151
|
Sustainable natural gums for industrial application: Physiochemical and texturometric evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
152
|
Milosavljevic V, Jamroz E, Gagic M, Haddad Y, Michalkova H, Balkova R, Tesarova B, Moulick A, Heger Z, Richtera L, Kopel P, Adam V. Encapsulation of Doxorubicin in Furcellaran/Chitosan Nanocapsules by Layer-by-Layer Technique for Selectively Controlled Drug Delivery. Biomacromolecules 2019; 21:418-434. [DOI: 10.1021/acs.biomac.9b01175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vedran Milosavljevic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Cracow, Poland
| | - Milica Gagic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Hana Michalkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Radka Balkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Brno University of Technology, Purkynova 464/118, Kralovo Pole, 61200 Brno, Czech Republic
| | - Barbora Tesarova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavel Kopel
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
153
|
Costa JSR, de Oliveira Cruvinel K, Oliveira-Nascimento L. A mini-review on drug delivery through wafer technology: Formulation and manufacturing of buccal and oral lyophilizates. J Adv Res 2019; 20:33-41. [PMID: 31193385 PMCID: PMC6526303 DOI: 10.1016/j.jare.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022] Open
Abstract
A great number of patients have difficulty swallowing or needle fear. Therefore, buccal and orodispersible dosage forms (ODFs) represent an important strategy to enhance patient compliance. Besides not requiring water intake, swallowing or needles, these dosage forms allow drug release modulation. ODFs include oral lyophilizates or wafers, which present even faster disintegration than its compressed counterparts. Lyophilization can also produce buccal wafers that adhere to mucosa for sustained drug release. Due to the subject relevance and recent research growth, this review focused on oral lyophilizate production technology, formulation features, and therapy gains. It includes Critical Quality Attributes (CQA) and Critical Process Parameters (CPP) and discusses commercial and experimental examples. In sum, the available commercial products promote immediate drug release mainly based on biopolymeric matrixes and two production technologies. Therapy gains include substitution of traditional treatments depending on parenteral administration and patient preference over classical therapies. Experimental wafers show promising advantages as controlled release and drug enhanced stability. All compiled findings encourage the development of new wafers for several diseases and drug molecules.
Collapse
Affiliation(s)
- Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
- Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, 13083-970 Campinas, São Paulo, Brazil
| | - Karen de Oliveira Cruvinel
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
| |
Collapse
|
154
|
Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids Surf B Biointerfaces 2019; 183:110411. [PMID: 31421404 DOI: 10.1016/j.colsurfb.2019.110411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
In this work, we report new formulations for the combined photo-chemotherapy of colon cancer. Fibers were fabricated via coaxial-electrospinning with the intent of targeting delivery of the anti-cancer drug carmofur (CAR) and the photosensitizer rose bengal (RB) selectively to the colon site. The fibers comprised a hydroxypropyl methylcellulose (HPMC) core loaded with the active ingredients, and a pH-sensitive Eudragit L100-55 shell. The fibers were found to be homogeneous and cylindrical and have visible core-shell structures. X-ray diffraction and differential scanning calorimetry demonstrated that both CAR and RB were present in the fibers in the amorphous physical form. In vitro drug release studies showed that the fibers have the potential to selectively deliver drugs to the colon, with only 10-15 % release noted in the acidic conditions of the stomach but sustained release at pH 7.4. Cytotoxicity studies were undertaken on human dermal fibroblast (HDF) and colon cancer (Caco-2) cells, and the influence of light on cell death was also explored. The fibers loaded with CAR alone showed obvious toxicity to both cell lines, with and without the application of light. The RB-loaded fibers led to high viability (ca. 80% for both cell types) in the absence of light, but much greater toxicity was noted (30-50%) with light. The same trends were observed with the formulation containing both CAR and RB, but with lower viabilities. The RB and RB/CAR loaded systems show clear selectivity for cancerous over non-cancerous cells. Finally, mucoadhesion studies revealed there were strong adhesive forces between the rat colonic mucosa and the fibers after they had passed through an acidic environment. Such electrospun fibers thus could have potential in the development of oral therapies for colon cancer.
Collapse
|
155
|
Ezeasor CK, Emikpe BO, Odeniyi MO, Shoyinka SV. Evaluation of the mucoadhesive strengths of Abelmoschus esculentus and Irvingia gabonensis gums for possible application in veterinary vaccine delivery: the effect of extraction methods. J Immunoassay Immunochem 2019; 41:60-70. [PMID: 31630607 DOI: 10.1080/15321819.2019.1680388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study evaluates the effects of different gum extraction methods on the mucoadhesive strengths of Abelmoschus esculentus (AE) and Irvingia gabonensis (IG) gums and the release of vaccine antigen in vaccine-gum formulations. AE and IG gums were extracted employing previously documented methods with acetone or sodium chloride (NaCl) and either oven-dried or freeze-dried. Gum extracts were analyzed for mucoadhesive strengths using a modified rotational cylinder method on animal mucosa. The time taken to detach from the mucosa was taken as the Peak Adhesion Time (PAT). The gum extracts were charged with Peste des petits ruminant vaccine and the antigen release was evaluated using agar gel immunodiffusion technique. The means of the PATS were analyzed using Mann-whitney t-test at p < .05. The NaCl extracted and freeze-dried IG gum showed sustained mean PATs of 1766 ± 73 s; 2116 ± 101 s; 7044 ± 117 s, while the oven-dried IG gum and both AE gums showed short-lived average PATs. Vaccine-gum formulations of IG at ratios 2:1, 1:1 & 1:2 had strong positive reactions while only that of AE at 2:1 showed a strong positive reaction. This study shows that NaCl extracted and freeze-dried IG gum has immunomodulatory potential for mucoadhesive vaccine delivery in ruminants.
Collapse
Affiliation(s)
| | | | - Michael O Odeniyi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
156
|
Tkaczewska J, Jamróz E, Piątkowska E, Borczak B, Kapusta-Duch J, Morawska M. Furcellaran-Coated Microcapsules as Carriers of Cyprinus carpio Skin-Derived Antioxidant Hydrolysate: An In Vitro and In Vivo Study. Nutrients 2019; 11:E2502. [PMID: 31627407 PMCID: PMC6835527 DOI: 10.3390/nu11102502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Carp skin gelatine hydrolysate (CSGH) may be a possible bioactive peptide source, as promising antioxidant properties have been noted during in vivo testing. Hence, the present study focused on improving the bioavailability of the antioxidant peptides from CSGH and on the use of furcellaran (FUR), which can protect the biopeptides during digestion in the gastrointestinal tract. Therefore, in this study, microcapsules coated with furcellaran and containing CSGH cores were prepared. The structural properties of the sample were determined using FT-IR and SEM analysis. The antioxidant properties of hydrolysate, uncoated, and encapsulated samples were investigated. In vivo analysis included determination of its safety in an animal organism and evaluation of the lipid profile, antioxidant blood status, and mRNA expression of some genes involved in antioxidant status in Wistar rats. The results showed no adverse effects of microencapsulated protein hydrolysates in laboratory animals. Nonetheless, there was a statistically significant rise in the level of total antioxidant status blood serum among animals consuming CSGH and not inducing oxidative stress. This can be viewed as a promising indication of the positive effects of antioxidant properties tested in vivo. The process of CSGH microencapsulation in FUR cause a decrease in antioxidant hydrolysate activity, both in vitro, as well as in healthy Wistar rats. When considering the results of the presented diverse therapeutic potential, further research on CSGH being a potential bioactive peptide source used as a functional food or nutraceutical, but with a different microencapsulation coating, is encouraged.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122 street, 30-149 Krakow, Poland.
| | - Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, Balicka 122 Street, 30-149 Krakow, Poland
| | - Ewa Piątkowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122 Street, 30-149 Krakow, Poland
| | - Barbara Borczak
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122 Street, 30-149 Krakow, Poland
| | - Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122 Street, 30-149 Krakow, Poland
| | - Małgorzata Morawska
- Department of Sports Medicine and Human Nutrition, Institute of Human Physiology, University of Physical Education in Krakow, Jana Pawla II 78 Street, 31-537 Krakow, Poland
| |
Collapse
|
157
|
Yermak IM, Davydova VN, Kravchenko AO, Chistyulin DA, Pimenova EA, Glazunov VP. Mucoadhesive properties of sulphated polysaccharides carrageenans from red seaweed families Gigartinaceae and Tichocarpaceae. Int J Biol Macromol 2019; 142:634-642. [PMID: 31622715 DOI: 10.1016/j.ijbiomac.2019.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Abstract
The mucoadhesive properties of different types of carrageenan (kappa-, kappa/beta-, iota/kappa- and lambda-CRGs) isolated from red seaweed families Gigartinaceae and Tichocarpaceae collected on the Pacific coast were studied. We examined the interaction between CRGs and pig stomach mucin in dilute aqueous solutions using a set of methods. Measurements of the dynamic light scattering of mucin in the presence of CRG showed that the polysaccharides cause aggregation of mucin particles, as confirmed by microscopy data. The addition of CRGs to solutions of mucin resulted in the formation of a mixture that changed the charge of mucin, especially in the case of kappa- and kappa/beta-CRGs. The interaction between CRG and porcine gastric mucin in the presence of various additives confirmed that hydrogen bonds and electrostatic interactions are complemented when CRG and mucin are mixed in an aqueous medium, which is also confirmed by in vitro methods based on measurements of work of adhesion and shear stress. Kappa- and kappa/beta-CRGs that contain 3,6-anhydro-α-d-galactopyranose chains (DA) have high molecular weight and exhibit a high density of available hydrogen bonding groups able to interact more strongly with mucin glycoproteins.
Collapse
Affiliation(s)
- Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.
| | - Viktoria N Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Anna O Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Dmitry A Chistyulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Evgeniya A Pimenova
- National Scientific Center of Marine Biology, Far-Eastern Branch of the Russian Academy of Sciences, Palchevskogo, 17, 690041 Vladivostok, Russian Federation
| | - Valery P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
158
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
159
|
Rohani Shirvan A, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
160
|
Mittal N, Kaur G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. Int J Biol Macromol 2019; 139:1252-1262. [DOI: 10.1016/j.ijbiomac.2019.08.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
|
161
|
de Francisco LMB, Pinto D, Rosseto HC, de Toledo LDAS, Dos Santos RS, Costa PJCD, Oliveira MBPP, Sarmento B, Rodrigues F, Bruschi ML. Design and characterization of an organogel system containing ascorbic acid microparticles produced with propolis by-product. Pharm Dev Technol 2019; 25:54-67. [PMID: 31535923 DOI: 10.1080/10837450.2019.1669643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study aimed to prepare and characterize organogels containing microparticles of ascorbic acid (AA) obtained from propolis by-product. The formulations F1 (5% of microparticles) and F2 (10% of microparticles) were evaluated regarding rheological and textural properties, antioxidant and radical scavenging activity, in vitro release and cellular studies. The organogels showed plastic flow behavior and rheopexy. The textural parameters were within acceptable values for semisolid formulations. The antioxidant capacity of organogels F1 and F2 by the DPPH assay demonstrated IC50 ranging from 1523.59 to 1166.97 μg/mL, respectively. For the FRAP assay, the values found were 842.88 and 956.14 μmol of FSE/g formulation, respectively. Good scavenging activity against nitrogen species was observed. The concentration of 63 μg/mL did not present toxicity on HaCaT and HFF-1 cells. In vitro release profile of AA from organogels showed a slow pattern of drug release, mainly for F2. Therefore, the proposed organogel containing AA microparticles with propolis by-product matrix represents a promising platform for topical drug delivery with antioxidant effect.
Collapse
Affiliation(s)
- Lizziane Maria Belloto de Francisco
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Diana Pinto
- Department of Chemical Sciences, Faculty of Pharmacy, REQUIMTE/LAQV, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Hélen Cássia Rosseto
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Lucas de Alcântara Sica de Toledo
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Rafaela Said Dos Santos
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Paulo Jorge Cardoso da Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- Department of Chemical Sciences, Faculty of Pharmacy, REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,iNEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - Francisca Rodrigues
- Department of Chemical Sciences, Faculty of Pharmacy, REQUIMTE/LAQV, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Marcos Luciano Bruschi
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| |
Collapse
|
162
|
Organogel composed of poloxamer 188 and passion fruit oil: Sol-gel transition, rheology, and mechanical properties. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
163
|
Kaur G, Arora M, Ravi Kumar MNV. Oral Drug Delivery Technologies-A Decade of Developments. J Pharmacol Exp Ther 2019; 370:529-543. [PMID: 31010845 PMCID: PMC6806634 DOI: 10.1124/jpet.118.255828] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Advanced drug delivery technologies, in general, enable drug reformulation and administration routes, together contributing to life-cycle management and allowing the innovator to maintain the product monopoly. Over the years, there has been a steady shift from mere life-cycle management to drug repurposing-applying delivery technologies to tackle solubility and permeability issues in early stages or safety and efficacy issues in the late stages of drug discovery processes. While the drug and the disease in question primarily drive the choice of route of administration, the oral route, for its compliance and safety attributes, is the most preferred route, particularly when it comes to chronic conditions, including pain, which is not considered a disease but a symptom of a primary cause. Therefore, the attempt of this review is to take a stock of the advances in oral delivery technologies that are applicable for injectable to oral transformation, improve risk-benefit profiles of existing orals, and apply them in the early discovery program to minimize the drug attrition rates.
