151
|
Sasaki F, Koga T, Ohba M, Saeki K, Okuno T, Ishikawa K, Nakama T, Nakao S, Yoshida S, Ishibashi T, Ahmadieh H, Kanavi MR, Hafezi-Moghadam A, Penninger JM, Sonoda KH, Yokomizo T. Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight 2018; 3:96902. [PMID: 30232269 DOI: 10.1172/jci.insight.96902] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD), a progressive chronic disease of the central retina, is associated with aging and is a leading cause of blindness worldwide. Here, we demonstrate that leukotriene B4 (LTB4) receptor 1 (BLT1) promotes laser-induced choroidal neovascularization (CNV) in a mouse model for wet-type AMD. CNV was significantly less in BLT1-deficient (BLT1-KO) mice compared with BLT1-WT controls. Expression of several proangiogenic and profibrotic factors was lower in BLT1-KO eyes than in BLT1-WT eyes. LTB4 production in the eyes was substantially increased in the early phase after laser injury. BLT1 was highly expressed in M2 macrophages in vitro and in vivo, and ocular BLT1+ M2 macrophages were increased in the aged eyes after laser injury. Furthermore, M2 macrophages were rapidly attracted by LTB4 and subsequently produced VEGF-A- through BLT1-mediated signaling. Consequently, intravitreal injection of M2 macrophages augmented CNV formation, which was attenuated by BLT1 deficiency. Thus, laser-induced injury to the retina triggered LTB4 production and attracted M2 macrophages via BLT1, leading to development of CNV. A selective BLT1 antagonist (CP105696) and 3 LTB4 inhibitors (zileuton, MK-886, and bestatin) reduced CNV in a dose-dependent manner. CP105696 also inhibited the accumulation of BLT1+ M2 macrophages in the laser-injured eyes of aged mice. Together, these results indicate that the LTB4-BLT1 axis is a potentially novel therapeutic target for CNV of wet-type AMD.
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham & Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
152
|
Elborn JS, Ahuja S, Springman E, Mershon J, Grosswald R, Rowe SM. EMPIRE-CF: A phase II randomized placebo-controlled trial of once-daily, oral acebilustat in adult patients with cystic fibrosis - Study design and patient demographics. Contemp Clin Trials 2018; 72:86-94. [PMID: 30056216 DOI: 10.1016/j.cct.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Inflammation causes irreparable damage in the cystic fibrosis (CF) lung. Despite high standards of care and the advent of new therapies, inflammation continues to cause significant loss of lung function and morbidity. Acebilustat is a once-daily, oral molecule with anti-inflammatory activity through the inhibition of LTA4 hydrolase and modulation of LTB4. It has potential to reduce lung function decline and pulmonary exacerbations in patients with CF and is currently being tested in a Phase II multicenter, randomized, double-blind, placebo-controlled, parallel-group study (EMPIRE-CF). Strict inclusion criteria based on modeling of the Cystic Fibrosis Foundation Patient Registry data were selected to enrich the trial with patients most likely to benefit from chronic anti-inflammatory therapy that reduces lung function decline. 200 patients between 18 and 30 years of age, with an FEV1 percent predicted (pp) ≥50%, and ≥1 exacerbation in the past year have been enrolled. Patients are randomized 1:1:1 to placebo, acebilustat 50 mg or 100 mg for 48 weeks, taken concomitantly with their current standard of care, and stratified based on concomitant CFTR modulator use, baseline FEV1pp (50% to 75% and >75%), and number of exacerbations in the past year (1 or >1). The primary endpoints are absolute change from baseline in FEV1pp and safety outcomes. Secondary endpoints include rate of pulmonary exacerbations and time to first pulmonary exacerbation. Biomarkers of inflammation will also be assessed. EMPIRE-CF is expected to identify the optimal patient population, dose, duration and endpoints for future acebilustat trials, and widen understanding of the drug's efficacy in patients with CF.
Collapse
Affiliation(s)
- J Stuart Elborn
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, UK.
| | - Sanjeev Ahuja
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - John Mershon
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - Steven M Rowe
- Departments of Medicine, Pediatrics, Cell Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
153
|
Brandt SL, Klopfenstein N, Wang S, Winfree S, McCarthy BP, Territo PR, Miller L, Serezani CH. Macrophage-derived LTB4 promotes abscess formation and clearance of Staphylococcus aureus skin infection in mice. PLoS Pathog 2018; 14:e1007244. [PMID: 30102746 PMCID: PMC6107286 DOI: 10.1371/journal.ppat.1007244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
The early events that shape the innate immune response to restrain pathogens during skin infections remain elusive. Methicillin-resistant Staphylococcus aureus (MRSA) infection engages phagocyte chemotaxis, abscess formation, and microbial clearance. Upon infection, neutrophils and monocytes find a gradient of chemoattractants that influence both phagocyte direction and microbial clearance. The bioactive lipid leukotriene B4 (LTB4) is quickly (seconds to minutes) produced by 5-lipoxygenase (5-LO) and signals through the G protein-coupled receptors LTB4R1 (BLT1) or BLT2 in phagocytes and structural cells. Although it is known that LTB4 enhances antimicrobial effector functions in vitro, whether prompt LTB4 production is required for bacterial clearance and development of an inflammatory milieu necessary for abscess formation to restrain pathogen dissemination is unknown. We found that LTB4 is produced in areas near the abscess and BLT1 deficient mice are unable to form an abscess, elicit neutrophil chemotaxis, generation of neutrophil and monocyte chemokines, as well as reactive oxygen species-dependent bacterial clearance. We also found that an ointment containing LTB4 synergizes with antibiotics to eliminate MRSA potently. Here, we uncovered a heretofore unknown role of macrophage-derived LTB4 in orchestrating the chemoattractant gradient required for abscess formation, while amplifying antimicrobial effector functions.
Collapse
Affiliation(s)
- Stephanie L. Brandt
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, Indiana, United States of America
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
| | - Nathan Klopfenstein
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Soujuan Wang
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, Indiana, United States of America
| | - Seth Winfree
- Indiana Center for Biological Microscopy, Indianapolis, Indiana, United States of America
| | - Brian P. McCarthy
- Indiana Institute for Biomedical Imaging Sciences, Department of Radiology, Indianapolis, Indiana, United States of America
| | - Paul R. Territo
- Indiana Institute for Biomedical Imaging Sciences, Department of Radiology, Indianapolis, Indiana, United States of America
| | - Lloyd Miller
- Johns Hopkins University School of Medicine, Department of Dermatology, Baltimore, Maryland, United States of America
| | - C. Henrique Serezani
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, Indiana, United States of America
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, Tennessee, United States of America
| |
Collapse
|
154
|
Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018; 104:359-374. [PMID: 29873835 PMCID: PMC6099250 DOI: 10.1002/jlb.1mr0218-044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
From an individual bacterium to the cells that compose the human immune system, cellular chemotaxis plays a fundamental role in allowing cells to navigate, interpret, and respond to their environments. While many features of cellular chemotaxis are shared among systems as diverse as bacteria and human immune cells, the machinery that guides the migration of these model organisms varies widely. In this article, we review current literature on the diversity of chemoattractant ligands, the cell surface receptors that detect and process chemotactic gradients, and the link between signal recognition and the regulation of cellular machinery that allow for efficient directed cellular movement. These facets of cellular chemotaxis are compared among E. coli, Dictyostelium discoideum, and mammalian neutrophils to derive organizational principles by which diverse cell systems sense and respond to chemotactic gradients to initiate cellular migration.
Collapse
Affiliation(s)
- Monica A. Thomas
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew B. Kleist
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Brian F. Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
155
|
Abstract
Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms.
Collapse
|
156
|
Camley BA. Collective gradient sensing and chemotaxis: modeling and recent developments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:223001. [PMID: 29644981 PMCID: PMC6252055 DOI: 10.1088/1361-648x/aabd9f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cells measure a vast variety of signals, from their environment's stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.
