151
|
The role of oxidative stress in 63 T-induced cytotoxicity against human lung cancer and normal lung fibroblast cell lines. Invest New Drugs 2018; 37:849-864. [PMID: 30498945 PMCID: PMC6736908 DOI: 10.1007/s10637-018-0704-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022]
Abstract
It has been shown previously that molecules built on benzanilide and thiobenzanilide scaffolds possess differential biological properties including selective anticancer activity. In our previous study, we examined the cytotoxic activity and mechanism of action of the thiobenzanilide derivative N,N′-(1,2-phenylene)bis3,4,5–trifluorobenzothioamide (63 T) as a potential chemotherapeutic compound in an experimental model employing A549 lung adenocarcinoma cells and CCD39Lu non-tumorigenic lung fibroblasts. Since the results suggested oxidative stress as a co-existing mechanism of the cytotoxic effect exerted by 63 T on tested cells, studies involving the analysis of reactive oxygen species (ROS) generation and markers of oxidative stress in cells incubated with 63 T were carried out. It may be concluded that the selective activity of 63 T against cancer cells shown in our experiments is caused, at least in part, by the response of the tested cells to 63 T mediated oxidative stress in both tested cell lines.
Collapse
|
152
|
Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase. Redox Biol 2018; 20:496-513. [PMID: 30476874 PMCID: PMC6260226 DOI: 10.1016/j.redox.2018.10.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Basement membranes are specialized extracellular matrices that underlie arterial wall endothelial cells, with laminin being a key structural and biologically-active component. Hypochlorous acid (HOCl), a potent oxidizing and chlorinating agent, is formed in vivo at sites of inflammation via the enzymatic action of myeloperoxidase (MPO), released by activated leukocytes. Considerable data supports a role for MPO-derived oxidants in cardiovascular disease and particularly atherosclerosis. These effects may be mediated via extracellular matrix damage to which MPO binds. Herein we detect and quantify sites of oxidation and chlorination on isolated laminin-111, and laminin in basement membrane extracts (BME), by use of mass spectrometry. Increased modification was detected with increasing oxidant exposure. Mass mapping indicated selectivity in the sites and extent of damage; Met residues were most heavily modified. Fewer modifications were detected with BME, possibly due to the shielding effects. HOCl oxidised 30 (of 56 total) Met and 7 (of 24) Trp residues, and chlorinated 33 (of 99) Tyr residues; 3 Tyr were dichlorinated. An additional 8 Met and 10 Trp oxidations, 14 chlorinations, and 18 dichlorinations were detected with the MPO/H2O2/Cl- system when compared to reagent HOCl. Interestingly, chlorination was detected at Tyr2415 in the integrin-binding region; this may decrease cellular adhesion. Co-localization of MPO-damaged epitopes and laminin was detected in human atherosclerotic lesions. These data indicate that laminin is extensively modified by MPO-derived oxidants, with structural and functional changes. These modifications, and compromised cell-matrix interactions, may promote endothelial cell dysfunction, weaken the structure of atherosclerotic lesions, and enhance lesion rupture.
Collapse
|
153
|
Shakya B, Shakya S, Hasan Siddique Y. Effect of geraniol against arecoline induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Toxicol Mech Methods 2018; 29:187-202. [PMID: 30318983 DOI: 10.1080/15376516.2018.1534299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the present study geraniol at the final concentration of 10, 20, 30, and 40 µM was mixed in the diet along with 80 µM of arecoline and the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 were allowed to feed on it for 24 hrs. After the exposure of 24 hrs the larvae were subjected to ONPG, X-gal, trypan blue exclusion test, oxidative stress markers and apoptotic and comet assays. The exposure of larvae to geraniol showed a dose dependent decrease in the activity of β-galactosidase, tissue damage and oxidative stress markers. A dose dependent decrease in apoptosis and DNA damage was also observed. Molecular docking studies also support the protective role of geraniol against the arecoline induced toxicity. The results suggest that geraniol is potent in reducing the toxicity induced by arecoline in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9.
Collapse
Affiliation(s)
- Barkha Shakya
- a Department of Zoology , Aligarh Muslim University , Aligarh , India
| | - Sonam Shakya
- b Department of Chemistry , Aligarh Muslim University , Aligarh , India
| | | |
Collapse
|
154
|
González-Blázquez R, Somoza B, Gil-Ortega M, Martín Ramos M, Ramiro-Cortijo D, Vega-Martín E, Schulz A, Ruilope LM, Kolkhof P, Kreutz R, Fernández-Alfonso MS. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front Pharmacol 2018; 9:1131. [PMID: 30356804 PMCID: PMC6189469 DOI: 10.3389/fphar.2018.01131] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Albuminuria is an early marker of renovascular damage associated to an increase in oxidative stress. The Munich Wistar Frömter (MWF) rat is a model of chronic kidney disease (CKD), which exhibits endothelial dysfunction associated to low nitric oxide availability. We hypothesize that the new highly selective, non-steroidal mineralocorticoid receptor (MR) antagonist, finerenone, reverses both endothelial dysfunction and microalbuminuria. Twelve-week-old MWF (MWF-C; MWF-FIN) and aged-matched normoalbuminuric Wistar (W-C; W-FIN) rats were treated with finerenone (FIN, 10 mg/kg/day p.o.) or vehicle (C) for 4-week. Systolic blood pressure (SBP) and albuminuria were determined the last day of treatment. Finerenone lowered albuminuria by >40% and significantly reduced SBP in MWF. Aortic rings of MWF-C showed higher contractions to either noradrenaline (NA) or angiotensin II (Ang II), and lower relaxation to acetylcholine (Ach) than W-C rings. These alterations were reversed by finerenone to W-C control levels due to an upregulation in phosphorylated Akt and eNOS, and an increase in NO availability. Apocynin and 3-amino-1,2,4-triazole significantly reduced contractions to NA or Ang II in MWF-C, but not in MWF-FIN rings. Accordingly, a significant increase of Mn-superoxide dismutase (SOD) and Cu/Zn-SOD protein levels were observed in rings of MWF-FIN, without differences in p22phox, p47phox or catalase levels. Total SOD activity was increased in kidneys from MWF-FIN rats. In conclusion, finerenone improves endothelial dysfunction through an enhancement in NO bioavailability and a decrease in superoxide anion levels due to an upregulation in SOD activity. This is associated with an increase in renal SOD activity and a reduction of albuminuria.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Miriam Martín Ramos
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Elena Vega-Martín
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis Miguel Ruilope
- Unidad de Hipertensión, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina Preventiva y Salud Pública, Universidad Autónoma de Madrid, Madrid, Spain
| | - Peter Kolkhof
- Drug Discovery, Pharmaceuticals, Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
155
|
Ambrożewicz E, Wójcik P, Wroński A, Łuczaj W, Jastrząb A, Žarković N, Skrzydlewska E. Pathophysiological Alterations of Redox Signaling and Endocannabinoid System in Granulocytes and Plasma of Psoriatic Patients. Cells 2018; 7:cells7100159. [PMID: 30301214 PMCID: PMC6210326 DOI: 10.3390/cells7100159] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/01/2023] Open
Abstract
Inflammatory granulocytes are characterized by an oxidative burst, which may promote oxidative stress and lipid modification both in affected tissues and on a systemic level. On the other hand, redox signaling involving lipid peroxidation products acting as second messengers of free radicals play important yet not fully understood roles in the pathophysiology of inflammation and various stress-associated disorders. Therefore, the aim of this study was to evaluate the onset of oxidative stress and alterations of enzyme-dependent lipid metabolism resulting from redox imbalance in granulocytes and plasma obtained from patients with psoriasis vulgaris or psoriatic arthritis in comparison to the healthy subjects. The results obtained revealed enhanced activity of pro-oxidant enzymes nicotinamide adenine dinucleotide phosphate (NADPH) and xanthine oxidases in granulocytes with a decrease of enzymatic and non-enzymatic antioxidants in the plasma of psoriatic patients. The nuclear factor erythroid 2–related factor 2 (Nrf2) and its regulators were increased in both forms of psoriasis while heme oxygenase 1 levels were increased only in psoriasis vulgaris. The redox imbalance was associated with decreased levels of phospholipids and of free polyunsaturated fatty acids but with enhanced activity of enzymes involved in lipid metabolism (phospholipase A2, acetylhydrolase PAF, cyclooxygenases 1 and 2) and increased lipid peroxidation products 4-hydroxynonenal, isoprostanes, and neuroprostanes. Increased endocannabinoids and G protein-coupled receptor 55 were observed in both forms of the disease while expression of the cannabinoid type 1 receptor (CB1) was increased only in patients with psoriatic arthritis, which is opposite to the cannabinoid type 2 receptor. This receptor was increased only in psoriasis vulgaris. Changes in protein expression promoted the apoptosis of granulocytes by increased caspases mainly in psoriasis vulgaris. This study indicates that inhibition of the Nrf2 pathway in psoriatic arthritis promotes a redox imbalance. In addition, increased expression of CB1 receptors leads to increased oxidative stress, lipid modifications, and inflammation, which, in turn, may promote the progression of psoriasis into the advanced, arthritic form of the disease.