Collapse
Affiliation(s)
- G Kaur
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| | - M Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| | - M N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
164
|
Gennari CGM, Sperandeo P, Polissi A, Minghetti P, Cilurzo F. Lysozyme Mucoadhesive Tablets Obtained by Freeze-Drying. J Pharm Sci 2019; 108:3667-3674. [PMID: 31446146 DOI: 10.1016/j.xphs.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
Lysozyme is particularly attractive for the local treatment of oral pathologies related to microbiological infections. However, the requirement of a prolonged release is difficult to achieve because of saliva swallowing and of the protein denaturation which can occur during production and storage of a dosage form. This work demonstrates the feasibility to prepare lysozyme mucoadhesive tablets by freeze-drying. Tablets were prepared by using alginate (ALG) physically "cross-linked" with calcium ion and different grades of hydroxypropyl methylcellulose (HPMC) (i.e., E5, E50, or K100). The tablets were characterized in terms of swelling or erosion behavior, in vitro mucoadhesive properties, lysozyme activity (Micrococcus lysodeikticus), drug release and ability to inactivate Staphylococcus aureus. The formulations prepared with HPMC K100 were discarded because of the fast erosion. All other formulations allowed a sustained release over at least 6 h. Independently of composition, lysozyme activity (78,311 ± 1873 Units/mg) significantly decreased in the case of tablets containing 5% and 10% w/w of protein (55,000 Units/mg and 33,000 Units/mg, respectively). Conversely, no modifications occurred in the case of tablets containing 1% w/w lysozyme. The formulation prepared by ALG/HPMC E5 7/3 ratio was efficacious against S. aureus. After 3 months of storage at 5 ± 3°C, no significant decrease in lysozyme activity was observed.
Collapse
Affiliation(s)
- Chiara G M Gennari
- Department Pharmaceutical Sciences, University of Milan, via G. Colombo 71, 20133 Milan, Italy.
| | - Paola Sperandeo
- Department Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Alessandra Polissi
- Department Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Paola Minghetti
- Department Pharmaceutical Sciences, University of Milan, via G. Colombo 71, 20133 Milan, Italy
| | - Francesco Cilurzo
- Department Pharmaceutical Sciences, University of Milan, via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
165
|
Abilova GK, Kaldybekov DB, Ozhmukhametova EK, Saimova AZ, Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Chitosan/poly(2-ethyl-2-oxazoline) films for ocular drug delivery: Formulation, miscibility, in vitro and in vivo studies. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
166
|
Current Approaches to Use Cyclodextrins and Mucoadhesive Polymers in Ocular Drug Delivery—A Mini-Review. Sci Pharm 2019. [DOI: 10.3390/scipharm87030015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ocular drug delivery provides a challenging opportunity to develop optimal formulations with proper therapeutic effects and acceptable patient compliance because there are many restricting factors involved, such as complex anatomical structures, defensive mechanisms, rapid drainage, and applicability issues. Fortunately, recent advances in the field mean that these problems can be overcome through the formulation of innovative ophthalmic products. Through the addition of solubility enhancer cyclodextrin derivatives and mucoadhesive polymers, the permeability of active ingredients is improved, and retention time is increased in the ocular surface. Therefore, preferable efficacy and bioavailability can be achieved. In this short review, the authors describe the theoretical background, technological possibilities, and the current approaches in the field of ophthalmology.
Collapse
|
167
|
de Araújo PR, Calixto GMF, da Silva IC, de Paula Zago LH, Oshiro Junior JA, Pavan FR, Ribeiro AO, Fontana CR, Chorilli M. Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech 2019; 20:225. [PMID: 31214798 DOI: 10.1208/s12249-019-1439-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.
Collapse
|
168
|
Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
169
|
Ahonen MJR, Hill DB, Schoenfisch MH. Nitric oxide-releasing alginates as mucolytic agents. ACS Biomater Sci Eng 2019; 5:3409-3418. [PMID: 32309634 DOI: 10.1021/acsbiomaterials.9b00482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The excessive production of thick, viscous mucus in severe respiratory diseases leads to obstruction of the airways and provides a suitable environment for the colonization of pathogenic bacteria. The effect of nitric oxide (NO)-releasing alginates with varying NO release kinetics on the viscoelastic properties of human bronchial epithelial (HBE) mucus was evaluated as a function of the NO-release kinetics using parallel plate rheology. Low molecular weight (~5 kDa) alginates with high NO flux (~4000 ppb/mg) and sustained release (half-life ~0.3 h) proved to be most effective in reducing both mucus elasticity and viscosity (≥60% reduction for both). The efficacy of the NO-releasing alginates was shown to be dose-dependent, with high concentrations of NO-releasing alginates (~80 mg•mL-1) resulting in greater reduction of the viscosity and elasticity of the mucus samples. Greater reduction in mucus rheology was also achieved with NO-releasing alginates at lower concentrations when compared to both NO-releasing chitosan, a similarly biocompatible cationic polymer, and N-acetyl cysteine (NAC), a conventional mucolytic agent.
Collapse
Affiliation(s)
- Mona Jasmine R Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
170
|
Abd El-Bary A, Kamal Ibrahim H, Haza'a BS, Al Sharabi I. Formulation of sustained release bioadhesive minitablets containing solid dispersion of levofloxacin for once daily ocular use. Pharm Dev Technol 2019; 24:824-838. [PMID: 30931674 DOI: 10.1080/10837450.2019.1602631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study aimed to increase ocular residence time of levofloxacin by formulation into zero-order sustained release mucoadhesive minitablets for once daily administration using a hydrophobic-hydrophilic polymeric matrix. Levofloxacin was first formulated into solid dispersion with different ratios of Eudragit® RS then the resulting solid dispersion was mixed with different concentrations of Carbopol® and other excipients to be finally compressed into minitablets. A 24 full factorial design was employed to estimate the effects and interactions of two formulation factors, and to establish their relationships with selected responses in the developed minitablets. The studied factors were: drug to Eudragit® RS ratio, and percent of Carbopol® in the minitablets. Sixteen ocular minitablets formulations were prepared and evaluated for the cumulative percentages drug release at 6, 12, and 24 h, as well as mucoadhesion time, mucoadhesive strength, and swelling index as response variables. After optimizing the responses, the optimized formulation was found to be stable on sterilization using gamma-irradiation and storage at 40 °C/75% RH for six months. In vivo testing of the optimized formulation showed that the minitablets extended levofloxacin release up to 24 h without causing any ocular irritation. The optimized formulation exhibited superior microbiological activity compared to the commercial product.