Collapse
Affiliation(s)
- Brian A Camley
- Departments of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
157
|
Subramanian BC, Majumdar R, Parent CA. The role of the LTB 4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin Immunol 2018; 33:16-29. [PMID: 29042024 DOI: 10.1016/j.smim.2017.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
Directed leukocyte migration is a hallmark of inflammatory immune responses. Leukotrienes are derived from arachidonic acid and represent a class of potent lipid mediators of leukocyte migration. In this review, we summarize the essential steps leading to the production of LTB4 in leukocytes. We discuss the recent findings on the exosomal packaging and transport of LTB4 in the context of chemotactic gradients formation and regulation of leukocyte recruitment. We also discuss the dynamic roles of the LTB4 receptors, BLT1 and BLT2, in mediating chemotactic signaling in leukocytes and contrast them to other structurally related leukotrienes that bind to distinct GPCRs. Finally, we highlight the specific roles of the LTB4-BLT1 axis in mediating signal-relay between chemotaxing neutrophils and its potential contribution to a wide variety of inflammatory conditions including tumor progression and metastasis, where LTB4 is emerging as a key signaling component.
Collapse
Affiliation(s)
- Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States.
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
158
|
Too much of a good thing: How modulating LTB 4 actions restore host defense in homeostasis or disease. Semin Immunol 2018; 33:37-43. [PMID: 29042027 DOI: 10.1016/j.smim.2017.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 06/02/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022]
Abstract
The ability to regulate inflammatory pathways and host defense mechanisms is critical for maintaining homeostasis and responding to infections and tissue injury. While unbalanced inflammation is detrimental to the host; inadequate inflammation might not provide effective signals required to eliminate pathogens. On the other hand, aberrant inflammation could result in organ damage and impair host defense. The lipid mediator leukotriene B4 (LTB4) is a potent neutrophil chemoattractant and recently, its role as a dominant molecule that amplifies many arms of phagocyte antimicrobial effector function has been unveiled. However, excessive LTB4 production contributes to disease severity in chronic inflammatory diseases such as diabetes and arthritis, which could potentially be involved in poor host defense in these groups of patients. In this review we discuss the cellular and molecular programs elicited during LTB4 production and actions on innate immunity host defense mechanisms as well as potential therapeutic strategies to improve host defense.
Collapse
|
159
|
Forrest OA, Ingersoll SA, Preininger MK, Laval J, Limoli DH, Brown MR, Lee FE, Bedi B, Sadikot RT, Goldberg JB, Tangpricha V, Gaggar A, Tirouvanziam R. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J Leukoc Biol 2018; 104:665-675. [PMID: 29741792 DOI: 10.1002/jlb.5hi1117-454rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Osric A Forrest
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sarah A Ingersoll
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marcela K Preininger
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Dominique H Limoli
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Frances E Lee
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Ruxana T Sadikot
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vin Tangpricha
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
160
|
Markworth JF, D'Souza RF, Aasen KMM, Mitchell SM, Durainayagam BR, Sinclair AJ, Peake JM, Egner IM, Raastad T, Cameron-Smith D, Mitchell CJ. Arachidonic acid supplementation transiently augments the acute inflammatory response to resistance exercise in trained men. J Appl Physiol (1985) 2018; 125:271-286. [PMID: 29698111 DOI: 10.1152/japplphysiol.00169.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Strenuous exercise can result in skeletal muscle damage, leading to the systemic mobilization, activation, and intramuscular accumulation of blood leukocytes. Eicosanoid metabolites of arachidonic acid (ARA) are potent inflammatory mediators, but whether changes in dietary ARA intake influence exercise-induced inflammation is not known. This study investigated the effect of 4 wk of dietary supplementation with 1.5 g/day ARA ( n = 9, 24 ± 1.5 yr) or corn-soy oil placebo ( n = 10, 26 ± 1.3 yr) on systemic and intramuscular inflammatory responses to an acute bout of resistance exercise (8 sets each of leg press and extension at 80% one-repetition maximum) in previously trained men. Whole EDTA blood, serum, peripheral blood mononuclear cells (PMBCs), and skeletal muscle biopsies were collected before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. ARA supplementation resulted in higher exercise-stimulated serum creatine kinase activity [incremental area under the curve (iAUC) P = 0.046] and blood leukocyte counts (iAUC for total white cells, P < 0.001; neutrophils: P = 0.007; monocytes: P = 0.015). The exercise-induced fold change in peripheral blood mononuclear cell mRNA expression of interleukin-1β ( IL1B), CD11b ( ITGAM), and neutrophil elastase ( ELANE), as well as muscle mRNA expression of the chemokines interleukin-8 ( CXCL8) and monocyte chemoattractant protein 1 ( CCL2) was also greater in the ARA group than placebo. Despite this, ARA supplementation did not influence the histological presence of leukocytes within muscle, perceived muscle soreness, or the extent and duration of muscle force loss. These data show that ARA supplementation transiently increased the inflammatory response to acute resistance exercise but did not impair recovery. NEW & NOTEWORTHY Daily arachidonic acid supplementation for 4 wk in trained men augmented the acute systemic and intramuscular inflammatory response to a subsequent bout of resistance exercise. Greater exercise-induced inflammatory responses in men receiving arachidonic acid supplementation were not accompanied by increased symptoms of exercise-induced muscle damage. Although increased dietary arachidonic acid intake does not appear to influence basal inflammation in humans, the acute inflammatory response to exercise stress is transiently increased following arachidonic acid supplementation.
Collapse
Affiliation(s)
- James F Markworth
- Liggins Institute, University of Auckland , Grafton , New Zealand.,Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | | | | | - Sarah M Mitchell
- Liggins Institute, University of Auckland , Grafton , New Zealand
| | | | | | - Jonathan M Peake
- Sports Performance Innovation and Knowledge Excellence, Queensland Academy of Sport , Brisbane , Australia.,School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia
| | - Ingrid M Egner
- Department of Biosciences, University of Oslo , Oslo , Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | - David Cameron-Smith
- Liggins Institute, University of Auckland , Grafton , New Zealand.,Food and Bio-based Products Group, AgResearch, Palmerston North , New Zealand.,Riddet Institute , Palmerston North , New Zealand
| | | |
Collapse
|
161
|
Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res 2018; 59:2037-2046. [PMID: 29678959 DOI: 10.1194/jlr.r084640] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are small membrane-bound vesicles released by cells under various conditions. In a multitude of physiological and pathological conditions, EVs contribute to intercellular communication by facilitating exchange of material between cells. Rapidly growing interest is aimed at better understanding EV function and their use as biomarkers. The vast EV cargo includes cytokines, growth factors, organelles, nucleic acids (messenger and micro RNA), and transcription factors. A large proportion of research dedicated to EVs is focused on their microRNA cargo; however, much less is known about other EV constituents, in particular, eicosanoids. These potent bioactive lipid mediators, derived from arachidonic acid, are shuttled in EVs along with the enzymes in charge of their synthesis. In the extracellular milieu, EVs also interact with secreted phospholipases to generate eicosanoids, which then regulate the transfer of cargo into a cellular recipient. Eicosanoids are useful as biomarkers and contribute to a variety of biological functions, including modulation of distal immune responses. Here, we review the reported roles of eicosanoids conveyed by EVs and describe their potential as biomarkers.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche du CHU de Québec - Université Laval, Department of Infectious Diseases and Immunity, Quebec City, QC, Canada, and Canadian National Transplantation Research Program, Edmonton, AB, Canada
| |
Collapse
|
162
|
Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular Vesicles as Conveyors of Membrane-Derived Bioactive Lipids in Immune System. Int J Mol Sci 2018; 19:ijms19041227. [PMID: 29670015 PMCID: PMC5979532 DOI: 10.3390/ijms19041227] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last 20 years, extracellular vesicles (EVs) have been established as an additional way to transmit signals outside the cell. They are membrane-surrounded structures of nanometric size that can either originate from the membrane invagination of multivesicular bodies of the late endosomal compartment (exosomes) or bud from the plasma membrane (microvesicles). They contain proteins, lipids, and nucleic acids—namely miRNA, but also mRNA and lncRNA—which are derived from the parental cell, and have been retrieved in every fluid of the body. As carriers of antigens, either alone or in association with major histocompatibility complex (MHC) class II and class I molecules, their immunomodulatory properties have been extensively investigated. Moreover, recent studies have shown that EVs may carry and deliver membrane-derived bioactive lipids that play an important function in the immune system and related pathologies, such as prostaglandins, leukotrienes, specialized pro-resolving mediators, and lysophospholipids. EVs protect bioactive lipids from degradation and play a role in the transcellular synthesis of prostaglandins and leukotrienes. Here, we summarized the role of EVs in the regulation of immune response, specifically focusing our attention on the emerging role of EVs as carriers of bioactive lipids, which is important for immune system function.