Collapse
Affiliation(s)
- Ewa Ambrożewicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Bialystok, 15-453 Bialystok Poland.
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Neven Žarković
- LabOS, Rudjer Boskovic Institute, Laboratory for Oxidative Stress, 10000 Zagreb, Croatia.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland.
| |
Collapse
|
156
|
Khanam S, Naz F, Ali F, Smita Jyoti R, Fatima A, Khan W, Singh BR, Naqvi AH, Siddique YH. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol Mech Methods 2018; 28:699-708. [DOI: 10.1080/15376516.2018.1502386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Saba Khanam
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Falaq Naz
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahad Ali
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rahul Smita Jyoti
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Wasi Khan
- Department of Physics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Braj Raj Singh
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, GualPahari, Gurgaon, Haryana, India
| | - A. H. Naqvi
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
157
|
Leinisch F, Mariotti M, Hägglund P, Davies MJ. Structural and functional changes in RNAse A originating from tyrosine and histidine cross-linking and oxidation induced by singlet oxygen and peroxyl radicals. Free Radic Biol Med 2018; 126:73-86. [PMID: 30031072 DOI: 10.1016/j.freeradbiomed.2018.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
Oxidation can be induced by multiple processes in biological samples, with proteins being important targets due to their high abundance and reactivity. Oxidant reactions with proteins are not comprehensively understood, but it is known that structural and functional changes may be a cause, or a consequence, of disease. The mechanisms of oxidation of the model protein RNAse A by singlet oxygen (1O2) were examined and compared to peroxyl radical (ROO•) oxidation, both common biological oxidants. This protein is a prototypic member of the RNAse family that exhibits antiviral activity by cleaving single-stranded RNA. RNAse A lacks tryptophan and cysteine residues which are major oxidant targets, but contains multiple histidine, tyrosine and methionine residues; these were therefore hypothesized to be the major sites of damage. 1O2 and ROO• induce different patterns and extents of damage; both induce cross-links and side-chain oxidation, and 1O2 exposure modulates enzymatic activity. Multiple products have been characterized including methionine sulfoxide and sulfone, alcohols, DOPA, 2-oxohistidine, histidine-derived ring-opened species and inter- and intra-molecular cross-links (di-tyrosine, histidine-lysine, histidine-arginine, tyrosine-lysine). In addition to methionine modification, which appears not to be causative to activity loss, singlet oxygen also induces alteration to specific histidine, tyrosine and proline residues, including modification and cross-linking of the active site histidine, His12. The high homology among the RNAse family suggests that similar modifications may occur in humans, and be associated with the increased risk of viral infections in people with diabetes, as markers for 1O2 have been found in early stages of this pathology.
Collapse
Affiliation(s)
- Fabian Leinisch
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
158
|
Ding M, Shu P, Gao S, Wang F, Gao Y, Chen Y, Deng W, He G, Hu Z, Li T. Schisandrin B protects human keratinocyte-derived HaCaT cells from tert-butyl hydroperoxide-induced oxidative damage through activating the Nrf2 signaling pathway. Int J Mol Med 2018; 42:3571-3581. [PMID: 30272282 DOI: 10.3892/ijmm.2018.3901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 11/05/2022] Open
Abstract
Schisandrin B (Sch B), an active extract of Schisandra chinensis, has demonstrated antioxidant activity in a number of in vitro and in vivo models. In the present study, the capacity of Sch B to protect against oxidative injury in keratinocytes using the human keratinocyte‑derived HaCaT cell line was investigated. To induce oxidative injury, tert‑Butyl hydroperoxide (tBHP) was employed. The results indicate that Sch B efficiently reduced tBHP‑induced cell death, reactive oxygen species (ROS) generation, protein oxidation, lipid peroxidation and DNA damage. Sch B also effectively attenuated the loss of mitochondrial membrane potential (MMP), and restored adenosine triphosphate (ATP) levels in tBHP‑injured HaCaT cells. Furthermore, Sch B enhanced the expression of key antioxidant enzymes, including catalase, heme oxygenase‑1, glutathione peroxidase, and superoxide dismutase, and further engaged the nuclear factor‑erythroid 2‑related factor 2 (Nrf2) signaling pathway by modulating its phosphorylation through activating multiple upstream kinases, including protein kinase B, adenosine monophosphate‑activated protein kinase and mitogen‑activated protein kinases (MAPKs). The present study suggests that Sch B provides a protective effect in keratinocytes in response to oxidative injury via reinforcing the endogenous antioxidant defense system. Therefore, it may be applied as an adjuvant therapy or in health foods to delay the skin aging process and the onset of skin diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Ming Ding
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| | - Peng Shu
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Shuang Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fenglou Wang
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Yitian Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Chen
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjuan Deng
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Gaiying He
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Zhenlin Hu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianduo Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
159
|
Hägglund P, Mariotti M, Davies MJ. Identification and characterization of protein cross-links induced by oxidative reactions. Expert Rev Proteomics 2018; 15:665-681. [DOI: 10.1080/14789450.2018.1509710] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
160
|
Fuentes-Lemus E, Silva E, Barrias P, Aspee A, Escobar E, Lorentzen LG, Carroll L, Leinisch F, Davies MJ, López-Alarcón C. Aggregation of α- and β- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-tryptophan formation. Free Radic Biol Med 2018; 124:176-188. [PMID: 29885785 DOI: 10.1016/j.freeradbiomed.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
Abstract
The present work examined the role of Tyr and Trp in oxidative modifications of caseins, the most abundant milk proteins, induced by peroxyl radicals (ROO•). We hypothesized that the selectivity of ROO• and the high flexibility of caseins (implying a high exposure of Tyr and Trp residues) would favor radical-radical reactions, and di-tyrosine (di-Tyr) and di-tryptophan (di-Trp) formation. Solutions of α- and β-caseins were exposed to ROO• from thermolysis and photolysis of AAPH (2,2'-azobis(2-methylpropionamidine)dihydrochloride). Oxidative modifications were examined using electrophoresis, western blotting, fluorescence, and chromatographic methodologies with diode array, fluorescence and mass detection. Exposure of caseins to AAPH at 37 °C gave fragmentation, cross-linking and protein aggregation. Amino acid analysis showed consumption of Trp, Tyr, Met, His and Lys residues. Quantification of Trp and Tyr products, showed low levels of di-Tyr and di-Trp, together with an accumulation of carbonyls indicating that casein aggregation is, at least partly, associated with secondary reactions between carbonyls and Lys and His residues. AAPH photolysis, which generates a high flux of free radicals increased the extent of formation of di-Tyr in both model peptides and α- and β- caseins; di-Trp was only detected in peptides and α-casein. Thus, in spite of the high flexibility of caseins, which would be expected to favor radical-radical reactions, the low flux of ROO• generated during AAPH thermolysis disfavours the formation of dimeric radical-radical cross-links such as di-Tyr and di-Trp, instead favoring other O2-dependent crosslinking pathways such as those involving secondary reactions of initial carbonyl products.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Silva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Barrias
