151
|
The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. Proc Natl Acad Sci U S A 2015. [PMID: 26216949 DOI: 10.1073/pnas.1502159112] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice.
Collapse
|
152
|
Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic Application for Ischemic Injury. PLoS One 2015; 10:e0131785. [PMID: 26148001 PMCID: PMC4493074 DOI: 10.1371/journal.pone.0131785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Endothelial progenitor cells (EPCs) can be isolated from human bone marrow or peripheral blood and reportedly contribute to neovascularization. Aptamers are 40-120-mer nucleotides that bind to a specific target molecule, as antibodies do. To utilize apatmers for isolation of EPCs, in the present study, we successfully generated aptamers that recognize human CD31, an endothelial cell marker. CD31 aptamers bound to human umbilical cord blood-derived EPCs and showed specific interaction with human CD31, but not with mouse CD31. However, CD31 aptamers showed non-specific interaction with CD31-negative 293FT cells and addition of polyanionic competitor dextran sulfate eliminated non-specific interaction without affecting cell viability. From the mixture of EPCs and 293FT cells, CD31 aptamers successfully isolated EPCs with 97.6% purity and 94.2% yield, comparable to those from antibody isolation. In addition, isolated EPCs were decoupled from CD31 aptamers with a brief treatment of high concentration dextran sulfate. EPCs isolated with CD31 aptamers and subsequently decoupled from CD31 aptamers were functional and enhanced the restoration of blood flow when transplanted into a murine hindlimb ischemia model. In this study, we demonstrated isolation of foreign material-free EPCs, which can be utilized as a universal protocol in preparation of cells for therapeutic transplantation.
Collapse
|
153
|
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. SENSORS 2015; 15:16281-313. [PMID: 26153774 PMCID: PMC4541879 DOI: 10.3390/s150716281] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
Collapse
|
154
|
Manipulating the in vivo immune response by targeted gene knockdown. Curr Opin Immunol 2015; 35:63-72. [PMID: 26149459 DOI: 10.1016/j.coi.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic.
Collapse
|
155
|
Zhou W, Huang PJJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2015; 139:2627-40. [PMID: 24733714 DOI: 10.1039/c4an00132j] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progress that might enable practical applications of aptamers for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Central South University, Tongzipo Road #172, Changsha 410013, Hunan, PR China.
| | | | | | | |
Collapse
|
156
|
Puddu M, Stark WJ, Grass RN. Silica Microcapsules for Long-Term, Robust, and Reliable Room Temperature RNA Preservation. Adv Healthc Mater 2015; 4:1332-8. [PMID: 25899883 DOI: 10.1002/adhm.201500132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/27/2015] [Indexed: 11/08/2022]
Abstract
As a consequence of the latest revolutionary discoveries on its functions, RNA is certainly the hottest topic at the moment, being an exceptional tool in biology as well as in medicine. For the various applications, a proper RNA storage is required to prevent the degradation of this extremely unstable molecule. Here a novel freezing-free RNA storage strategy is presented, based on its encapsulation in silica spheres. The silica microcapsules protect the RNA by providing a water-free environment. In this way RNA can be safely stored for prolonged periods of time at ambient and elevated temperatures, maintaining its original integrity, as proved by gel-electrophoresis, capillary electrophoresis, and real-time reverse transcription-polymerase chain reaction (RT-qPCR). The RNA degradation rate at 65 °C in silica microcapsules is approximately ten times smaller in comparison to dry RNA samples or to samples stored in RNAstable matrix, a commercially available product. Moreover, RNA half-life at 65 °C is nearly identical to that of DNA within the silica microcapsules. Samples intended for use in gene expression are compatible with further analysis (RT-qPCR, Sanger sequencing). The novel storage technology permits to safely handle, store, and transport RNA samples, avoiding the expensive shipments and the problems of space presented by freezing-based strategies.
Collapse
Affiliation(s)
- Michela Puddu
- ETH Zurich, Institute for Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Wendelin J. Stark
- ETH Zurich, Institute for Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Robert N. Grass
- ETH Zurich, Institute for Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| |
Collapse
|
157
|
Thiel WH, Thiel KW, Flenker KS, Bair T, Dupuy AJ, McNamara JO, Miller FJ, Giangrande PH. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells. Methods Mol Biol 2015; 1218:187-99. [PMID: 25319652 DOI: 10.1007/978-1-4939-1538-5_11] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After a decade of work to address cellular uptake, the principal obstacle to RNAi-based therapeutics, there is now well-deserved, renewed optimism about RNAi-based drugs. Phase I and II studies have shown safe, strong, and durable-gene knockdown (80-90%, lasting for a month after a single injection) and/or clinical benefit in treating several liver pathologies. Although promising, these studies have also highlighted the need for robust delivery techniques to develop RNAi therapeutics for treating other organ systems and diseases. Conjugation of siRNAs to cell-specific, synthetic RNA ligands (aptamers) is being proposed as a viable solution to this problem. While encouraging, the extended use of RNA aptamers as a delivery tool for siRNAs awaits the identification of RNA aptamer sequences capable of targeting and entering the cytoplasm of many different cell types. We describe a cell-based selection process for the rapid identification and characterization of RNA aptamers suited for delivering siRNA drugs into the cytoplasm of target cells. This process, termed "cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment)," entails the combination of multiple sophisticated technologies, including cell culture-based SELEX procedures, next-generation sequencing (NGS), and novel bioinformatics tools.
