151
|
Lin L, Yang S, Xiao Z, Hong P, Sun S, Zhou C, Qian ZJ. The Inhibition Effect of the Seaweed Polyphenol, 7-Phloro-Eckol from Ecklonia Cava on Alcohol-Induced Oxidative Stress in HepG2/CYP2E1 Cells. Mar Drugs 2021; 19:158. [PMID: 33802989 PMCID: PMC8002839 DOI: 10.3390/md19030158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is vulnerable to oxidative stress-induced damage, which leads to many diseases, including alcoholic liver disease (ALD). Liver disease endanger people's health, and the incidence of ALD is increasing; therefore, prevention is very important. 7-phloro-eckol (7PE) is a seaweed polyphenol, which was isolated from Ecklonia cava in a previous study. In this study, the antioxidative stress effect of 7PE on HepG2/CYP2E1 cells was evaluated by alcohol-induced cytotoxicity, DNA damage, and expression of related inflammation and apoptosis proteins. The results showed that 7PE caused alcohol-induced cytotoxicity to abate, reduced the amount of reactive oxygen species (ROS) and nitric oxide (NO), and effectively inhibited DNA damage in HepG2/CYP2E1 cells. Additionally, the expression levels of glutathione (GSH), superoxide dismutase (SOD), B cell lymphoma 2 (Bcl-2), and Akt increased, while γ-glutamyltransferase (GGT), Bcl-2 related x (Bax), cleaved caspase-3, cleaved caspase-9, nuclear factor-κB (NF-κB), and JNK decreased. Finally, molecular docking proved that 7PE could bind to BCL-2 and GSH protein. These results indicate that 7PE can alleviate the alcohol-induced oxidative stress injury of HepG2 cells and that 7PE may have a potential application prospect in the future development of antioxidants.
Collapse
Affiliation(s)
- Liyuan Lin
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengtao Yang
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Zhenbang Xiao
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Pengzhi Hong
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengli Sun
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
| | - Chunxia Zhou
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| |
Collapse
|
152
|
Lim YJ, Kwon SJ, Qu S, Kim DG, Eom SH. Antioxidant Contributors in Seed, Seed Coat, and Cotyledon of γ-ray-Induced Soybean Mutant Lines with Different Seed Coat Colors. Antioxidants (Basel) 2021; 10:antiox10030353. [PMID: 33652948 PMCID: PMC7996878 DOI: 10.3390/antiox10030353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
The development of soybean with high antioxidant activities for use in the food and cosmetics industries is a target of breeding programs. In soybean, antioxidants are associated with seed color, although the metabolic basis for seed coloration remains incompletely understood. We selected six γ-ray-induced mutant lines that exhibited black, partially black, brown, partially brown, or yellowish-white pigmentation in the seed coat. Antioxidant activity and contents of anthocyanins, flavan-3-ols, and isoflavones were evaluated in the seed coat and cotyledons. The lines with black or brown seeds showed the highest antioxidant activities. The cotyledons showed no significant differences in seed coat components or antioxidant activities among lines. Black and brown seed coat components showed the highest antioxidant activities. The black seed coat contained five anthocyanins, whereas seed coats of brown- and yellow-seeded lines entirely lacked anthocyanins. Both black and brown seeds were rich in flavan-3-ols, including catechin and epicatechin, which were the predominant antioxidant contributors in brown seeds. Isoflavone contents showed weaker correlations with antioxidant activity than anthocyanins and flavan-3-ols. These results demonstrated that antioxidant activities were determined by anthocyanins in black seeds and flavan-3-ols in brown and black seeds, whereas relatively low antioxidant activities in yellow seeds reflected their high isoflavone contents.
Collapse
Affiliation(s)
- You Jin Lim
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (S.Q.)
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (S.-J.K.); (D.-G.K.)
| | - Shanshan Qu
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (S.Q.)
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (S.-J.K.); (D.-G.K.)
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (S.Q.)
- Correspondence: ; Tel.: +82-31-201-3860
| |
Collapse
|
153
|
Nicolás-García M, Perucini-Avendaño M, Jiménez-Martínez C, Perea-Flores MDJ, Gómez-Patiño MB, Arrieta-Báez D, Dávila-Ortiz G. Bean phenolic compound changes during processing: Chemical interactions and identification. J Food Sci 2021; 86:643-655. [PMID: 33586793 DOI: 10.1111/1750-3841.15632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/08/2020] [Accepted: 01/10/2021] [Indexed: 12/18/2022]
Abstract
The common bean (Phaseolus vulgaris L.) represents one of the main crops for human consumption, due to its nutritional and functional qualities. Phenolic compounds have beneficial health effects, and beans are an essential source of these molecules, being found mainly in the seed coat and its color depends on the concentration and type of phenolic compounds present. The bean during storage and processing, such as cooking, germination, extrusion, and fermentation, undergoes physical, chemical, and structural changes that affect the bioavailability of its nutrients; these changes are related to the interactions between phenolic compounds and other components of the food matrix. This review provides information about the identification and quantification of phenolic compounds present in beans and the changes they undergo during processing. It also includes information on the interactions between the phenolic compounds and the components of the bean's cell wall and the analytical methods used to identify the interactions of phenolic compounds with macromolecules.
Collapse
Affiliation(s)
- Mayra Nicolás-García
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Madeleine Perucini-Avendaño
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Mayra Beatriz Gómez-Patiño
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Daniel Arrieta-Báez
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Gloria Dávila-Ortiz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| |
Collapse
|
154
|
Autoclaved and Extruded Legumes as a Source of Bioactive Phytochemicals: A Review. Foods 2021; 10:foods10020379. [PMID: 33572460 PMCID: PMC7919342 DOI: 10.3390/foods10020379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Legumes have been consumed since ancient times all over the world due to their easy cultivation and availability as a low-cost food. Nowadays, it is well known that pulses are also a good source of bioactive phytochemicals that play an important role in the health and well-being of humans. Pulses are mainly consumed after processing to soften cotyledons and to improve their nutritive and sensorial characteristics. However, processing affects not only their nutritive constituents, but also their bioactive compounds. The final content of phytochemicals depends on the pulse type and variety, the processing method and their parameters (mainly temperature and time), the food matrix structure and the chemical nature of each phytochemical. This review focuses on the changes produced in the bioactive-compound content of pulses processed by a traditional processing method like cooking (with or without pressure) or by an industrial processing technique like extrusion, which is widely used in the food industry to develop new food products with pulse flours as ingredients. In particular, the effect of processing methods on inositol phosphates, galactosides, protease inhibitors and phenolic-compound content is highlighted in order to ascertain their content in processed pulses or pulse-based products as a source of healthy phytochemicals.
Collapse
|
155
|
Mullins AP, Arjmandi BH. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021; 13:519. [PMID: 33562498 PMCID: PMC7915747 DOI: 10.3390/nu13020519] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, claiming over 650,000 American lives annually. Typically not a singular disease, CVD often coexists with dyslipidemia, hypertension, type-2 diabetes (T2D), chronic system-wide inflammation, and obesity. Obesity, an independent risk factor for both CVD and T2D, further worsens the problem, with over 42% of adults and 18.5% of youth in the U.S. categorized as such. Dietary behavior is a most important modifiable risk factor for controlling the onset and progression of obesity and related disease conditions. Plant-based eating patterns that include beans and legumes support health and disease mitigation through nutritional profile and bioactive compounds including phytochemical. This review focuses on the characteristics of beans and ability to improve obesity-related diseases and associated factors including excess body weight, gut microbiome environment, and low-grade inflammation. Additionally, there are growing data that link obesity to compromised immune response and elevated risk for complications from immune-related diseases. Body weight management and nutritional status may improve immune function and possibly prevent disease severity. Inclusion of beans as part of a plant-based dietary strategy imparts cardiovascular, metabolic, and colon protective effects; improves obesity, low-grade inflammation, and may play a role in immune-related disease risk management.