Collapse
Affiliation(s)
- Ahmed Abd El-Bary
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Howida Kamal Ibrahim
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Balqees Saeed Haza'a
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Ibrahim Al Sharabi
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt.,b Department of Pharmaceutics, College of Pharmacy , King Khalid University , Abha , Kingdom of Saudi Arabia
| |
Collapse
|
171
|
Tripathi J, Thapa P, Maharjan R, Jeong SH. Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics 2019; 11:pharmaceutics11040193. [PMID: 31010054 PMCID: PMC6523542 DOI: 10.3390/pharmaceutics11040193] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 01/09/2023] Open
Abstract
In recent years, many attempts have been made to enhance the drug bioavailability and therapeutic effectiveness of oral dosage forms. In this context, various gastroretentive drug delivery systems (GRDDS) have been used to improve the therapeutic efficacy of drugs that have a narrow absorption window, are unstable at alkaline pH, are soluble in acidic conditions, and are active locally in the stomach. In this review, we discuss the physiological state of the stomach and various factors that affect GRDDS. Recently applied gastrointestinal technologies such as expandable, superporous hydrogel; bio/mucoadhesive, magnetic, ion-exchange resin; and low- and high-density-systems have also been examined along with their merits and demerits. The significance of in vitro and in vivo evaluation parameters of various GRDDS is summarized along with their applications. Moreover, future perspectives on this technology are discussed to minimize the gastric emptying rate in both the fasted and fed states. Overall, this review may inform and guide formulation scientists in designing the GRDDS.
Collapse
Affiliation(s)
- Julu Tripathi
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Prakash Thapa
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Ravi Maharjan
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| |
Collapse
|
172
|
Menzel C, Hauser M, Frey A, Jelkmann M, Laffleur F, Götzfried SK, Gust R, Bernkop-Schnürch A. Covalently binding mucoadhesive polymers: N-hydroxysuccinimide grafted polyacrylates. Eur J Pharm Biopharm 2019; 139:161-167. [PMID: 30898541 DOI: 10.1016/j.ejpb.2019.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
AIM The aim of the study was to establish a novel type of covalently mucus-binding polymers by targeting selectively amino groups within mucus glycoproteins. METHODS N-Hydroxysuccinimide (NHS) was attached to carboxylic groups of polyacrylic acid (PAA). The reaction was mediated by the coupling reagent N,N'-dicyclohexylcarbodiimide (DCC) achieving polymeric NHS esters being able to form amide bonds with free amino groups. The chemical structure of the obtained conjugates was characterized via FTIR- and UV spectroscopy. Reactivity towards mucosal amino groups was evaluated UV spectrometrically upon addition of L-glycine. Furthermore, tensile force evaluations on intestinal mucosa as well as rheological experiments with mucus were performed in order to prove mucoadhesive potential. RESULTS Depending on the amount of NHS added to the synthesis, coupling rates of 876 to 1820 µmol NHS per gram polymer were obtained. Kinetic studies of amide bond formation showed a substrate dependent reaction velocity. Rheological synergism of PAA-NHS was proven by a 7.9-fold increased mucus viscosity compared to the control polymer. In further mucoadhesion studies PAA-NHS showed a 5.5-fold improved adhesion time compared to unmodified PAA. Tensile force evaluation confirmed these results with a 1.7-fold higher maximum detachment force (MDF) and 2.7-fold increased total work adhesion (TWA) for PAA-NHS compared to the unmodified control polymer. CONCLUSION The results of the present study provide strong evidence that coupling NHS to polymers could be a promising tool for the development of novel mucoadhesive excipients.
Collapse
Affiliation(s)
- Claudia Menzel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Moritz Hauser
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Amelie Frey
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sina K Götzfried
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
173
|
Porfiryeva NN, Nasibullin SF, Abdullina SG, Tukhbatullina IK, Moustafine RI, Khutoryanskiy VV. Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. Int J Pharm 2019; 562:241-248. [PMID: 30880105 DOI: 10.1016/j.ijpharm.2019.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Eudragit® E PO (EPO) is a terpolymer based on N,N-dimethylaminoethyl methacrylate with methylmethacrylate and butylmethacrylate, produced by Evonik Industries AG as a pharmaceutical excipient. In this work, EPO was chemically modified through reaction with acryloyl chloride. The successful modification of EPO was confirmed by FTIR, NMR-spectroscopy, elemental and thermal analysis. The degree of acrylation was determined by permanganatometric titration. The slug mucosal irritation test was used to demonstrate non-irritant nature of EPO and its acrylated derivatives (AEPO). The mucoadhesive properties of EPO and AEPO were evaluated using freshly excised sheep nasal mucosa and it was demonstrated that acrylated polymers facilitated greater retention of sodium fluorescein on mucosal surfaces compared to solution mixture of this dye solution with EPO as well as free dye.
Collapse
Affiliation(s)
- Natalia N Porfiryeva
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation
| | - Shamil F Nasibullin
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation
| | - Svetlana G Abdullina
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation
| | - Irina K Tukhbatullina
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation
| | - Rouslan I Moustafine
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation.
| | - Vitaliy V Khutoryanskiy
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation; Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG66AD, United Kingdom.
| |
Collapse
|
174
|
Mucoadhesive Hydrogel Nanoparticles as Smart Biomedical Drug Delivery System. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050825] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogels are widely used materials which have many medical applications. Their ability to absorb aqueous solutions and biological fluids gives them innovative characterizations resulting in increased compatibility with biological activity. In this sense, they are used extensively for encapsulation of several targets such as biomolecules, viruses, bacteria, and mammalian cells. Indeed, many methods have been published which are used in hydrogel formulation and biomedical encapsulations involving several cross-linkers. This system is still rich with the potential of undiscovered features. The physicochemical properties of polymers, distinguished by their interactions with biological systems into mucoadhesive, gastro-adhesive, and stimuli responsive polymers. Hydrogel systems may be assembled as tablets, patches, gels, ointments, and films. Their potential to be co-formulated as nanoparticles extends the limits of their assembly and application. In this review, mucoadhesive nanoparticles and their importance for biomedical applications are highlighted with a focus on mechanisms of overcoming mucosal resistance.
Collapse
|
175
|
Almeida L, Oshiro Júnior JA, Silva M, Nóbrega F, Andrade J, Santos W, Ribeiro A, Conceição M, Veras G, Medeiros AC. Tablet of Ximenia Americana L. Developed from Mucoadhesive Polymers for Future Use in Oral Treatment of Fungal Infections. Polymers (Basel) 2019; 11:E379. [PMID: 30960363 PMCID: PMC6419192 DOI: 10.3390/polym11020379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022] Open
Abstract
The use of biocompatible polymers such as Hydroxypropylmethylcellulose (HPMC), Hydroxyethylcellulose (HEC), Carboxymethylcellulose (CMC), and Carbopol in solid formulations results in mucoadhesive systems capable of promoting the prolonged and localized release of Active Pharmaceutical Ingredients (APIs). This strategy represents a technological innovation that can be applied to improving the treatment of oral infections, such as oral candidiasis. Therefore, the aim of this study was to develop a tablet of Ximenia americana L. from mucoadhesive polymers for use in the treatment of oral candidiasis. An X. americana extract (MIC of 125 μg·mL-1) was obtained by turbolysis at 50% of ethanol, a level that demonstrated activity against Candida albicans. Differential Thermal Analysis and Fourier Transform Infrared Spectroscopy techniques allowed the choice of HPMC as a mucoadhesive agent, besides polyvinylpyrrolidone, magnesium stearate, and mannitol to integrate the formulation of X. americana. These excipients were granulated with an ethanolic solution 70% v/v at PVP 5%, and a mucoadhesive tablet was obtained by compression. Finally, mucoadhesive strength was evaluated, and the results demonstrated good mucoadhesive forces in mucin disk and pig buccal mucosa. Therefore, the study allowed a new alternative to be developed for the treatment of buccal candidiasis, one which overcomes the inconveniences of common treatments, costs little, and facilitates patients' adhesion.
