151
|
Yang W, Park IJ, Yun H, Im DU, Ock S, Kim J, Seo SM, Shin HY, Viollet B, Kang I, Choe W, Kim SS, Ha J. AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells. J Biol Chem 2014; 289:4839-52. [PMID: 24398673 DOI: 10.1074/jbc.m113.496315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Doxorubicin is one of the most widely used anti-cancer drugs, but its clinical application is compromised by severe adverse effects in different organs including cardiotoxicity. In the present study we explored mechanisms of doxorubicin-induced cytotoxicity by revealing a novel role for the AMP-activated protein kinase α2 (AMPKα2) in mouse embryonic fibroblasts (MEFs). Doxorubicin robustly induced the expression of AMPKα2 in MEFs but slightly reduced AMPKα1 expression. Our data support the previous notion that AMPKα1 harbors survival properties under doxorubicin treatment. In contrast, analyses of Ampkα2(-/-) MEFs, gene knockdown of AMPKα2 by shRNA, and inhibition of AMPKα2 activity with an AMPK inhibitor indicated that AMPKα2 functions as a pro-apoptotic molecule under doxorubicin treatment. Doxorubicin induced AMPKα2 at the transcription level via E2F1, a transcription factor that regulates apoptosis in response to DNA damage. E2F1 directly transactivated the Ampkα2 gene promoter. In turn, AMPKα2 significantly contributed to stabilization and activation of E2F1 by doxorubicin, forming a positive signal amplification loop. AMPKα2 directly interacted with and phosphorylated E2F1. This signal loop was also detected in H9c2, C2C12, and ECV (human epithelial cells) cells as well as mouse liver under doxorubicin treatment. Resveratrol, which has been suggested to attenuate doxorubicin-induced cytotoxicity, significantly blocked induction of AMPKα2 and E2F1 by doxorubicin, leading to protection of these cells. This signal loop appears to be non-carcinoma-specific because AMPKα2 was not induced by doxorubicin in five different tested cancer cell lines. These results suggest that AMPKα2 may serve as a novel target for alleviating the cytotoxicity of doxorubicin.
Collapse
Affiliation(s)
- Wookyeom Yang
- From the Department of Biochemistry and Molecular Biology, Medical Research Center and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, Jung JH, Chung HY, Kim HS. Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:615-625. [PMID: 24161697 DOI: 10.1016/j.bbagen.2013.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines. METHODS The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox. RESULTS AND CONCLUSION RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group. GENERAL SIGNIFICANCE These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Resveratrol
- Reverse Transcriptase Polymerase Chain Reaction
- Stilbenes/administration & dosage
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tae Hyung Kim
- Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea; Division of Toxicology, College of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Extracts of Artemisia ciniformis Protect Cytotoxicity Induced by Hydrogen Peroxide in H9c2 Cardiac Muscle Cells through the Inhibition of Reactive Oxygen Species. Adv Pharmacol Sci 2013; 2013:141683. [PMID: 24381586 PMCID: PMC3867950 DOI: 10.1155/2013/141683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/19/2013] [Accepted: 10/19/2013] [Indexed: 11/17/2022] Open
Abstract
Objective. Artemisia ciniformis (Asteraceae) and A. biennis are two of 34 Artemisia species growing naturally in Iran. In this study we investigated whether different extracts of A. ciniformis and A. biennis have protective effect against hydrogen peroxide-induced cytotoxicity in rat cardiomyoblast cells (H9c2). Method. The dried and ground aerial parts of these two species were extracted successively using petroleum ether (40–60), dichloromethane, ethyl acetate (EA), ethanol (EtOH) and ethanol : water (1 : 1) by maceration method. To evaluate whether different extracts of A. ciniformis and A. biennis protect cardiomyoblast H9c2 cells from H2O2 cytotoxicity, we examined the direct cytotoxic effect of H2O2 on H9c2 cells in the presence and absence of different extracts. After then, cell viability was measured by MTT assay. Results. H2O2 induced cytotoxicity in a concentration dependent manner. The IC50 value was 62.5 μM for 24 h exposure. However, pretreatment of cells with various concentrations of EA, EtOH, and EtOH/wt extract of A. ciniformis protected cells from H2O2-induced cytotoxicity. Moreover, pretreatment with EA, EtOH and EtOH/wt extracts of A. ciniformis lead to a decrease in the reactive oxygen species (ROS) generation. Taken together our observation indicated that nontoxic concentration of different extracts of A. ciniformis has protective effect on H2O2-induced cytotoxicity in H9c2 cells.
Collapse
|
154
|
Sesamin ameliorates doxorubicin-induced cardiotoxicity: involvement of Sirt1 and Mn-SOD pathway. Toxicol Lett 2013; 224:257-63. [PMID: 24211423 DOI: 10.1016/j.toxlet.2013.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/26/2013] [Accepted: 10/28/2013] [Indexed: 12/20/2022]
Abstract
Oxidative stress caused by doxorubicin (DOX) is believed to be a major underlying molecular mechanism of DOX-induced cardiotoxicity. Sesamin (Ses), an active component extracted from sesame seeds, exhibits antioxidative and anti-inflammatory effects. In the present study, possible protective mechanisms of Ses on DOX-induced cardiotoxicity were investigated in rats and cultured H9C2 cells. We demonstrated that Ses exhibits a significant protective effect on cardiac tissue in animal and cell models of DOX-induced cardiac injury. Moreover, Ses can ameliorate DOX-induced oxidative stress and mitochondrial damage. Further studies suggested that Ses is able to up-regulate the protein expression of Mn-SOD in normal rats and to restore the decreased expression of Mn-SOD in DOX-induced cardiac injury rats. Exposure to Ses or DOX alone slightly increased the protein expression of Sirt1; however, a more remarkable increase in Sirt1 protein level was detected in the Ses+DOX group. Treatment with a pan-sirtuin inhibitor (nicotinamide) or a Sirt1-specific inhibitor (EX-527) partially antagonised the effect of Ses on DOX-induced mitochondrial damage and completely abolished the effect of Ses on Mn-SOD expression. These findings indicate that the protective mechanisms of Ses on DOX-induced cardiotoxicity are involved in the alleviation of oxidative stress injury and Mn-SOD dysfunction, partially via the activation of Sirt1.