Collapse
Affiliation(s)
- William H Thiel
- Department of Internal Medicine, University of Iowa, 5202 MERF, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer. J Mol Med (Berl) 2015; 93:619-31. [PMID: 25940316 DOI: 10.1007/s00109-015-1280-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5' end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. KEY MESSAGES . α-Gal-tagged aptamers lead to GAS opsonization with anti-Gal antibodies. . α-Gal-tagged aptamers confer phagocytosis and killing of GAS cells by human phagocytes. . α-Gal-tagged aptamers reduces replication of GAS in human blood. . α-Gal-tagged aptamers may have the potential to be used as novel passive immunization drugs.
Collapse
|
159
|
Therapeutic applications of nanomedicine in autoimmune diseases: From immunosuppression to tolerance induction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1003-18. [DOI: 10.1016/j.nano.2014.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
|
160
|
Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics. Molecules 2015; 20:6866-87. [PMID: 25913927 PMCID: PMC6272696 DOI: 10.3390/molecules20046866] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 01/07/2023] Open
Abstract
Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products.
Collapse
|
161
|
Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 2015; 71:230-242. [PMID: 25912679 DOI: 10.1016/j.bios.2015.04.041] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022]
Abstract
Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays.
Collapse
Affiliation(s)
- Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
162
|
Hoinka J, Berezhnoy A, Dao P, Sauna ZE, Gilboa E, Przytycka TM. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery. Nucleic Acids Res 2015; 43:5699-707. [PMID: 25870409 PMCID: PMC4499121 DOI: 10.1093/nar/gkv308] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
High-Throughput (HT) SELEX combines SELEX (Systematic Evolution of Ligands by EXponential Enrichment), a method for aptamer discovery, with massively parallel sequencing technologies. This emerging technology provides data for a global analysis of the selection process and for simultaneous discovery of a large number of candidates but currently lacks dedicated computational approaches for their analysis. To close this gap, we developed novel in-silico methods to analyze HT-SELEX data and utilized them to study the emergence of polymerase errors during HT-SELEX. Rather than considering these errors as a nuisance, we demonstrated their utility for guiding aptamer discovery. Our approach builds on two main advancements in aptamer analysis: AptaMut—a novel technique allowing for the identification of polymerase errors conferring an improved binding affinity relative to the ‘parent’ sequence and AptaCluster—an aptamer clustering algorithm which is to our best knowledge, the only currently available tool capable of efficiently clustering entire aptamer pools. We applied these methods to an HT-SELEX experiment developing aptamers against Interleukin 10 receptor alpha chain (IL-10RA) and experimentally confirmed our predictions thus validating our computational methods.
Collapse
Affiliation(s)
- Jan Hoinka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Alexey Berezhnoy
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Phuong Dao
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Zuben E Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Eli Gilboa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| |
Collapse
|
163
|
Zhang N, Bing T, Liu X, Qi C, Shen L, Wang L, Shangguan D. Cytotoxicity of guanine-based degradation products contributes to the antiproliferative activity of guanine-rich oligonucleotides. Chem Sci 2015; 6:3831-3838. [PMID: 29218153 PMCID: PMC5707456 DOI: 10.1039/c4sc03949a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/04/2015] [Indexed: 01/03/2023] Open
Abstract
Guanine-rich oligonucleotides with lower nuclease resistance exhibited higher antiproliferative activity; guanine-based compounds showed highly concentration-dependent cytotoxicity.
Guanine-rich oligonucleotides (GROs) have attracted considerable attention as anticancer agents, because they exhibit cancer-selective antiproliferative activity and can form G-quadruplex structures with higher nuclease resistance and cellular uptake. Recently, a GRO, AS1411 has reached phase II clinical trials for acute myeloid leukemia and renal cell carcinoma. The antiproliferative activity of GROs has been associated with various protein targets; however the real mechanisms of action remain unclear. In this study, we showed evidence that antiproliferative activity of GROs (including AS1411) is mainly contributed by the cytotoxicity of their guanine-based degradation products, such as monophosphate deoxyguanosine (dGMP), deoxyguanosine (dG) and guanine. The GROs with lower nuclease resistance exhibited higher antiproliferative activity. Among nucleotides, nucleosides and nucleobases, only guanine-based compounds showed highly concentration-dependent cytotoxicity. Our results suggest that it is necessary to reconsider the cancer-selective antiproliferative activity of GROs. Since guanine-based compounds are endogenous substances in living organisms, systematic studies of the cytotoxicity of these compounds will provide new information for the understanding of certain diseases and offer useful information for drug design.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Cui Qi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Luyao Shen
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| |
Collapse
|
164
|
Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. ACTA ACUST UNITED AC 2015; 22:379-90. [PMID: 25754473 DOI: 10.1016/j.chembiol.2015.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/29/2014] [Accepted: 01/25/2015] [Indexed: 11/21/2022]
Abstract
The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.