Collapse
Affiliation(s)
- Amy P. Mullins
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
- Department of Family and Consumer Sciences--Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA
| | - Bahram H. Arjmandi
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
156
|
Punia S, Kumar M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
157
|
Ma Y, Gao J, Wei Z, Shahidi F. Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow colored pea hulls. Food Chem 2021; 337:127606. [PMID: 32799168 DOI: 10.1016/j.foodchem.2020.127606] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
To explore the effect of digestion on pea hull phenolics, an in vitro model consisting sequential oral, gastric, small and large intestinal digestions was applied to pea hulls. The phenolic content and antioxidant activity of the samples collected from these digestion steps were determined. The phenolics in these samples generally decreased in the order of sequential digestions in both red and yellow hull series, and no significant increase of total phenolic content (TPC), total flavonoid content (TFC) and individual phenolics were found in most digested groups compared with the corresponding control groups. The antioxidant activity of the samples generally changed according to their TPC and strong correlations (r > 0.92, p < 0.001) existed between them in red hull series. The present study implies that phenolics are released gradually from pea hulls during in vitro digestion and their release was mainly due to the pH of the digestion.
Collapse
Affiliation(s)
- Yilong Ma
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Jie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
158
|
Loader TB, Zahradka P, Ahmadi S, Taylor CG. Processing method modulates the effectiveness of black beans for lowering blood cholesterol in spontaneously hypertensive rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:449-458. [PMID: 32648589 DOI: 10.1002/jsfa.10654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Various foods are known to have beneficial effects on health when consumed whole; however, there is a trend towards preparing foods from processed ingredients, and it remains unclear whether the benefits of the whole food are retained. The purpose of this study was therefore to examine whether different processing techniques affect the lowering of cholesterol and the vascular effects of black beans (Phaseolus vulgaris L.). RESULTS Beans were prepared by overnight soaking and boiling - the standard method - and by micronization, extrusion, or dehulling and boiling, and they were then fine milled. Beans prepared by the standard method were also coarse milled. These five materials were incorporated into semi-purified diets (30% wt/wt) and fed to spontaneously hypertensive rats for 4 weeks. Body weight, blood pressure, and aorta morphology were unaltered by the diets. Fasting total cholesterol was significantly reduced in rats fed micronized beans compared with extruded beans (both fine-milled) or the bean-free diet, while boiling combined with coarse milling lowered low-density lipoprotein (LDL) cholesterol. The lack of cholesterol lowering in rats fed extruded bean compared to micronized was not explained by the amount or composition of dietary fiber or resistant starch. Differences in the polyphenolic profile as determined by high-performance liquid chromatography (HPLC) were also unable to explain the variations in cholesterol-lowering capacity. CONCLUSION The present study demonstrates that processing of black beans alters the health effects observed with the whole pulse, and suggests that products prepared with processed ingredients will need to be tested empirically to establish whether the biological effects are maintained in vivo. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tara B Loader
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Shokoufeh Ahmadi
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
159
|
Dantas FGDS, Castilho PFD, Almeida-Apolonio AAD, Araújo RPD, Oliveira KMPD. Mutagenic potential of medicinal plants evaluated by the Ames Salmonella/microsome assay: A systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108338. [PMID: 33339578 DOI: 10.1016/j.mrrev.2020.108338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
The Ames test has become one of the most commonly used tests to assess the mutagenic potential of medicinal plants since they have several biological activities and thus have been used in traditional medicine and in the pharmaceutical industry as a source of raw materials. Accordingly, this review aims to report previous use of the Ames test to evaluate the mutagenic potential of medicinal plants. A database was constructed by curating literature identified by a search on the electronic databases Medline (via Pubmed), Science Direct, Scopus, and Web of Science from 1975 to April 2020, using the following terms: "genotoxicity tests" OR "mutagenicity tests" OR "Ames test" AND "medicinal plants." From the research, 239 articles were selected, including studies of 478 species distributed across 111 botanical families, with Fabaceae, Asteraceae and Lamiaceae being the most frequent. It was identified that 388 species were non-mutagenic. Of these, 21% (83/388) showed antimutagenic potential, most notable in the Lamiaceae family. The results also indicate that 18% (90/478) of the species were mutagenic, of which 54% were mutagenic in the presence and absence of S9. Strains TA98 and TA100 showed a sensitivity of 93% in detecting plant extracts with mutagenic potential. However, the reliability of many reviewed studies regarding the botanical extracts may be questioned due to technical issues, such as testing being performed only in the presence or absence of S9, use of maximum doses below 5 mg/plate and lack of information on the cytotoxicity of tested doses. These methodological aspects additionally demonstrated that a discussion about the doses used in research on mixtures, such as the ones assessed with botanical extracts and the most sensitive strains employed to detect the mutagenic potential, should be included in a possible update of the guidelines designed by the regulatory agencies.
Collapse
Affiliation(s)
- Fabiana Gomes da Silva Dantas
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | | | - Renata Pires de Araújo
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
160
|
Cui J, Xia P, Zhang L, Hu Y, Xie Q, Xiang H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem 2020; 333:127527. [PMID: 32683263 DOI: 10.1016/j.foodchem.2020.127527] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 07/05/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to develop a novel fermented soybean food (FSF) using selected Bacillus subtilis GD1, Bacillus subtilis N4, Bacillus velezensis GZ1, Lactobacillus delbrueckii subsp. bulgaricus and Hansenula anomala, as well as to assess its antioxidant and anti-fatigue activity. These Bacillus strains had excellent enzyme producing and soybean transformation capacity. FSF showed the highest peptide, total phenol, total flavonoid content, antioxidant activity, and suitable organic acid and biological amine content. In intense exercise mice, FSF treatment markedly increased hepatic glycogen level, decreased metabolite accumulation, improved the activities of antioxidant enzymes and decreased malondialdehyde (MDA) level in serum and liver, respectively. Furthermore, FSF treatment increased nuclear factor-erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE)-dependent gene expression. Together, the selection of microbial starter culture and mixed culture fermentation are essential for the effective enrichment of bioactive compounds, and FSF has stronger antioxidant and anti-fatigue activity.