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Alexis Aspee
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Elizabeth Escobar
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
161
|
α- and β-casein aggregation induced by riboflavin-sensitized photo-oxidation occurs via di-tyrosine cross-links and is oxygen concentration dependent. Food Chem 2018; 256:119-128. [DOI: 10.1016/j.foodchem.2018.02.090] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/07/2023]
|
162
|
Prasai PK, Shrestha B, Orr AW, Pattillo CB. Decreases in GSH:GSSG activate vascular endothelial growth factor receptor 2 (VEGFR2) in human aortic endothelial cells. Redox Biol 2018; 19:22-27. [PMID: 30096614 PMCID: PMC6086407 DOI: 10.1016/j.redox.2018.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
The angiogenic capacity of local tissue critically regulates the response to ischemic injury. Elevated reactive oxygen species production, commonly associated with ischemic injury, has been shown to promote phosphorylation of the vascular endothelial growth factor receptor 2 (VEGFR2), a critical regulator of angiogenesis. Previous data from our lab demonstrated that diminished levels of the antioxidant glutathione positively augment ischemic angiogenesis. Here, we sought to determine the relationship between glutathione levels and oxidative stress in VEGFR2 signaling. We reveal that decreasing the ratio of GSH to GSSG with diamide leads to enhanced protein S-glutathionylation, increased reactive oxygen species (ROS) production, and enhanced VEGFR2 activation. However, increasing ROS alone was insufficient in activating VEGFR2, while ROS enhanced VEGF-stimulated VEGFR2 activation at supraphysiological levels. We also found that inhibiting glutathione reductase activity is sufficient to increase VEGFR2 activation and sensitizes cells to ROS-dependent VEGFR2 activation. Taken together, these data suggest that regulation of the cellular GSH:GSSG ratio critically regulates VEGFR2 activation. This work represents an important first step in separating thiol mediated signaling events from ROS dependent signaling.
Collapse
Affiliation(s)
- Priya K Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Bandana Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
163
|
Nielsen LR, Nielsen SB, Zhao Z, Olsen K, Nielsen JH, Lund MN. Control of α-Lactalbumin Aggregation by Modulation of Temperature and Concentration of Calcium and Cysteine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7110-7120. [PMID: 29916707 DOI: 10.1021/acs.jafc.8b01172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of free cysteine (in different concentrations) on the thermal aggregation of calcium-saturated (Ca-sat) and -depleted (Ca-dep) α-lactalbumin (α-LA) was investigated at 25, 50, and 70 °C. The temperatures chosen were below the denaturation temperature ( Td) of Ca-dep and Ca-sat α-LA (25 °C), above the Td of Ca-dep α-LA and below that of Ca-sat α-LA (50 °C), and above the Td of Ca-sat α-LA (70 °C). Size-exclusion chromatography coupled to multiangle light scattering showed that no aggregation or only minor aggregation was obtained at the investigated temperatures for both Ca-dep and Ca-sat α-LA even at extended holding times. Aggregates of Ca-sat α-LA were larger than those developed for Ca-dep α-LA. The addition of cysteine, a low-molecular-mass free thiol, resulted in increased aggregation of both Ca-sat and Ca-dep α-LA. Comparisons of SDS-PAGE run under reducing and nonreducing conditions showed that the formed cross-links were primarily disulfide bonds, but Western blots also showed small contributions from dityrosine cross-link formation. The aggregation kinetics related to monomer loss during heat treatment were determined by RP-UPLC and showed that the addition of cysteine increased the rate of aggregation. The activation energies for Ca-dep α-LA with 0.35 and 0.7 mM cysteine were found to be 59 ± 1 and 46 ± 4 kJ/mol, respectively, which showed that less energy was needed for the enhanced thermal aggregation of α-LA when the cysteine concentration was increased. This study showed that it was possible to control the aggregation size of α-LA by manipulating the incubation temperature and the cysteine concentration.
Collapse
Affiliation(s)
- Line R Nielsen
- Innovation R&D, Discover Department , Arla Foods Ingredients Group P/S , Sønderupvej 26 , Videbaek 6920 , Denmark
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , Frederiksberg 1958 , Denmark
| | - Søren B Nielsen
- Innovation R&D, Discover Department , Arla Foods Ingredients Group P/S , Sønderupvej 26 , Videbaek 6920 , Denmark
| | - Zichen Zhao
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , Frederiksberg 1958 , Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , Frederiksberg 1958 , Denmark
| | - Jacob H Nielsen
- Innovation R&D, Discover Department , Arla Foods Ingredients Group P/S , Sønderupvej 26 , Videbaek 6920 , Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , Frederiksberg 1958 , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Blegdamsvej 3 , Copenhagen 2200 , Denmark
| |
Collapse
|
164
|
Oxidative Stress Levels in the Brain Are Determined by Post-Mortem Interval and Ante-Mortem Vitamin C State but Not Alzheimer's Disease Status. Nutrients 2018; 10:nu10070883. [PMID: 29987201 PMCID: PMC6073320 DOI: 10.3390/nu10070883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 01/19/2023] Open
Abstract
The current study highlighted several changes in measures of oxidative stress and antioxidant status that take place in the mouse brain over the course of 24 h post-mortem. Ascorbic acid (vitamin C) and glutathione both decreased significantly in cortex in as little as 2 h and malondialdehyde levels increased. Further change from baseline was observed up to 24 h, including carbonyl and sulfhydryl formation. The greatest changes were observed in brains that began with low ascorbic acid levels (gulo−/− mice) compared to wild-type or 5XFAD mice. Cortical samples from nine Alzheimer’s Disease cases and five controls were also assayed under the same conditions. Post mortem intervals ranged from 6 to 47 h and all samples had low ascorbic acid levels at time of measurement. Malondialdehyde levels were lower in Alzheimer’s Disease cases. Despite a strong positive correlation between ascorbic acid and glutathione levels, no other correlations among oxidative stress measures or post mortem interval were observed. Together the data suggest that molecular changes occurring within the first hours of death may mask differences between patient groups. Care must be taken interpreting studies in human brain tissue where ante-mortem nutrient status is not known to avoid bias or confounding of results.