Collapse
|
155
|
Long-term resveratrol treatment prevents ovariectomy-induced osteopenia in rats without hyperplastic effects on the uterus. Br J Nutr 2013; 111:836-46. [PMID: 24073920 DOI: 10.1017/s0007114513003115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resveratrol (Res), a polyphenol that is abundant in many medicinal plants and is a selective oestrogen receptor modulator, exhibits multiple biological activities. In the present study, we determined whether Res prevents oestrogen deficiency-induced osteopenia and whether Res administration decreases pathological changes in the endometrium and lumen of the uterus compared with oestradiol replacement therapy (ERT). A total of sixty 3-4-month-old female Wistar rats were randomly divided into a sham-operated group (Sham) and five ovariectomy (OVX) subgroups, i.e. OVX rats as a control group (OVX); OVX rats receiving oestradiol valerate (ERT, 0·8 mg/kg); and OVX rats receiving Res 20, 40 and 80 mg/kg. Daily oral administration was initiated at week 2 after OVX for 12 weeks. A dose-response difference was observed in the effects of Res on bone mineral density (BMD) and trabecular microarchitecture. Only at the highest dose, bone loss was almost equivalent to that observed in the ERT group. The dose-response effects of Res on the biochemical parameters (alkaline phosphatase, IL-6, TNF-α and transforming growth factor-β1 concentrations in the serum as well as urinary Ca and P excretion) and the expressions of receptor activator of nuclear factor κB ligand (RANKL) and the RANKL:osteoprotegerin protein ratio in the femur were also observed. Furthermore, the thickening of the endometrium and the infiltration of lymphocytes were prevented in all the three Res-treated groups compared with the ERT group. In conclusion, Res treatment not only improves BMD and trabecular microarchitecture but also does not affect the uterus and Res might be a potential remedy for the treatment of postmenopausal osteoporosis.
Collapse
|
156
|
Mazevet M, Moulin M, Llach-Martinez A, Chargari C, Deutsch E, Gomez AM, Morel E. Complications of chemotherapy, a basic science update. Presse Med 2013; 42:e352-61. [PMID: 23972551 DOI: 10.1016/j.lpm.2013.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022] Open
Abstract
Anthracyclines, discovered 50 years ago, are antibiotics widely used as antineoplastic agents and are among the most successful anticancer therapies ever developed to treat a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, some anthracyclines, including doxorubicin, exhibit major signs of cardiotoxicity that may ultimately lead to heart failure (HF). Despite intensive research on doxorubicine-induced cardiotoxicity, the underlying mechanisms responsible for doxorubicin-induced cardiotoxicity have not been fully elucidated yet. Published literature so far has focused mostly on mitochondria dysfunction with consequent oxidative stress, Ca(2+) overload, and cardiomyocyte death as doxorubicin side effects, leading to heart dysfunction. This review focuses on the current understanding of the molecular mechanisms underlying doxorubicin-induced cardiomyocyte death (i.e.: cardiomyocyte death, mitochondria metabolism and bioenergetic alteration), but we will also point to new directions of possible mechanisms, suggesting potent prior or concomitant alterations of specific signaling pathways with molecular actors directly targeted by the anticancer drugs itself (i.e. calcium homeostasis or cAMP signaling cascade). The mechanisms of anticancer cardiac toxicity may be more complex than just mitochondria dysfunction. Partnership of both basic and clinical research is needed to promote new strategies in diagnosis, therapies with concomitant cardioprotection in order to achieve cancer treatment with acceptable cardiotoxicity along life span.
Collapse
Affiliation(s)
- Marianne Mazevet
- Inserm UMR-S 769, LabEx Lermit-DHU Torino, université Paris-Sud, faculté de pharmacie, signalisation et physiopathologie cardiaque, 92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | | | |
Collapse
|
157
|
Jin X, Yi L, Chen ML, Chen CY, Chang H, Zhang T, Wang L, Zhu JD, Zhang QY, Mi MT. Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS One 2013; 8:e68617. [PMID: 23874689 PMCID: PMC3715513 DOI: 10.1371/journal.pone.0068617] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Delphinidin-3-glucoside (Dp) is a member of a family of bioactive compounds known as anthocyanins that occur naturally in pigmented plants and are known to ameliorate oxidative stress. Previous studies have showed that Dp decreased oxidative stress in vascular endothelial cells, however, the underlying mechanisms remain largely unknown. In the present study, we showed that pretreatment with Dp significantly suppressed oxidized low-density lipoprotein (oxLDL)-induced cell proliferation inhibition and apoptosis in primary human umbilical vein endothelial cells (HUVECs). Also, Dp pretreatment attenuated oxLDL-induced mitochondrial dysfunction via decreased reactive oxygen species (ROS) and superoxide anion generation, thereby repressing mitochondrial membrane potential and closing mitochondrial permeability transition pore. Furthermore, in vitro and in vivo data showed that Dp was transported into endothelial cells in a temperature, concentration, and time-dependent manner via the sodium-dependent glucose transporter (SGLT1). Suppression of SGLT1 by its substrate glucose, its inhibitor phlorizin or SGLT1 siRNA blocked Dp transportation. Repression of SGLT1 significantly inhibited Dp function of ameliorating mitochondrial dysfunction induced by pro-apoptotic factors (Apoptosis-inducing factor, Cytochrome c, Caspase-3 and Bax/Bcl-2 ratio). Taken together, our data indicate that Dp protects VECs via the SGLT1-ROS-mitochodria pathway. This new insight may help to elucidate the molecular mechanisms underlying the vascular protection afforded by Dp, and anthocyanins in general, in the context of prevention of endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Xin Jin
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Ming-liang Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Chun-ye Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Hui Chang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Ting Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Li Wang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Jun-dong Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Qian-yong Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
| | - Man-tian Mi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
158
|
Ahmed LA, El-Maraghy SA. Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochem Pharmacol 2013; 86:1301-10. [PMID: 23872193 DOI: 10.1016/j.bcp.2013.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
Despite of its known cardiotoxicity, doxorubicin is still a highly effective anti-neoplastic agent in the treatment of several cancers. In the present study, the cardioprotective effect of nicorandil was investigated on hemodynamic alterations and mitochondrial dysfunction induced by cumulative administration of doxorubicin in rats. Doxorubicin was injected i.p. over 2 weeks to obtain a cumulative dose of 18 mg/kg. Nicorandil (3 mg/kg/day) was given orally with or without doxorubicin treatment. Heart rate and aortic blood flow were recorded 24 h after receiving the last dose of doxorubicin. Rats were then sacrificed and hearts were rapidly excised for estimation of caspase-3 activity, phosphocreatine and adenine nucleotides contents in addition to cytochrome c, Bcl2, Bax and caspase 3 expression. Moreover, mitochondrial oxidative phosphorylation capacity, creatine kinase activity and oxidative stress markers were measured together with the examination of DNA fragmentation and ultrastructural changes. Nicorandil was effective in alleviating the decrement of heart rate and aortic blood flow and the state of mitochondrial oxidative stress induced by doxorubicin cardiotoxicity. Nicorandil also preserved phosphocreatine and adenine nucleotides contents by restoring mitochondrial oxidative phosphorylation capacity and creatine kinase activity. Moreover, nicorandil provided a significant cardioprotection via inhibition of apoptotic signaling pathway, DNA fragmentation and mitochondrial ultrastructural changes. Interestingly, nicorandil did not interfere with cytotoxic effect of doxorubicin against the growth of solid Ehrlich carcinoma. In conclusion, nicorandil was effective against the development of doxorubicin-induced heart failure in rats as indicated by improvement of hemodynamic perturbations, mitochondrial dysfunction and ultrastructural changes without affecting its antitumor activity.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