Collapse
Affiliation(s)
- Jingwen Cui
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Peibin Xia
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Lingling Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Yu Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|
161
|
Zhu L, Li W, Deng Z, Li H, Zhang B. The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods 2020; 9:E1816. [PMID: 33297502 PMCID: PMC7762431 DOI: 10.3390/foods9121816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
The composition and antioxidant activity of bound phenolics in three legumes (soybean, vicia faba, and kidney bean), and their metabolism and bioaccessibility in the gastrointestinal tract were investigated in this study. The total phenolic content, total flavonoid content, and antioxidant activities (ABTS and FRAP) were evaluated. The phytochemical compositions of the three legumes after acid/alkaline hydrolysis, simulated gastrointestinal digestion, and colonic fermentation were identified and quantified by UPLC-ESI-QTOF-MS/MS and HPLC-ESI-QqQ-MS/MS. The results showed that the three legumes were rich in bound phenolic compounds, and possessed a strong antioxidant activity; among which kidney bean showed a higher bound flavonoid content and antioxidant activity than the other two legumes. Alkaline hydrolysis allowed a more thorough extraction of the bound phenolics of the three legumes than acid hydrolysis. The released contents of bound phenolics were extremely low in in vitro digestion, whereas colonic fermentation favored the release of more phenolic compounds. Kidney bean, which presented the highest bound flavonoid content and antioxidant activity, had the lowest bioaccessibility. Our study provides a wider insight into the constituents and bioavailability of bound phenolic compounds in the three legumes.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
| | - Wenting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
| |
Collapse
|
162
|
Improving Polyphenolic Compounds: Antioxidant Activity in Chickpea Sprouts through Elicitation with Hydrogen Peroxide. Foods 2020; 9:foods9121791. [PMID: 33276547 PMCID: PMC7761555 DOI: 10.3390/foods9121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Elicitation appears to be a promising alternative to enhance the bioactive compound content and biological activities of legume sprouts. Multi-response optimization by response surface methodology (RSM) with desirability function (DF) was used to optimize the elicitor concentration (hydrogen peroxide (H2O2)) and germination time in order to maximize total phenolic content (TPC), total flavonoids content (TFC), and antioxidant activity (AOX) of chickpea sprouts. Chemical, antinutritional, and nutraceutical properties of optimized chickpea sprouts (OCS) were also determined. The predicted regression models developed were efficiently fitted to the experimental data. The results of the desirability function revealed that optimum attributes in chickpea sprouts can be achieved by the application of 30 mM H2O2 and 72 h of germination time, with global desirability value D = 0.893. These OCS had higher (p < 0.05) TPC (7.4%), total iso-flavonoids (16.5%), AOX (14.8%), and lower phytic acid (16.1%) and saponins (21.8%) compared to H2O2 non-treated chickpea sprouts. Optimized germination conditions slightly modified the flavonoid profile in chickpea; eight iso-flavonoids were identified in OCS, including formononetin and biochanin A, which were identified as the major compounds. Results from this study support elicitation with H2O2 as an effective approach to improve phytochemical content and antioxidant activity in chickpea sprouts.
Collapse
|
163
|
Cid-Gallegos MS, Sánchez-Chino XM, Juárez Chairez MF, Álvarez González I, Madrigal-Bujaidar E, Jiménez-Martínez C. Anticarcinogenic Activity of Phenolic Compounds from Sprouted Legumes. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1840581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Xariss M. Sánchez-Chino
- Cátedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Villahermosa, Mexico
| | - Milagros Faridy Juárez Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Isela Álvarez González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
164
|
Acyl Lipids and Lipophilic and Phenolic Compounds from Rare Plant Species. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
165
|
Stodolak B, Starzyńska-Janiszewska A, Mika M, Wikiera A. Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules 2020; 25:E4759. [PMID: 33081302 PMCID: PMC7587534 DOI: 10.3390/molecules25204759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Tempe-type fermentation originating from Indonesia can enhance the antioxidant activity of plant material. However, this biological potential depends on substrates and applied microorganisms. This study aimed to determine whether co-fermentation with Rhizopus oligosporus and Lactobacillus plantarum improved antioxidant activity of tempe obtained from grass pea seeds with flaxseed oil-cake addition (up to 30%). For this purpose, substances reacting with Folin-Ciocalteu reagent and free radicals scavenging potential were measured in water-soluble fractions and dialysates from simulated in vitro digestion. Additionally, the water-soluble phenolic profile was estimated. The higher level of water-extractable compounds with antioxidant activity was determined in co-fermentation products than in fungal fermentation products. Moreover, the fermentation process with the use of L. plantarum contributed to a greater accumulation of some phenolic acids (gallic acid, protocatechuic acid) in tempe without having a negative effect on the levels of other phenolic compounds determined in fungal fermented tempe. During in vitro digestion simulating the human digestive tract, more antioxidant compounds were released from products obtained after co-fermentation than fungal fermentation. An addition of 20% flaxseed oil-cake and the application of bacterial-fungal co-fermentation, can be considered as an alternative tool to enhance the antioxidant parameters of grass pea tempe.
Collapse
Affiliation(s)
- Bożena Stodolak
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (A.S.-J.); (M.M.); (A.W.)
| | | | | | | |
Collapse
|
166
|
Prosopis nigra fruits waste characterization, a potential source of functional ingredients for food formulations. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
167
|
Teka TA, Retta N, Bultosa G, Udenigwe C, Shumoy H, Raes K. Phytochemical profiles and antioxidant capacity of improved cowpea varieties and landraces grown in Ethiopia. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
168
|
Yamashita Y, Sakakibara H, Toda T, Ashida H. Insights into the potential benefits of black soybean ( Glycine max L.) polyphenols in lifestyle diseases. Food Funct 2020; 11:7321-7339. [PMID: 32852022 DOI: 10.1039/d0fo01092h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Black soybean (Glycine max L.), a cultivar containing abundant polyphenols in its seed coat such as anthocyanins and flavan-3-ols, has been reported to possess various health benefits toward lifestyle diseases. In this review article, the safety evaluation of polyphenol-rich black soybean seed coat extract (BE) and absorption of BE polyphenols are summarized. Additionally, we describe the antioxidant activity of BE polyphenols and their ability to induce antioxidant enzymes. The health benefits of BE and its polyphenols, such as anti-obesity and anti-hyperglycemic activities through the activation of AMP-activated protein kinase and translocation of glucose transporter 4, respectively, are also discussed. Furthermore, we found that black soybean polyphenols were involved in the improvement of vascular function. These emerging data require further investigation in scientific studies and human trials to evaluate the prevention of lifestyle diseases using black soybean polyphenols.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | | | - Toshiya Toda
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya 663-8558, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
169
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
170
|
Gonzalez M, Alvarez‐Ramirez J, Vernon‐Carter EJ, Reyes I, Alvarez‐Poblano L. Effect of the Drying Temperature on Color, Antioxidant Activity and In Vitro Digestibility of Green Pea (
Pisum sativum
L.) Flour. STARCH-STARKE 2020. [DOI: 10.1002/star.201900228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manolo Gonzalez
- Departamento de Ingeniería de Procesos e Hidráulica Universidad Autónoma Metropolitana‐Iztapalapa Apartado Postal 55–534 Iztapalapa CDMX 09340 Mexico
| | - Jose Alvarez‐Ramirez
- Departamento de Ingeniería de Procesos e Hidráulica Universidad Autónoma Metropolitana‐Iztapalapa Apartado Postal 55–534 Iztapalapa CDMX 09340 Mexico
| | - E. Jaime Vernon‐Carter
- Departamento de Ingeniería de Procesos e Hidráulica Universidad Autónoma Metropolitana‐Iztapalapa Apartado Postal 55–534 Iztapalapa CDMX 09340 Mexico
| | - Isabel Reyes
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo (ITESA) Tecnológico Nacional de México División de Industrias Alimentarias Apan Hidalgo 43900 Mexico
| | - Lurdes Alvarez‐Poblano