Collapse
|
165
|
Alam KK, Chang JL, Burke DH. FASTAptamer: A Bioinformatic Toolkit for High-throughput Sequence Analysis of Combinatorial Selections. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e230. [PMID: 25734917 PMCID: PMC4354339 DOI: 10.1038/mtna.2015.4] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
High-throughput sequence (HTS) analysis of combinatorial selection populations accelerates lead discovery and optimization and offers dynamic insight into selection processes. An underlying principle is that selection enriches high-fitness sequences as a fraction of the population, whereas low-fitness sequences are depleted. HTS analysis readily provides the requisite numerical information by tracking the evolutionary trajectory of individual sequences in response to selection pressures. Unlike genomic data, for which a number of software solutions exist, user-friendly tools are not readily available for the combinatorial selections field, leading many users to create custom software. FASTAptamer was designed to address the sequence-level analysis needs of the field. The open source FASTAptamer toolkit counts, normalizes and ranks read counts in a FASTQ file, compares populations for sequence distribution, generates clusters of sequence families, calculates fold-enrichment of sequences throughout the course of a selection and searches for degenerate sequence motifs. While originally designed for aptamer selections, FASTAptamer can be applied to any selection strategy that can utilize next-generation DNA sequencing, such as ribozyme or deoxyribozyme selections, in vivo mutagenesis and various surface display technologies (peptide, antibody fragment, mRNA, etc.). FASTAptamer software, sample data and a user's guide are available for download at http://burkelab.missouri.edu/fastaptamer.html.
Collapse
Affiliation(s)
- Khalid K Alam
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jonathan L Chang
- 1] Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA [2] Current Address: School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Donald H Burke
- 1] Department of Biochemistry, University of Missouri, Columbia, Missouri, USA [2] Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
166
|
Liu Y, Liu N, Ma X, Li X, Ma J, Li Y, Zhou Z, Gao Z. Highly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis. Analyst 2015; 140:2762-70. [PMID: 25710359 DOI: 10.1039/c5an00081e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel aptamer-based suspension array detection platform was designed for the sensitive, specific and rapid detection of human α-thrombin as a model. Thrombin was first recognized by a 29-mer biotinylated thrombin-binding aptamer (TBA) in solution. Then 15-mer TBA modified magnetic beads (MBs) captured the former TBA-thrombin to form an aptamer-thrombin-aptamer sandwich complex. The median fluorescence intensity obtained via suspension array technology was positively correlated with the thrombin concentration. The interactions between TBAs and thrombin were analyzed using microscale thermophoresis (MST). The dissociation constants could be respectively achieved to be 44.2 ± 1.36 nM (TBA1-thrombin) and 15.5 ± 0.637 nM (TBA2-thrombin), which demonstrated the high affinities of TBA-thrombin and greatly coincided with previous reports. Interaction conditions such as temperature, reaction time, and coupling protocol were optimized. The dynamic quantitative working range of the aptamer-based suspension array was 18.37-554.31 nM, and the coefficients of determination R(2) were greater than 0.9975. The lowest detection limit of thrombin was 5.4 nM. This method was highly specific for thrombin without being affected by other analogs and interfering proteins. The recoveries of thrombin spiked in diluted human serum were in the range 82.6-114.2%. This innovative aptamer-based suspension array detection platform not only exhibits good sensitivity based on MBs facilitating highly efficient separation and amplification, but also suggests high specificity by the selective aptamer binding, thereby suggesting the expansive application prospects in research and clinical fields.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 2015; 33:1141-61. [PMID: 25708387 DOI: 10.1016/j.biotechadv.2015.02.008] [Citation(s) in RCA: 447] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established and efficient technology for the generation of oligonucleotides with a high target affinity. These SELEX-derived single stranded DNA and RNA molecules, called aptamers, were selected against various targets, such as proteins, cells, microorganisms, chemical compounds etc. They have a great potential in the use as novel antibodies, in cancer theragnostics and in biomedical research. Vast interest in aptamers stimulated continuous development of SELEX, which underwent numerous modifications since its first application in 1990. Novel modifications made the selection process more efficient, cost-effective and significantly less time-consuming. This article brings a comprehensive and up-to-date review of recent advances in SELEX methods and pinpoints advantages, main obstacles and limitations. The post-SELEX strategies and examples of application are also briefly outlined in this review.
Collapse
Affiliation(s)
- Mariia Darmostuk
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Helena Gbelcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, Bratislava 811 08, Slovak Republic.
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| |
Collapse
|
168
|
Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine 2015; 10:1399-414. [PMID: 25733832 PMCID: PMC4337502 DOI: 10.2147/ijn.s74514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (K D). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments.