Collapse
Affiliation(s)
- Lucas Almeida
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - João Augusto Oshiro Júnior
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Milena Silva
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Fernanda Nóbrega
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Jéssica Andrade
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Widson Santos
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Angélica Ribeiro
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Marta Conceição
- Centro de Tecnologia e Desenvolvimento Regional, Universidade Federal da Paraíba, Av. dos Escoteiros, s/n, Mangabeira VII, 58055-000, João Pessoa, Paraíba, Brasil.
| | - Germano Veras
- Laboratório de Química Analítica e Quimiometria, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Ana Cláudia Medeiros
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| |
Collapse
|
176
|
Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
177
|
Godfrin PD, Lee H, Lee JH, Doyle PS. Photopolymerized Micelle-Laden Hydrogels Can Simultaneously Form and Encapsulate Nanocrystals to Improve Drug Substance Solubility and Expedite Drug Product Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803372. [PMID: 30645039 DOI: 10.1002/smll.201803372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/17/2018] [Indexed: 05/06/2023]
Abstract
Formulation technologies are critical for increasing the efficacy of drug products containing poorly soluble hydrophobic drugs, which compose roughly 70% of small molecules in commercial pipelines. Nanomedicines, such as nanocrystal formulations and amorphous solid suspensions, are effective approaches to increasing solubility. However, existing techniques require additional processing into a final dosage form, which strongly influences drug delivery and clinical performance. To enhance hydrophobic drug product efficacy and clinical throughput, a hydrogel material is developed as a sacrificial template to simultaneously form and encapsulate nanocrystals. These hydrogels contain micelles chemically bound to the hydrogel matrix, where the surfactant structure dictates the crystal size and drug loading. Therefore, nanocrystals can be produced in high yield (up to 90% drug loading, by weight) with precisely controlled sizes as small as 4 nm independently of hydrogel composition. Nanocrystals and surfactant are then released together to increase the solubility up to 70 times above bulk crystalline material. By integrating nanocrystals into a final dosage form, micelle-laden hydrogels simplify hydrophobic drug product design.
Collapse
Affiliation(s)
- Paul Douglas Godfrin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyundo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ji Hyun Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
178
|
Pleguezuelos-Villa M, Nácher A, Hernández MJ, Busó MAOV, Barrachina M, Peñalver N, Díez-Sales O. A novel lidocaine hydrochloride mucoadhesive films for periodontal diseases. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:14. [PMID: 30635738 DOI: 10.1007/s10856-018-6213-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Periodontal diseases are inflammatory disorders caused primarily by dental plaque microorganisms that even may need surgery to remove damaged tissue. Adhesive biocompatible films may be an adequate form in order to improve drug retention or prevent microbial infections by covering the surgical site. In recent years, much attention has been focused on biocompatible inexpensive polymers, for biomedical and pharmaceutical potential applications. The objective of this research is the development of a film for mucosal application containing lidocaine hydrochloride (5%, w/w) as anesthetic drug. Lidocaine films were prepared with three biopolymers: hydroxypropylmethylcellulose (HPMC), chitosan (CH), or xanthan gum (XG). Their thickness and uniformity content were characterized. Rheological behavior of the hydrated films was studied using flow curves, creep and recovery tests and dynamic oscillatory measurements with a rheometer. The mucoadhesive assays were carried out with cheeks of Wistar rat using a universal tensile tester to know their adhesiveness. Finally, lidocaine delivery through the films was investigated in Franz cells. All films (n = 3 for each polymer) showed flexibility, a drug content of 0.015 ± 0.001 g/cm2 and a thickness of 0.25 ± 0.01 mm. The results of the maximum detachment force in tensile tests and work adhesion indicated that XG is the polymer that showed greater power of mucoadhesion (p < 0.05). These properties show a good correlation with the rheological characteristics. In all cases, the lidocaine amount released at 30 min is around 4 mg/cm2. This amount could be considered sufficient to guarantee the anesthetic effect.
Collapse
Affiliation(s)
- María Pleguezuelos-Villa
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Amparo Nácher
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat deValència, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Jesús Hernández
- Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - M A Ofelia Vila Busó
- Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Barrachina
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Nuria Peñalver
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Octavio Díez-Sales
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat deValència, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
179
|
Di Prima G, Conigliaro A, De Caro V. Mucoadhesive Polymeric Films to Enhance Barbaloin Penetration Into Buccal Mucosa: a Novel Approach to Chemoprevention. AAPS PharmSciTech 2019; 20:18. [PMID: 30603884 DOI: 10.1208/s12249-018-1202-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 01/28/2023] Open
Abstract
Nowadays, chemoprevention by administering natural supplements is considered an attractive strategy to reverse, suppress, or prevent the evolution of premalignant oral lesions. In particular, Barbaloin exhibits anti-proliferative, anti-inflammatory, and anti-cancer properties, and it results useful in multi-therapy with classic chemotherapeutics. Therefore, in this work, mucoadhesive buccal films, as locoregional drug delivery system able to provide a targeted and efficient therapeutic delivery of Barbaloin, are proposed. Thus, Aloin extract-loaded Eudragit® RL100 or Eudragit® RS100-based buccal films were designed in order to obtain an easily self-administrable formulation capable of promoting Barbaloin penetration into buccal mucosa and assuring high patient compliance. Large amounts of extract (44%) were loaded into the polymer matrix and six formulations were prepared varying polymers and plasticizers ratios. For all formulations, physical form (thermogravimetric analysis-differential scanning calorimetry, TGA-DSC), swelling degree, mucoadhesiveness, drug release, and ability to promote drug penetration in mucosa have been investigated. After a sequential selection process, Eudragit RS 100-based film, with low PVP and high plasticizers amounts, emerged as the most promising. It results appropriately flexible, uniform in terms of weight, thickness and drug content, as well as characterized by suitable surface pH, good mucoadhesiveness, and low swelling degree. It displays a Higuchian drug release behavior up to 89% of Barbaloin released, thus demonstrating that diffusion through the matrix is the main release mechanism. Remarkable penetration enhancer properties of film were demonstrated by evidence of Barbaloin accumulation into buccal mucosa up to 10-fold higher than those obtained following administration of Aloin solution.
Collapse
|
180
|
Li Y, Wan Z, Yang X. Salt reduction in liquid/semi-solid foods based on the mucopenetration ability of gum arabic. Food Funct 2019; 10:4090-4101. [DOI: 10.1039/c8fo02593b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gum arabic enhances the saltiness perception of liquid/semi-solid foods via a mucopenetration effect.