159
|
Dolinsky VW, Rogan KJ, Sung MM, Zordoky BN, Haykowsky MJ, Young ME, Jones LW, Dyck JRB. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab 2013; 305:E243-53. [PMID: 23695218 PMCID: PMC4116416 DOI: 10.1152/ajpendo.00044.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because doxorubicin (DOX)-containing chemotherapy causes left ventricular (LV) dysfunction and remodeling that can progress to heart failure, strategies to alleviate DOX cardiotoxicity are necessary to improve health outcomes of patients surviving cancer. Although clinical evidence suggests that aerobic exercise training (ET) can prevent cardiotoxicity in patients undergoing DOX chemotherapy, the physiological mechanisms involved have not been extensively studied, nor is it known whether compounds [such as resveratrol (RESV)] have similar beneficial effects. With the use of a murine model of chronic DOX exposure, this study compared the efficacy of modest ET to RESV treatment on exercise performance, LV remodeling, and oxidative stress resistance. Mice were divided into four groups that received saline, DOX (8 mg/kg ip, one time per week), DOX + RESV (4 g/kg diet, ad libitum), and DOX + ET (45 min of treadmill exercise, 5 days/wk) for 8 wk. LV function and morphology were evaluated by in vivo echocardiography. DOX caused adverse LV remodeling that was partially attenuated by modest ET and completely prevented by RESV. These effects were paralleled by improvements in exercise performance. The cardioprotective properties of ET and RESV were associated with reduced levels of atrial natriuretic peptide and the lipid peroxidation by-product, 4-hydroxy-2-nonenal. In addition, ET and RESV increased the expression of cardiac sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a, superoxide dismutase, mitochondrial electron transport chain complexes, and mitofusin-1 and -2 in mice administered DOX. Compared with modest ET, RESV more effectively prevented DOX-induced LV remodeling and was associated with the reduction of DOX-induced oxidative stress. Our findings have important implications for protecting patients against DOX-associated cardiac injury.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Cardiovascular Research Center, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Al-Rejaie SS, Aleisa AM, Sayed-Ahmed MM, AL-Shabanah OA, Abuohashish HM, Ahmed MM, Al-Hosaini KA, Hafez MM. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:136. [PMID: 23773725 PMCID: PMC3717094 DOI: 10.1186/1472-6882-13-136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/13/2013] [Indexed: 01/09/2023]
Abstract
Background High-cholesterol diet (HCD) increases the oxidative stress in different tissues leading to many diseases. Rutin (RT) is a natural flavonoid (vitamin p), which possesses an antioxidant activity with protective potential. The present study aimed to examine the potential effects of rutin on hypercholesterolemia-induced hepatotoxicity in rat. Methods Male Wistar rats were divided into four groups: GI) control (Rat chow), GII) Rutin (0.2% in rat chow), GIII) HCD (1% cholesterol and 0.5% cholic acid in rat chow) and GIV) rutin (0.2%) + HCD. Results Rutin in combination with HCD induced a significant protective effect against the hepatotoxicity by reducing the plasma level of alanine transaminase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL). The HCD (GII) showed a decrease in glutathione peroxidase (GPx), glutathione reductase (GR) and increase in glutathione S transferase α (GSTα), sulfiredoxin-1(Srx1), glutamate-cysteine ligase (GCL) and paraoxonase-1(PON-1) genes expression levels. Conclusion Treatment with rutin reversed all the altered genes induced by HCD nearly to the control levels. The present study concluded that the HCD feedings altered the expression levels of some genes involved in the oxidative stress pathway resulting in DNA damage and hepatotoxicity. Rutin have a hepatoprotective effect through the mechanism of enhancing the antioxidant effect via amelioration of oxidative stress genes.
Collapse
|
161
|
Aissiou M, Périé D, Cheriet F, Dahdah NS, Laverdière C, Curnier D. Imaging of early modification in cardiomyopathy: the doxorubicin-induced model. Int J Cardiovasc Imaging 2013; 29:1459-76. [PMID: 23744127 DOI: 10.1007/s10554-013-0248-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Doxorubicin chemotherapy is effective and widely used to treat acute lymphoblastic leukemia. However, its effectiveness is hampered by a wide spectrum of dose-dependent cardiotoxicity including both morphological and functional changes, affecting primarily the myocardium. Non-invasive imaging techniques are used for the diagnosis and monitoring of these cardiotoxic effects. The purpose of this review is to summarize and compare the most common imaging techniques used in early detection and therapeutic monitoring of doxorubicin-induced cardiotoxicity and the suggested mechanisms of such side effects. Imaging techniques using echocardiography including conventional 2D and 3D echocardiography along with MRI sequences including Tagging, Cine, and quantitative MRI in detecting early myocardial damage are also reviewed. As there is a multitude of reported indices and imaging methods to assess particular functional alterations, we limit this review to the most relevant techniques based on their clinical application and their potential to early detection of doxorubicin-induced cardiotoxic effects.
Collapse
Affiliation(s)
- Mohamed Aissiou
- Mechanical Engineering Department, École Polytechnique de Montréal, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
162
|
Higenamine Combined with [6]-Gingerol Suppresses Doxorubicin-Triggered Oxidative Stress and Apoptosis in Cardiomyocytes via Upregulation of PI3K/Akt Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:970490. [PMID: 23861719 PMCID: PMC3687593 DOI: 10.1155/2013/970490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/10/2013] [Indexed: 12/24/2022]
Abstract
Sini decoction is a well-known formula of traditional Chinese medicine, which has been used to treat cardiovascular disease for many years. Previously, we demonstrated that Sini decoction prevented doxorubicin-induced heart failure in vivo. However, its active components are still unclear. Thus, we investigated the active components of Sini decoction and their cardioprotective mechanisms in the in vitro neonatal rat cardiomyocytes and H9c2 cell line models of doxorubicin-induced cytotoxicity. Our results demonstrated that treatment with higenamine or [6]-gingerol increased viability of doxorubicine-injured cardiomyocytes. Moreover, combined use of higenamine and [6]-gingerol exerted more profound protective effects than either drug as a single agent, with effects similar to those of dexrazoxane, a clinically approved cardiac protective agent. In addition, we found that treatment with doxorubicin reduced SOD activity, increased ROS generation, enhanced MDA formation, induced release of LDH, and triggered the intrinsic mitochondria-dependent apoptotic pathway in cardiomyocytes, which was inhibited by cotreatment of higenamine and [6]-gingerol. Most importantly, the cytoprotection of higenamine plus [6]-gingerol could be abrogated by LY294002, a PI3K inhibitor. In conclusion, combination of higenamine and [6]-gingerol exerts cardioprotective effect against doxorubicin-induced cardiotoxicity through activating the PI3K/Akt signaling pathway. Higenamine and [6]-gingerol may be the active components of Sini decoction.