Collapse
|
165
|
Siddique YH, Naz F, Jyoti S, Ali F, Rahul. Effect of Genistein on the Transgenic Drosophila Model of Parkinson's Disease. J Diet Suppl 2018; 16:550-563. [PMID: 29969325 DOI: 10.1080/19390211.2018.1472706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress has also been linked with the progression of PD, hence the involvement of a natural plant product could offer neuroprotection. The present study deals with the effect of genistein on the transgenic flies expressing normal human alpha synuclein panneurally. The PD flies were exposed to 10, 20, 30, and 40 µM of genistein (mixed in diet) for 24 days. A significant dose-dependent increase in the life span and delay in the loss of climbing ability were observed in the PD flies exposed to genistein (p < .05). A significant dose-dependent decrease in oxidative stress markers and increase in dopamine content were observed in PD flies exposed to genistein. However, the exposure of genistein did not inhibit the expression of α-synuclein in the brains of PD flies.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Fahad Ali
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| |
Collapse
|
166
|
Guo L, Zhao Y, Liu D, Liu Z, Chen C, Xu R, Tian M, Wang X, Chen H, Kong MG. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation. Free Radic Res 2018; 52:783-798. [PMID: 29722278 DOI: 10.1080/10715762.2018.1471476] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise types of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.
Collapse
Affiliation(s)
- Li Guo
- a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , PR China
| | - Yiming Zhao
- b School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , PR China
| | - Dingxin Liu
- a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , PR China
| | - Zhichao Liu
- a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , PR China
| | - Chen Chen
- a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , PR China
| | - Ruobing Xu
- b School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , PR China
| | - Miao Tian
- b School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , PR China
| | - Xiaohua Wang
- a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , PR China
| | - Hailan Chen
- c Frank Reidy Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | - Michael G Kong
- a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , PR China.,c Frank Reidy Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,d Department of Electrical and Computer Engineering , Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
167
|
Siddique YH, Ansari MS, Rahul, Jyoti S. Effect of alloxan on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1472106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohd. Saifullah Ansari
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
168
|
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants (Basel) 2018; 7:E66. [PMID: 29758013 PMCID: PMC5981252 DOI: 10.3390/antiox7050066] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins' genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Isidoros Seremelis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Nikolaos Kontopoulos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| |
Collapse
|
169
|
Shakya B, Siddique YH. Evaluation of the toxic potential of arecoline toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Toxicol Res (Camb) 2018; 7:432-443. [PMID: 30090593 PMCID: PMC6062115 DOI: 10.1039/c7tx00305f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
Arecoline is the key component of areca nut and has been suggested as a carcinogenic agent. In the present study, the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 were allowed to feed on a diet having 5, 10, 20, 40 and 80 μM arecoline for 24 h. After the completion of 24 h, the larvae were subjected to ONPG assay, X-gal staining, trypan blue exclusion test, oxidative stress markers, and apoptotic and comet assays. A dose-dependent increase in the β-galactosidase activity, tissue damage, glutathione-S-transferase (GST) activity, lipid peroxidation assay, monoamine oxidase (MAO), caspase-9 and 3, protein carbonyl content (PCC), apoptotic index, and DNA damage and decrease in glutathione (GSH) content, delta aminolevulinic acid dehydrogenase (δ-ALA-D), and acetylcholinesterase (AChE) activity were observed in the larvae exposed to 20, 40 and 80 μM arecoline. The results suggest that arecoline is toxic at 20, 40, and 80 μM toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 . Arecoline did not show any toxic effects at 5 and 10 μM.
Collapse
Affiliation(s)
- Barkha Shakya
- Drosophila Transgenic Laboratory , Section of Genetics , Department of Zoology , Faculty of Life Sciences , Aligarh Muslim University , Aligarh , Uttar Pradesh , India . ; Tel: +0571-2700920-3430
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory , Section of Genetics , Department of Zoology , Faculty of Life Sciences , Aligarh Muslim University , Aligarh , Uttar Pradesh , India . ; Tel: +0571-2700920-3430
| |
Collapse
|
170
|
Siddique YH, Naz F, Khan W, Jyoti S, Raj Singh B, Naqvi AH. Effect of pramipexole alginate nanodispersion (PAND) on the transgenic Drosophila expressing human alpha synuclein in the brain. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
171
|
Rogers A, Hahn L, Pham V, Were L. Greening in sunflower butter cookies as a function of egg replacers and baking temperature. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:1478-1488. [PMID: 29606762 PMCID: PMC5876218 DOI: 10.1007/s13197-018-3064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/13/2018] [Accepted: 02/02/2018] [Indexed: 11/30/2022]
Abstract
Chlorogenic acid (CGA) binding to proteins in alkaline conditions results in the production of green trihydroxy benzacradine (TBA) derivatives. The formation of TBA derivatives could decrease product quality due to the potential losses in soluble protein and antioxidants and the production of an undesirable green color. To determine how cookie formulation affected the formation of TBA derivatives in sunflower butter cookies, two egg replacers (chia and banana) and two baking temperatures (162.8 and 190.6 °C) were used. Moisture, greening intensity, CGA content and antioxidant capacity were measured. Cookies made with egg and baked at 162.8 °C had the highest moisture, internal greening intensity, and TBA derivative formation, in addition to lower CGA content and antioxidant capacity. Cookies made with banana baked at 190.6 °C produced the opposite outcome with 35, 4, and 23% less internal greening, moisture, and TBA derivatives, respectively, and 90 and 76% higher CGA and antioxidant capacity. Internal greening was positively correlated with moisture and adduct concentration, and negatively correlated with spread factor and CGA content. Moisture had a significant impact on greening, which indicates that baking temperature and cookie dough formulation can be modified to produce a less green cookie with more unreacted antioxidants and protein.