Collapse
Affiliation(s)
- Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
163
|
Minns MS, Pearlman E. Neutrophils Cause an Intravascular Traffic Jam. Cell Host Microbe 2018; 23:6-8. [PMID: 29324230 DOI: 10.1016/j.chom.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophil swarming is defined by large numbers of cells simultaneously and rapidly migrating to a site of injury or infection. In this issue of Cell Host & Microbe, Lee et al. (2018) demonstrate that intravascular swarming of neutrophils occurs in response to Candida albicans infection and causes vascular occlusion and pathological sequelae.
Collapse
Affiliation(s)
- Martin S Minns
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Eric Pearlman
- Institute for Immunology, University of California, Irvine, CA, USA.
| |
Collapse
|
164
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
165
|
Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res 2018; 371:399-406. [PMID: 29404726 DOI: 10.1007/s00441-018-2790-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
The neutrophil appears to be undergoing a renaissance of sorts. While it was for many years thought to be a killing machine brought into tissues to eradicate pathogens, it is now being implicated in many other processes, ranging from acute injury and repair, chronic inflammatory processes, cancer and auto-immunity. Not only is it an effector of the innate immune response, it appears to also potentially contribute to adaptive immunity, implicated in either contributing to the development of specific adaptive immune responses or perhaps even instructing and directing certain adaptive immune responses. With this renewed interest in the neutrophil and its numerous new functions, it is worth examining not what we know but rather what we do not know and what still needs to be more thoroughly examined. In this review, consideration is given to such topics as neutrophil subtypes, neutrophil differentiation, neutrophil as a director of immunity, neutrophil residency and ultimately death of the neutrophil.
Collapse
Affiliation(s)
- Paul Kubes
- Departments of Physiology and Pharmacology, Microbiology and Immunology and Critical Care Medicine, Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
166
|
Boneschansker L, Jorgensen J, Ellett F, Briscoe DM, Irimia D. Convergent and Divergent Migratory Patterns of Human Neutrophils inside Microfluidic Mazes. Sci Rep 2018; 8:1887. [PMID: 29382882 PMCID: PMC5789854 DOI: 10.1038/s41598-018-20060-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are key cellular components of the innate immune response and characteristically migrate from the blood towards and throughout tissues. Their migratory process is complex, guided by multiple chemoattractants released from injured tissues and microbes. How neutrophils integrate the various signals in the tissue microenvironment and mount effective responses is not fully understood. Here, we employed microfluidic mazes that replicate features of interstitial spaces and chemoattractant gradients within tissues to analyze the migration patterns of human neutrophils. We find that neutrophils respond to LTB4 and fMLF gradients with highly directional migration patterns and converge towards the source of chemoattractant. We named this directed migration pattern convergent. Moreover, neutrophils respond to gradients of C5a and IL-8 with a low-directionality migration pattern and disperse within mazes. We named this alternative migration pattern divergent. Inhibitors of MAP kinase and PI-3 kinase signaling pathways do not alter either convergent or divergent migration patterns, but reduce the number of responding neutrophils. Overlapping gradients of chemoattractants conserve the convergent and divergent migration patterns corresponding to each chemoattractant and have additive effects on the number of neutrophils migrating. These results suggest that convergent and divergent neutrophil migration-patterns are the result of simultaneous activation of multiple signaling pathways.
Collapse
Affiliation(s)
- Leo Boneschansker
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Transplant Research Program and The Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Julianne Jorgensen
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - David M Briscoe
- Transplant Research Program and The Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
167
|
Neutrophils recruited through high endothelial venules of the lymph nodes via PNAd intercept disseminating Staphylococcus aureus. Proc Natl Acad Sci U S A 2018; 115:2449-2454. [PMID: 29378967 DOI: 10.1073/pnas.1715756115] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a skin- and respiratory tract-colonizing bacterium and is the leading cause of community-acquired skin infections. Dissemination of these bacteria into systemic circulation causes bacteremia, which has a high mortality rate. Therefore, understanding the immunologic barriers that prevent dissemination is critical to developing novel treatments. In this study, we demonstrate that an S. aureus breach across skin leads to some migration of the pathogen to the draining lymph node, but no further. While subcapsular sinus (SCS) macrophage in lymph nodes were important in detaining S. aureus, a rapid complement-dependent neutrophil recruitment (independent of the SCS macrophage) via high endothelial venules (HEVs) resulted in high numbers of neutrophils that intercepted the bacteria in the lymph nodes. Peripheral Node Addressin together with its two ligands, L-selectin and platelet P-selectin, are critical for recruiting neutrophils via the HEVs. Almost no neutrophils entered the lymph nodes via lymphatics. Neutrophils actively phagocytosed S. aureus and helped sterilize the lymph nodes and prevent dissemination to blood and other organs.
Collapse
|
168
|
Abstract
Neutrophils are the primary cells recruited to inflamed sites during an innate immune response to tissue damage and/or infection. They are finely sensitive to inciting stimuli to reach in great numbers and within minutes areas of inflammation and tissue insult. For this effective response, they can detect extracellular chemical gradients and move towards higher concentrations, the so-called chemotaxis process or guided cell migration. This directed neutrophil recruitment is orchestrated by chemoattractants, a chemically diverse group of molecular guidance cues (e.g., lipids, N-formylated peptides, complement, anaphylotoxins and chemokines). Neutrophils respond to these guidance signals in a hierarchical manner and, based on this concept, they can be further subdivided into two groups: "end target" and "intermediary" chemoattractants, the signals of the former dominant over the latter. Neutrophil chemoattractants exert their effects through interaction with heptahelical G protein-coupled receptors (GPCRs) expressed on cell surfaces and the chemotactic response is mainly regulated by the Rho family of GTPases. Additionally, neutrophil behavior might differ and be affected in different complex scenarios such as disease conditions and type of vascular bed in specific organs. Finally, there are different mechanisms to disrupt neutrophil chemotaxis either associated to the resolution of inflammation or to bacterial escape and systemic infection. Therefore, in the present review, we will discuss the different molecular players involved in neutrophil chemotaxis, paying special attention to the different chemoattractants described and the way that they interact intra- and extravascularly for neutrophils to properly reach the target tissue.
