activated by Atg7, an E1-like enzyme, to form unstable Atg7-Atg8 E1-substrate intermediates via a thioester bond. The activated Atg8 homologs are transferred to mammalian Atg3, an E2-like enzyme, to form unstable Atg3-Atg8 E2-substrate intermediates via a thioester bond. Finally, Atg8 homologs are conjugated to phospholipids, phosphatidylethanolamine, and phosphatidylserine. Here, we describe a protocol for the reconstituted conjugation systems for mammalian Atg8 homologs in vitro using purified recombinant Atg proteins and liposomes.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cell Biology and Biochemistry, National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
183
|
Abstract
Autophagy as an immune mechanism controls inflammation and acts as a cell-autonomous defense against intracellular microbes including Mycobacterium tuberculosis. An equally significant role of autophagy is its anti-inflammatory and tissue-sparing function. This combination of antimicrobial and anti-inflammatory actions prevents active disease in animal models. In human populations, genetic links between autophagy, inflammatory bowel disease, and susceptibility to tuberculosis provide further support to these combined roles of autophagy. The autophagic control of M. tuberculosis and prevention of progressive disease provide novel insights into physiological and immune control of tuberculosis. It also offers host-based therapeutic opportunities because autophagy can be pharmacologically modulated.
Collapse
Affiliation(s)
- Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
184
|
Huang YH, Al-Aidaroos AQO, Yuen HF, Zhang SD, Shen HM, Rozycka E, McCrudden CM, Tergaonkar V, Gupta A, Lin YB, Thiery JP, Murray JT, Zeng Q. A role of autophagy in PTP4A3-driven cancer progression. Autophagy 2014; 10:1787-800. [PMID: 25136802 DOI: 10.4161/auto.29989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy, a "self-eating" cellular process, has dual roles in promoting and suppressing tumor growth, depending on cellular context. PTP4A3/PRL-3, a plasma membrane and endosomal phosphatase, promotes multiple oncogenic processes including cell proliferation, invasion, and cancer metastasis. In this study, we demonstrate that PTP4A3 accumulates in autophagosomes upon inhibition of autophagic degradation. Expression of PTP4A3 enhances PIK3C3-BECN1-dependent autophagosome formation and accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner. PTP4A3 overexpression also enhances the degradation of SQSTM1, a key autophagy substrate. These functions of PTP4A3 are dependent on its catalytic activity and prenylation-dependent membrane association. These results suggest that PTP4A3 functions to promote canonical autophagy flux. Unexpectedly, following autophagy activation, PTP4A3 serves as a novel autophagic substrate, thereby establishing a negative feedback-loop that may be required to fine-tune autophagy activity. Functionally, PTP4A3 utilizes the autophagy pathway to promote cell growth, concomitant with the activation of AKT. Clinically, from the largest ovarian cancer data set (GSE 9899, n = 285) available in GEO, high levels of expression of both PTP4A3 and autophagy genes significantly predict poor prognosis of ovarian cancer patients. These studies reveal a critical role of autophagy in PTP4A3-driven cancer progression, suggesting that autophagy could be a potential Achilles heel to block PTP4A3-mediated tumor progression in stratified patients with high expression of both PTP4A3 and autophagy genes.
Collapse
Affiliation(s)
- Yu-Han Huang
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Abdul Qader O Al-Aidaroos
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore
| | - Hiu-Fung Yuen
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore
| | - Shu-Dong Zhang
- Center for Cancer Research and Cell Biology; Queen's University Belfast; Belfast UK
| | - Han-Ming Shen
- Department of Epidemiology and Public Health; National University of Singapore; Singapore
| | - Ewelina Rozycka
- Center for Cancer Research and Cell Biology; Queen's University Belfast; Belfast UK; Current affiliation: School of Biochemistry and Immunology; Trinity College; Dublin, Ireland
| | - Cian M McCrudden
- Center for Cancer Research and Cell Biology; Queen's University Belfast; Belfast UK
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore
| | - You Bin Lin
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore; Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - James T Murray
- Current affiliation: School of Biochemistry and Immunology; Trinity College; Dublin, Ireland
| | - Qi Zeng
- Institute of Molecular and Cell Biology; A*STAR (Agency for Science, Technology and Research); Singapore; Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
185
|
Abstract
Autophagy is the main cellular catabolic process responsible for degrading organelles and large protein aggregates. It is initiated by the formation of a unique membrane structure, the phagophore, which engulfs part of the cytoplasm and forms a double-membrane vesicle termed the autophagosome. Fusion of the outer autophagosomal membrane with the lysosome and degradation of the inner membrane contents complete the process. The extent of autophagy must be tightly regulated to avoid destruction of proteins and organelles essential for cell survival. Autophagic activity is thus regulated by external and internal cues, which initiate the formation of well-defined autophagy-related protein complexes that mediate autophagosome formation and selective cargo recruitment into these organelles. Autophagosome formation and the signaling pathways that regulate it have recently attracted substantial attention. In this review, we analyze the different signaling pathways that regulate autophagy and discuss recent progress in our understanding of autophagosome biogenesis.