Collapse
Affiliation(s)
- Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Justyna Meissner
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
169
|
Aptamers in diagnostics and treatment of viral infections. Viruses 2015; 7:751-80. [PMID: 25690797 PMCID: PMC4353915 DOI: 10.3390/v7020751] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus), HBV (Hepatitis B Virus), HCV (Hepatitis C Virus), SARS (Severe Acute Respiratory Syndrome), H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.
Collapse
|
170
|
Takahashi M, Burnett JC, Rossi JJ. Aptamer–siRNA Chimeras for HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:211-34. [DOI: 10.1007/978-1-4939-2432-5_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
171
|
Abstract
The in vivo application of aptamers as therapeutics could be improved by enhancing target-specific accumulation while minimizing off-target uptake. We designed a light-triggered system that permits spatiotemporal regulation of aptamer activity in vitro and in vivo. Cell binding by the aptamer was prevented by hybridizing the aptamer to a photo-labile complementary oligonucleotide. Upon irradiation at the tumor site, the aptamer was liberated, leading to prolonged intratumoral retention. The relative distribution of the aptamer to the liver and kidney was also significantly decreased, compared to that of the free aptamer.
Collapse
|
172
|
Oelkrug C, Sack U, Boldt A, Nascimento IC, Ulrich H, Fricke S. Antibody- and aptamer-strategies for GvHD prevention. J Cell Mol Med 2014; 19:11-20. [PMID: 25353670 PMCID: PMC4288345 DOI: 10.1111/jcmm.12416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
Prevention of Graft-versus-Host-Disease (GvHD) by preserved Graft-versus-Leukaemia (GvL) effect is one of the major obstacles following allogeneic haematopoietic stem cell transplantation. Currently used drugs are associated with side effects and were not able to separate GvHD from the GvL-effect because of general T-cell suppression. This review focuses on murine models for GvHD and currently available treatment options involving antibodies and applications for the therapeutic use of aptamers as well as strategies for targeting immune responses by allogenic antigens.
Collapse
Affiliation(s)
- Christopher Oelkrug
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
173
|
Takeuchi H. Midkine and multiple sclerosis. Br J Pharmacol 2014; 171:931-5. [PMID: 24460675 DOI: 10.1111/bph.12499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/06/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Multiple sclerosis (MS) is an autoimmune neurological disease characterized by inflammatory demyelination with subsequent neuronal damage in the CNS. MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have been thought as autoreactive Th1 and Th17 cell-mediated diseases. CD4(+) CD25(+) FoxP3(+) regulatory T-cell (Treg) plays a pivotal role in autoimmune tolerance, and tolerogenic dendritic cells (DCreg) drive the development of inducible Treg cells. Thus, a dysfunction in the development of Treg and DCreg leads to the development of autoimmune diseases. However, the factors that regulate Treg and DCreg are largely unknown. We recently showed that removal of midkine (MK) suppressed EAE due to an expansion of the Treg cell population as well as a decrease in the numbers of autoreactive Th1 and Th17 cells. MK decreased the Treg cell population by suppressing the phosphorylation of STAT5, which is essential for the expression of Foxp3, the master transcriptional factor of Treg cell differentiation. Furthermore, MK reduces the DCreg cell population by inhibiting the phosphorylation of STAT3, which is critical for DCreg development. Blockade of MK signalling by a specific RNA aptamer significantly elevated the population of DCreg and Treg cells and ameliorated EAE without detectable adverse effects. Therefore, the inhibition of MK may provide an effective therapeutic strategy against autoimmune diseases including MS. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
174
|
Abstract
In recent years aptamers, synthetic DNA or RNA single-chain oligonucleotides, have been used in various immunological studies to bind specific ligands. Detailed data on the interactions of an RNA aptamer with a human Fc fragment were obtained by X-ray crystallography. The complex formation involves multiple weak interactions that resemble protein-protein interactions. Aptamers specific to cell surface receptors may serve as antagonists or agonists blocking or stimulating cell activities. As aptamers can modify T-cell reactions, they could be useful in the treatment of chronic diseases such as autoimmune and oncological pathologies. In chimeras constructed for the delivery of active substances to defined targets, aptamers specific to surface proteins may be used to transport constructs directed to targets such as tumor cells. Aptamers are also employed as highly specific reagents in immunological assays after being labeled with reporter groups such as fluorescent dyes or following immobilization on insoluble carriers such as membranes or microspheres.
Collapse
Affiliation(s)
- Roald Nezlin
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
175
|
Zhu H, Li J, Zhang XB, Ye M, Tan W. Nucleic acid aptamer-mediated drug delivery for targeted cancer therapy. ChemMedChem 2014; 10:39-45. [PMID: 25277749 DOI: 10.1002/cmdc.201402312] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/21/2022]
Abstract
Aptamers are emerging as promising therapeutic agents and recognition elements. In particular, cell-SELEX (systematic evolution of ligands by exponential enrichment) allows in vitro selection of aptamers selective to whole cells without prior knowledge of the molecular signatures on the cell surface. The advantage of aptamers is their high affinitiy and binding specificity towards the target. This Minireview focuses on single-stranded (ss) oligonucleotide (DNA or RNA)-based aptamers as cancer therapeutics/theranostics. Specifically, aptamer-nanomaterial conjugates, aptamer-drug conjugates, targeted phototherapy and targeted biotherapy are covered in detail. In reviewing the literature, the potential of aptamers as delivery systems for therapeutic and imaging applications in cancer is clear, however, major challenges remain to be resolved, such as the poorly understood pharmacokinetics, toxicity and off-target effects, before they can be fully exploited in a clinical setting.