Collapse
Affiliation(s)
- Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Maria-Jesús Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain. .,Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
169
|
Boff D, Oliveira VLS, Queiroz Junior CM, Silva TA, Allegretti M, Verri WA, Proost P, Teixeira MM, Amaral FA. CXCR2 is critical for bacterial control and development of joint damage and pain in Staphylococcus aureus-induced septic arthritis in mouse. Eur J Immunol 2018; 48:454-463. [PMID: 29168180 DOI: 10.1002/eji.201747198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is the main pathogen associated with septic arthritis. Upon infection, neutrophils are quickly recruited to the joint by different chemoattractants, especially CXCR1/2 binding chemokines. Although their excessive accumulation is associated with intense pain and permanent articular damage, neutrophils have an important function in controlling bacterial burden. This work aimed to study the role of CXCR2 in the control of infection, hypernociception and tissue damage in S. aureus-induced septic arthritis in mice. The kinetics of neutrophil recruitment correlated with the bacterial load recovered from inflamed joint after intra-articular injection of S. aureus. Treatment of mice from the start of infection with the non-competitive antagonist of CXCR1/2, DF2156A, reduced neutrophil accumulation, cytokine production in the tissue, joint hypernociception and articular damage. However, early DF2156A treatment increased the bacterial load locally. CXCR2 was important for neutrophil activation and clearance of bacteria in vitro and in vivo. Start of treatment with DF2156A 3 days after infection prevented increase in bacterial load and reduced the hypernociception in the following days, but did not improve tissue damage. In conclusion, treatment with DF2156A seems be effective in controlling tissue inflammation and dysfunction but its effects are highly dependent on the timing of the treatment start.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil.,Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian L S Oliveira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil
| | - Celso M Queiroz Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Waldiceu A Verri
- Department of Pathological Sciences, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil
| |
Collapse
|
170
|
Ye ZN, Wu LY, Liu JP, Chen Q, Zhang XS, Lu Y, Zhou ML, Li W, Zhang ZH, Xia DY, Zhuang Z, Hang CH. Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats. Behav Brain Res 2017; 339:19-27. [PMID: 29133197 DOI: 10.1016/j.bbr.2017.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022]
Abstract
Leukotriene B4 (LTB4) is a highly potent neutrophil chemoattractant and neutrophils induces inflammatory response and oxidative stress when they recruit to and infiltrate in the injuried/inflamed site, such as the brain parenchyma after aneurysmal subarachnoid hemorrhage (SAH). This study is to investigate the potential effects of inhibition of LTB4 synthesis on neutrophil recruitment, inflammatory response and oxidative stress, as well as early brain injury (EBI) in rats after SAH. A pre-chiasmatic cistern SAH model of rats was used in this experiment. SC 57461A was used to inhibit LTB4 synthesis via intracerebroventricular injection. The brain tissues of temporal lobe after SAH were analyzed. Neuronal injury, brain edema and neurological function were evaluated to investigate the development of EBI. We found that inhibition of LTB4 synthesis after SAH could reduce the level of myeloperoxidase, alleviate the inflammatory response and oxidative stress, and reduce neuronal death in the brain parenchyma, and ameliorate brain edema and neurological behavior impairment at 24h after SAH. These results suggest that inhibition of LTB4 synthesis might alleviate EBI after SAH possibly via reducing the neutrophil-generated inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Zhen-Nan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China; Department of Neurosurgery, Jinling Hospital, Clinical College of Medicine, Southern Medical University (Guangzhou), Nanjing, Jiangsu Province, China
| | - Ling-Yun Wu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu Province, China
| | - Jing-Peng Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Chen
- Department of Neurosurgery, Jinling Hospital, Clinical College of Medicine, Southern Medical University (Guangzhou), Nanjing, Jiangsu Province, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Lu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu Province, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zi-Huan Zhang
- Department of Neurosurgery, Zhongdu Hospital, Bengbu, Anhui Province, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China
| | - Zong Zhuang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu Province, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
171
|
Contribution of In Vivo and Organotypic 3D Models to Understanding the Role of Macrophages and Neutrophils in the Pathogenesis of Psoriasis. Mediators Inflamm 2017; 2017:7215072. [PMID: 29249871 PMCID: PMC5698795 DOI: 10.1155/2017/7215072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis, a common chronic immune-mediated skin disease, is histologically characterized by a rapid keratinocyte turnover and differentiation defects. Key insights favor the idea that T cells are not the only key actors involved in the inflammatory process. Innate immune cells, more precisely neutrophils and macrophages, provide specific signals involved in the initiation and the maintenance of the pathogenesis. Current data from animal models and, to a lesser extent, three-dimensional in vitro models have confirmed the interest in leaning towards other immune cell types as a potential new cellular target for the treatment of the disease. Although these models do not mimic the complex phenotype nor all human features of psoriasis, their development is necessary and essential to better understand reciprocal interactions between skin cells and innate immune cells and to emphasize the crucial importance of the local lesional microenvironment. In this review, through the use of in vivo and 3D organotypic models, we aim to shed light on the crosstalk between epithelial and immune components and to discuss the role of secreted inflammatory molecules in the development of this chronic skin disease.
Collapse
|
172
|
Abstract
The lymphatic system is essential for the maintenance of tissue fluid homeostasis, gastrointestinal lipid absorption, and immune trafficking. Whereas lymphatic regeneration occurs physiologically in wound healing and tissue repair, pathological lymphangiogenesis has been implicated in a number of chronic diseases such as lymphedema, atherosclerosis, and cancer. Insight into the regulatory mechanisms of lymphangiogenesis and the manner in which uncontrolled inflammation promotes lymphatic dysfunction is urgently needed to guide the development of novel therapeutics: These would be designed to reverse lymphatic dysfunction, either primary or acquired. Recent investigation has demonstrated the mechanistic role of leukotriene B4 (LTB4) in the molecular pathogenesis of lymphedema. LTB4, a product of the innate immune response, is a constituent of the eicosanoid inflammatory mediator family of molecules that promote both physiological and pathological inflammation. Here we provide an overview of lymphatic development, the pathophysiology of lymphedema, and the role of leukotrienes in lymphedema pathogenesis.
Collapse
Affiliation(s)
- Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California 94304, USA.,Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, California 94304, USA.,Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California 94304, USA.,Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Stanley G Rockson
- Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
173
|
|
174
|
Szatmary AC, Nossal R, Parent CA, Majumdar R. Modeling neutrophil migration in dynamic chemoattractant gradients: assessing the role of exosomes during signal relay. Mol Biol Cell 2017; 28:3457-3470. [PMID: 28954858 PMCID: PMC5687044 DOI: 10.1091/mbc.e17-05-0298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023] Open
Abstract
Cells chemotaxing in decaying gradients of primary chemoattractants maintain their
chemotactic response by releasing secondary chemoattractants. Steep, local gradients
of secondary chemoattractants can be reached with molecules of higher hydrophobicity,
whereas temporal stability can be achieved by packaging in extracellular
vesicles. Migrating cells often exhibit signal relay, a process in which cells migrating in
response to a chemotactic gradient release a secondary chemoattractant to enhance
directional migration. In neutrophils, signal relay toward the primary
chemoattractant N-formylmethionyl-leucyl-phenylalanine (fMLP) is mediated by
leukotriene B4 (LTB4). Recent evidence suggests that the
release of LTB4 from cells occurs through packaging in exosomes. Here we
present a mathematical model of neutrophil signal relay that focuses on
LTB4 and its exosome-mediated secretion. We describe neutrophil
chemotaxis in response to a combination of a defined gradient of fMLP and an evolving
gradient of LTB4, generated by cells in response to fMLP. Our model
enables us to determine the gradient of LTB4 arising either through
directed secretion from cells or through time-varying release from exosomes. We
predict that the secondary release of LTB4 increases recruitment range and
show that the exosomes provide a time delay mechanism that regulates the development
of LTB4 gradients. Additionally, we show that under decaying primary
gradients, secondary gradients are more stable when secreted through exosomes as
compared with direct secretion. Our chemotactic model, calibrated from observed
responses of cells to gradients, thereby provides insight into chemotactic signal
relay in neutrophils during inflammation.
Collapse
Affiliation(s)
- Alex C Szatmary
- Division of Basic and Translational Biophysics, National Institute of Child Health and Human Development, Rockville, MD 20847
| | - Ralph Nossal
- Division of Basic and Translational Biophysics, National Institute of Child Health and Human Development, Rockville, MD 20847
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
175
|
de Almeida DC, Evangelista LSM, Câmara NOS. Role of aryl hydrocarbon receptor in mesenchymal stromal cell activation: A minireview. World J Stem Cells 2017; 9:152-158. [PMID: 29026461 PMCID: PMC5620424 DOI: 10.4252/wjsc.v9.i9.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) possess great therapeutic advantages due to their ability to produce a diverse array of trophic/growth factors related to cytoprotection and immunoregulation. MSC activation via specific receptors is a crucial event for these cells to exert their immunosuppressive response. The aryl-hydrocarbon receptor (AhR) is a sensitive molecule for external signals and it is expressed in MSCs and, upon positive activation, may potentially regulate the MSC-associated immunomodulatory function. Consequently, signalling pathways linked to AhR activation can elucidate some of the molecular cascades involved in MSC-mediated immunosuppression. In this minireview, we have noted some important findings concerning MSC regulation via AhR, highlighting that its activation is associated with improvement in migration and immunoregulation, as well as an increase in pro-regenerative potential. Thus, AhR-mediated MSC activation can contribute to new perspectives on MSC-based therapies, particularly those directed at immune-associated disorders.