Collapse
Affiliation(s)
- Amanda Rogers
- Food Science Program, Chapman University, Hashinger Science Building, 1 University Dr, Orange, CA 92688 USA
| | - Lan Hahn
- Food Technology Program, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Vu Pham
- Food Technology Program, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Lilian Were
- Food Science Program, Chapman University, Hashinger Science Building, 1 University Dr, Orange, CA 92688 USA
| |
Collapse
|
172
|
Salama SA, Arab HH, Omar HA, Gad HS, Abd-Allah GM, Maghrabi IA, Al robaian MM. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines. Chem Biol Interact 2018; 285:40-47. [DOI: 10.1016/j.cbi.2018.02.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
|
173
|
A pivotal role for NF-κB in the macrophage inflammatory response to the myeloperoxidase oxidant hypothiocyanous acid. Arch Biochem Biophys 2018; 642:23-30. [DOI: 10.1016/j.abb.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
|
174
|
Lund MN, Andersen ML. Detection of Thiol Groups in Beer and Their Correlation with Oxidative Stability. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-0620-01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marianne N. Lund
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mogens L. Andersen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
175
|
Degendorfer G, Chuang CY, Mariotti M, Hammer A, Hoefler G, Hägglund P, Malle E, Wise SG, Davies MJ. Exposure of tropoelastin to peroxynitrous acid gives high yields of nitrated tyrosine residues, di-tyrosine cross-links and altered protein structure and function. Free Radic Biol Med 2018; 115:219-231. [PMID: 29191462 DOI: 10.1016/j.freeradbiomed.2017.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr modification with up to two modified Tyr per protein molecule, and up to 8% conversion of initial ONOOH to 3-nitroTyr. These effects were modulated by bicarbonate, an alternative target for ONOOH. Inter- and intra-protein di-tyrosine cross-links have been characterized by mass spectrometry. Examination of human atherosclerotic lesions shows colocalization of 3-nitroTyr with elastin epitopes, consistent with TE or elastin modification in vivo, and also an association of 3-nitroTyr containing proteins and elastin with lipid deposits. These data suggest that exposure of TE to ONOOH gives marked chemical and structural changes to TE and altered matrix assembly, and that such damage accumulates in human arterial tissue during the development of atherosclerosis.
Collapse
Affiliation(s)
| | - Christine Y Chuang
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Steven G Wise
- The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Michael J Davies
- The Heart Research Institute, Sydney, Australia; Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
176
|
Liang S, Were LM. Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions. Food Chem 2018; 241:135-142. [DOI: 10.1016/j.foodchem.2017.08.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
|
177
|
Makni M, Jemai R, Kriaa W, Chtourou Y, Fetoui H. Citrus limon from Tunisia: Phytochemical and Physicochemical Properties and Biological Activities. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6251546. [PMID: 29568760 PMCID: PMC5820557 DOI: 10.1155/2018/6251546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023]
Abstract
Natural plant extracts contain a variety of phenolic compounds which are assigned various biological activities. Our work aims to make a quantitative and qualitative characterization of the Zest (ZL) and the Flesh (FL) of lemon (Citrus limon), to valorize the pharmacological uses of lemon, by evaluating in vitro activities (DPPH, free radical scavenging and reducing power). The antibacterial, antifungal, and antiproliferative activities were sought in the ability of Citrus limon extracts to protect DNA and protein. We found that the ZL contains high amounts of phenolics responsible for the important antioxidant properties of the extract. However, the FL is richer in flavonoids than the ZL. The FL extract was also found to be more effective than the ZL in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals. We also concluded that the FL extract exhibited potent antibacterial activity unlike ZL. Analysis by LC/MS-MS identified 6 compounds (Caffeoyl N-Tryptophan, Hydroxycinnamoyl-Oglucoside acid, Vicenin 2, Eriocitrin, Kaempferol-3-O- rutinoside, and Quercetin-3-rutinoside). These preliminary results showed that Citrus limon has antibacterial and antioxidant activity in vitro. It would be interesting to conduct further studies to evaluate the in vivo potential in an animal model.
Collapse
Affiliation(s)
- Mohamed Makni
- Laboratory of Toxicology, Environmental Microbiology and Health, Science Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Raoua Jemai
- Laboratory of Toxicology, Environmental Microbiology and Health, Science Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Walid Kriaa
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology, Environmental Microbiology and Health, Science Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology, Environmental Microbiology and Health, Science Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
178
|
Salama SA, Arab HH, Maghrabi IA. Troxerutin down-regulates KIM-1, modulates p38 MAPK signaling, and enhances renal regenerative capacity in a rat model of gentamycin-induced acute kidney injury. Food Funct 2018; 9:6632-6642. [DOI: 10.1039/c8fo01086b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Troxerutin enhances renal tissue regeneration, improves renal function, and decreases renal tissue injury in gentamycin-treated rats.
Collapse
Affiliation(s)
- Samir A. Salama
- Division of Biochemistry
- Department of Pharmacology and GTMR Unit
- College of Clinical Pharmacy
- Taif University
- Taif 21974
| | - Hany H. Arab
- Division of Biochemistry
- Department of Pharmacology and GTMR Unit
- College of Clinical Pharmacy
- Taif University
- Taif 21974
| | - Ibrahim A. Maghrabi
- Department of Clinical Pharmacy
- College of Clinical Pharmacy
- Taif University
- Taif 21974
- Saudi Arabia
| |
Collapse
|
179
|
Liang S, Were LM. Chlorogenic acid induced colored reactions and their effect on carbonyls, phenolic content, and antioxidant capacity in sunflower butter cookies. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
180
|
Lopa NS, Rahman MM, Jang H, Sutradhar SC, Ahmed F, Ryu T, Kim W. A glassy carbon electrode modified with poly(2,4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers. Mikrochim Acta 2017; 185:23. [DOI: 10.1007/s00604-017-2567-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022]
|
181
|
Indo HP, Hawkins CL, Nakanishi I, Matsumoto KI, Matsui H, Suenaga S, Davies MJ, St Clair DK, Ozawa T, Majima HJ. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. Handb Exp Pharmacol 2017; 240:439-456. [PMID: 28176043 DOI: 10.1007/164_2016_117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8575, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Daret K St Clair
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Toshihiko Ozawa
- Division of Oxidative Stress Research, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| |
Collapse
|
182
|
Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins. Free Radic Biol Med 2017; 113:132-142. [PMID: 28962874 DOI: 10.1016/j.freeradbiomed.2017.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023]
Abstract
Free radicals are produced during physiological processes including metabolism and the immune response, as well as on exposure to multiple external stimuli. Many radicals react rapidly with proteins resulting in side-chain modification, backbone fragmentation, aggregation, and changes in structure and function. Due to its low oxidation potential, the indole ring of tryptophan (Trp) is a major target, with this resulting in the formation of indolyl radicals (Trp•). These undergo multiple reactions including ring opening and dimerization which can result in protein aggregation. The factors that govern Trp• dimerization, the rate constants for these reactions and the exact nature of the products are not fully elucidated. In this study, second-order rate constants were determined for Trp• dimerization in Trp-containing peptides to be 2-6 × 108M-1s-1 by pulse radiolysis. Peptide charge and molecular mass correlated negatively with these rate constants. Exposure of Trp-containing peptides to steady-state radiolysis in the presence of NaN3 resulted in consumption of the parent peptide, and detection by LC-MS of up to 4 different isomeric Trp-Trp cross-links. Similar species were detected with other oxidants, including CO3•- (from the HCO3- -dependent peroxidase activity of bovine superoxide dismutase) and peroxynitrous acid (ONOOH) in the presence or absence of HCO3-. Trp-Trp species were also isolated and detected after alkaline hydrolysis of the oxidized peptides and proteins. These studies demonstrate that Trp• formed on peptides and proteins undergo rapid recombination reactions to form Trp-Trp cross-linked species. These products may serve as markers of radical-mediated protein damage, and represent an additional pathway to protein aggregation in cellular dysfunction and disease.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark
| | - David I Pattison
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | | | | | - Michael J Davies
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
183
|
Anzovino A, Chiang S, Brown BE, Hawkins CL, Richardson DR, Huang MLH. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia: An Impaired Nrf2 Response Mediated via Upregulation of Keap1 and Activation of the Gsk3β Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2858-2875. [PMID: 28935570 DOI: 10.1016/j.ajpath.2017.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione/oxidized glutathione ratio were observed, but the opposite was found in skeletal muscle. Decreased total and nuclear Nrf2 and increased levels of its inhibitor, Kelch-like ECH-associated protein 1, were evident in the KO heart, but not in skeletal muscle. Moreover, a mechanism involving activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling was demonstrated in the KO heart. This process involved the following: i) increased Gsk3β activation, ii) β-transducin repeat containing E3 ubiquitin protein ligase nuclear accumulation, and iii) Fyn phosphorylation. A corresponding decrease in Nrf2-DNA-binding activity and a general decrease in Nrf2-target mRNA were observed in KO hearts. Paradoxically, protein levels of some Nrf2 antioxidant targets were significantly increased in KO mice. Collectively, cardiac frataxin deficiency reduces Nrf2 levels via two potential mechanisms: increased levels of cytosolic Kelch-like ECH-associated protein 1 and activation of Gsk3β signaling, which decreases nuclear Nrf2. These findings are in contrast to the frataxin-deficient skeletal muscle, where Nrf2 was not decreased.