Collapse
Affiliation(s)
- Huijie Zhu
- Molecular Science & Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, and College of Biology, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082 (China)
| | | | | | | | | |
Collapse
|
176
|
Zhou J, Rossi J. Cell-type-specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Investig Med 2014; 62:914-9. [PMID: 25118114 PMCID: PMC4172518 DOI: 10.1097/jim.0000000000000103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human immunodeficiency virus (HIV) is a virus that causes acquired immunodeficiency syndrome, a chronic and incurable disease of the human immune system. As the standard of care for the patients with HIV-1, current highly active antiretroviral treatment has been therapeutically effective in most patients; however, it is not curative, and highly active antiretroviral treatment is intolerable because of severe adverse effects. Therefore, nucleic acid-based therapeutics, such as antisense oligonucleotide, ribozyme, messenger RNA, RNA interference (RNAi)-based therapeutics, aptamer, and so on, have been actively developed as alternative or adjuvant agents for those chemical antiviral drugs to surmount those drawbacks. The combinatorial use of various antiviral nucleic acids could be more efficacious in blocking viral replication and preventing the emergence of resistant variants. In this regard, RNAi can function as a gene-specific therapeutic option for controlling HIV-1 replication. Another type of therapeutic nucleic acid--aptamers--shows promise as a new and potent class of anti-HIV agent and can additionally function as a cell-type-specific delivery vehicle for targeted RNAi. The combined use of small interfering RNA (siRNAs) and aptamers could effectively block viral replication and prevent the emergence of resistant variants. The present review offers a brief overview of the use of cell-type-specific aptamer and aptamer-siRNA conjugates' development in our group for the treatment of HIV-1. Their potentials for targeted delivering RNAi therapeutics (eg, siRNA) and suppressing HIV-1 replication in vitro and in humanized animal model will be highlighted here.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| |
Collapse
|
177
|
Leija-Montoya AG, Benítez-Hess ML, Toscano-Garibay JD, Alvarez-Salas LM. Characterization of an RNA aptamer against HPV-16 L1 virus-like particles. Nucleic Acid Ther 2014; 24:344-55. [PMID: 25111024 PMCID: PMC4162430 DOI: 10.1089/nat.2013.0469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 07/15/2014] [Indexed: 01/05/2023] Open
Abstract
The human papillomavirus (HPV) capsid is mainly composed of the L1 protein that can self-assemble into virus-like particles (VLPs) that are structurally and immunologically similar to the infectious virions. We report here the characterization of RNA aptamers that recognize baculovirus-produced HPV-16 L1 VLPs. Interaction and slot-blot binding assays showed that all isolated aptamers efficiently bound HPV-16 VLPs, although the Sc5-c3 aptamer showed the highest specificity and affinity (Kd=0.05 pM). Sc5-c3 secondary structure consisted of a hairpin with a symmetric bubble and an unstructured 3'end. Biochemical and genetic analyses showed that the Sc5-c3 main loop is directly involved on VLPs binding. In particular, binding specificity appeared mediated by five non-consecutive nucleotide positions. Experiments using bacterial-produced HPV-16 L1 resulted in low Sc5-c3 binding, suggesting that recognition of HPV-16 L1 VLPs relies on quaternary structure features not present in bacteria-produced L1 protein. Sc5-c3 produced specific and stable binding to HPV-16 L1 VLPs even in biofluid protein mixes and thus it may provide a potential diagnostic tool for active HPV infection.
Collapse
Affiliation(s)
- Ana Gabriela Leija-Montoya
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| | - María Luisa Benítez-Hess
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| | | | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| |
Collapse
|
178
|
Affiliation(s)
- Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand Medical School, Parktown, South Africa
| |
Collapse
|
179
|
Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A 2014; 1358:217-24. [DOI: 10.1016/j.chroma.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
|
180
|
Li Q, Zhao X, Liu H, Qu F. Low pH capillary electrophoresis application to improve capillary electrophoresis-systematic evolution of ligands by exponential enrichment. J Chromatogr A 2014; 1364:289-94. [PMID: 25193175 DOI: 10.1016/j.chroma.2014.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/24/2022]
Abstract
In this work, a novel low pH CE-SELEX (LpH-CE-SELEX) as a CE-SELEX variant is proposed. Transferring (Trf), bovine serum albumin (BSA) and cytochrome c (Cyt c) as model protein are incubated with a FAM labeled ssDNA library, respectively. Incubation mixture is separated in low pH CE (pH 2.6), where positively charged protein, protein-ssDNA complex and negatively charged ssDNA library migrate oppositely without EOF driven. Analysis of protein-ssDNA complex under positive voltage and unbound ssDNA library under negative voltage by CE-UV are applied for interactive evaluation. By increasing injection time, larger amount protein-ssDNA complex can be collected conveniently at the cathode end whereas ssDNA migrates to anode. Finally, stability of protein-ssDNA complex in low pH CE separation is discussed.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xinying Zhao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Hongyang Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
181
|
Vitiello M, Tuccoli A, Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr) 2014; 38:17-28. [PMID: 25113790 DOI: 10.1007/s13402-014-0180-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs, pseudogenes and circRNAs) have recently come into light as powerful players in cancer pathogenesis and it is becoming increasingly clear that they have the potential of greatly contributing to the spread and success of personalized cancer medicine. In this concise review, we briefly introduce these three classes of long non-coding RNAs. We then discuss their applications as diagnostic and prognostic biomarkers. Finally, we describe their appeal as targets and as drugs, while pointing out the limitations that still lie ahead of their definitive entry into clinical practice.