- Departamento de Biotecnología Universidad Autónoma Metropolitana‐Iztapalapa Apartado Postal 55–535 Iztapalapa CDMX 09340 Mexico
| |
Collapse
|
171
|
Munekata PES, Gullón B, Pateiro M, Tomasevic I, Domínguez R, Lorenzo JM. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants (Basel) 2020; 9:E815. [PMID: 32883005 PMCID: PMC7555033 DOI: 10.3390/antiox9090815] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
The use of synthetic antioxidants in the food industry has raised important questions about the effects of prolonged consumption on human health. On top of that, the consumption of meat products has been changing due to the awareness generated by health-related organizations. In this sense, exploring strategies to develop and produce healthier meat products has become a paramount concern. Several studies explored the composition of several seeds to characterize and explore the compounds with antioxidant activity, which are mainly composed of polyphenols. The use of antioxidant extracts in meat products has shown important results to delay the oxidative reactions in meat products derived from the processing and storage of meat products. Moreover, these extracts can also replace synthetic antioxidants and preserve the quality of meat products. Therefore, the aims of this review are first, to present the sources and compounds with antioxidant activity in seeds, and second, to discuss their protective effect against oxidative reactions in meat products.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.G.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, Nemanjina 6, University of Belgrade, 11080 Belgrade, Serbia;
| | - Ruben Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.G.); (R.D.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
172
|
Cid-Gallegos MS, Sánchez-Chino XM, Álvarez-González I, Madrigal-Bujaidar E, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Dávila-Ortíz G, Jiménez-Martínez C. Modification of In Vitro and In Vivo Antioxidant Activity by Consumption of Cooked Chickpea in a Colon Cancer Model. Nutrients 2020; 12:E2572. [PMID: 32854249 PMCID: PMC7551972 DOI: 10.3390/nu12092572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chickpea has been classified as a nutraceutical food due to its phytochemical compounds, showing antioxidant, anti-inflammatory, and anticancer activity. To investigate this, we evaluated the effect of cooking on the nutritional and non-nutritional composition and the in vitro and in vivo antioxidant activity of chickpea seed. The latter was determined by the variation in the concentration of nitric oxide (NO), oxidized carbonyl groups (CO), malondialdehyde (MDA), and the expression of 4-hydroxy-2-nonenal (4-HNE) in the colon of male BALB/c mice fed with a standard diet with 10 and 20% cooked chickpea (CC). We induced colon cancer in mice by administering azoxymethane/dextran sulfate sodium (AOM/DSS); for the evaluation, these were sacrificed 1, 7, and 14 weeks after the induction. Results show that cooking does not significantly modify (p < 0.05) nutritional compounds; however, it decreases the concentration of non-nutritional ones and, consequently, in vitro antioxidant activity. The in vivo evaluation showed that animals administered with AOM/DSS presented higher concentrations of NO, CO, MDA, and 4-HNE than those in animals without AOM/DSS administration. However, in the three evaluated times, these markers were significantly reduced (p < 0.05) with CC consumption. The best effect on the oxidation markers was with the 20% CC diet, demonstrating the antioxidant potential of CC.
Collapse
Affiliation(s)
- María S. Cid-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| | - Xariss M. Sánchez-Chino
- Catedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Tabasco 86280, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Verónica R. Vásquez-Garzón
- Catedra-CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Rafael Baltiérrez-Hoyos
- Catedra-CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Gloria Dávila-Ortíz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| |
Collapse
|
173
|
Simultaneous determination of antioxidant properties and total phenolic content of Siraitia grosvenorii by near infrared spectroscopy. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
174
|
Li MN, Wang HY, Wang R, Li CR, Shen BQ, Gao W, Li P, Yang H. A modified data filtering strategy for targeted characterization of polymers in complex matrixes using drift tube ion mobility-mass spectrometry: Application to analysis of procyanidins in the grape seed extracts. Food Chem 2020; 321:126693. [DOI: 10.1016/j.foodchem.2020.126693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
|
175
|
Antioxidant Effects and Cytoprotective Potentials of Herbal Tea against H 2O 2-Induced Oxidative Damage by Activating Heme Oxygenase1 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7187946. [PMID: 32695819 PMCID: PMC7361890 DOI: 10.1155/2020/7187946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022]
Abstract
Herbal tea with antioxidant ingredients has gained increasing attention in the field of functional foods due to their amelioration potential in aging-related diseases. Wanglaoji herbal tea (WHT) is a kind of traditional beverage made from herbal materials. This study was performed to investigate its antioxidant activity and identify its protective effect on a H2O2-induced cell damage model. In this study, we identified six kinds of phenolic acids with antioxidant activity in WHT, among which rosmarinic acid had the highest content and the highest contribution ratio to the antioxidant activity of WHT. Moreover, compared with the H2O2-induced damage group, the WHT treatment group can significantly increase the viability of cells and decrease the ratio of senescence-associated β-galactosidase-positive cells, intracellular malondialdehyde levels, and the percentage of G1 phase. Furthermore, enrichment analysis of differentially expressed genes revealed that heme oxygenase1 (HMOX1) was a key gene for protective effect of WHT on oxidative stress-induced cell damage. Thus, WHT exerted protective effects not only by scavenging reactive oxygen species but also by inducing the expression of cytoprotective genes by activating the HMOX1 pathway, which showed that WHT had a potential of promoting health by reducing oxidative stress-induced cell damage.
Collapse
|
176
|
Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 2020; 44:e13394. [PMID: 32691460 DOI: 10.1111/jfbc.13394] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
In this review, the concept of phenolic antioxidants, mechanisms of action, and applications have been reviewed. Phenolic compounds (PCs) acts as an antioxidant by reacting with a variety of free radicals. The mechanism of antioxidant actions involved either by hydrogen atom transfer, transfer of a single electron, sequential proton loss electron transfer, and chelation of transition metals. In foods, the PCs act as antioxidants which are measured with several in vitro spectroscopic methods. The PCs have been found in milk and a wide range of dairy products with sole purposes of color, taste, storage stability, and quality enhancement. The role of PCs in three types of food additives, that is, antimicrobial, antioxidant, and flavoring agents have been critically reviewed. The literature revealed that PCs present in a variety of foods possess several health benefits such as antibacterial, antihyperlipidemic, anticancer, antioxidants, cardioprotective, neuroprotective, and antidiabetic properties. PRACTICAL APPLICATIONS: Phenolic compounds are strong antioxidants and are safer than synthetic antioxidants. The wide occurrence in plant foods warranted continuous review applications. This review, therefore, presented an updated comprehensive overview of the concept, mechanism, and applications of phenolic antioxidants in foods.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
177
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
178
|
Feng X, Hua Y, Zhang C, Kong X, Li X, Chen Y. Effect of soaking conditions on the formation of lipid derived free radicals in soymilk. Food Chem 2020; 315:126237. [PMID: 32014666 DOI: 10.1016/j.foodchem.2020.126237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 02/03/2023]
Abstract
Lipid derived free radical in soymilks were studied by combining 5,5-dimethyl-pyrroline-l-oxide (DMPO) spin trap, chloroform-methanol extraction and electron spin resonance (ESR) spectroscopy. Five lipid derived free radical adducts: DMPO-X, DMPO-L, DMPO-R, DMPO-LOO, and DMPO-RO were presented in soymilks. The total amounts of spins increased as the soaking temperature increased from 4 °C to 50 °C and the soaking pH increased from 3 to 9 and in paralleled with the diffusion of soybean exudates to soaking water. Prolonged soaking of soybean at 50 °C resulted in a higher signal intensity of DMPO-R than that of DMPO-LOO. Soybean lipoxygenases (LOXs) were responsible for the formation of lipid derived free radicals in soymilks. Soybean exudates affected the total amounts of lipid radicals in linoleic acid (LA) - LOX model system. The relative signal intensities of DMPO-R and DMPO-LOO were depended on the contents of soybean exudates in the system.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China.