Collapse
|
163
|
Osman AMM, Al-Harthi SE, AlArabi OM, Elshal MF, Ramadan WS, Alaama MN, Al-Kreathy HM, Damanhouri ZA, Osman OH. Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin- treated animals. Cancer Cell Int 2013; 13:52. [PMID: 23714221 PMCID: PMC3680308 DOI: 10.1186/1475-2867-13-52] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/14/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer drug used in the treatment of variety of cancers .Its use is limited by its cardiotoxicity. The present study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of mammary carcinoma (Ehrlich ascites carcinoma) to the action of DOX and at the same time its protective effect against DOX-induced cardiotoxicity in rats. METHODS Ehrlich ascites carcinoma bearing mice were used in this study. Percent survival of tumor bearing mice was used for determination of the Cytotoxic activity of DOX in presence and absence of RSVL. Uptake and cell cycle effect of DOX in tumor cells in the presence of RSVL was also determined. Histopatholgical examination of heart tissues after DOX and/or RSVL therapy was also investigated. RESULTS DOX at a dose level of 15 mg/kg increased the mean survival time of tumor bearing mice to 21 days compared with 15 days for non tumor-bearing control mice. Administration of RSVL at a dose level of 10 mg/kg simultaneously with DOX increased the mean survival time to 30 days with 70% survival of the tumor-bearing animals. RSVL increased the intracellular level of DOX and there was a strong correlation between the high cellular level of DOX and its cytotoxic activity. Moreover, RSVL treatment showed 4.8 fold inhibition in proliferation index of cells treated with DOX. Histopathological analysis of rat heart tissue after a single dose of DOX (20 mg/kg) showed myocytolysis with congestion of blood vessels, cytoplasmic vacuolization and fragmentation. Concomitant treatment with RSVL, fragmentation of the muscle fiber revealed normal muscle fiber. CONCLUSION This study suggests that RSVL could increase the cytotoxic activity of DOX and at the same time protect against its cardiotoxicity.
Collapse
Affiliation(s)
- Abdel-Moneim M Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sameer E Al-Harthi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
| | - Ohoud M AlArabi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F Elshal
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafaa S Ramadan
- Molecular biology Department, Genetic engineering and Biotechniology Department, Minoufia University, Minoufia, Egypt
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed N Alaama
- Department of Medicine, Cardiology unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M Al-Kreathy
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoheir A Damanhouri
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman H Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
164
|
Jin SH, Yang JH, Shin BY, Seo K, Shin SM, Cho IJ, Ki SH. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicol Appl Pharmacol 2013; 271:95-105. [PMID: 23651738 DOI: 10.1016/j.taap.2013.04.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/06/2013] [Accepted: 04/25/2013] [Indexed: 01/04/2023]
Abstract
Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα-RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis.
Collapse
Affiliation(s)
- So Hee Jin
- College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | | | | | | | | | | | | |
Collapse
|
165
|
Asensio-López MC, Sánchez-Más J, Pascual-Figal DA, Abenza S, Pérez-Martínez MT, Valdés M, Lax A. Involvement of ferritin heavy chain in the preventive effect of metformin against doxorubicin-induced cardiotoxicity. Free Radic Biol Med 2013; 57:188-200. [PMID: 23000260 DOI: 10.1016/j.freeradbiomed.2012.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 01/18/2023]
Abstract
Doxorubicin is a wide-spectrum chemotherapeutic agent, although a cumulative dose may cause cardiac damage and lead to heart failure. Doxorubicin cardiotoxicity is dependent on the intracellular iron pool and manifests itself by increasing oxidative stress. Our group has recently shown the ability of metformin, an oral antidiabetic with cardiovascular benefits, to protect cardiomyocytes from doxorubicin-induced damage. This work aimed to study whether metformin is able to modulate the expression of ferritin, the major intracellular iron storage protein, in cardiomyocytes and whether it is involved in their protection. The addition of metformin to adult mouse cardiomyocytes (HL-1 cell line) induced both gene and protein expression of the ferritin heavy chain (FHC) in a time-dependent manner. The silencing of FHC expression with siRNAs inhibited the ability of metformin to protect cardiomyocytes from doxorubicin-induced damage, in terms of the percentage of cell viability, the levels of reactive oxygen species, and the activity of antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase). In addition, metformin induced the activation of NF-κB in HL-1 cells, whereas preincubation with SN50, an inhibitor of NF-κB, blocked the upregulation of the FHC and the protective effect mediated by metformin. Taken together, these results provide new knowledge on the protective actions of metformin against doxorubicin-induced cardiotoxicity by identifying FHC and NF-κB as the major mediators of this beneficial effect.
Collapse
Affiliation(s)
- Mari C Asensio-López
- Cardiology Department, University Hospital Virgen de Arrixaca, and Department of Medicine, School of Medicine, University of Murcia, 30120 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
166
|
Pınarlı FA, Turan NN, Pınarlı FG, Okur A, Sönmez D, Ulus T, Oğuz A, Karadeniz C, Delibaşı T. Resveratrol and adipose-derived mesenchymal stem cells are effective in the prevention and treatment of doxorubicin cardiotoxicity in rats. Pediatr Hematol Oncol 2013; 30:226-38. [PMID: 23363243 DOI: 10.3109/08880018.2012.762962] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anthracyclines can cause severe cardiac toxicity leading to heart failure. The aim of this study was to determine the effects of cardioprotective polyphenolic compound resveratrol (RES) and adipose-derived mesenchymal stem cells (ADMSCs) on cardiac tissue of rats treated with doxorubicin (DOX). Forty-two female and three male Wistar-Albino rats were included in the study. The study groups and the control groups were as follows: Group I: DOX; Group II: DOX + RES; Group III: DOX + ADMSCs; Group IV: DOX + RES + ADMSCs; Group V: Sham operation; and Group VI: normal saline. ADMSCs obtained from male rats were defined with stem cell markers [CD11b/c(-), CD45(-), CD90(+), CD44(+), and CD49(+)]. DOX 12 mg/kg intraperitoneally (i.p.) was injected as a single dose in female rats. Resveratrol 100 mg/kg was injected three times i.p. in Groups II and IV. ADMSCs 2 × 10(6) cells/kg/dose were labeled with bromodeoxyuridine (BrdU) and injected i.p. for a total of three times in Groups III and IV. When the study was terminated after 4 weeks, the beating hearts were connected to a Langendorff setup and records were obtained for 30 minutes. Histopathological, immunhistochemical, and immunofluorescent examination with H&E, Troponin I, and BrdU stains were also performed. Also, ADMSCs were demonstrated in the myocardium of transplanted rats. Left ventricle functions and myocardial histology demonstrated significant impairment in DOX only group compared to groups with ADMSCs (P < .05). We suggest that RES and ADMSCs were successful in the prevention and treatment of the doxorubicin cardiomyopathy in rats. The hypothetical mechanisms of regeneration are multiple, including cell differentiation and autocrine/paracrine effects of ADMSCs.