Collapse
Affiliation(s)
- Danilo Candido de Almeida
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, SP 04039-003, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, SP 04039-003, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
176
|
Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, Ohkawa Y, Yokomizo T. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS One 2017; 12:e0185133. [PMID: 28922396 PMCID: PMC5602668 DOI: 10.1371/journal.pone.0185133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 01/27/2023] Open
Abstract
Leukotriene B4 (LTB4) receptor 1 (BLT1) is a G protein-coupled receptor expressed in various leukocyte subsets; however, the precise expression of mouse BLT1 (mBLT1) has not been reported because a mBLT1 monoclonal antibody (mAb) has not been available. In this study, we present the successful establishment of a hybridoma cell line (clone 7A8) that produces a high-affinity mAb for mBLT1 by direct immunization of BLT1-deficient mice with mBLT1-overexpressing cells. The specificity of clone 7A8 was confirmed using mBLT1-overexpressing cells and mouse peripheral blood leukocytes that endogenously express BLT1. Clone 7A8 did not cross-react with human BLT1 or other G protein-coupled receptors, including human chemokine (C-X-C motif) receptor 4. The 7A8 mAb binds to the second extracellular loop of mBLT1 and did not affect LTB4 binding or intracellular calcium mobilization by LTB4. The 7A8 mAb positively stained Gr-1-positive granulocytes, CD11b-positive granulocytes/monocytes, F4/80-positive monocytes, CCR2-high and CCR2-low monocyte subsets in the peripheral blood and a CD4-positive T cell subset, Th1 cells differentiated in vitro from naïve CD4-positive T cells. This mAb was able to detect Gr-1-positive granulocytes and monocytes in the spleens of naïve mice by immunohistochemistry. Finally, intraperitoneal administration of 7A8 mAb depleted granulocytes and monocytes in the peripheral blood. We have therefore succeeded in generating a high-affinity anti-mBLT1 mAb that is useful for analyzing mBLT1 expression in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- CHO Cells
- Calcium Signaling/drug effects
- Cell Differentiation/immunology
- Cricetinae
- Cricetulus
- Granulocytes/immunology
- Leukotriene B4/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Monocytes/immunology
- Protein Structure, Secondary
- Receptors, Leukotriene B4/antagonists & inhibitors
- Receptors, Leukotriene B4/chemistry
- Receptors, Leukotriene B4/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
177
|
Kienle K, Lämmermann T. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol Rev 2017; 273:76-93. [PMID: 27558329 DOI: 10.1111/imr.12458] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction.
Collapse
Affiliation(s)
- Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany
| |
Collapse
|
178
|
Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur J Med Chem 2017; 153:34-48. [PMID: 28784429 DOI: 10.1016/j.ejmech.2017.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Leukotrienes are proinflammatory lipid mediators associated with diverse chronic inflammatory diseases such as asthma, COPD, IBD, arthritis, atherosclerosis, dermatitis and cancer. Cellular leukotrienes are produced from arachidonic acid via the 5-lipoxygenase pathway in which the 5-lipoxygenase activating protein, also named as FLAP, plays a critical role by operating as a regulatory protein for efficient transfer of arachidonic acid to 5-lipoxygenase. By blocking leukotriene production, FLAP inhibitors may behave as broad-spectrum leukotriene modulators, which might be of therapeutic use for chronic inflammatory diseases requiring anti-leukotriene therapy. The early development of FLAP inhibitors (i.e. MK-886, MK-591, BAY-X-1005) mostly concentrated on asthma cure, and resulted in promising readouts in preclinical and clinical studies with asthma patients. Following the recent elucidation of the 3D-structure of FLAP, development of new inhibitor chemotypes is highly accelerated, eventually leading to the evolution of many un-drug-like structures into more drug-like entities such as AZD6642 and BI665915 as development candidates. The most clinically advanced FLAP inhibitor to date is GSK2190918 (formerly AM803) that has successfully completed phase II clinical trials in asthmatics. Concluding, although there are no FLAP inhibitors reached to the drug approval phase yet, due to the rising number of indications for anti-LT therapy such as atherosclerosis, FLAP inhibitor development remains a significant research field. FLAP inhibitors reviewed herein are classified into four sub-classes as the first-generation FLAP inhibitors (indole and quinoline derivatives), the second-generation FLAP inhibitors (diaryl-alkanes and biaryl amino-heteroarenes), the benzimidazole-containing FLAP inhibitors and other FLAP inhibitors with polypharmacology for easiness of the reader. Hence, we meticulously summarize how FLAP inhibitors historically developed from scratch to their current advanced state, and leave the reader with a positive view that a FLAP inhibitor might soon reach to the need of patients who may require anti-LT therapy.
Collapse
|
179
|
Abstract
Neutrophil swarms protect healthy tissues by sealing off sites of infection. In the absence of swarming, microbial invasion of surrounding tissues can result in severe infections. Recent observations in animal models have shown that swarming requires rapid neutrophil responses and well-choreographed neutrophil migration patterns. However, in animal models physical access to the molecular signals coordinating neutrophil activities during swarming is limited. Here, we report the development and validation of large microscale arrays of zymosan-particle clusters for the study of human neutrophils during swarming ex vivo. We characterized the synchronized swarming of human neutrophils under the guidance of neutrophil-released chemokines, and measured the mediators released at different phases of human-neutrophil swarming against targets simulating infections. We found that the network of mediators coordinating human-neutrophil swarming includes start and stop signals, proteolytic enzymes and enzyme inhibitors, as well as modulators of activation of other immune and non-immune cells. We also show that the swarming behavior of neutrophils from patients following major trauma is deficient and gives rise to smaller swarms than those of neutrophils from healthy individuals.
Collapse
|
180
|
Percher F, Curis C, Pérès E, Artesi M, Rosewick N, Jeannin P, Gessain A, Gout O, Mahieux R, Ceccaldi PE, Van den Broeke A, Duc Dodon M, Afonso PV. HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation. Nat Commun 2017; 8:15890. [PMID: 28639618 PMCID: PMC5489682 DOI: 10.1038/ncomms15890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 01/20/2023] Open
Abstract
The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo.
Collapse
Affiliation(s)
- Florent Percher
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France
| | - Céline Curis
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France
| | - Eléonore Pérès
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, INSERM U1210 CNRS-UCBL UMR 5239, UMS 3444 SFR Biosciences-Lyon, Lyon F-69007, France
| | - Maria Artesi
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège B-4000, Belgium
| | - Nicolas Rosewick
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège B-4000, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels B-1000, Belgium
| | - Patricia Jeannin
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
| | - Olivier Gout
- Service de Neurologie, Fondation Ophtalmologique Adolphe de Rothschild, Paris F-75019, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, ENS de Lyon, and Equipe Labélisée Ligue Nationale Contre le Cancer, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR 5308, Lyon F-69007, France
| | - Pierre-Emmanuel Ceccaldi
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France
| | - Anne Van den Broeke
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège B-4000, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels B-1000, Belgium
| | - Madeleine Duc Dodon
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, INSERM U1210 CNRS-UCBL UMR 5239, UMS 3444 SFR Biosciences-Lyon, Lyon F-69007, France
| | - Philippe V. Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
| |
Collapse
|
181
|
Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 2017; 16:378-91. [PMID: 27231052 DOI: 10.1038/nri.2016.49] [Citation(s) in RCA: 731] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophil migration and its role during inflammation has been the focus of increased interest in the past decade. Advances in live imaging and the use of new model systems have helped to uncover the behaviour of neutrophils in injured and infected tissues. Although neutrophils were considered to be short-lived effector cells that undergo apoptosis in damaged tissues, recent evidence suggests that neutrophil behaviour is more complex and, in some settings, neutrophils might leave sites of tissue injury and migrate back into the vasculature. The role of reverse migration and its contribution to resolution of inflammation remains unclear. In this Review, we discuss the different cues within tissues that mediate neutrophil forward and reverse migration in response to injury or infection and the implications of these mechanisms to human disease.
Collapse
|
182
|
Miralda I, Uriarte SM, McLeish KR. Multiple Phenotypic Changes Define Neutrophil Priming. Front Cell Infect Microbiol 2017; 7:217. [PMID: 28611952 PMCID: PMC5447094 DOI: 10.3389/fcimb.2017.00217] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States
| | - Silvia M Uriarte
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States.,Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States.,Robley Rex VA Medical CenterLouisville, KY, United States
| |
Collapse
|
183
|
Heinrich V, Simpson WD, Francis EA. Analytical Prediction of the Spatiotemporal Distribution of Chemoattractants around Their Source: Theory and Application to Complement-Mediated Chemotaxis. Front Immunol 2017; 8:578. [PMID: 28603522 PMCID: PMC5445147 DOI: 10.3389/fimmu.2017.00578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
The ability of motile immune cells to detect and follow gradients of chemoattractant is critical to numerous vital functions, including their recruitment to sites of infection and-in emerging immunotherapeutic applications-to malignant tumors. Facilitated by a multitude of chemotactic receptors, the cells navigate a maze of stimuli to home in on their target. Distinct chemotactic processes direct this navigation at particular times and cell-target distances. The expedient coordination of this spatiotemporal hierarchy of chemotactic stages is the central element of a key paradigm of immunotaxis. Understanding this hierarchy is an enormous interdisciplinary challenge that requires, among others, quantitative insight into the shape, range, and dynamics of the profiles of chemoattractants around their sources. We here present a closed-form solution to a diffusion-reaction problem that describes the evolution of the concentration gradient of chemoattractant under various conditions. Our ready-to-use mathematical prescription captures many biological situations reasonably well and can be explored with standard graphing software, making it a valuable resource for every researcher studying chemotaxis. We here apply this mathematical model to characterize the chemoattractant cloud of anaphylatoxins that forms around bacterial and fungal pathogens in the presence of host serum. We analyze the spatial reach, rate of formation, and rate of dispersal of this locator cloud under realistic physiological conditions. Our analysis predicts that simply being small is an effective protective strategy of pathogens against complement-mediated discovery by host immune cells over moderate-to-large distances. Leveraging our predictions against single-cell, pure-chemotaxis experiments that use human immune cells as biosensors, we are able to explain the limited distance over which the cells recognize microbes. We conclude that complement-mediated chemotaxis is a universal, but short-range, homing mechanism by which chemotaxing immune cells can implement a last-minute course correction toward pathogenic microbes. Thus, the integration of theory and experiments provides a sound mechanistic explanation of the primary role of complement-mediated chemotaxis within the hierarchy of immunotaxis, and why other chemotactic processes are required for the successful recruitment of immune cells over large distances.