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
179
|
Zhang H, Yu M, Jia H, Zhang T, Shang H, Zhang M, Zhu Z, Zou Z. Comprehensive identification of potential antioxidant components in the aerial parts of Polygonum chinense L. var. hispidum using ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2020; 43:2380-2392. [PMID: 32333498 DOI: 10.1002/jssc.201901291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 11/07/2022]
Abstract
The aerial parts of Polygonum chinense L. var. hispidum are one of the key herbs in Cantonese herbal tea, which is quite a common local beverage in LingNan area of China. Previous investigation has found that this herb possesses antioxidant activity and the ethyl acetate fraction of its ethanol extract shows the strongest antioxidant activity. However, little is known about its antioxidant chemical constituents. The aim of this research was to investigate the active constituents of this plant by identifying and characterizing the chemical profile in ethyl acetate fraction using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry, which can provide characteristic ultraviolet absorption, accurate molecular weight, and diagnostic tandem mass spectrometry fragment ions. As a result, 85 compounds were identified including 22 flavonoids, 12 ellagic acids, 34 ellagitannins, 16 phenolic acids, and one phenolic amide. All the phenolic compounds identified in this work, especially ethyl gallate, geraniin, chebulagic acid, and quercitrin with the higher peak areas in the ultra high performance liquid chromatography with mass spectrometry chemical profile of this plant, could be the bioactive principles responsible for the antioxidant activity. These findings in the present study could benefit further studies involving the functions and chemicals of this plant, and provide scientific evidence for usage of Cantonese herbal tea.
Collapse
Affiliation(s)
- Hongwu Zhang
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Meng Yu
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Hongmei Jia
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tao Zhang
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Hai Shang
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Mengli Zhang
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ziya Zhu
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
180
|
Melini V, Melini F, Acquistucci R. Phenolic Compounds and Bioaccessibility Thereof in Functional Pasta. Antioxidants (Basel) 2020; 9:E343. [PMID: 32331474 PMCID: PMC7222403 DOI: 10.3390/antiox9040343] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
Consumption of food products rich in phenolic compounds has been associated to reduced risk of chronic disease onset. Daily consumed cereal-based products, such as bread and pasta, are not carriers of phenolic compounds, since they are produced with refined flour or semolina. Novel formulations of pasta have been thus proposed, in order to obtain functional products contributing to the increase in phenolic compound dietary intake. This paper aims to review the strategies used so far to formulate functional pasta, both gluten-containing and gluten-free, and compare their effect on phenolic compound content, and bioaccessibility and bioavailability thereof. It emerged that whole grain, legume and composite flours are the main substituents of durum wheat semolina in the formulation of functional pasta. Plant by-products from industrial food wastes have been also used as functional ingredients. In addition, pre-processing technologies on raw materials such as sprouting, or the modulation of extrusion/extrusion-cooking conditions, are valuable approaches to increase phenolic content in pasta. Few studies on phenolic compound bioaccessibility and bioavailability in pasta have been performed so far; however, they contribute to evaluating the usefulness of strategies used in the formulation of functional pasta.
Collapse
Affiliation(s)
- Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy; (F.M.); (R.A.)
| | | | | |
Collapse
|
181
|
Zhang Y, Meenu M, Yu H, Xu B. An Investigation on Phenolic and Antioxidant Capacity of Under-utilized Food Legumes Consumed in China. Foods 2020; 9:foods9040438. [PMID: 32268476 PMCID: PMC7231270 DOI: 10.3390/foods9040438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
China is a major producer of various kinds of food legumes. Some of the under-utilized food legumes are consumed by the local society from different areas in China. The antioxidant capacity and phytochemical profile of these under-utilized food legumes haven’t been investigated until now. In this study, colorimetric and high-performance liquid chromatography was employed to explore the antioxidant capacity and phytochemical profile of 21 under-utilized food legumes. Different legumes under investigation exhibit a wide range of variations in their total phenolic content (TPC), total flavonoids content (TFC) and condensed tannins content (CTC). Among all the legume samples, the velvet bean from Hechi, Guangxi exhibited the highest antioxidant capacity while the white flat bean from Shangrao, Shanxi presented the least antioxidant capacity. Gallic acid was observed to be a major phenolic acid and its content in the velvet bean was significantly higher compared to the other legume samples explored in this study. The composition of flavonoids was different among all the legumes. Kaempferol was observed to be the most predominant flavonoid. The findings of this study will be beneficial for plant breeders, food scientists and consumers for the better selection of germplasm with a high level of phytochemicals that in turn possess maximum health benefits.
Collapse
Affiliation(s)
- Yaqian Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (M.M.); (B.X.)
| | - Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (M.M.); (B.X.)
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
- Correspondence: ; Tel.: +86-133-3176-0468
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (M.M.); (B.X.)
| |
Collapse
|
182
|
Formulation of functional crackers enriched with germinated lentil extract: A Response Surface Methodology Box-Behnken Design. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
183
|
Chemical composition and antibacterial activity of red murta (Ugni molinae Turcz.) seeds: an undervalued Chilean resource. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00428-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
184
|
Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 2020; 132:109114. [PMID: 32331689 DOI: 10.1016/j.foodres.2020.109114] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Citrus peel (CP) forms around 40-50% of the total fruit mass but is generally thought to be a waste. However, it is a substantial source of naturally occurring health enhancing compounds, particularly phenolic compounds and carotenoids. Phenolic compounds in CP mainly comprise phenolic acids (primarily caffeic, p-coumaric, ferulic and sinapic acid), flavanones (generally naringin and hesperidin) and polymethoxylated flavones (notably nobiletin and tangeretin). It has also been noted that CP's contain more amounts of these compounds than corresponding edible parts of the fruits. Phenolic compounds present in CP act as antioxidants (by either donation of protons or electrons) and protect cells against free radical damage as well as help in reducing the risk of many chronic diseases. Owing to the more abundance of polyphenols in CP's, their antioxidant activity is also higher than other edible fruit parts. Therefore, peels from citrus fruits can be used as sources of functional compounds and preservatives for the development of newer food products, that are not only safe but also have health-promoting activities. The present review provides in-depth knowledge about the phenolic composition, antioxidant potential and health benefits of CP.