Collapse
Affiliation(s)
- Yanlei Li
- Laboratory of Food Proteins and Colloids
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- Department of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- Department of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- Department of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
181
|
Réthoré G, Kimakhe S, Cloitre A, Weiss P, Lesclous P. Topic delivery of analgesics in oral surgery. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2019. [DOI: 10.1051/mbcb/2019008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Following any oral surgery procedure, postoperative pain is an inevitable outcome and can be described as moderate to severe. The pain management is essential for the comfort and the well-being of the patients. Topical delivery and more specifically transmucosal delivery systems seem to be of great value for the development of new pain management strategies. Method: A systematic literature review was performed using PubMedCentral database. Only PubMedCentral indexed publications were selected and included if they described i) a human clinical study with pharmacokinetic and/or pain relief assessment a biomaterial for topic delivery, ii) the delivery of analgesics or NSAIDs for analgesic purpose and iii) a biomaterial for topic delivery. Results: Ten articles were selected among which 4 pharmacokinetic studies and 8 studies describing pain relief. Six of the selected articles were well defined with a good scientific level of evidence (level 2) and 4 of them with a low level of evidence. Discussion: The clinical investigations demonstrated a good analgesia, a rapid pain relief with a decrease of the administered doses compared to the oral administration. Moreover, these topic analgesics were well tolerated by the patients. Number of devices was developed for the topical delivery after oral surgery procedures. Excepting a gelatin sponge and a hydro alcoholic gel, most of the devices were made of cellulose and its derivatives. Authors reported that the materials showed a good maintenance at the site of application and the release of the analgesic was well controlled over the time. Conclusion: However, well conducted large clinical trials are still missing in order to validate the absence of side effects.
Collapse
|
182
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
183
|
Finnegan M, Mallon G, Leach A, Themistou E. Electrosprayed cysteine-functionalized degradable amphiphilic block copolymer microparticles for low pH-triggered drug delivery. Polym Chem 2019. [DOI: 10.1039/c9py01221d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent dye encapsulation and release using mucoadhesive degradable thiol-functionalized amphiphilic block copolymer microparticles prepared by electrospraying.
Collapse
Affiliation(s)
- Marie Finnegan
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Gerard Mallon
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Adam Leach
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|
184
|
Estrellas KM, Fiecas M, Azagury A, Laulicht B, Cho DY, Mancini A, Reineke J, Furtado S, Mathiowitz E. Time-dependent mucoadhesion of conjugated bioadhesive polymers. Colloids Surf B Biointerfaces 2019; 173:454-469. [PMID: 30326362 DOI: 10.1016/j.colsurfb.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022]
Abstract
The time-dependent bioadhesive performance of various polymers was evaluated using a texture analyzer apparatus and freshly excised rat small intestinal tissue. A series of novel bioadhesive polymers were prepared by conjugating L-phenylalanine, L-tyrosine, and L-DOPA to either a low molecular weight poly (butadiene-maleic anhydride) or a high molecular weight poly (ethylene-maleic anhydride). Bioadhesive force was characterized as a function of time relative to polycarbophil, a slightly cross-linked poly (acrylic acid)-derivative, revealing different fracture strengths and tensile work for each of the six backbone-side chain conjugations that were studied. While polycarbophil showed a rapid and significant loss of bioadhesion over the testing period, the newly developed synthetic polymers were able to maintain their bioadhesive performance over the course of 91 min with the overall magnitude of bioadhesion corresponding to the hydrogen bonding potential of the associated side chains. These results highlight the potential of these polymers for use in the development of more effective bioadhesive oral drug delivery systems.
Collapse
Affiliation(s)
- Kenneth M Estrellas
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Mark Fiecas
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Aharon Azagury
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Bryan Laulicht
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Daniel Y Cho
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Alexis Mancini
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Joshua Reineke
- Pharmaceutical Sciences Faculty Research, South Dakota State University, Box 2202C, Brookings, SD, 57007, USA
| | - Stacia Furtado
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Edith Mathiowitz
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
185
|
Perotto G, Sandri G, Pignatelli C, Milanesi G, Athanassiou A. Water-based synthesis of keratin micro- and nanoparticles with tunable mucoadhesive properties for drug delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00443b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A water-based synthesis to produce micro and nano particles of keratin, that can be easily loaded with drugs and showed a sustained release, is reported. The particles interaction with mucin could be altered to favor or decrease their mucoadhesion.
Collapse
|
186
|
Devi R, Bhatia M. Thiol functionalization of flaxseed mucilage: Preparation, characterization and evaluation as mucoadhesive polymer. Int J Biol Macromol 2018; 126:101-106. [PMID: 30557645 DOI: 10.1016/j.ijbiomac.2018.12.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022]
Abstract
The aim of present study is to browse mucoadhesive potential of flaxseed mucilage after thiol functionalization. Thiol-derivatization of flaxseed mucilage (FSM) polysaccharide was obtained by esterification with thioglycolic acid. Thiolation of FSM was confirmed by -SH stretch in FTIR spectra at 2549.01 cm-1. Thiolated flaxseed mucilage (TFSM) was distinguished by XRD, DSC, NMR & SEM analysis. TFSM was found to contain 325.6 mM of thiol groups/g as determined by Ellman's method. The mucoadhesive property of drug loaded TFSM pellets, carried out by using chicken buccal pouch membrane, displayed greater ex-vivo bioadhesion time as compared to FSM. This improvement in mucoadhesion property of TFSM over FSM can be attributed to the formation of disulphide bond between mucus and thiolated mucilage. Further, the in-vitro dissolution study conducted in phosphate buffer (pH 6.8) provided release of diclofenac sodium for a prolonged period of 12 h for TFSM pellets by anomalous transport mechanism of drug release following zero order model of release kinetics.
Collapse
Affiliation(s)
- Rupa Devi
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Meenakshi Bhatia
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India.
| |
Collapse
|
187
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
188
|
|
189
|
Bruschi ML. Lectins and Nanostructured Drug Delivery Systems. Curr Drug Deliv 2018; 16:268-269. [PMID: 30465501 DOI: 10.2174/1567201816666181122105548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/05/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
The advances and the impact of nanostructured systems on therapeutics constitute a constantly evolving reality. New strategies have been developed for drug delivery control and for directing these systems to the targeted site improving the therapy. In this commentary, the lectins are briefly reviewed; their fundamentals and the proposed applications as ligands in nanostructured drug delivery systems are discussed.