Collapse
Affiliation(s)
- Adi Abada
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
186
|
Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells. Amino Acids 2014; 47:2165-75. [PMID: 24973972 DOI: 10.1007/s00726-014-1787-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic organisms analyzed to date. The study of autophagy has exploded over the last decade or so, branching into numerous aspects of cellular and organismal physiology. From basic functions in starvation and quality control, autophagy has expanded into innate immunity, aging, neurological diseases, redox regulation, and ciliogenesis, to name a few roles. In the present review, I would like to narrow the discussion to the more classical roles of autophagy in supporting viability under nutrient limitation. My aim is to provide a semblance of a historical overview, together with a concise, and perhaps subjective, mechanistic and functional analysis of the central questions in the autophagy field.
Collapse
|
187
|
Abstract
Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here.
Collapse
Affiliation(s)
- Sharon A Tooze
- London Research Institute, Cancer Research UK, Secretory Pathways Laboratory, London WC2A 3LY, United Kingdom
| | | | | |
Collapse
|
188
|
The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 2014; 55:51-64. [PMID: 24070471 DOI: 10.1042/bse0550051] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autophagy is an evolutionarily-conserved catabolic process initiated by the engulfment of cytosolic components in a crescent-shaped structure, called the phagophore, that expands and fuses to form a closed double-membrane vesicle, the autophagosome. Autophagosomes are subsequently targeted to the lysosome/vacuole with which they fuse to degrade their content. The formation of the autophagosome is carried out by a set of autophagy-related proteins (Atg), highly conserved from yeast to mammals. The Atg8s are Ubl (ubiquitin-like) proteins that play an essential role in autophagosome biogenesis. This family of proteins comprises a single member in yeast and several mammalian homologues grouped into three subfamilies: LC3 (light-chain 3), GABARAP (γ-aminobutyric acid receptor-associated protein) and GATE-16 (Golgi-associated ATPase enhancer of 16 kDa). The Atg8s are synthesized as cytosolic precursors, but can undergo a series of post-translational modifications leading to their tight association with autophagosomal structures following autophagy induction. Owing to this feature, the Atg8 proteins have been widely served as key molecules to monitor autophagosomes and autophagic activity. Studies in both yeast and mammalian systems have demonstrated that Atg8s play a dual role in the autophagosome formation process, coupling between selective incorporation of autophagy cargo and promoting autophagosome membrane expansion and closure. The membrane-remodelling activity of the Atg8 proteins is associated with their capacity to promote tethering and hemifusion of liposomes in vitro.
Collapse
|
189
|
Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014; 53:167-78. [PMID: 24462201 DOI: 10.1016/j.molcel.2013.12.014] [Citation(s) in RCA: 796] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective autophagy ensures recognition and removal of various cytosolic cargoes. Hence, aggregated proteins, damaged organelles, or pathogens are enclosed into the double-membrane vesicle, the autophagosome, and delivered to the lysosome for degradation. This process is mediated by selective autophagy receptors, such as p62/SQSTM1. These proteins recognize autophagic cargo and, via binding to small ubiquitin-like modifiers (UBLs)--Atg8/LC3/GABARAPs and ATG5--mediate formation of selective autophagosomes. Recently, it was found that UBLs can directly engage the autophagosome nucleation machinery. Here, we review recent findings on selective autophagy and propose a model for selective autophagosome formation in close proximity to cargo.