Collapse
Affiliation(s)
- Amy Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bronwyn E Brown
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Clare L Hawkins
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
184
|
Krämer AC, Torreggiani A, Davies MJ. Effect of Oxidation and Protein Unfolding on Cross-Linking of β-Lactoglobulin and α-Lactalbumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10258-10269. [PMID: 29096436 DOI: 10.1021/acs.jafc.7b03839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxidation and heat treatment can initiate changes in the amino acid composition, structure, solubility, hydrophobicity, conformation, function, and susceptibility to proteolysis of proteins. These can result in adverse consequences for mammals, plants, foodstuffs, and pharmaceuticals. This study investigated whether and how individual or combined treatment with heat, a commonly encountered factor in industrial processing, and H2O2 alters the structure and composition of two major milk whey proteins, α-lactalbumin and β-lactoglobulin, and mixtures of these. Thermal treatment induced reducible cross-links in isolated β-lactoglobulin, but not isolated α-lactalbumin under the conditions employed. Cross-linking occurred at lower temperatures and to a greater extent in the presence of low concentrations of H2O2. H2O2 did not induce cross-linking in the absence of heat. Mixtures of α-lactalbumin and β-lactoglobulin showed similar behavior, except that mixed α-lactalbumin-β-lactoglobulin dimers were detected. Cross-linking was associated with formation of sulfenic acids (RS-OH species), oxidation of methionine residues, cleavage of disulfide bonds in α-lactalbumin, altered conformation of disulfide bonds in β-lactoglobulin, alterations in the fluorescence intensity and maximum emission wavelength of endogenous tryptophan residues, and binding of the hydrophobic probe 8-anilinonaphthalenesulfonate. These data are consistent with increased unfolding and subsequent aggregation of the protein, with these changes being maximized in the presence of both heat and H2O2. The enhanced aggregation detected with H2O2 is consistent with additional pathways to aggregation above that induced by heat alone. These mechanistic insights provide potential strategies for modulating the extent and nature of protein modification induced by thermal and oxidant treatment.
Collapse
Affiliation(s)
- Anna C Krämer
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen , Copenhagen 2200, Denmark
| | - Armida Torreggiani
- Istituto per la Sintesi e la Fotoreattivita, ISOF-CNR, Area della Ricerca di Bologna , Via P. Gobetti 101, 40129 Bologna, Italy
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen , Copenhagen 2200, Denmark
| |
Collapse
|
185
|
Escobar-Álvarez E, Leinisch F, Araya G, Monasterio O, Lorentzen LG, Silva E, Davies MJ, López-Alarcón C. The peroxyl radical-induced oxidation of Escherichia coli FtsZ and its single tryptophan mutant (Y222W) modifies specific side-chains, generates protein cross-links and affects biological function. Free Radic Biol Med 2017; 112:60-68. [PMID: 28733212 DOI: 10.1016/j.freeradbiomed.2017.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
FtsZ (filamenting temperature-sensitive mutant Z) is a key protein in bacteria cell division. The wild-type Escherichia coli FtsZ sequence (FtsZwt) contains three tyrosine (Tyr, Y) and sixteen methionine (Met, M) residues. The Tyr at position 222 is a key residue for FtsZ polymerization. Mutation of this residue to tryptophan (Trp, W; mutant Y222W) inhibits GTPase activity resulting in an extended time in the polymerized state compared to FtsZwt. Protein oxidation has been highlighted as a determinant process for bacteria resistance and consequently oxidation of FtsZwt and the Y222W mutant, by peroxyl radicals (ROO•) generated from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was studied. The non-oxidized proteins showed differences in their polymerization behavior, with this favored by the presence of Trp at position 222. AAPH-treatment of the proteins inhibited polymerization. Protein integrity studies using SDS-PAGE revealed the presence of both monomers and oligomers (dimers, trimers and high mass material) on oxidation. Western blotting indicated the presence of significant levels of protein carbonyls. Amino acid analysis showed that Tyr, Trp (in the Y222W mutant), and Met were consumed by ROO•. Quantification of the number of moles of amino acid consumed per mole of ROO• shows that most of the initial oxidant can be accounted for at low radical fluxes, with Met being a major target. Western blotting provided evidence for di-tyrosine cross-links in the dimeric and trimeric proteins, confirming that oxidation of Tyr residues, at positions 339 and/or 371, are critical to ROO•-mediated crosslinking of both the FtsZwt and Y222W mutant protein. These findings are in agreement with di-tyrosine, N-formyl kynurenine, and kynurenine quantification assessed by UPLC, and with LC-MS data obtained for AAPH-treated protein samples.
Collapse
Affiliation(s)
- Elizabeth Escobar-Álvarez
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabian Leinisch
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eduardo Silva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
186
|
Leinisch F, Mariotti M, Rykaer M, Lopez-Alarcon C, Hägglund P, Davies MJ. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radic Biol Med 2017; 112:240-252. [PMID: 28756310 DOI: 10.1016/j.freeradbiomed.2017.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023]
Abstract
Protein oxidation is a frequent event as a result of the high abundance of proteins in biological samples and the multiple processes that generate oxidants. The reactions that occur are complex and poorly understood, but can generate major structural and functional changes on proteins. Current data indicate that pathophysiological processes and multiple human diseases are associated with the accumulation of damaged proteins. In this study we investigated the mechanisms and consequences of exposure of the key metabolic enzyme glucose-6-phosphate dehydrogenase (G6PDH) to peroxyl radicals (ROO•) and singlet oxygen (1O2), with particular emphasis on the role of Trp and Tyr residues in protein cross-linking and fragmentation. Cross-links and high molecular mass aggregates were detected by SDS-PAGE and Western blotting using specific antibodies. Amino acid analysis has provided evidence for Trp and Tyr consumption and formation of oxygenated products (diols, peroxides, N-formylkynurenine, kynurenine) from Trp, and di-tyrosine (from Tyr). Mass spectrometric data obtained after trypsin-digestion in the presence of H216O and H218O, has allowed the mapping of specific cross-linked residues and their locations. These data indicate that specific Tyr-Trp and di-Tyr cross-links are formed from residues that are proximal and surface-accessible, and that the extent of Trp oxidation varies markedly between sites. Limited modification at other residues is also detected. These data indicate that Trp and Tyr residues are readily modified by ROO• and 1O2 with this giving products that impact significantly on protein structure and function. The formation of such cross-links may help rationalize the accumulation of damaged proteins in vivo.