Collapse
Affiliation(s)
- Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori c/o IFC-CNR, via Moruzzi 1, 56124, Pisa, Italy
| | | | | |
Collapse
|
182
|
New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e183. [PMID: 25093707 PMCID: PMC4221594 DOI: 10.1038/mtna.2014.34] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/10/2014] [Indexed: 12/24/2022]
Abstract
Single-stranded oligonucleotide aptamers have attracted great attention in the past decade because of their diagnostic and therapeutic potential. These versatile, high affinity and specificity reagents are selected by an iterative in vitro process called SELEX, Systematic Evolution of Ligands by Exponential Enrichment. Numerous SELEX methods have been developed for aptamer selections; some that are simple and straightforward, and some that are specialized and complicated. The method of SELEX is crucial for selection of an aptamer with desired properties; however, success also depends on the starting aptamer library, the target molecule, aptamer enrichment monitoring assays, and finally, the analysis and characterization of selected aptamers. Here, we summarize key recent developments in aptamer selection methods, as well as other aspects of aptamer selection that have significant impact on the outcome. We discuss potential pitfalls and limitations in the selection process with an eye to aid researchers in the choice of a proper SELEX strategy, and we highlight areas where further developments and improvements are desired. We believe carefully designed multiplexed selection methods, when complemented with high-throughput downstream analysis and characterization assays, will yield numerous high-affinity aptamers to protein and small molecule targets, and thereby generate a vast array of reagents for probing basic biological mechanisms and implementing new diagnostic and therapeutic applications in the near future.
Collapse
|
183
|
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e182. [PMID: 25093706 PMCID: PMC4221593 DOI: 10.1038/mtna.2014.32] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.
Collapse
Affiliation(s)
- Hongguang Sun
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xun Zhu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Jilin, China
| | | | - Roberto R Rosato
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Wen Tan
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
184
|
Zhu J, Huang H, Dong S, Ge L, Zhang Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014; 4:931-44. [PMID: 25057317 PMCID: PMC4107293 DOI: 10.7150/thno.9663] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics.
Collapse
|
185
|
Roberts TC, Morris KV. Not so pseudo anymore: pseudogenes as therapeutic targets. Pharmacogenomics 2014; 14:2023-34. [PMID: 24279857 DOI: 10.2217/pgs.13.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pseudogenes are junk DNA gene remnants generated by inactivating mutations or the loss of regulatory sequences, often following gene duplication or retrotransposition events. These pseudogenes have previously been considered to be molecular fossils derived from once-coding genes. In many cases, pseudogenes confer no observable selective advantage to the host organism and may be on a path towards removal from the genome. However, pseudogenes can also serve as raw material for the exaptation of novel functions, particularly in relation to the regulation of gene expression. Many pseudogenes are resurrected as noncoding RNA genes, which function in RNA-based gene regulatory circuits. As such, functional pseudogenes might simply be considered as 'genes'. Here, we discuss the role of these pseudogene-derived RNAs as regulators of gene expression in the context of human disease. In particular, we consider the manipulation of pseudogene transcripts through the use of antisense oligonucleotides, siRNAs, aptamers or classical gene therapy approaches as novel pharmacological strategies.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
186
|
Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e169. [PMID: 24936916 PMCID: PMC4078761 DOI: 10.1038/mtna.2014.21] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.