Collapse
Affiliation(s)
- Vladimir Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Marie Curie Strasse 9, 60439 Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Marie Curie Strasse 9, 60439 Frankfurt am Main, Germany
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Vladimir Kirkin
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
190
|
Kraft LJ, Nguyen TA, Vogel SS, Kenworthy AK. Size, stoichiometry, and organization of soluble LC3-associated complexes. Autophagy 2014; 10:861-77. [PMID: 24646892 PMCID: PMC4768459 DOI: 10.4161/auto.28175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MAP1LC3B, an ortholog of yeast Atg8 and a member of the family of proteins formerly also known as ATG8 in mammals (LC3B henceforth in the text), functions in autophagosome formation and autophagy substrate recruitment. LC3 exists in both a soluble (autophagosome-independent) form as well as a lipid modified form that becomes tightly incorporated into autophagosomal membranes. Although LC3 is known to associate with tens of proteins, relatively little is known about soluble LC3 aside from its interactions with the LC3 lipid conjugation machinery. In previous studies we found autophagosome-independent GFP-LC3B diffuses unusually slowly for a protein of its size, suggesting it may constitutively associate with a high molecular weight complex, form homo-oligomers or aggregates, or reversibly bind microtubules or membranes. To distinguish between these possibilities, we characterized the size, stoichiometry, and organization of autophagosome-independent LC3B in living cells and in cytoplasmic extracts using fluorescence recovery after photobleaching (FRAP) and fluorescence polarization fluctuation analysis (FPFA). We found that the diffusion of LC3B was unaffected by either mutational disruption of its lipid modification or microtubule depolymerization. Brightness and homo-FRET analysis indicate LC3B does not homo-oligomerize. However, mutation of specific residues on LC3B required for binding other proteins and mRNA altered the effective hydrodynamic radius of the protein as well as its stoichiometry. We conclude that when not bound to autophagosomes, LC3B associates with a multicomponent complex with an effective size of ~500 kDa in the cytoplasm. These findings provide new insights into the nature of soluble LC3B and illustrate the power of FRAP and FPFA to investigate the emergent properties of protein complexes in the autophagy pathway.
Collapse
Affiliation(s)
- Lewis J Kraft
- Chemical and Physical Biology Program; Department of Molecular Physiology and Biophysics; Department of Cell and Developmental Biology; Vanderbilt University Medical Center; Nashville, TN USA
| | - Tuan A Nguyen
- Section on Cellular Biophotonics, Laboratory of Molecular Physiology; National Institute on Alcohol Abuse and Alcoholism; National Institutes of Health; Rockville, MD USA
| | - Steven S Vogel
- Section on Cellular Biophotonics, Laboratory of Molecular Physiology; National Institute on Alcohol Abuse and Alcoholism; National Institutes of Health; Rockville, MD USA
| | - Anne K Kenworthy
- Chemical and Physical Biology Program; Department of Molecular Physiology and Biophysics; Department of Cell and Developmental Biology; Vanderbilt University Medical Center; Nashville, TN USA
| |
Collapse
|
191
|
Maruyama Y, Sou YS, Kageyama S, Takahashi T, Ueno T, Tanaka K, Komatsu M, Ichimura Y. LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochem Biophys Res Commun 2014; 446:309-15. [PMID: 24582747 DOI: 10.1016/j.bbrc.2014.02.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 11/19/2022]
Abstract
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.
Collapse
Affiliation(s)
- Yoko Maruyama
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yu-Shin Sou
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Shun Kageyama
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takao Takahashi
- Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takashi Ueno
- Division of Proteomics and Biomolecular Science, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaaki Komatsu
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510, Japan.