Collapse
|
185
|
Adebo OA, Gabriela Medina-Meza I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020; 25:molecules25040927. [PMID: 32093014 PMCID: PMC7070691 DOI: 10.3390/molecules25040927] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Urbanization, emergence, and prominence of diseases and ailments have led to conscious and deliberate consumption of health beneficial foods. Whole grain (WG) cereals are one type of food with an array of nutritionally important and healthy constituents, including carotenoids, inulin, β-glucan, lignans, vitamin E-related compounds, tocols, phytosterols, and phenolic compounds, which are beneficial for human consumption. They not only provide nutrition, but also confer health promoting effects in food, such as anti-carcinogenic, anti-microbial, and antioxidant properties. Fermentation is a viable processing technique to transform whole grains in edible foods since it is an affordable, less complicated technique, which not only transforms whole grains but also increases nutrient bioavailability and positively alters the levels of health-promoting components (particularly antioxidants) in derived whole grain products. This review addresses the impact of fermentation on phenolic compounds and antioxidant activities with most available studies indicating an increase in these health beneficial constituents. Such increases are mostly due to breakdown of the cereal cell wall and subsequent activities of enzymes that lead to the liberation of bound phenolic compounds, which increase antioxidant activities. In addition to the improvement of these valuable constituents, increasing the consumption of fermented whole grain cereals would be vital for the world's ever-growing population. Concerted efforts and adequate strategic synergy between concerned stakeholders (researchers, food industry, and government/policy makers) are still required in this regard to encourage consumption and dispel negative presumptions about whole grain foods.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa
- Correspondence: ; Tel.: +27-11-559-6261
| | - Ilce Gabriela Medina-Meza
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 South Shaw Lane, East Lansing, MI 48824-1323, USA;
| |
Collapse
|
186
|
Ji M, Gong X, Li X, Wang C, Li M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species-A Review. Molecules 2020; 25:E917. [PMID: 32092874 PMCID: PMC7071004 DOI: 10.3390/molecules25040917] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/23/2023] Open
Abstract
Oxidation is a normal consequence of metabolism in biological organisms. The result is the formation of detrimental reactive oxygen species (ROS) and reactive nitrogen species (RNS). A large number of studies have shown that polyphenolic compounds have good antioxidant properties. Hippophae species plants have high polyphenolic content and are widely used in food, medicinal, or the cosmetic field. The main polyphenols in Hippophae species are flavonoids, phenolic acids and tannins, which have multiple effects. However, there is a limited number of studies on polyphenols in Hippophae species plants. This review systematically summarizes the polyphenols compounds and antioxidant activity of Hippophae species plants, and it is noteworthy that the main mechanisms of the polyphenols of Hippophae with antioxidant activity have been summarized as follows: regulating enzyme activity, affect the antioxidant reaction of cells, and others. This review provides useful information for the further study and application of Hippophae species polyphenols and their antioxidant activity.
Collapse
Affiliation(s)
- Mingyue Ji
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
| | - Xue Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Congcong Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (M.J.); (X.G.); (C.W.)
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Qiqihar Medical University, Qiqihar 161006, China
- Pharmaceutical Laboratory, Inner Mongolia Autonomous Region Academy of Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China
| |
Collapse
|
187
|
Bueno PP, Lopes NP. Metabolomics to Characterize Adaptive and Signaling Responses in Legume Crops under Abiotic Stresses. ACS OMEGA 2020; 5:1752-1763. [PMID: 32039310 PMCID: PMC7003242 DOI: 10.1021/acsomega.9b03668] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 05/07/2023]
Abstract
Legume species are an important source of protein and other nutrients for human and livestock consumption, playing a central role in food security. Besides, legumes benefit agriculture because of their ability to establish symbiotic interactions with nitrogen-fixing bacteria, providing nitrogen for subsequent crops, which is very much appreciated for sustainable agricultural practices. However, like other food crops, legumes are highly vulnerable to climate variations, water stresses being the main constraint that negatively affects both crop quality and productivity. Because of this, the development of strategies to improve the tolerance of such cultivars against water stresses, as well as the study of effective approaches to monitor these improvements, have gained special attention during the last years. Among these strategies, metabolomics has been considered one of the most promising approaches for the detection and/or quantification of primary and secondary stress-responsive metabolites in abiotic stresses. In plant science, many research groups have been using metabolomics to evaluate the success of genetic modifications by the analysis of chemical markers that can be altered in breeding programs. In addition, metabolomics is a powerful tool for the evaluation and selection of wild specimens with desirable traits that can be used in the development of improved new cultivars. Therefore, the aim of the present paper is to review the recent progress made in the field of metabolomics and plant breeding, especially concerning the adaptive responses of legume species to abiotic stresses as well as to point out the key primary and secondary metabolites involved in the adaptation and sensing mechanisms.
Collapse
Affiliation(s)
- Paula
C. P. Bueno
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto (FCFRP-USP), Department
of Physics and Chemistry, University of
São Paulo, Avenida do Cafe′ s/n, 14040-903 Ribeirão Preto/SP, Brazil
- Max-Planck
Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Norberto P. Lopes
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto (FCFRP-USP), Department
of Physics and Chemistry, University of
São Paulo, Avenida do Cafe′ s/n, 14040-903 Ribeirão Preto/SP, Brazil
- E-mail:
| |
Collapse
|
188
|
Singh J, Singh B. Inhibition of post-mortem fish muscle softening and degradation using legume seed proteinase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1-11. [PMID: 31975702 PMCID: PMC6952507 DOI: 10.1007/s13197-019-04044-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Inhibitors that control muscle softening are important for regulating the activities of specific proteinases in meat. Proteolytic activity of endogenous proteinases in postmortem fish leads to the deterioration of myofibres. Calpain proteolytic enzyme system in skeletal muscles is mainly responsible for the post-mortem proteolysis. Soluble sarcoplasmic serine proteinase and the insoluble myofibrillar serine proteinase fractions contribute to the modori effects in surimi gels while myosin heavy chains contribute to gel strength. Proteolytic degenerative processes negatively affect the entire quality spectrum of the fish as food. Legume seeds are a good source of proteinase inhibitors with the potential to emerge as a promising tool in fish meat quality management. Many workers have studied the potent inhibitory effect of the seed flour from various legume crops on the flesh, surimi gels and visceral proteinases of fishes. The present review provides collective information about proteolysis in fish and its control by using legume seed flour as a natural source of proteinase inhibitors. Use of legume seed flour can reduce the dependence of the meat processing industry on the non-renewable synthetic chemical agents. Moreover, the use of natural products from sustainable resources also leads to the improved economics of meat production.
Collapse
Affiliation(s)
- Jaspreet Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar, Punjab 143002 India
| | - Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar, Punjab 143002 India
| |
Collapse
|
189
|
Dominguez-Pacheco A, Gomez-Uzeta B, Hernandez-Aguilar C, Cruz-Orea A, Cruz-San Martín V. Optical properties of textile materials added with UV protective biomaterials. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-019-1882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
190
|
Nanoscale Delivery System for Nutraceuticals: Preparation, Application, Characterization, Safety, and Future Trends. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09208-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
191
|
Tayade R, Kulkarni KP, Jo H, Song JT, Lee JD. Insight Into the Prospects for the Improvement of Seed Starch in Legume-A Review. FRONTIERS IN PLANT SCIENCE 2019; 10:1213. [PMID: 31736985 PMCID: PMC6836628 DOI: 10.3389/fpls.2019.01213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/03/2019] [Indexed: 05/18/2023]
Abstract
In addition to proteins and/or oils, mature seeds of most legume crops contain important carbohydrate components, including starches and sugars. Starch is also an essential nutritional component of human and animal diets and has various food and non-food industrial applications. Starch is a primary insoluble polymeric carbohydrate produced by higher plants and consists of amylose and amylopectin as a major fraction. Legume seeds are an affordable source of not only protein but also the starch, which has an advantage of being resistant starch compared with cereal, root, and tuber starch. For these reasons, legume seeds form a good source of resistant starch-rich healthy food with a high protein content and can be utilized in various food applications. The genetics and molecular details of starch and other carbohydrate components are well studied in cereal crops but have received little attention in legumes. In order to improve legume starch content, quality, and quantity, it is necessary to understand the genetic and molecular factors regulating carbohydrate metabolism in legume crops. In this review, we assessed the current literature reporting the genetic and molecular basis of legume carbohydrate components, primarily focused on seed starch content. We provided an overview of starch biosynthesis in the heterotrophic organs, the chemical composition of major consumable legumes, the factors influencing starch digestibility, and advances in the genetic, transcriptomic, and metabolomic studies in important legume crops. Further, we discussed breeding and biotechnological approaches for the improvement of the starch composition in major legume crops. The information reviewed in this study will be helpful in facilitating the food and non-food applications of legume starch and provide economic benefits to farmers and industries.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
192
|
Growth and Nutritional Responses of Bean and Soybean Genotypes to Elevated CO 2 in a Controlled Environment. PLANTS 2019; 8:plants8110465. [PMID: 31671712 PMCID: PMC6918337 DOI: 10.3390/plants8110465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
In the current situation of a constant increase in the atmospheric CO2 concentration, there is a potential risk of decreased nutritional value and food crop quality. Therefore, selecting strong-responsive varieties to elevated CO2 (eCO2) conditions in terms of yield and nutritional quality is an important decision for improving crop productivity under future CO2 conditions. Using bean and soybean varieties of contrasting responses to eCO2 and different origins, we assessed the effects of eCO2 (800 ppm) in a controlled environment on the yield performance and the concentration of protein, fat, and mineral elements in seeds. The range of seed yield responses to eCO2 was −11.0 to 32.7% (average change of 5%) in beans and −23.8 to 39.6% (average change of 7.1%) in soybeans. There was a significant correlation between seed yield enhancement and aboveground biomass, seed number, and pod number per plant. At maturity, eCO2 increased seed protein concentration in beans, while it did not affect soybean. Lipid concentration was not affected by eCO2 in either legume species. Compared with ambient CO2 (aCO2), the concentrations of manganese (Mn), iron (Fe), and potassium (K) decreased significantly, magnesium (Mg) increased, while zinc (Zn), phosphorus (P), and calcium (Ca) were not changed under eCO2 in bean seeds. However, in soybean, Mn and K concentrations decreased significantly, Ca increased, and Zn, Fe, P, and Mg concentrations were not significantly affected by eCO2 conditions. Our results suggest that intraspecific variation in seed yield improvement and reduced sensitivity to mineral losses might be suitable parameters for breeders to begin selecting lines that maximize yield and nutrition under eCO2.