Collapse
Affiliation(s)
- Fabian Leinisch
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Rykaer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Camilo Lopez-Alarcon
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Catolica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
187
|
Siddique YH, Jyoti S. Alteration in biochemical parameters in the brain of transgenic Drosophila melanogaster model of Parkinson's disease exposed to apigenin. Integr Med Res 2017; 6:245-253. [PMID: 28951838 PMCID: PMC5605376 DOI: 10.1016/j.imr.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress is one of the key components of the pathology of various neurodegenerative disorders. Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons owing to the aggregation of alpha-synuclein (αS) in the brain. A number of polyphenols have been reported to inhibit the αS aggregation resulting in the possible prevention of PD. The involvement of free radicals in mediating the neuronal death in PD has also been implicated. METHODS In the present study, the transgenic flies expressing human αS in the brain were exposed to 10 μM, 20 μM, 40 μM, and 80 μM of apigenin established in diet for 24 days. RESULTS The flies showed an increase in life span, glutathione, and dopamine content. The exposure of PD flies to various doses of apigenin also results in the reduction of glutathione-S-transferase activity, lipid peroxidation, monoamine oxidase, caspase-3, and caspase-9 activity in a dose-dependent manner. CONCLUSION The results of the present study reveal that apigenin is potent in increasing the life span, dopamine content, reduced the oxidative stress as well as apoptosis in transgenic Drosophila model of PD.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
188
|
Chami B, Jeong G, Varda A, Maw AM, Kim HB, Fong G, Simone M, Rayner B, Wang XS, Dennis J, Witting P. The nitroxide 4-methoxy TEMPO inhibits neutrophil-stimulated kinase activation in H9c2 cardiomyocytes. Arch Biochem Biophys 2017; 629:19-35. [DOI: 10.1016/j.abb.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
|
189
|
Groitl B, Dahl JU, Schroeder JW, Jakob U. Pseudomonas aeruginosa defense systems against microbicidal oxidants. Mol Microbiol 2017; 106:335-350. [PMID: 28795780 DOI: 10.1111/mmi.13768] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
The most abundant oxidants controlling bacterial colonization on mucosal barrier epithelia are hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN). All three oxidants are highly antimicrobial but little is known about their relative efficacies, their respective cellular targets, or what specific responses they elicit in bacteria. To address these important questions, we directly tested the individual oxidants on the virulent Pseudomonas aeruginosa strain PA14. We discovered that HOCl and HOBr work almost interchangeably, impacting non-growing bacterial cultures more significantly than actively growing bacteria, and eliciting similar stress responses, including the heat shock response. HOSCN treatment is distinctly different, affecting primarily actively growing PA14 and evoking stress responses suggestive of membrane damage. What all three oxidants have in common, however, is their ability to cause substantial protein aggregation. This effect became particularly obvious in strains lacking polyphosphate, a newly recognized chemical chaperone. Treatment of PA14 with the FDA-approved anti-inflammatory drug mesalamine, which has recently been shown to attenuate polyP production in a wide range of bacteria, effectively decreased the resistance of PA14 toward all three oxidants, suggesting that we have discovered a novel, targetable defense system in P. aeruginosa.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jan-Ulrik Dahl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
190
|
Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. Eur J Nutr 2017; 57:2513-2528. [DOI: 10.1007/s00394-017-1523-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/06/2017] [Indexed: 12/25/2022]
|
191
|
Abdo AI, Rayner BS, van Reyk DM, Hawkins CL. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol 2017; 13:623-632. [PMID: 28818791 PMCID: PMC5558469 DOI: 10.1016/j.redox.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL) modified by hypochlorous acid (HOCl) produced by myeloperoxidase (MPO) is present in atherosclerotic lesions, where it is implicated in the propagation of inflammation and acceleration of lesion development by multiple pathways, including the induction of endothelial dysfunction. Thiocyanate (SCN-) ions are utilised by MPO to produce the oxidant hypothiocyanous acid (HOSCN), which reacts with LDL in a different manner to HOCl. Whilst the reactivity of HOCl-modified LDL has been previously studied, the role of HOSCN in the modification of LDL in vivo is poorly defined, although emerging evidence suggests that these particles have distinct biological properties. This is important because elevated plasma SCN- is linked with both the propagation and prevention of atherosclerosis. In this study, we demonstrate that both HOSCN- and HOCl-modified LDL inhibit endothelium-mediated vasorelaxation ex vivo in rat aortic ring segments. In vitro experiments with human coronary artery endothelial cells show that HOSCN-modified LDL decreases in the production of nitric oxide (NO•) and induces the loss of endothelial nitric oxide synthase (eNOS) activity. This occurs to a similar extent to that seen with HOCl-modified LDL. In each case, these effects are related to eNOS uncoupling, rather than altered expression, phosphorylation or cellular localisation. Together, these data provide new insights into role of MPO and LDL modification in the induction of endothelial dysfunction, which has implications for both the therapeutic use of SCN- within the setting of atherosclerosis and for smokers, who have elevated plasma levels of SCN-, and are more at risk of developing cardiovascular disease. Myeloperoxidase produces HOCl and HOSCN that modify LDL in a distinct manner. HOSCN- and HOCl-LDL inhibit endothelium-mediated vasorelaxation in aortic rings ex vivo. HOSCN- and HOCl-LDL decrease endothelial production of nitric oxide in vitro. Decreased eNOS activity is seen, which associated with enzyme uncoupling. HOSCN- and HOCl-LDL induce colocalisation of eNOS and caveolin 1.
Collapse
Affiliation(s)
- Adrian I Abdo
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin S Rayner
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David M van Reyk
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark.
| |
Collapse
|
192
|
Klein RD, Borges VD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A. Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. J Therm Biol 2017; 68:110-118. [DOI: 10.1016/j.jtherbio.2017.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
193
|
Quantitative Protein Topography Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate Molecular Model Selection. Sci Rep 2017; 7:4552. [PMID: 28674401 PMCID: PMC5495787 DOI: 10.1038/s41598-017-04689-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/18/2017] [Indexed: 11/23/2022] Open
Abstract
We report an integrated workflow that allows mass spectrometry-based high-resolution hydroxyl radical protein footprinting (HR-HRPF) measurements to accurately measure the absolute average solvent accessible surface area (<SASA>) of amino acid side chains. This approach is based on application of multi-point HR-HRPF, electron-transfer dissociation (ETD) tandem MS (MS/MS) acquisition, measurement of effective radical doses by radical dosimetry, and proper normalization of the inherent reactivity of the amino acids. The accuracy of the resulting <SASA> measurements was tested by using well-characterized protein models. Moreover, we demonstrated the ability to use <SASA> measurements from HR-HRPF to differentiate molecular models of high accuracy (<3 Å backbone RMSD) from models of lower accuracy (>4 Å backbone RMSD). The ability of <SASA> data from HR-HRPF to differentiate molecular model quality was found to be comparable to that of <SASA> data obtained from X-ray crystal structures, indicating the accuracy and utility of HR-HRPF for evaluating the accuracy of computational models.