Collapse
Affiliation(s)
- Volkmar Heinrich
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| | - Wooten D Simpson
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| | - Emmet A Francis
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| |
Collapse
|
184
|
Hertzel AV, Xu H, Downey M, Kvalheim N, Bernlohr DA. Fatty acid binding protein 4/aP2-dependent BLT1R expression and signaling. J Lipid Res 2017; 58:1354-1361. [PMID: 28546450 DOI: 10.1194/jlr.m074542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
Previous studies have shown that reduced levels of the adipocyte fatty acid binding protein (FABP)4 (AFABP/aP2), result in metabolic improvement including potentiated insulin sensitivity and attenuated atherosclerosis. Mechanistically, pharmacologic or genetic inhibition of FABP4 in macrophages upregulates UCP2, attenuates reactive oxygen species (ROS) production, polarizes cells toward the anti-inflammatory M2 state, and reduces leukotriene (LT) secretion. At the protein level, FABP4 stabilizes LTA4 toward chemical hydrolysis, thereby potentiating inflammatory LTC4 synthesis. Herein, we extend the FABP4-LT axis and demonstrate that genetic knockout of FABP4 reduces expression of the major macrophage LT receptor, LTB4 receptor 1 (BLT1R), via a ROS-dependent mechanism. Consistent with inflammation driving BLT1R expression, M1 polarized macrophages express increased levels of BLT1R relative to M2 polarized macrophages and treatment with proinflammatory lipopolysaccharide increased BLT1R mRNA and protein expression. In FABP4 knockout macrophages, silencing of UCP2, increased ROS levels and led to increased expression of BLT1R mRNA. Similarly, addition of exogenous H2O2 upregulated BLT1R expression, whereas the addition of a ROS scavenger, N-acetyl cysteine, decreased BLT1R levels. As compared with WT macrophages, LTB4-BLT1R-dependent JAK2-phosphorylation was reduced in FABP4 knockout macrophages. In summary, these results indicate that FABP4 regulates the expression of BLT1R and its downstream signaling via control of oxidative stress in macrophages.
Collapse
Affiliation(s)
- Ann V Hertzel
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Hongliang Xu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Michael Downey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Nicholas Kvalheim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455.
| |
Collapse
|
185
|
Sezin T, Krajewski M, Wutkowski A, Mousavi S, Chakievska L, Bieber K, Ludwig RJ, Dahlke M, Rades D, Schulze FS, Schmidt E, Kalies K, Gupta Y, Schilf P, Ibrahim SM, König P, Schwudke D, Zillikens D, Sadik CD. The Leukotriene B4 and its Receptor BLT1 Act as Critical Drivers of Neutrophil Recruitment in Murine Bullous Pemphigoid-Like Epidermolysis Bullosa Acquisita. J Invest Dermatol 2017; 137:1104-1113. [DOI: 10.1016/j.jid.2016.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 01/13/2023]
|
186
|
Scavello M, Petlick AR, Ramesh R, Thompson VF, Lotfi P, Charest PG. Protein kinase A regulates the Ras, Rap1 and TORC2 pathways in response to the chemoattractant cAMP in Dictyostelium. J Cell Sci 2017; 130:1545-1558. [PMID: 28302905 PMCID: PMC5450229 DOI: 10.1242/jcs.177170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
Efficient directed migration requires tight regulation of chemoattractant signal transduction pathways in both space and time, but the mechanisms involved in such regulation are not well understood. Here, we investigated the role of protein kinase A (PKA) in controlling signaling of the chemoattractant cAMP in Dictyostelium discoideum We found that cells lacking PKA display severe chemotaxis defects, including impaired directional sensing. Although PKA is an important regulator of developmental gene expression, including the cAMP receptor cAR1, our studies using exogenously expressed cAR1 in cells lacking PKA, cells lacking adenylyl cyclase A (ACA) and cells treated with the PKA-selective pharmacological inhibitor H89, suggest that PKA controls chemoattractant signal transduction, in part, through the regulation of RasG, Rap1 and TORC2. As these pathways control the ACA-mediated production of intracellular cAMP, they lie upstream of PKA in this chemoattractant signaling network. Consequently, we propose that the PKA-mediated regulation of the upstream RasG, Rap1 and TORC2 signaling pathways is part of a negative feedback mechanism controlling chemoattractant signal transduction during Dictyostelium chemotaxis.
Collapse
Affiliation(s)
- Margarethakay Scavello
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Alexandra R Petlick
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Ramya Ramesh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Valery F Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pouya Lotfi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
187
|
Saha P, Yeoh BS, Olvera RA, Xiao X, Singh V, Awasthi D, Subramanian BC, Chen Q, Dikshit M, Wang Y, Parent CA, Vijay-Kumar M. Bacterial Siderophores Hijack Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2017; 198:4293-4303. [PMID: 28432145 DOI: 10.4049/jimmunol.1700261] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Neutrophils are the primary immune cells that respond to inflammation and combat microbial transgression. To thrive, the bacteria residing in their mammalian host have to withstand the antibactericidal responses of neutrophils. We report that enterobactin (Ent), a catecholate siderophore expressed by Escherichia coli, inhibited PMA-induced generation of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in mouse and human neutrophils. Ent also impaired the degranulation of primary granules and inhibited phagocytosis and bactericidal activity of neutrophils, without affecting their migration and chemotaxis. Molecular analysis revealed that Ent can chelate intracellular labile iron that is required for neutrophil oxidative responses. Other siderophores (pyoverdine, ferrichrome, deferoxamine) likewise inhibited ROS and NETs in neutrophils, thus indicating that the chelation of iron may largely explain their inhibitory effects. To counter iron theft by Ent, neutrophils rely on the siderophore-binding protein lipocalin 2 (Lcn2) in a "tug-of-war" for iron. The inhibition of neutrophil ROS and NETs by Ent was augmented in Lcn2-deficient neutrophils compared with wild-type neutrophils but was rescued by the exogenous addition of recombinant Lcn2. Taken together, our findings illustrate the novel concept that microbial siderophore's iron-scavenging property may serve as an antiradical defense system that neutralizes the immune functions of neutrophils.
Collapse
Affiliation(s)
- Piu Saha
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Rodrigo A Olvera
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qiuyan Chen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yanming Wang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, PA 17033
| |
Collapse
|
188
|
Esko T, Hirschhorn JN, Feldman HA, Hsu YHH, Deik AA, Clish CB, Ebbeling CB, Ludwig DS. Metabolomic profiles as reliable biomarkers of dietary composition. Am J Clin Nutr 2017; 105:547-554. [PMID: 28077380 PMCID: PMC5320413 DOI: 10.3945/ajcn.116.144428] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Background: Clinical nutrition research often lacks robust markers of compliance, complicating the interpretation of clinical trials and observational studies of free-living subjects.Objective: We aimed to examine metabolomics profiles in response to 3 diets that differed widely in macronutrient composition during a controlled feeding protocol.Design: Twenty-one adults with a high body mass index (in kg/m2; mean ± SD: 34.4 ± 4.9) were given hypocaloric diets to promote weight loss corresponding to 10-15% of initial body weight. They were then studied during weight stability while consuming 3 test diets, each for a 4-wk period according to a crossover design: low fat (60% carbohydrate, 20% fat, 20% protein), low glycemic index (40% carbohydrate, 40% fat, 20% protein), or very-low carbohydrate (10% carbohydrate, 60% fat, 30% protein). Plasma samples were obtained at baseline and at the end of each 4-wk period in the fasting state for metabolomics analysis by using liquid chromatography-tandem mass spectrometry. Statistical analyses included adjustment for multiple comparisons.Results: Of 333 metabolites, we identified 152 whose concentrations differed for ≥1 diet compared with the others, including diacylglycerols and triacylglycerols, branched-chain amino acids, and markers reflecting metabolic status. Analysis of groups of related metabolites, with the use of either principal components or pathways, revealed coordinated metabolic changes affected by dietary composition, including pathways related to amino acid metabolism. We constructed a classifier using the metabolites that differed between diets and were able to correctly identify the test diet from metabolite profiles in 60 of 63 cases (>95% accuracy). Analyses also suggest differential effects by diet on numerous cardiometabolic disease risk factors.Conclusions: Metabolomic profiling may be used to assess compliance during clinical nutrition trials and the validity of dietary assessment in observational studies. In addition, this methodology may help elucidate mechanistic pathways linking diet to chronic disease risk. This trial was registered at clinicaltrials.gov as NCT00315354.