Collapse
|
193
|
Bazana MT, da Silva SS, Codevilla CF, de Deus C, Lucas BN, Ugalde GA, Mazutti MA, Moraes Flores EM, Barin JS, de Bona da Silva C, de Menezes CR. Development of nanoemulsions containing Physalis peruviana calyx extract: A study on stability and antioxidant capacity. Food Res Int 2019; 125:108645. [PMID: 31554039 DOI: 10.1016/j.foodres.2019.108645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to develop and evaluate the physicochemical and antioxidant stability of nanoemulsions containing a Physalis peruviana calyx extract (CPp-NE) and free extracts under different storage conditions (7 and 25 °C) and with absence or incidence of light for 120 days. The calyx extracts were prepared with ethanol 60% and characterized for later preparation of the nanoemulsions by spontaneous emulsification. The formulations presented nanometric sizes, low polydispersity index, negative zeta potential, acid pH, rutin content (11 μg·mL-1), and encapsulation efficiency of 85%. Regarding the stability, the droplet size and PdI of the CPp-NE stored at refrigeration temperature in the dark, room temperature in the dark, and refrigeration temperature with light incidence were stable for 120 days and with no visible changes in the formulations. The antioxidant capacity was related to the reducing capacity, and the best results were found for nanoemulsions stored at room temperature and in absence of light. In addition, CPp-NE presented higher antioxidant and reducing capacity in relation to the free extracts.
Collapse
Affiliation(s)
- Maiara Taís Bazana
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Suelen Santos da Silva
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cristiane Franco Codevilla
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cassandra de Deus
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruna Nichelle Lucas
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gustavo Andrade Ugalde
- Department of Chemical Engineering, Technology Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marcio Antonio Mazutti
- Department of Chemical Engineering, Technology Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Erico Marlon Moraes Flores
- Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Juliano Smanioto Barin
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Cristiane de Bona da Silva
- Departament of Industrial Pharmacy, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Cristiano Ragagnin de Menezes
- Department of Food Science and Technology, Rural Science Center, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
194
|
Llorach R, Favari C, Alonso D, Garcia-Aloy M, Andres-Lacueva C, Urpi-Sarda M. Comparative metabolite fingerprinting of legumes using LC-MS-based untargeted metabolomics. Food Res Int 2019; 126:108666. [PMID: 31732019 DOI: 10.1016/j.foodres.2019.108666] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 04/14/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Legumes are a well-known source of phytochemicals and are commonly believed to have similar composition between different genera. To date, there are no studies evaluating changes in legumes to discover those compounds that help to discriminate for food quality and authenticity. The aim of this work was to characterize and make a comparative analysis of the composition of bioactive compounds between Cicer arietinum L. (chickpea), Lens culinaris L. (lentil) and Phaseolus vulgaris L. (white bean) through an LC-MS-Orbitrap metabolomic approach to establish which compounds discriminate between the three studied legumes. Untargeted metabolomic analysis was carried out by LC-MS-Orbitrap from extracts of freeze-dried legumes prepared from pre-cooked canned legumes. The metabolomic data treatment and statistical analysis were realized by using MAIT R's package, and final identification and characterization was done using MSn experiments. Fold-change evaluation was made through Metaboanalyst 4.0. Results showed 43 identified and characterized compounds displaying differences between the three legumes. Polyphenols, mainly flavonol and flavanol compounds, were the main group with 30 identified compounds, followed by α-galactosides (n = 5). Fatty acyls, prenol lipids, a nucleoside and organic compounds were also characterized. The fold-change analysis showed flavanols as the wider class of discriminative compounds of lentils compared to the other legumes; prenol lipids and eucomic acids were the most discriminative compounds of beans versus other legumes and several phenolic acids (such as primeveroside salycilic), kaempferol derivatives, coumesterol and α-galactosides were the most discriminative compounds of chickpeas. This study highlights the applicability of metabolomics for evaluating which are the characteristic compounds of the different legumes. In addition, it describes the future application of metabolomics as tool for the quality control of foods and authentication of different kinds of legumes.
Collapse
Affiliation(s)
- Rafael Llorach
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Science, Campus Torribera, University of Barcelona, 08028 Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Claudia Favari
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Science, Campus Torribera, University of Barcelona, 08028 Barcelona, Spain
| | - David Alonso
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Science, Campus Torribera, University of Barcelona, 08028 Barcelona, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Science, Campus Torribera, University of Barcelona, 08028 Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Science, Campus Torribera, University of Barcelona, 08028 Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Science, Campus Torribera, University of Barcelona, 08028 Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain.