Collapse
Affiliation(s)
- Ferda Alpaslan Pınarlı
- Center of Cell Research and Genetic Diagnosis, Dışkapı Yıldırım Beyazıt Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Rodella LF, Favero G, Rossini C, Foglio E, Bonomini F, Reiter RJ, Rezzani R. Aging and vascular dysfunction: beneficial melatonin effects. AGE (DORDRECHT, NETHERLANDS) 2013; 35:103-115. [PMID: 22109832 PMCID: PMC3543744 DOI: 10.1007/s11357-011-9336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological functions and metabolic processes. In aging and in diseases associated with the elderly, the loss of cells in vital structures or organs may be related to several factors. Sirtuin1 (SIRT1) is a member of the sirtuin family of protein deacetylases involved in life span extension; however, its involvement in the aging is not yet completely defined. Recently, melatonin, a pleiotropic molecule, shown to activate SIRT1 in primary neurons of young animals, as well as in aged neurons of a murine model of senescence. Melatonin is known to modulate oxidative stress-induced senescence and pro-survival pathways. We treated 6- and 15-week-old apolipoprotein E (APOE)-deficient mice (APOE 6w and 15w) with two melatonin formulations (FAST and RETARD) to evaluate their anti-aging effect. Morphological changes in vessels (aortic arch) of APOE mice were evaluated SIRT1, p53, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) markers. We demonstrate that SIRT1 and eNOS decresed in APOE mice between 6 and 15 weeks and that aging induced an elevated expression of p53 and ET-1 in APOE animals. Melatonin improved the impairment of endothelial damage and reduced loss of SIRT1 and eNOS decreasing p53 and ET-1 expression. The RETARD melatonin preparation caused a greater improvement of vessel cytoarchitecture. In summary, we indicate that SIRT1-p53-eNOS axis as one of the important marker of advanced vascular dysfunctions linked to aging. Finally, we suggest that extended-release melatonin (RETARD) provides a more appropriate option for contrasting these dysfunctions compared with rapid release melatonin (FAST) administration.
Collapse
Affiliation(s)
- Luigi Fabrizio Rodella
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Gaia Favero
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Claudia Rossini
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Eleonora Foglio
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Francesca Bonomini
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Russel J. Reiter
- />Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Rita Rezzani
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| |
Collapse
|
168
|
Quoc Trung L, Espinoza JL, Takami A, Nakao S. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS One 2013; 8:e55183. [PMID: 23372833 PMCID: PMC3555980 DOI: 10.1371/journal.pone.0055183] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.
Collapse
Affiliation(s)
- Ly Quoc Trung
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - J. Luis Espinoza
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- * E-mail:
| | - Akiyoshi Takami
- Department of Haematology and Oncology, Kanazawa University Hospital, Ishikawa, Japan
| | - Shinji Nakao
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
169
|
Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013; 34:1168-201. [PMID: 23357756 DOI: 10.1016/j.mam.2013.01.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
170
|
Shen M, Wu RX, Zhao L, Li J, Guo HT, Fan R, Cui Y, Wang YM, Yue SQ, Pei JM. Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS One 2012; 7:e51223. [PMID: 23284668 PMCID: PMC3527482 DOI: 10.1371/journal.pone.0051223] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/30/2012] [Indexed: 01/03/2023] Open
Abstract
This study was designed to investigate whether Resveratrol (Res) could be a prophylactic factor in the prevention of I/R injury and to shed light on its underlying mechanism. Primary culture of neonatal rat cardiomyocytes were randomly distributed into three groups: the normal group (cultured cardiomyocytes were in normal conditions), the I/R group (cultured cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion), and the Res+I/R group (100 µmol/L Res was administered before cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion). To test the extent of cardiomyocyte injury, several indices were detected including cell viability, LDH activity, Na+-K+-ATPase and Ca2+-ATPase activity. To test apoptotic cell death, caspase-3 activity and the expression of Bcl-2/Bax were detected. To explore the underlying mechanism, several inhibitors, intracellular calcium, SOD activity and MDA content were used to identify some key molecules involved. Res increased cell viability, Na+-K+-ATPase and Ca2+-ATPase activity, Bcl-2 expression, and SOD level. While LDH activity, capase-3 activity, Bax expression, intracellular calcium and MDA content were decreased by Res. And the effect of Res was blocked completely by either L-NAME (an eNOS inhibitor) or MB (a cGMP inhibitor), and partly by either DS (a PKC inhibitor) or Glybenclamide (a KATP inhibitor). Our results suggest that Res attenuates I/R injury in cardiomyocytes by preventing cell apoptosis, decreasing LDH release and increasing ATPase activity. NO, cGMP, PKC and KATP may play an important role in the protective role of Res. Moreover, Res enhances the capacity of anti-oxygen free radical and alleviates intracellular calcium overload in cardiomyocytes.
Collapse
Affiliation(s)
- Min Shen
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lei Zhao
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hai-Tao Guo
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Cui
- Department of Clinical Nursing, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yue-Min Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shu-Qiang Yue
- Department of Hepatobiliary and Pancreas Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (SQY); (JMP)
| | - Jian-Ming Pei
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (SQY); (JMP)
| |
Collapse
|
171
|
Szántó M, Brunyánszki A, Kiss B, Nagy L, Gergely P, Virág L, Bai P. Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 2012; 69:4079-92. [PMID: 22581363 PMCID: PMC11114944 DOI: 10.1007/s00018-012-1003-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP family and PARP-2 is responsible for 5-15 % of total cellular PARP activity. PARP-2 was originally described in connection to DNA repair and in physiological and pathophysiological processes associated with genome maintenance (e.g., centromere and telomere protection, spermiogenesis, thymopoiesis, azoospermia, and tumorigenesis). Recent reports have identified important rearrangements in gene expression upon the knockout of PARP-2. Such rearrangements heavily impact inflammation and metabolism. Metabolic effects are mediated through modifying PPARγ and SIRT1 function. Altered gene expression gives rise to a complex phenotype characterized primarily by enhanced mitochondrial activity that results both in beneficial (loss of fat, enhanced insulin sensitivity) and in disadvantageous (pancreatic beta cell hypofunction upon high fat feeding) consequences. Enhanced mitochondrial biogenesis provides protection in oxidative stress-related diseases. Hereby, we review the recent developments in PARP-2 research with special attention to the involvement of PARP-2 in transcriptional and metabolic regulation.