Collapse
|
187
|
Babu A, Templeton AK, Munshi A, Ramesh R. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech 2014; 15:709-21. [PMID: 24550101 DOI: 10.1208/s12249-014-0089-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/17/2014] [Indexed: 01/15/2023] Open
Abstract
Nanotechnology has enabled the development of novel therapeutic and diagnostic strategies, such as advances in targeted drug delivery systems, versatile molecular imaging modalities, stimulus responsive components for fabrication, and potential theranostic agents in cancer therapy. Nanoparticle modifications such as conjugation with polyethylene glycol have been used to increase the duration of nanoparticles in blood circulation and reduce renal clearance rates. Such modifications to nanoparticle fabrication are the initial steps toward clinical translation of nanoparticles. Additionally, the development of targeted drug delivery systems has substantially contributed to the therapeutic efficacy of anti-cancer drugs and cancer gene therapies compared with nontargeted conventional delivery systems. Although multifunctional nanoparticles offer numerous advantages, their complex nature imparts challenges in reproducibility and concerns of toxicity. A thorough understanding of the biological behavior of nanoparticle systems is strongly warranted prior to testing such systems in a clinical setting. Translation of novel nanodrug delivery systems from the bench to the bedside will require a collective approach. The present review focuses on recent research efforts citing relevant examples of advanced nanodrug delivery and imaging systems developed for cancer therapy. Additionally, this review highlights the newest technologies such as microfluidics and biomimetics that can aid in the development and speedy translation of nanodrug delivery systems to the clinic.
Collapse
|
188
|
Kotula JW, Sun J, Li M, Pratico ED, Fereshteh MP, Ahrens DP, Sullenger BA, Kovacs JJ. Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PLoS One 2014; 9:e93441. [PMID: 24736311 PMCID: PMC3988186 DOI: 10.1371/journal.pone.0093441] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/04/2014] [Indexed: 01/14/2023] Open
Abstract
β-arrestins, ubiquitous cellular scaffolding proteins that act as signaling mediators of numerous critical cellular pathways, are attractive therapeutic targets because they promote tumorigenesis in several tumor models. However, targeting scaffolding proteins with traditional small molecule drugs has been challenging. Inhibition of β-arrestin 2 with a novel aptamer impedes multiple oncogenic signaling pathways simultaneously. Additionally, delivery of the β-arrestin 2-targeting aptamer into leukemia cells through coupling to a recently described cancer cell-specific delivery aptamer, inhibits multiple β-arrestin-mediated signaling pathways known to be required for chronic myelogenous leukemia (CML) disease progression, and impairs tumorigenic growth in CML patient samples. The ability to target scaffolding proteins such as β-arrestin 2 with RNA aptamers may prove beneficial as a therapeutic strategy. Highlights
Collapse
Affiliation(s)
- Jonathan W. Kotula
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jinpeng Sun
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Margie Li
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elizabeth D. Pratico
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark P. Fereshteh
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Douglas P. Ahrens
- b3 bio, Inc. Research Triangle Park, North Carolina, United States of America
| | - Bruce A. Sullenger
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey J. Kovacs
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- b3 bio, Inc. Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
189
|
Peptide-based technologies to alter adenoviral vector tropism: ways and means for systemic treatment of cancer. Viruses 2014; 6:1540-63. [PMID: 24699364 PMCID: PMC4014709 DOI: 10.3390/v6041540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors.
Collapse
|
190
|
Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov Today 2014; 19:1309-21. [PMID: 24598791 DOI: 10.1016/j.drudis.2014.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
Aptamers have emerged as a novel and powerful class of biomolecules with an immense untapped potential. The ability to synthesise highly specific aptamers against any molecular target make them a vital cog in the design of effective therapeutics for the future. However, only a minutia of the enormous potential of this dynamic class of molecule has been exploited. Several aptamers have been studied for the treatment of eye-related disorders, and one such strategy has been successful in therapy. This review gives an account of several eye diseases and their regulatory biomolecules where other nucleic acid therapeutics have been attempted with limited success and how aptamers, with their exceptional flexibility to chemical modifications, can overcome those inherent shortcomings.
Collapse
|
191
|
Current progress on aptamer-targeted oligonucleotide therapeutics. Ther Deliv 2014; 4:1527-46. [PMID: 24304250 DOI: 10.4155/tde.13.118] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted.
Collapse
|
192
|
Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing FL, Tan W. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc 2014; 136:2731-4. [PMID: 24483627 PMCID: PMC3985443 DOI: 10.1021/ja4117395] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Aptamer–drug conjugates (ApDCs)
are promising targeted drug
delivery systems for reducing toxicity while increasing the efficacy
of chemotherapy. However, current ApDC technologies suffer from problems
caused by the complicated preparation and low controllability of drug–aptamer
conjugation. To solve such problems, we have designed and synthesized
a therapeutic module for solid phase synthesis, which is a phosphoramdite
containing an anticancer drug moiety and a photocleavable linker.
Using this module, we have realized automated and modular synthesis
of ApDCs, and multiple drugs were efficiently incorporated into ApDCs
at predesigned positions. The ApDCs not only recognize target cancer
cells specifically, but also release drugs in a photocontrollable
manner. We demonstrated the potential of automated and modular ApDC
technology for applications in targeted cancer therapy.
Collapse
Affiliation(s)
- RuoWen Wang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Cibiel A, Nguyen Quang N, Gombert K, Thézé B, Garofalakis A, Ducongé F. From ugly duckling to swan: unexpected identification from cell-SELEX of an anti-Annexin A2 aptamer targeting tumors. PLoS One 2014; 9:e87002. [PMID: 24489826 PMCID: PMC3906106 DOI: 10.1371/journal.pone.0087002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022] Open
Abstract
Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application.