Collapse
Affiliation(s)
- Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
190
|
Jin Z, Chen Z, Wu K, Shen Y, Guo S. Investigation of Migration-Preventing Tracheal Stent with High Dose of 5-Fluorouracil or Paclitaxel for Local Drug Delivery. ACS APPLIED BIO MATERIALS 2018; 1:1328-1336. [PMID: 34996236 DOI: 10.1021/acsabm.8b00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stent migration is one of the common reasons for the failure of tracheal stent. An antitumor drug/tracheal stent combination can promptly relieve dyspnea caused by tracheal stenosis and locally treat malignant occupying lesion or tumor. To prevent stent migration for more effective treatment, we prepared a migration-preventing nitinol tracheal stent (TS) with a high dose of 5-fluorouracil or paclitaxel (5-FU/TS or PTX/TS) by stent surface coating with a bilayered film, which is composed of a drug-loaded layer containing Carbopol 974P as mucoadhesive matrix and a blank Carbopol 974P layer. The resulting stent had a similar mechanical performance with the nitinol tracheal stent itself. The bilayered film containing 30% PTX (PTX30) could keep adhesion to porcine mucosa for 221.7 ± 11.4 min in PBS at a stirring speed of 150 rpm, and the corresponding PTX30/TS was difficult to be moved in the porcine tracheal lumen with a pulling force less than 0.7 N, indicating its good migration-preventing ability. The migration-preventing ability of the 5-FU/TS or PTX/TS was related to the compositions of bilayered films. The 5-FU release from the 5-FU/TS was dominated by a relaxation mechanism, while the PTX release was mainly controlled by a diffusion mechanism. Moreover, the 5-FU permeation from the 5-FU loaded film through the porcine tracheal mucosa was determined by the 5-FU dissolution, and PTX permeation was limited by the trans-mucosa process. After the deployment of PTX30/TS, inflammatory responses were observed in the rabbit tracheas and gradually alleviated during the follow-up period.
Collapse
Affiliation(s)
- Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoyang Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Keqin Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
191
|
Bezerra S, João-Souza S, Aoki I, Borges A, Hara A, Scaramucci T. Anti-Erosive Effect of Solutions Containing Sodium Fluoride, Stannous Chloride, and Selected Film-Forming Polymers. Caries Res 2018; 53:305-313. [DOI: 10.1159/000493388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate the anti-erosive effect of solutions containing sodium fluoride (F: 225 ppm F–), stannous chloride (Sn: 800 ppm Sn2+), and some film-forming polymers (Gantrez: Poly [methylvinylether-alt-maleic anhydride]; PGA: propylene glycol alginate; Plasdone: poly[vinylpyrrolidone]; and CMC: carboxymethylcellulose). Solutions were tested in an erosion-remineralization cycling model, using enamel and dentin specimens (n = 10, for each substrate). Distilled water was the negative control. Cycling consisted of 120 min immersion in human saliva, 5 min in 0.3% citric acid solution, and 120 min of exposure to human saliva, 4×/day, for 5 days. Treatment with solutions (pH = 4.5) was carried out 2×/day, for 2 min. Surface loss (SL) was evaluated with optical profilometry. Zeta potential of hydroxyapatite crystals was determined after treatment with the solutions. Data were statistically analyzed (α = 0.05). For enamel, all polymers showed significantly lower SL (in µm) than the control (11.09 ± 0.94), except PGA (10.15 ± 1.25). PGA significantly improved the protective effect of F (4.24 ± 0.97 vs. 5.64 ± 1.60, respectively). None of the polymers increased the protection of F+Sn (5.13 ± 0.78). For dentin, only Gantrez (11.40 ± 0.97) significantly reduced SL when compared with the negative control (12.76 ± 0.75). No polymer was able to enhance the effect of F (6.28 ± 1.90) or F+Sn (7.21 ± 1.13). All fluoridated solutions demonstrated significantly lower SL values than the control for both substrates. Treatment of hydroxyapatite nanoparticles with all solutions resulted in more negative zeta potentials than those of the control, except Plasdone, PGA, and F+Sn+PGA, the latter two presenting the opposite effect. In conclusion, Gantrez, Plasdone, and CMC exhibited an anti-erosive effect on enamel. PGA increased the protection of F. For dentin, only Gantrez reduced erosion.
Collapse
|
192
|
Rohrer J, Lupo N, Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm 2018; 553:8-20. [PMID: 30316796 DOI: 10.1016/j.ijpharm.2018.10.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The global biologics market has been ever increasing over the last decades and is predicted to top Euro 350 by 2020. Facing this scenario, the parenteral route of biologics administration as hitherto standard route is inconvenient for the future. Among the alternatives, the intranasal delivery of therapeutic biologicals seems to be most promising but researchers are still facing challenges as indicated by the scarce number of successfully marketed peptide drugs. AREAS COVERED This review article is a compilation of current research focusing on achievements in the field of auxiliary agents for biologics delivery. First, the key benefits of the nose as most promising alternative route of drug administration are highlighted. Then, the potential of the different auxiliary agents in preclinical research is in detail discussed. Moreover, the most used permeation enhancing agents, mucolytic agents, mucoadhesive agents, in situ gelling agents and enzyme inhibiting agents in the formulation of nasal drug delivery systems are described. Thus, the overall purpose of this review is to highlight recent achievements in nasal delivery of biologics and to encourage researchers to work in the direction of needle-free nasal administration of biologics. EXPERT OPINION The nasal epithelium is a promising route for biologics administration, which is reflected in a number of well-established products on the market treating chronic diseases as well as a large number of clinical trials currently in progress. The nasal route of drug administration might be a chance to improve therapy of biologics however break-through advances, especially for very complex molecules, such as antibodies, are still needed.
Collapse
Affiliation(s)
- Julia Rohrer
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Noemi Lupo
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria.
| |
Collapse
|
193
|
Kilicarslan M, Ilhan M, Inal O, Orhan K. Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur J Pharm Sci 2018; 123:441-451. [DOI: 10.1016/j.ejps.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
|
194
|
Chemical cross-linking: A feasible approach to prolong doxylamine/pyridoxine release from spray-dried chitosan microspheres. Eur J Pharm Sci 2018; 123:387-394. [DOI: 10.1016/j.ejps.2018.07.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023]
|
195
|
Jelkmann M, Menzel C, Baus RA, Ausserhofer P, Baecker D, Gust R, Bernkop-Schnürch A. Chitosan: The One and Only? Aminated Cellulose as an Innovative Option for Primary Amino Groups Containing Polymers. Biomacromolecules 2018; 19:4059-4067. [PMID: 30192522 DOI: 10.1021/acs.biomac.8b01069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was the synthesis and in vitro characterization of aminated cellulose as alternative excipient to chitosan. The aldehyde form of cellulose was generated via the oxidative cleavage of vicinal diols by the addition of increasing concentrations of sodium periodate. The insertion of primary amines was achieved by reductive amination with ammonia. The degree of substitution was calculated via primary amino group quantification using a 2,4,6-trinitrobenzenesulfonic acid assay. Mucoadhesiveness was examined by adopting the rotating-cylinder method and tensile studies using porcine intestinal mucosa. Hydration was evaluated at pH 2-11. The successful formation of aldehydes as well as a subsequent introduction of up to 311.61 micromoles per gram of primary amines were proven to correlate with the amount of added periodate. There was a 3- to 14-fold prolongation in the mucosal residence time of the new polymer in comparison to chitosan, as measured by the rotating-cylinder method. Although cationic cellulose did not reach the maximum detachment force of chitosan, the total work of adhesion of the newly synthesized cellulose derivate was higher than that of chitosan. The higher the degree of amination, the higher the degree of hydration in neutral and alkaline aqueous media was. Compared to chitosan, the novel cationic cellulose derivative displays improved mucoadhesive properties as well as sufficient hydration at physiological pH. Therefore, aminated cellulose is a promising alternative to the cationic polymers, such as chitosan, used thus far.