| |
Collapse
|
195
|
Identification and quantification of anthocyanins in seeds of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces of varying seed coat pigmentation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00150-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
196
|
Verni M, Verardo V, Rizzello CG. How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods 2019; 8:E362. [PMID: 31450581 PMCID: PMC6770679 DOI: 10.3390/foods8090362] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The major role of antioxidant compounds in preserving food shelf life, as well as providing health promoting benefits, combined with the increasing concern towards synthetic antioxidants, has led the scientific community to focus on natural antioxidants present in food matrices or resulting from microbial metabolism during fermentation. This review aims at providing a comprehensive overview of the effect of fermentation on the antioxidant compounds of vegetables, with emphasis on cereals- and legumes- derived foods. Polyphenols are the main natural antioxidants in food. However, they are often bound to cell wall, glycosylated, or in polymeric forms, which affect their bioaccessibility, yet several metabolic activities are involved in their release or conversion in more active forms. In some cases, the antioxidant properties in vitro, were also confirmed during in vivo studies. Similarly, bioactive peptides resulted from bacterial and fungal proteolysis, were also found to have ex vivo protective effect against oxidation. Fermentation also influenced the bioaccessibility of other compounds, such as vitamins and exopolysaccharides, enabling a further improvement of antioxidant activity in vitro and in vivo. The ability of fermentation to improve food antioxidant properties strictly relies on the metabolic activities of the starter used, and to further demonstrate its potential, more in vivo studies should be carried out.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus Universitario de Cartuja, E-18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain
| | | |
Collapse
|
197
|
Effects of Bromelain and Trypsin Hydrolysis on the Phytochemical Content, Antioxidant Activity, and Antibacterial Activity of Roasted Butterfly Pea Seeds. Processes (Basel) 2019. [DOI: 10.3390/pr7080534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Butterfly pea (Clitoria ternatea L.) is a traditional medicinal and edible herb, whose health-promoting benefits have been attributed to its phenolic constituents. In this study, the effects of enzymatic hydrolysis on total phenolic content (TPC) and total flavonoid content (TFC), antioxidant (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP)) and antibacterial activities of raw and roasted (200 °C, 10–20 min) butterfly pea seeds were investigated. Roasting reduced the yield of seed aqueous extracts, but it increased the TPC and FRAP values, hence the reducing ability, of the extracts. Bromelain hydrolysis enhanced the TPC and TFC of the roasted seeds up to 2- and 18-fold higher, respectively. Trypsin hydrolysis drastically increased the TPC, but not TFC, of roasted seeds; trypsin-hydrolyzed, 20 min roasted sample had the highest TPC (54.07 μg gallic acid equivalent (GAE)/mg) among all samples. Bromelain hydrolysis significantly improved the antioxidant activity of the roasted seed samples, where the antioxidant activity of bromelain-hydrolyzed, 20 min roasted sample was about 50% greater than the non-hydrolyzed 20 min roasted sample. Trypsin hydrolysis raised the FRAP values of the 20 min roasted sample to 70.28 mg Fe(II) equivalent/g, the highest among all samples. Nevertheless, trypsin only weakly elevated the ABTS scavenging activity of the roasted samples, showing no enhancement of the DPPH scavenging activity. On the other hand, only bromelain hydrolysates of raw and 10 min roasted seeds were active against Staphylococcus aureus. Taken together, bromelain hydrolysis can be used to enhance the extractable phytochemical contents and antioxidant activity of roasted butterfly pea seeds.
Collapse
|
198
|
NMR Based Metabolomic Analysis of Health Promoting Phytochemicals in Lentils. Metabolites 2019; 9:metabo9080168. [PMID: 31412621 PMCID: PMC6724105 DOI: 10.3390/metabo9080168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023] Open
Abstract
Lentils are a high-protein plant food and a valuable source of human nutrition, particularly in the Indian subcontinent. However, beyond sustenance, there is evidence that the consumption of lentils (and legumes in general) is associated with decreased risk of diseases, such as diabetes and cardiovascular disease. Lentils contain health-promoting phytochemicals, such as trigonelline and various polyphenolics. Fourteen lentil genotypes were grown at three locations to explore the variation in phytochemical composition in hulls and cotyledons. Significant differences were measured between genotypes and environments, with some genotypes more affected by environment than others. However, there was a strong genetic effect which indicated that future breeding programs could breed for lentils that product more of these health-promoting phytochemicals.
Collapse
|
199
|
Mecha E, Leitão ST, Carbas B, Serra AT, Moreira PM, Veloso MM, Gomes R, Figueira ME, Brites C, Vaz Patto MC, Bronze MR. Characterization of Soaking Process' Impact in Common Beans Phenolic Composition: Contribute from the Unexplored Portuguese Germplasm. Foods 2019; 8:E296. [PMID: 31357747 PMCID: PMC6723714 DOI: 10.3390/foods8080296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
Despite the common beans' nutritional and phytochemical value, in Portugal its consumption decreased more than 50% in the last decade. The present study aimed to characterize phenolic composition of the Portuguese traditional varieties and corresponding soaked seed fractions (including soaking water). With such purpose, the phenolic composition (total content of soluble phenolics, flavonoids, and proanthocyanidins) and in vitro antioxidant activity were evaluated in the raw whole flour of 31 Portuguese common bean varieties. The phenolic composition of the soaked fractions was respectively compared to the raw flour. Phenolic compounds' identification and relative quantification were achieved by UPLC-TripleTOF-MS for one representative variety and their fractions. The highest phenolic content was found in colored varieties and the brown market class highlighted as the richest one. The loss of phenolic compounds to the soaking water was highly dependent on variety. The predominant phenolic compounds' classes were flavan-3-ols (soaking water and coats), flavonols (coats), and phenolic acids (cotyledons). This characterization study showed the diversity on the phenolic composition of Portuguese varieties and the need to adjust the soaking and peeling processes to the variety (considering the possible loss of potential health promoter compounds, e.g., phenolic compounds).
Collapse
Affiliation(s)
- Elsa Mecha
- NOVA Institute of Chemical and Biological Technology António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Susana T Leitão
- NOVA Institute of Chemical and Biological Technology António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Bruna Carbas
- INIAV, The National Institute for Agricultural Research and Veterinary, 2784-505 Oeiras, Portugal
| | - Ana T Serra
- Institute for Experimental Biology and Technology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Pedro M Moreira
- ESAC-IPC, Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| | - Maria Manuela Veloso
- INIAV, The National Institute for Agricultural Research and Veterinary, 2784-505 Oeiras, Portugal
| | - Ricardo Gomes
- UniMS-Mass Spectrometry Unit-Institute for Experimental Biology and Technology/ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Maria E Figueira
- iMED, Faculty of Pharmacy, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Carla Brites
- INIAV, The National Institute for Agricultural Research and Veterinary, 2784-505 Oeiras, Portugal
| | - Maria C Vaz Patto
- NOVA Institute of Chemical and Biological Technology António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Maria R Bronze
- NOVA Institute of Chemical and Biological Technology António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal.
- Institute for Experimental Biology and Technology, Apartado 12, 2781-901 Oeiras, Portugal.
- iMED, Faculty of Pharmacy, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| |
Collapse
|
200
|
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung Bean ( Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019; 11:E1238. [PMID: 31159173 PMCID: PMC6627095 DOI: 10.3390/nu11061238] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Mung bean (Vigna radiata L.) is an important pulse consumed all over the world, especially in Asian countries, and has a long history of usage as traditional medicine. It has been known to be an excellent source of protein, dietary fiber, minerals, vitamins, and significant amounts of bioactive compounds, including polyphenols, polysaccharides, and peptides, therefore, becoming a popular functional food in promoting good health. The mung bean has been documented to ameliorate hyperglycemia, hyperlipemia, and hypertension, and prevent cancer and melanogenesis, as well as possess hepatoprotective and immunomodulatory activities. These health benefits derive primarily from the concentration and properties of those active compounds present in the mung bean. Vitexin and isovitexin are identified as the major polyphenols, and peptides containing hydrophobic amino acid residues with small molecular weight show higher bioactivity in the mung bean. Considering the recent surge in interest in the use of grain legumes, we hope this review will provide a blueprint to better utilize the mung bean in food products to improve human nutrition and further encourage advancement in this field.
Collapse
Affiliation(s)
- Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Laraib Yousaf
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jihong Wu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China.
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|