Collapse
Affiliation(s)
- Magdolna Szántó
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Attila Brunyánszki
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Borbála Kiss
- Medical and Health Science Center, Department of Dermatology, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Nagy
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Pál Gergely
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - László Virág
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Péter Bai
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| |
Collapse
|
172
|
Yue R, Hu H, Yiu KH, Luo T, Zhou Z, Xu L, Zhang S, Li K, Yu Z. Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes. PLoS One 2012; 7:e50778. [PMID: 23226382 PMCID: PMC3511264 DOI: 10.1371/journal.pone.0050778] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypoxia/reoxygenation(H/R)-induced apoptosis of cardiomyocytes plays an important role in myocardial injury. Lycopene is a potent antioxidant carotenoid that has been shown to have protective properties on cardiovascular system. The aim of the present study is to investigate the potential for lycopene to protect the cardiomyocytes exposed to H/R. Moreover, the effect on mitochondrial function upon lycopene exposure was assessed. METHODS AND FINDINGS Primary cardiomyocytes were isolated from neonatal mouse and established an in vitro model of H/R which resembles ischemia/reperfusion in vivo. The pretreatment of cardiomyocytes with 5 µM lycopene significantly reduced the extent of apoptosis detected by TUNEL assays. To further study the mechanism underlying the benefits of lycopene, interactions between lycopene and the process of mitochondria-mediated apoptosis were examined. Lycopene pretreatment of cardiomyocytes suppressed the activation of the mitochondrial permeability transition pore (mPTP) by reducing the intracellular reactive oxygen species (ROS) levels and inhibiting the increase of malondialdehyde (MDA) levels caused by H/R. Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in lycopene-treated cultures. CONCLUSION The present results suggested that lycopene possesses great pharmacological potential in protecting against H/R-induced apoptosis. Importantly, the protective effects of lycopene may be attributed to its roles in improving mitochondrial function in H/R-treated cardiomyocytes.
Collapse
Affiliation(s)
- Rongchuan Yue
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Houxiang Hu
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
- Center for Medical Research, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Kai Hang Yiu
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Tao Luo
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lei Xu
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Shuang Zhang
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Ke Li
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| |
Collapse
|
173
|
Different effects of resveratrol on dose-related Doxorubicin-induced heart and liver toxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:606183. [PMID: 23258992 PMCID: PMC3522488 DOI: 10.1155/2012/606183] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/17/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022]
Abstract
The aim of the study was to evaluate the effect of resveratrol in doxorubicin-induced cardiac and hepatic toxicity. Doxorubicin was administered once a week throughout the period of 7 weeks with 1.0 or 2.0 mg/kg body weight or concomitantly with resveratrol (20 mg/kg of feed). Heart and liver toxicity was histologically and biochemically evaluated. Resveratrol protected from the heart lipid peroxidation caused by 1 mg doxorubicin and it sharply diminished superoxide dismutase activity. An insignificant effect of resveratrol on the lipid peroxidation level and the superoxide dismutase activity was observed in the hearts of rats administered a higher dose of doxorubicin. However, resveratrol attenuate necrosis and other cardiac histopathological changes were induced by a high dose of doxorubicin. Interestingly, it slightly intensified adverse cardiac histological changes in rats receiving a lower dose of doxorubicin. Resveratrol did not have any protective effect on the hepatic oxidative stress, while exerting a mild beneficial effect on the morphological changes caused by doxorubicin. All in all, this study has shown different effects of resveratrol on dose-related doxorubicin-induced heart and liver toxicity. Resveratrol may modulate the hepatic and cardiac effect of doxorubicin, depending on the drug dose.
Collapse
|
174
|
Downregulation of oxidative and nitrosative apoptotic signaling by L-carnitine in Ifosfamide-induced Fanconi syndrome rat model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:696704. [PMID: 23213347 PMCID: PMC3504455 DOI: 10.1155/2012/696704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022]
Abstract
It is well documented that ifosfamide (IFO) therapy is associated with sever nephropathy in the form of Fanconi syndrome. Although oxidative stress has been reported as a major player in IFO-induced Fanconi syndrome, no mechanism for this effect has been ascertained. Therefore, this study has been initiated to investigate, on gene expression level, the mechanism of IFO-induce nephrotoxicity and those whereby carnitine supplementation attenuates this serious side effect of IFO. To achieve the ultimate goals of this study, adult male rats were assigned to one of four treatment groups, namely, control, L-carnitine, IFO, and IFO plus L-carnitine. Administration of IFO for 5 days significantly increased serum creatinine, blood urea nitrogen (BUN), and total nitrate/nitrite (NOx) production in kidney tissues. In addition, IFO significantly increased mRNA expression of inducible nitric oxide synthase (iNOS), caspase-9, and caspase-3 and significantly decreased expression of glutathione peroxides (GPx), catalase (CAT), and Bcl2 in kidney tissues. Administration of L-carnitine to IFO-treated rats resulted in a complete reversal of the all biochemical and gene expression changes, induced by IFO, to the control values. Data from this study suggest that L-carnitine prevents the development of IFO-induced nephrotoxicity via downregulation of oxidative and nitrosative apoptotic signaling in kidney tissues.