Collapse
Affiliation(s)
- Agnes Cibiel
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Nam Nguyen Quang
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Karine Gombert
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Benoit Thézé
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Anikitos Garofalakis
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Frédéric Ducongé
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
- * E-mail:
| |
Collapse
|
194
|
Vivekananda J, Salgado C, Millenbaugh NJ. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem Biophys Res Commun 2014; 444:433-8. [PMID: 24472539 DOI: 10.1016/j.bbrc.2014.01.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections.
Collapse
Affiliation(s)
- Jeevalatha Vivekananda
- Maxillofacial Injury and Disease Department, Craniofacial Health and Restorative Medicine, Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, TX 78234, USA
| | - Christi Salgado
- Maxillofacial Injury and Disease Department, Craniofacial Health and Restorative Medicine, Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, TX 78234, USA
| | - Nancy J Millenbaugh
- Maxillofacial Injury and Disease Department, Craniofacial Health and Restorative Medicine, Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
195
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
196
|
Scaggiante B, Dapas B, Grassi M, Zanconati F, Farra R, Tonon F, Fiorentino SM, Abrami M, Grassi G. Nucleic acid-based aptamers and their applications. NUCLEIC ACID-BASED DRUGS 2013:54-71. [DOI: 10.4155/ebo.13.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bruna Scaggiante
- Bruna Scaggiante is researcher in the Department of Life Sciences, University of Trieste, Italy. She is a member of the editorial boards of World Journal of Clinical Oncology and Oncology Discovery, and is President of the Trieste section of the Italian League Against Cancer
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Banerjee J, Nilsen-Hamilton M. Aptamers: multifunctional molecules for biomedical research. J Mol Med (Berl) 2013; 91:1333-42. [PMID: 24045702 DOI: 10.1007/s00109-013-1085-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.
Collapse
Affiliation(s)
- Jayeeta Banerjee
- Biology Department, Indian Institute of Science Education and Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune, 411008, India,
| | | |
Collapse
|
198
|
Petkovic S, Müller S. RNA self-processing: formation of cyclic species and concatemers from a small engineered RNA. FEBS Lett 2013; 587:2435-40. [PMID: 23796421 DOI: 10.1016/j.febslet.2013.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023]
Abstract
We have engineered a self-processing RNA, derived from the hairpin ribozyme that runs through a cascade of cleavage and ligation reactions thereby changing its topology. The first two cleavage events leave the resulting RNA with a 5'-OH group and a 2',3'-cyclic phosphate. Thus, upon refolding, intramolecular ligation delivers a cyclic species. In addition, we demonstrate formation of concatemers resulting from multiple intermolecular ligations. Our results demonstrate the potential of RNA for self-supported topology changes and support the suggestion of 2',3'-cyclic phosphates being suitable activated building blocks for reversible phosphodiester bond formation in the RNA world.
Collapse
Affiliation(s)
- Sonja Petkovic
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | | |
Collapse
|
199
|
Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol Adv 2013; 31:1260-74. [PMID: 23632375 DOI: 10.1016/j.biotechadv.2013.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/27/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
Aptamers emerged over 20 years ago as a class of nucleic acids able to recognize specific targets. Today, aptamer-related studies constitute a large and important field of biotechnology. Functional oligonucleotides have proved to be a versatile tool in biomedical research due to the ease of synthesis, a wide range of potentially recognized molecular targets and the simplicity of selection. Similarly to antibodies, aptamers can be used to detect or isolate specific molecules, as well as to act as targeting and therapeutic agents. In this review we present different approaches to aptamer application in nanobiotechnology, diagnostics and medicine.
Collapse
Affiliation(s)
- Filip Radom
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
200
|
Conidi A, van den Berghe V, Huylebroeck D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci 2013; 14:6690-719. [PMID: 23531534 PMCID: PMC3645661 DOI: 10.3390/ijms14046690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
The smooth identification and low-cost production of highly specific agents that interfere with signaling cascades by targeting an active domain in surface receptors, cytoplasmic and nuclear effector proteins, remain important challenges in biomedical research. We propose that peptide aptamers can provide a very useful and new alternative for interfering with protein–protein interactions in intracellular signal transduction cascades, including those emanating from activated receptors for growth factors. By their targeting of short, linear motif type of interactions, peptide aptamers have joined nucleic acid aptamers for use in signaling studies because of their ease of production, their stability, their high specificity and affinity for individual target proteins, and their use in high-throughput screening protocols. Furthermore, they are entering clinical trials for treatment of several complex, pathological conditions. Here, we present a brief survey of the use of aptamers in signaling pathways, in particular of polypeptide growth factors, starting with the published as well as potential applications of aptamers targeting Epidermal Growth Factor Receptor signaling. We then discuss the opportunities for using aptamers in other complex pathways, including Wnt/β-catenin, and focus on Transforming Growth Factor-β/Smad family signaling.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Campus Gasthuisberg, Building Ond & Nav4 p.o.box 812, room 05.313, Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|