Collapse
|
196
|
Macron J, Bresson B, Tran Y, Hourdet D, Creton C. Equilibrium and Out-of-Equilibrium Adherence of Hydrogels against Polymer Brushes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jennifer Macron
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Yvette Tran
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Dominique Hourdet
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
197
|
Rodero CF, Fioramonti Calixto GM, Cristina Dos Santos K, Sato MR, Aparecido Dos Santos Ramos M, Miró MS, Rodríguez E, Vigezzi C, Bauab TM, Sotomayor CE, Chorilli M. Curcumin-Loaded Liquid Crystalline Systems for Controlled Drug Release and Improved Treatment of Vulvovaginal Candidiasis. Mol Pharm 2018; 15:4491-4504. [PMID: 30184431 DOI: 10.1021/acs.molpharmaceut.8b00507] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vulvovaginal candidiasis (VVC) is the most common infection caused by Candida albicans and greatly reduces the quality of life of women affected by it. Due to the ineffectiveness of conventional treatments, there is growing interest in research involving compounds of natural origin. One such compound is curcumin (CUR), which has been proven to be effective against this microorganism. However, some of CUR's physicochemical properties, especially its low aqueous solubility, make the therapeutic application of this compound difficult. Thus, the incorporation of CUR in mucoadhesive liquid crystalline systems (MLCSs) for vaginal administration may be an efficient strategy for the treatment of VVC. MLCSs are capable of potentiating the compound's action, releasing it in a controlled manner, and can enable longer exposure at the site of infection. In this study, MLCSs consisting of oleic acid and ergosterol 5:1 (w/w) as the oily phase, PPG-5-CETETH-20 as the surfactant, and a polymer dispersion of 1% chitosan as the aqueous phase, were developed for the application of CUR (MLCS-CUR) in VVC treatment. The formulations were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), oscillatory rheometry, continuous shear rheometry, texture profile analysis, and in vitro mucoadhesion. In addition, the antimicrobial activity was evaluated in vitro, and the effects on local fungal burden and cytokine profiles were investigated in a murine model of VVC. PLM and SAXS showed that the developed formulations presented a characteristic of a microemulsion. However, after the addition of artificial vaginal mucus (AVM), PLM showed that the formulations had structures similar to the "Maltese cross" characteristic of lamellar MLCS. Mucoadhesive test results showed an increase in the mucoadhesive strength of these formulations. Rheology analyses suggested long-lasting action of the formulation at the infected site. The in vitro antimicrobial activity assays suggested that CUR possesses antifungal activity against Candida albicans, determined after its incorporation into the MLCS. Further, MLCS-CUR was also more effective in vivo in the control of vaginal infection than treatment with fluconazole. Immunological assays showed that the ratio of pro-inflammatory (IL-1β) to anti-inflammatory (TGF-β) cytokines has decreased and that there is a reduction in the number of polymorphonuclear neutrophils recruited to the vaginal lumen, showing that treatment with MLCS-CUR was effective in modulating the inflammatory reaction associated with the infection. The results suggest that MLCSs could potentially be used in the treatment of VVC with CUR.
Collapse
Affiliation(s)
- Camila Fernanda Rodero
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Giovana Maria Fioramonti Calixto
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Karen Cristina Dos Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Mariana Rillo Sato
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Biological Sciences, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Maria Soledad Miró
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Emilse Rodríguez
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Cecilia Vigezzi
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Claudia Elena Sotomayor
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Marlus Chorilli
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| |
Collapse
|
198
|
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018; 10:pharmaceutics10030159. [PMID: 30213143 PMCID: PMC6161217 DOI: 10.3390/pharmaceutics10030159] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Poloxamer 407, also known by the trademark Pluronic® F127, is a water-soluble, non-ionic triblock copolymer that is made up of a hydrophobic residue of polyoxypropylene (POP) between the two hydrophilic units of polyoxyethylene (POE). Poloxamer 407-based hydrogels exhibit an interesting reversible thermal characteristic. That is, they are liquid at room temperature, but they assume a gel form when administered at body temperature, which makes them attractive candidates as pharmaceutical drug carriers. These systems have been widely investigated in the development of mucoadhesive formulations because they do not irritate the mucosal membranes. Based on these mucoadhesive properties, a simple administration into a specific compartment should maintain the required drug concentration in situ for a prolonged period of time, decreasing the necessary dosages and side effects. Their main limitations are their modest mechanical strength and, notwithstanding their bioadhesive properties, their tendency to succumb to rapid elimination in physiological media. Various technological approaches have been investigated in the attempt to modulate these properties. This review focuses on the application of poloxamer 407-based hydrogels for mucosal drug delivery with particular attention being paid to the latest published works.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| |
Collapse
|
199
|
Liposomal Form of the Echinochrome-Carrageenan Complex. Mar Drugs 2018; 16:md16090324. [PMID: 30201899 PMCID: PMC6163634 DOI: 10.3390/md16090324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
Inclusion of drugs in liposomes offers the potential for localized and sustained delivery to mucosal surfaces. The inclusion of the carrageenan matrix with echinochrome A ((Ech)—the active substance of the drug Histochrome) in liposomes was studied. According to the spectral characteristics, Ech was not oxidized and retained stability after encapsulation in the liposomes and the lyophilization process. Loading the liposomes with negatively charged polysaccharide results in the increase in the zeta potential to more negative values (from −14.6 to −24.4 mV), that together with an increasing in the sizes of liposomes (from 125.6 ± 2.5 nm to 159.3 ± 5.8 nm) propose of the formation of the polymer coating on liposomes. The interactions of liposomes with porcine stomach mucin was determined by the DLS and SEM methods. The changes in the zeta-potential and size of the mucin particles were observed as the result of the interaction of liposomes with mucin. To evaluate the mucoadhesive properties of liposomes and the penetration of Ech in the mucosa, a fresh-frozen inner surface of the small intestine of a pig as a model of mucous tissue was used. Polysaccharide-coated liposomes exhibit very good mucoadhesive properties −50% of Ech remains on the mucosa.
Collapse
|
200
|
Salem HF, Kharshoum RM, Sayed OM, Abdel Hakim LF. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box–Behnken statistical design. Drug Dev Ind Pharm 2018; 44:1871-1884. [DOI: 10.1080/03639045.2018.1504963] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Heba F. Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ossama M. Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Lekaa F. Abdel Hakim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|