Collapse
|
175
|
Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 2012; 303:139-46. [PMID: 23146760 DOI: 10.1016/j.tox.2012.09.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/18/2012] [Accepted: 09/24/2012] [Indexed: 12/13/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular process during which epithelial polarized cells become motile mesenchymal-appearing cells, which in turn promotes carcinoma invasion and metastasis. Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenolic compound found in grapes, red wine and several other plants. Numerous reports in the literature indicate that resveratrol can suppress cancer invasion and metastasis. However, the underlying mechanisms of inhibiting metastasis by resveratrol are complex, not fully elucidated and the subject of intense scientific debate. Despite evidence indicating that EMT can be a target for resveratrol, little is known about the effect of resveratrol on lung cancer cells. Our previous studies demonstrated that TGF-β1 induces EMT to promote lung adenocarcinoma invasion and metastasis. To understand the repressive role of resveratrol in lung cancer invasion and metastasis, we sought to investigate the potential use of resveratrol as an inhibitor of TGF-β1-induced EMT development in A549 lung cancer cells in vitro. Here we show that when A549 cells are treated with TGF-β1 and resveratrol, the latter inhibits the initiation of TGF-β1-induced EMT. Our results show that 20 μM resveratrol increases expression of the epithelial phenotype marker E-cadherin and represses the expression of the mesenchymal phenotype markers, Fibronectin and Vimentin during the initiation of TGF-β1-induced EMT. Resveratrol also inhibits expression of EMT-inducing transcription factors Snail1 and Slug, although the expression of the Twist1 transcription factor remained unchanged. Resveratrol inhibits the TGF-β1-induced increase in cell adhesion, migration and invasion of A549 lung cancer cells. Taken together, our findings provide new evidence that resveratrol suppresses lung cancer invasion and metastasis in vitro through inhibiting TGF-β1-induced EMT.
Collapse
|
176
|
Thuc LC, Teshima Y, Takahashi N, Nishio S, Fukui A, Kume O, Saito S, Nakagawa M, Saikawa T. Inhibition of Na⁺-H⁺ exchange as a mechanism of rapid cardioprotection by resveratrol. Br J Pharmacol 2012; 166:1745-55. [PMID: 22288422 DOI: 10.1111/j.1476-5381.2012.01877.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Resveratrol is a polyphenol abundantly found in grape skin and red wine. In the present study, we investigated whether resveratrol exerts protective effects against cardiac ischaemia/reperfusion and also explored its mechanisms. EXPERIMENTAL APPROACH Infarct size and functional recovery in rat isolated perfused hearts subjected to no-flow global ischaemia followed by reperfusion were measured. Cultured neonatal rat cardiomyocytes were exposed to H(2)O(2) (100 µmol·L(-1)) to induce cell injury. Intracellular ion concentrations were measured using specific dyes. Western blotting was used to quantify protein expression levels. KEY RESULTS In rat isolated perfused hearts, treatment with resveratrol (20 and 100 µmol·L(-1)) 15 min before ischaemia considerably improved left ventricular functional recovery and infarct size. In cultured neonatal rat cardiomyocytes, resveratrol significantly attenuated the increase in reactive oxygen species (ROS) and loss of mitochondrial inner membrane potential. Resveratrol also suppressed the increase in intracellular concentrations of Na(+) ([Na(+)](i)) and Ca(2+) ([Ca(2+)](i)) after H(2)O(2) application; however, it did not suppress the ouabain-induced [Ca(2+) ](i) increase. By measuring changes in intracellular pH recovery after acidification, we also confirmed that acid-induced activation of the Na(+)-H(+) exchanger (NHE) was prevented by pretreatment with resveratrol. Furthermore, resveratrol inhibited the H(2)O(2)-induced translocation of PKC-α from the cytosol to the cell membrane; this translocation is believed to activate NHE. CONCLUSION AND IMPLICATIONS Resveratrol exerts cardioprotection by reducing ROS and preserving mitochondrial function. The PKC-α-dependent inhibition of NHE and subsequent attenuation of [Ca(2+)](i) overload may be a cardioprotective mechanism.
Collapse
Affiliation(s)
- Luong Cong Thuc
- Department of Laboratory Examination and Diagnostics, Faculty of Medicine, Oita University, Yufu City, Oita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Ludke AR, Sharma AK, Akolkar G, Bajpai G, Singal PK. Downregulation of vitamin C transporter SVCT-2 in doxorubicin-induced cardiomyocyte injury. Am J Physiol Cell Physiol 2012; 303:C645-53. [DOI: 10.1152/ajpcell.00186.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin C (Vit C) has been shown to be protective against doxorubicin (Dox)-induced cardiotoxicity. However, Vit C uptake into cardiomyocytes is poorly understood. Furthermore, whether the antioxidant enzyme reserve is enhanced by Vit C is also not known. The present study investigated an influence of Dox on Vit C transporters, expression of endogenous antioxidant reserve as well as enzymes, oxidative stress, and apoptosis in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to control (culture medium 199 alone), Dox (10 μM), Vit C (25 μM), and Vit C + Dox for 24 h. Vit C transporter expression and localization, oxidative stress, antioxidant enzymes, and apoptosis were studied. Expression and localization of sodium-dependent vitamin C transporter-2 (SVCT-2) in the sarcolemma was reduced by Dox, but Vit C supplementation was able to blunt this change. There was a decrease in the expression of antioxidant enzymes glutathione peroxidase (GPx), catalase, and Cu/Zn superoxide dismutase (SOD) due to Dox, but only GPx expression was completely prevented and Cu/Zn SOD was partially rescued by Vit C. Dox-induced decrease in antioxidant reserve and increase in oxidative stress were partially mitigated by Vit C. Dox-induced apoptosis was ameliorated by Vit C. It is suggested that cardioprotection offered by Vit C in Dox-induced cardiomyopathy may involve an upregulation of SVCT-2 transporter followed by a reduction in oxidative stress as well as blunting of cardiomyocyte injury.
Collapse
Affiliation(s)
- Ana R. Ludke
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anita K. Sharma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gauri Akolkar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gunjan Bajpai
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
178
|
Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA, Joseph JA, Casadesus G. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease. Neurobiol Aging 2012; 33:2062-71. [PMID: 21982274 DOI: 10.1016/j.neurobiolaging.2011.08.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/26/2011] [Accepted: 08/28/2011] [Indexed: 02/05/2023]
Abstract
Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene.
Collapse
Affiliation(s)
- Jaewon Chang
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Zong Y, Sun L, Liu B, Deng YS, Zhan D, Chen YL, He Y, Liu J, Zhang ZJ, Sun J, Lu D. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One 2012; 7:e44107. [PMID: 22952890 PMCID: PMC3432093 DOI: 10.1371/journal.pone.0044107] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect RAW 264.7 cells from inflammatory insults and explored mechanisms underlying inhibitory effects of resveratrol on RAW 264.7 cells. Methodology/Principal Findings Murine RAW 264.7 cells were treated with resveratrol (1, 5, and 10 µM) and/or LPS (5 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by ELISA, RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of Akt, cyclic AMP-responsive element-binding protein (CREB), mitogen-activated protein kinases (MAPKs) cascades, AMP-activated protein kinase (AMPK) and expression of SIRT1(Silent information regulator T1) were measured by western blot. Wortmannin (1 µM), a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, was used to determine if PI3-K/Akt signaling pathway might be involved in resveratrol’s action on RAW 264.7 cells. Resveratrol significantly attenuated the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells. Resveratrol increased Akt phosphorylation in a time-dependent manner. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked the effects of resveratrol on LPS-induced RAW 264.7 cells activation. In addition, PI3-K inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and mitogen-activated protein kinases (MAPKs) cascades. Meanwhile, PI3-K is essential for resveratrol-mediated phosphorylation of AMPK and expression of SIRT1. Conclusion and Implications This investigation demonstrates that PI3-K/Akt activation is an important signaling in resveratrol-mediated activation of AMPK phosphorylation and SIRT1 expression, and inhibition of phosphorylation of CREB and MAPKs activation, proinflammatory mediators and cytokines production in response to LPS in RAW 264.7 cells.