| | - Yoshinobu Ichimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| |
Collapse
|
192
|
Wang X, Wang XL, Chen HL, Wu D, Chen JX, Wang XX, Li RL, He JH, Mo L, Cen X, Wei YQ, Jiang W. Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol 2014; 88:334-50. [PMID: 24522112 DOI: 10.1016/j.bcp.2014.01.040] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 02/05/2023]
Abstract
Doxorubicin (DOX) is a wide spectrum antitumor drug, but its clinical application is limited by the cardiotoxicity. Ghrelin, a multi-functional peptide hormone with metabolic regulation in energy homeostasis, plays important roles in cardiovascular protection. Now, the underlying mechanisms of ghrelin against DOX-induced cardiomyocyte apoptosis and atrophy are still not clear. In the present study, we revealed an autophagy-dependent mechanism involved in ghrelin's protection against DOX-induced cardiomyocyte death and size decrease. We observed that DOX insult induced remarkable mortality and cardiac dysfunction in mice, and increase in LDH leakage, cardiomyocyte apoptosis and decrease in cell viability and size in mouse hearts and H9c2 cell cultures, which were effectively improved by ghrelin supplement. We further observed that the strong autophagy stirred by DOX exposure was paralleling with the serious apoptosis and size decrease in cardiomyocytes. Ghrelin, like an autophagy inhibitor, 3-MA, inhibited the DOX-induced autophagy and attenuated cardiomyocyte apoptosis and size decrease. Furthermore, ghrelin significantly reduced the intercellular oxidative stress level, a strong autophagy trigger, partly by augmenting the expression and activities of the endogenous anti-oxidative enzymes. After the further investigation in the post signaling pathways of ghrelin receptors in H9c2 cells, including ERK, p38/MAPK, JNK, AMPK and Akt, we observed that ghrelin supplement only reduced the DOX-activated AMPK and augmented the DOX-down regulated p38-MAPK and mTOR phosphorylation. Our results indicated that ghrelin effectively improved the cardiomyocyte survival and size maintenance by suppressing the excessive autophagy through both ROS inhibition and mTOR induction through suppressing AMPK activity and stimulating p38-MAPK activity.
Collapse
Affiliation(s)
- Xue Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xu-Lei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Hua-Li Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dan Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jia-Xiang Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jin-Han He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Li Mo
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yu-Quan Wei
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
193
|
|
194
|
Abstract
Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.
Collapse
|
195
|
The Ca2+ channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy. Biochem Biophys Res Commun 2014; 443:56-61. [DOI: 10.1016/j.bbrc.2013.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
|
196
|
Manil-Ségalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B, Legouis R. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 2013; 28:43-55. [PMID: 24374177 DOI: 10.1016/j.devcel.2013.11.022] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 01/07/2023]
Abstract
The formation of the autophagic vesicles requires the recruitment of ubiquitin-like Atg8 proteins to the membrane of nascent autophagosomes. Seven Atg8 homologs are present in mammals, split into the LC3 and the GABARAP/GATE-16 families, whose respective functions are unknown. Using Caenorhabditis elegans, we investigated the functions of the GABARAP and the LC3 homologs, LGG-1 and LGG-2, in autophagosome biogenesis. Both LGG-1 and LGG-2 localize to the autophagosomes but display partially overlapping patterns. During allophagy, a developmentally stereotyped autophagic flux, LGG-1 acts upstream of LGG-2 to allow its localization to autophagosomes. LGG-2 controls the maturation of LGG-1-positive autophagosomes and facilitates the tethering with the lysosomes through a direct interaction with the VPS-39 HOPS complex subunit. Genetic analyses sustain a sequential implication of LGG-1, LGG-2, RAB-7, and HOPS complex to generate autolysosomes. The duplications of Atg8 in metazoans thus allowed the acquisition of specialized functions for autophagosome maturation.