Collapse
Affiliation(s)
- Tõnu Esko
- Center for Basic and Translational Obesity Research,,Estonian Genome Center, University of Tartu, Tartu, Estonia;,Broad Institute of MIT and Harvard, Cambridge, MA; and
| | - Joel N Hirschhorn
- Center for Basic and Translational Obesity Research,,Broad Institute of MIT and Harvard, Cambridge, MA; and
| | | | - Yu-Han H Hsu
- Center for Basic and Translational Obesity Research,,Broad Institute of MIT and Harvard, Cambridge, MA; and
| | - Amy A Deik
- Metabolomics Platform, Broad Institute, Cambridge, MA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA; and,Metabolomics Platform, Broad Institute, Cambridge, MA
| | - Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston Children’s Hospital, Boston, MA
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA;
| |
Collapse
|
189
|
Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X, Wu Z, Zhang C, Xu Z, Tang Y, Zou S, Liu M, Li J, Zeng M, Lin P, Cheng F, Huang J. Drug Repurposing of Histone Deacetylase Inhibitors That Alleviate Neutrophilic Inflammation in Acute Lung Injury and Idiopathic Pulmonary Fibrosis via Inhibiting Leukotriene A4 Hydrolase and Blocking LTB4 Biosynthesis. J Med Chem 2017; 60:1817-1828. [PMID: 28218840 DOI: 10.1021/acs.jmedchem.6b01507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are both serious public health problems with high incidence and mortality rate in adults, and with few drugs available for the efficient treatment in clinic. In this study, we identified that two known histone deacetylase (HDAC) inhibitors, suberanilohydroxamic acid (SAHA, 1) and its analogue 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]benzamide (2), are effective inhibitors of Leukotriene A4 hydrolase (LTA4H), a key enzyme in the biosynthesis of leukotriene B4 (LTB4), across a panel of 18 HDAC inhibitors, using enzymatic assay, thermofluor assay, and X-ray crystallographic investigation. Importantly, both 1 and 2 markedly diminish early neutrophilic inflammation in mouse models of ALI and IPF under a clinical safety dose. Detailed mechanisms of down-regulation of proinflammatory cytokines by 1 or 2 were determined in vivo. Collectively, 1 and 2 would provide promising agents with well-known clinical safety for potential treatment in patients with ALI and IPF via pharmacologically inhibiting LAT4H and blocking LTB4 biosynthesis.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ping Ouyang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ningning Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Zhongyu Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University , Shanghai 200011, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Minghua Zeng
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry & Chemical Engineering, Guangxi Normal University , Guilin 541004, China
| | - Ping Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China.,Center for Complex Networks Research, Northeastern University , Boston, Massachusetts 02115, United States.,Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
190
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
191
|
Okuno T, Koutsogiannaki S, Ohba M, Chamberlain M, Bu W, Lin FY, Eckenhoff RG, Yokomizo T, Yuki K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B 4 production. FASEB J 2017; 31:1584-1594. [PMID: 28069825 DOI: 10.1096/fj.201601095r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 11/11/2022]
Abstract
Propofol is an intravenous anesthetic that produces its anesthetic effect, largely via the GABAA receptor in the CNS, and also reduces the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophil respiratory burst. Because fMLP-stimulated neutrophils produce leukotriene (LT)B4, we examined the effect of propofol on LTB4 production in vivo and in vitro Cecal ligation and puncture surgery was performed in mice, with or without exposure to propofol. Propofol attenuated the production of 5-lipoxygenase (5-LOX)-related arachidonic acid (AA) derivatives in the peritoneal fluid. Also, in the in vitro experiments on fMLP-stimulated neutrophils and 5-LOX-transfected human embryonic kidney cells, propofol attenuated the production of 5-LOX-related AA derivatives. Based on these results, we hypothesized that propofol would directly affect 5-LOX function. Using meta-azi-propofol (AziPm), we photolabeled stable 5-LOX protein, which had been used to solve the X-ray crystallographic structure of 5-LOX, and examined the binding site(s) of propofol on 5-LOX. Two propofol binding pockets were identified near the active site of 5-LOX. Alanine scanning mutagenesis was performed for the residues of 5-LOX in the vicinity of propofol, and we evaluated the functional role of these pockets in LTB4 production. We demonstrated that these pockets were functionally important for 5-LOX activity. These two pockets can be used to explore a novel 5-LOX inhibitor in the future.-Okuno, T., Koutsogiannaki, S., Ohba, M., Chamberlain, M., Bu, W., Lin, F.-Y., Eckenhoff, R. G., Yokomizo T., Yuki, K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Sophia Koutsogiannaki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Ohba
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Matthew Chamberlain
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Fu-Yan Lin
- Immune Disease Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Koichi Yuki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA; .,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
192
|
Chandrasekaran A, Ellett F, Jorgensen J, Irimia D. Temporal gradients limit the accumulation of neutrophils towards sources of chemoattractant. MICROSYSTEMS & NANOENGINEERING 2017; 3:16067. [PMID: 28713624 PMCID: PMC5507070 DOI: 10.1038/micronano.2016.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 05/19/2023]
Abstract
Neutrophil trafficking during inflammation is a highly orchestrated process, coordinating neutrophil recruitment, sterilization of the wound, and inflammation resolution. Although the chemotactic signals guiding neutrophil recruitment to sites of inflammation are relatively well understood, mechanisms controlling cessation of neutrophil recruitment and return to normal tissue physiology remain undefined. To gain insights into these processes, we designed a microfluidic device with an array of chemoattractant reservoirs, which mimics the microenvironment in infected tissues, when multiple clusters of microbes are present. We monitored the temporal dynamics of neutrophil recruitment towards the chemoattractant reservoirs at single cell resolution, for 3 hours. We observed robust neutrophil recruitment that reached a plateau after 1.5 hours, despite the continuous presence of robust chemoattractant gradients around the reservoirs. The timing of the plateau was dependent on the geometry of the devices and was independent from the number of neutrophils. Based on these observations, we ruled out sub-population sensitivity, chemoattractant scavenging, and production of a self-limiting stop signal as potential mechanisms underpinning the plateau in neutrophil recruitment. We found a strong correlation between the temporal stabilization of concentration changes and the plateau in neutrophils recruitment. These results suggest that dynamic aspects of chemoattractant gradients are key for maximizing recruitment during the acute phase of infections and limiting the accumulation of neutrophils as soon as the infection is contained.
Collapse
Affiliation(s)
- Arvind Chandrasekaran
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
| | - Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
| | - Julianne Jorgensen
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
- ()
| |
Collapse
|
193
|
Tan SY, Weninger W. Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Curr Opin Immunol 2016; 44:34-42. [PMID: 27951434 DOI: 10.1016/j.coi.2016.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Neutrophils are innate effector cells armed with a potent machinery to combat damage and infection within tissues. Their ability to rapidly respond to danger signals and mobilise is crucial to their role. After extravasation, neutrophil populations often exhibit swarming behaviour. Swarming occurs in distinct phases and is coordinated via inter-neutrophil signal relay in the form of small molecule mediators. Neutrophils also engage in multi-dimensional crosstalk with tissue-resident cells and incoming leukocytes in the inflammatory milieu. The complexity of neutrophil crosstalk with other innate immune cells mirrors that of the adaptive immune system, with rudimentary features of 'priming' and 'licensing'. We review recent findings relating to the migration and intercellular crosstalks of neutrophils in the initiation and resolution of inflammation.