Collapse
|
194
|
Song JG, Lee SH, Han HK. The stabilization of biopharmaceuticals: current understanding and future perspectives. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0341-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
195
|
Nikolaidis MG. The Effects of Resistance Exercise on Muscle Damage, Position Sense, and Blood Redox Status in Young and Elderly Individuals. Geriatrics (Basel) 2017; 2:geriatrics2030020. [PMID: 31011030 PMCID: PMC6371112 DOI: 10.3390/geriatrics2030020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/26/2022] Open
Abstract
Background: The purpose of the present investigation was to study the possible differences between young and elderly individuals regarding muscle damage, position sense, and oxidative stress biomarkers in response to resistance eccentric-biased exercise. Methods: Ten young and 10 elderly individuals performed a bout of resistance exercise (i.e., squat exercise). Muscle damage indices (i.e., isometric peak torque, range of movement, delayed onset muscle soreness, and creatine kinase), position sense, and oxidative stress biomarkers (i.e., protein carbonyls and reduced glutathione) were assessed before and 48 h post exercise. Results: The main effect of time was significant for all measured parameters, indicating that resistance exercise that includes a large eccentric component causes muscle damage, disturbs position sense, and induces oxidative stress. However, no significant main effect of group or time × group interaction was found for all measured parameters (except isometric peak torque), indicating similar responses to resistance exercise for both young and the elderly individuals. Conclusion: There are no differences between young and elderly individuals regarding muscle damage, position sense, and oxidative stress after resistance exercise, while elderly individuals have lower muscle strength and seem to have a tendency for greater baseline oxidative stress compared to young individuals.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sports Sciences at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
196
|
Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6501046. [PMID: 28698768 PMCID: PMC5494111 DOI: 10.1155/2017/6501046] [Citation(s) in RCA: 487] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids, DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.
Collapse
|
197
|
Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. NANOSCALE 2017; 9:7595-7601. [PMID: 28537609 PMCID: PMC5703216 DOI: 10.1039/c6nr09500c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
198
|
Barba FJ, Poojary MM, Wang J, Olsen K, Orlien V. Effect of high pressure processing and storage on the free amino acids in seedlings of Brussels sprouts. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
199
|
Martini D, Rossi S, Biasini B, Zavaroni I, Bedogni G, Musci M, Pruneti C, Passeri G, Ventura M, Di Nuzzo S, Galli D, Mirandola P, Vitale M, Dei Cas A, Bonadonna RC, Del Rio D. Claimed effects, outcome variables and methods of measurement for health claims proposed under European Community Regulation 1924/2006 in the framework of protection against oxidative damage and cardiovascular health. Nutr Metab Cardiovasc Dis 2017; 27:473-503. [PMID: 28434807 DOI: 10.1016/j.numecd.2017.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS The high number of negative opinions from the European Food Safety Authority (EFSA) to the requests for authorization of health claims is largely due to the design of human intervention studies, including the inappropriate choice of outcome variables (OVs) and of their methods of measurement (MMs). The present manuscript reports the results of an investigation aimed to collect, collate and critically analyse the information in relation to claimed effects, OVs and MMs, in the context of protection against oxidative damage and cardiovascular health compliant with Regulation 1924/2006. METHODS AND RESULTS Claimed effects, OVs and the related MMs were collected from EFSA Guidance documents and applications for authorization of health claims under Articles 13.5 and 14. The OVs and their MMs were evaluated only if the claimed effect was sufficiently defined and was considered beneficial by EFSA. The collection, collation and critical analysis of the relevant scientific literature consisted in the definition of the keywords, the PubMed search strategies and the creation of databases of references. The critical analysis of the OVs and their MMs was performed on the basis of the literature review and was aimed at defining the appropriateness of OVs and MMs in the context of the specific claimed effects. CONCLUSIONS The information provided in this document could serve to EFSA for the development of further guidance on the scientific requirements for health claims, as well as to the stakeholders for the proper design of human intervention studies aimed to substantiate such health claims.
Collapse
Affiliation(s)
- D Martini
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Parma, Italy
| | - S Rossi
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Parma, Italy
| | - B Biasini
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Parma, Italy
| | - I Zavaroni
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, Italy; Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - G Bedogni
- Clinical Epidemiology Unit, Liver Research Center, Basovizza, Trieste, Italy
| | - M Musci
- Department of Food and Drug, University of Parma, Parma, Italy
| | - C Pruneti
- Department of Medicine and Surgery, Clinical Psychology Unit, University of Parma, Medical School Building, Parma, Italy
| | - G Passeri
- Department of Medicine and Surgery, Building Clinica Medica Generale, University of Parma, Parma, Italy
| | - M Ventura
- Department of Chemistry, Life Sciences and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - S Di Nuzzo
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, Parma, Italy
| | - D Galli
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, Parma, Italy
| | - P Mirandola
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, Parma, Italy
| | - M Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, Parma, Italy
| | - A Dei Cas
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, Italy; Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, Italy; Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - D Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
200
|
Lundh M, Bugliani M, Dahlby T, Chou DHC, Wagner B, Ghiasi SM, De Tata V, Chen Z, Lund MN, Davies MJ, Marchetti P, Mandrup-Poulsen T. The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. J Endocrinol 2017; 233:369-379. [PMID: 28438776 PMCID: PMC5501413 DOI: 10.1530/joe-17-0110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
In addition to degrading misfolded and damaged proteins, the proteasome regulates the fate of cells in response to stress. The role of the proteasome in pro-inflammatory cytokine-induced human beta-cell apoptosis is unknown. Using INS-1, INS-1E and human islets exposed to combinations of IFNγ, IL-1β and TNFα with or without addition of small molecules, we assessed the role of the immunoproteasome in pancreatic beta-cell demise. Here, we show that cytokines induce the expression and activity of the immuno-proteasome in INS-1E cells and human islets. Cytokine-induced expression of immuno-proteasome subunits, but not activity, depended upon histone deacetylase 3 activation. Inhibition of JAK1/STAT1 signaling did not affect proteasomal activity. Inhibition of the immuno-proteasome subunit PSMB8 aggravated cytokine-induced human beta-cell apoptosis while reducing intracellular levels of oxidized proteins in INS-1 cells. While cytokines increased total cellular NFκB subunit P50 and P52 levels and reduced the cytosolic NFκB subunit P65 and IκB levels, these effects were unaffected by PSMB8 inhibition. We conclude that beta cells upregulate immuno-proteasome expression and activity in response to IFNγ, likely as a protective response to confine inflammatory signaling.
Collapse
Affiliation(s)
- Morten Lundh
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Marco Bugliani
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | - Tina Dahlby
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Danny Hung-Chieh Chou
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Bridget Wagner
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | | | - Vincenzo De Tata
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Zhifei Chen
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Marianne Nissan Lund
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Department of Food ScienceUniversity of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Piero Marchetti
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | | |
Collapse
|