Collapse
Affiliation(s)
- Marion Manil-Ségalen
- Centre de Génétique Moléculaire, CNRS UPR3404 associée à l'Université Paris Sud, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christophe Lefebvre
- Centre de Génétique Moléculaire, CNRS UPR3404 associée à l'Université Paris Sud, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Céline Jenzer
- Centre de Génétique Moléculaire, CNRS UPR3404 associée à l'Université Paris Sud, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Michael Trichet
- Institut des Sciences du Végetal, CNRS UPR2355, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France; Imagif FRC 3115, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Claire Boulogne
- Imagif FRC 3115, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Béatrice Satiat-Jeunemaitre
- Institut des Sciences du Végetal, CNRS UPR2355, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France; Imagif FRC 3115, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Renaud Legouis
- Centre de Génétique Moléculaire, CNRS UPR3404 associée à l'Université Paris Sud, Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
197
|
Abstract
Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways - the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or γ-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
198
|
Abstract
Autophagy is a fundamental eukaryotic pathway that has multiple effects on immunity. Autophagy is induced by pattern recognition receptors and, through autophagic adaptors, it provides a mechanism for the elimination of intracellular microorganisms. Autophagy controls inflammation through regulatory interactions with innate immune signalling pathways, by removing endogenous inflammasome agonists and through effects on the secretion of immune mediators. Moreover, autophagy contributes to antigen presentation and to T cell homeostasis, and it affects T cell repertoires and polarization. Thus, as we discuss in this Review, autophagy has multitiered immunological functions that influence infection, inflammation and immunity.
Collapse
|
199
|
Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14:759-74. [PMID: 24201109 DOI: 10.1038/nrm3696] [Citation(s) in RCA: 1038] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Healthy cells use autophagy as a general 'housekeeping' mechanism and to survive stress, including stress induced by nutrient deprivation. Autophagy is initiated at the isolation membrane (originally termed the phagophore), and the coordinated action of ATG (autophagy-related) proteins results in the expansion of this membrane to form the autophagosome. Although the biogenesis of the isolation membrane and the autophagosome is complex and incompletely understood, insight has been gained into the molecular processes involved in initiating the isolation membrane, the source from which this originates (for example, it was recently proposed that the isolation membrane forms from the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM)) and the role of ATG proteins and the vesicular trafficking machinery in autophagosome formation.
Collapse
|
200
|
Pascall JC, Rotondo S, Mukadam AS, Oxley D, Webster J, Walker SA, Piron J, Carter C, Ktistakis NT, Butcher GW. The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABARAPL2 and is recruited to autophagosomes. PLoS One 2013; 8:e77782. [PMID: 24204963 PMCID: PMC3804274 DOI: 10.1371/journal.pone.0077782] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022] Open
Abstract
The GIMAPs (GTPases of the immunity-associated proteins) are a family of small GTPases expressed prominently in the immune systems of mammals and other vertebrates. In mammals, studies of mutant or genetically-modified rodents have indicated important roles for the GIMAP GTPases in the development and survival of lymphocytes. No clear picture has yet emerged, however, of the molecular mechanisms by which they perform their function(s). Using biotin tag-affinity purification we identified a major, and highly specific, interaction between the human cytosolic family member GIMAP6 and GABARAPL2, one of the mammalian homologues of the yeast autophagy protein Atg8. Chemical cross-linking studies performed on Jurkat T cells, which express both GIMAP6 and GABARAPL2 endogenously, indicated that the two proteins in these cells readily associate with one another in the cytosol under normal conditions. The GIMAP6-GABARAPL2 interaction was disrupted by deletion of the last 10 amino acids of GIMAP6. The N-terminal region of GIMAP6, however, which includes a putative Atg8-family interacting motif, was not required. Over-expression of GIMAP6 resulted in increased levels of endogenous GABARAPL2 in cells. After culture of cells in starvation medium, GIMAP6 was found to localise in punctate structures with both GABARAPL2 and the autophagosomal marker MAP1LC3B, indicating that GIMAP6 re-locates to autophagosomes on starvation. Consistent with this finding, we have demonstrated that starvation of Jurkat T cells results in the degradation of GIMAP6. Whilst these findings raise the possibility that the GIMAPs play roles in the regulation of autophagy, we have been unable to demonstrate an effect of GIMAP6 over-expression on autophagic flux.
Collapse
Affiliation(s)
- John C. Pascall
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Sergio Rotondo
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Aamir S. Mukadam
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - David Oxley
- Laboratory of Lymphocyte Signalling and Development, the Mass Spectrometry Facility, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Judith Webster
- Laboratory of Lymphocyte Signalling and Development, the Mass Spectrometry Facility, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Simon A. Walker
- The Imaging Facility, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Jerry Piron
- The Monoclonal Antibody Unit, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Christine Carter
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Nicholas T. Ktistakis
- The Inositide Laboratory, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | | |
Collapse
|