Collapse
Affiliation(s)
- Sioh-Yang Tan
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; The University of Sydney Medical School, NSW 2006, Australia.
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; The University of Sydney Medical School, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
194
|
Ha VQ, Lykotrafitis G. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations. J Biomech 2016; 49:4034-4038. [PMID: 27871677 DOI: 10.1016/j.jbiomech.2016.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/29/2022]
Abstract
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations.
Collapse
Affiliation(s)
- Vi Q Ha
- Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - George Lykotrafitis
- Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
195
|
Elborn JS, Horsley A, MacGregor G, Bilton D, Grosswald R, Ahuja S, Springman EB. Phase I Studies of Acebilustat: Biomarker Response and Safety in Patients with Cystic Fibrosis. Clin Transl Sci 2016; 10:28-34. [PMID: 27806191 PMCID: PMC5351012 DOI: 10.1111/cts.12428] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
There is a significant unmet need for safe and effective anti‐inflammatory treatment for cystic fibrosis. The aim of this study was to evaluate the safety of acebilustat, a leukotriene A4 hydrolase inhibitor, and its effect on inflammation biomarkers in patients with cystic fibrosis. Seventeen patients with mild to moderate cystic fibrosis were enrolled and randomized into groups receiving placebo or doses of 50 mg or 100 mg acebilustat administered orally, once daily for 15 days. Sputum neutrophil counts were reduced by 65% over baseline values in patients treated with 100 mg acebilustat. A modestly significant 58% reduction vs. placebo in sputum elastase was observed with acebilustat treatment. Favorable trends were observed for reduction of serum C‐reactive protein and sputum neutrophil DNA in acebilustat‐treated patients. No changes in pulmonary function were observed. Acebilustat was safe and well tolerated. The results of this study support further clinical development of acebilustat for treatment of cystic fibrosis.
Collapse
Affiliation(s)
- J S Elborn
- Centre for Infection and Immunity, Dentistry, and Biomedical Sciences, Queens University School of Medicine, Belfast, UK
| | - A Horsley
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - G MacGregor
- West of Scotland CF Centre, Gartnavel General Hospital, Glasgow, UK
| | - D Bilton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | - S Ahuja
- Celtaxsys, Inc, Atlanta, Georgia, USA
| | | |
Collapse
|
196
|
Cidade AF, Vasconcelos PA, Silva DP, Florentino IF, Vasconcelos GA, Vaz BG, Costa EA, Lião LM, Menegatti R. Design, synthesis and pharmacological evaluation of new anti-inflammatory compounds. Eur J Pharmacol 2016; 791:195-204. [DOI: 10.1016/j.ejphar.2016.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 02/01/2023]
|
197
|
Elborn JS, Bhatt L, Grosswald R, Ahuja S, Springman EB. Phase I Studies of Acebilustat: Pharmacokinetics, Pharmacodynamics, Food Effect, and CYP3A Induction. Clin Transl Sci 2016; 10:20-27. [PMID: 27792868 PMCID: PMC5351008 DOI: 10.1111/cts.12426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023] Open
Abstract
Acebilustat is a new once-daily oral antiinflammatory drug in development for treatment of cystic fibrosis (CF) and other diseases. It is an inhibitor of leukotriene A4 hydrolase; therefore, production of leukotriene B4 (LTB4) in biological fluids provides a direct measure of the pharmacodynamic (PD) response to acebilustat treatment. Here we compare the pharmacokinetics (PK) and PD between CF patients and healthy volunteers, and investigate the food effect and CYP3A4 induction in healthy volunteers. No significant differences between study populations were observed for peak plasma level (Cmax ) or exposure (AUC). In healthy volunteers, a shift in time to Cmax (Tmax ) was observed after a high-fat meal, but there was no change in AUC. LTB4 production was reduced in the blood of both populations and in sputum from CF patients. Acebilustat did not induce CYP3A4. These results support continued clinical study of once-daily oral acebilustat in CF at doses of 50 and 100 mg.
Collapse
Affiliation(s)
- J S Elborn
- Queen's University Belfast, Belfast, United Kingdom of Great Britain and Northern Ireland
| | - L Bhatt
- Celtaxsys, Inc, Atlanta, Georgia, United States
| | - R Grosswald
- Celtaxsys, Inc, Atlanta, Georgia, United States
| | - S Ahuja
- Celtaxsys, Inc, Atlanta, Georgia, United States
| | | |
Collapse
|
198
|
Higham A, Cadden P, Southworth T, Rossall M, Kolsum U, Lea S, Knowles R, Singh D. Leukotriene B4 levels in sputum from asthma patients. ERJ Open Res 2016; 2:00088-2015. [PMID: 28053970 PMCID: PMC5152838 DOI: 10.1183/23120541.00088-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/07/2016] [Indexed: 11/05/2022] Open
Abstract
Poor asthma control is associated with increased airway neutrophils. Leukotriene B4 (LTB4) is a potent neutrophil chemoattractant. We examined the levels of LTB4 levels in the sputum of asthma patients and the relationship with disease severity. 47 asthma patients (categorised according to Global Initiative for Asthma treatment stage) and 12 healthy controls provided sputum samples that were processed first with PBS to obtain supernatants and secondly with dithiothreitol (DTT) to obtain supernatants. LTB4 levels were determined by ELISA. LTB4 levels were significantly higher in step 1 (steroid naïve) and step 3 (inhaled corticosteroid (ICS) plus long acting β-agonist) patients than step 2 patients (ICS alone) (p=0.02 and p=0.01, respectively). There was very good correlation when comparing PBS processed to DTT processed supernatants. High LTB4 levels were found in the sputum of asthmatics at step 3 despite ICS use. The levels of LTB4 are increased in the sputum of subgroups of asthma patientshttp://ow.ly/Xu6I303jVb5
Collapse
Affiliation(s)
- Andrew Higham
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Paul Cadden
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Thomas Southworth
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Matthew Rossall
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Umme Kolsum
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Simon Lea
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | | | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| |
Collapse
|
199
|
Lang L, Dong N, Wu D, Yao X, Lu W, Zhang C, Ouyang P, Zhu J, Tang Y, Wang W, Li J, Huang J. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors. J Enzyme Inhib Med Chem 2016; 31:98-105. [DOI: 10.1080/14756366.2016.1220376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Li Lang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Ningning Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Deyan Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China, and
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Ping Ouyang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Wei Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| |
Collapse
|
200
|
Robichaud PP, Poirier SJ, Boudreau LH, Doiron JA, Barnett DA, Boilard E, Surette ME. On the cellular metabolism of the click chemistry probe 19-alkyne arachidonic acid. J Lipid Res 2016; 57:1821-1830. [PMID: 27538823 DOI: 10.1194/jlr.m067637] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
Alkyne and azide analogs of natural compounds that can be coupled to sensitive tags by click chemistry are powerful tools to study biological processes. Arachidonic acid (AA) is a FA precursor to biologically active compounds. 19-Alkyne-AA (AA-alk) is a sensitive clickable AA analog; however, its use as a surrogate to study AA metabolism requires further evaluation. In this study, AA-alk metabolism was compared with that of AA in human cells. Jurkat cell uptake of AA was 2-fold greater than that of AA-alk, but significantly more AA-Alk was elongated to 22:4. AA and AA-alk incorporation into and remodeling between phospholipid (PL) classes was identical indicating equivalent CoA-independent AA-PL remodeling. Platelets stimulated in the pre-sence of AA-alk synthesized significantly less 12-lipoxygenase (12-LOX) and cyclooxygenase products than in the presence of AA. Ionophore-stimulated neutrophils produced significantly more 5-LOX products in the presence of AA-alk than AA. Neutrophils stimulated with only exogenous AA-alk produced significantly less 5-LOX products compared with AA, and leukotriene B4 (LTB4)-alk was 12-fold less potent at stimulating neutrophil migration than LTB4, collectively indicative of weaker leukotriene B4 receptor 1 agonist activity of LTB4-alk. Overall, these results suggest that the use of AA-alk as a surrogate for the study of AA metabolism should be carried out with caution.
Collapse
Affiliation(s)
- Philippe Pierre Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Université Laval, Québec, QC G1V 4G2, Canada
| | - Samuel J Poirier
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Luc H Boudreau
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Jérémie A Doiron
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Université Laval, Québec, QC G1V 4G2, Canada
| | - Marc E Surette
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| |
Collapse
|