Collapse
Affiliation(s)
- Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Shu Deng
- Department of Respiratory Medicine, The Third People’s of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Dong Zhan
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yuan-Li Chen
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Ying He
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jing Liu
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Zong-Ji Zhang
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- * E-mail: (DL); (JS); (ZJZ)
| | - Jun Sun
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- * E-mail: (DL); (JS); (ZJZ)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- * E-mail: (DL); (JS); (ZJZ)
| |
Collapse
|
180
|
König A, Bode C, Bugger H. Diabetes mellitus and myocardial mitochondrial dysfunction: bench to bedside. Heart Fail Clin 2012; 8:551-61. [PMID: 22999239 DOI: 10.1016/j.hfc.2012.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In diabetics, the risk for development of heart failure is increased even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that dysfunction of myocardial mitochondria represents an important pathogenetic factor. To date, no specific therapy exists to treat mitochondrial function in any cardiac disease. This article presents underlying mechanisms of mitochondrial dysfunction in the diabetic heart and discusses potential therapeutic options that may attenuate these mitochondrial derangements.
Collapse
Affiliation(s)
- Alexandra König
- Department of Cardiology and Angiology, University Hospital of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | | | | |
Collapse
|
181
|
Zhao H, Niu Q, Li X, Liu T, Xu Y, Han H, Wang W, Fan N, Tian Q, Zhang H, Wang Z. Long-term resveratrol consumption protects ovariectomized rats chronically treated with d-galactose from developing memory decline without effects on the uterus. Brain Res 2012; 1467:67-80. [DOI: 10.1016/j.brainres.2012.05.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 02/07/2023]
|
182
|
Abstract
Although the increased lifespan of our populations illustrates the success of modern medicine, the risk of developing many diseases increases exponentially with old age. Caloric restriction is known to retard ageing and delay functional decline as well as the onset of disease in most organisms. Studies have implicated the sirtuins (SIRT1-SIRT7) as mediators of key effects of caloric restriction during ageing. Two unrelated molecules that have been shown to increase SIRT1 activity in some settings, resveratrol and SRT1720, are excellent protectors against metabolic stress in mammals, making SIRT1 a potentially appealing target for therapeutic interventions. This Review covers the current status and controversies surrounding the potential of sirtuins as novel pharmacological targets, with a focus on SIRT1.
Collapse
|
183
|
Xu X, Chen K, Kobayashi S, Timm D, Liang Q. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther 2012; 341:183-95. [PMID: 22209892 PMCID: PMC3310694 DOI: 10.1124/jpet.111.189589] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/29/2011] [Indexed: 12/25/2022] Open
Abstract
Resveratrol is a plant-derived polyphenol that can attenuate the cardiotoxic effects of doxorubicin (DOX), a powerful antibiotic widely used in cancer chemotherapy. However, the underlying protective mechanisms of resveratrol remain elusive. Here, we show that resveratrol inhibited DOX-induced autophagy and cardiomyocyte death, and autophagy suppression is an important mechanism that mediates the ability of resveratrol to protect against DOX cardiotoxicity. Indeed, resveratrol, 3-methyladenine (3-MA), and a short hairpin RNA directed against autophagy gene beclin 1 (shBCN1) each was able to attenuate DOX-induced autophagy and cardiomyocyte death, but resveratrol did not provide additional protection in the presence of 3-MA or shBCN1. In contrast, up-regulation of autophagy by beclin 1 overexpression not only exacerbated DOX cardiotoxicity but also abolished the protective effects of resveratrol. Intriguingly, p70 S6 kinase 1 (S6K1) was activated by DOX, which was prevented by resveratrol. Knocking down S6K1 with small interfering RNA diminished DOX-induced autophagy and cardiotoxicity, but resveratrol failed to exert an additive effect. In addition, S6K1 overexpression impaired the ability of resveratrol to antagonize DOX-induced autophagy and cardiomyocyte death. Taken together, our data indicate that the protective effect of resveratrol against DOX cardiotoxicity largely depends on its ability to suppress DOX-induced autophagy via the inhibition of S6K1.
Collapse
Affiliation(s)
- Xianmin Xu
- Cardiovascular Health Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | | | | | | | | |
Collapse
|
184
|
Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chaté V, Schnebelen C, Sestili P, Schlattner U, Tokarska-Schlattner M. Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res 2012; 95:290-9. [DOI: 10.1093/cvr/cvs134] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
185
|
Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 2012; 7:e32195. [PMID: 22363816 PMCID: PMC3283735 DOI: 10.1371/journal.pone.0032195] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. METHODOLOGY/PRINCIPAL FINDINGS BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). CONCLUSION AND IMPLICATIONS This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol.
Collapse
Affiliation(s)
- Lian-Mei Zhong
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jia-Zhi Guo
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying He
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Rui Song
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen-Min Wang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chun-Jie Xiao
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- * E-mail: (DL); (CJX)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (DL); (CJX)
| |
Collapse
|
186
|
Asensio-López MC, Lax A, Pascual-Figal DA, Valdés M, Sánchez-Más J. Metformin protects against doxorubicin-induced cardiotoxicity: involvement of the adiponectin cardiac system. Free Radic Biol Med 2011; 51:1861-71. [PMID: 21907790 DOI: 10.1016/j.freeradbiomed.2011.08.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/23/2022]
Abstract
Doxorubicin has cardiotoxic effects that limit its clinical benefit in cancer patients. Metformin exerts cardioprotective actions via AMP-activated protein kinase (AMPK) and increases the expression of adiponectin and its receptors (adipoR1 and adipoR2) in skeletal muscle and adipose tissue, but its effect on cardiac tissue is still unknown. This work aimed to study whether metformin exerts any protective action against the cardiotoxicity of doxorubicin and whether the cardiac system of adiponectin is involved in any such action. The addition of doxorubicin (5μM) to adult mouse cardiomyocytes (HL-1 cell line) induced apoptosis, which was characterized by a loss of cell viability, activation of caspases, and fragmentation of the genetic material. Doxorubicin treatment also caused a decrease in the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase. Pretreatment with metformin (4mM, 24h) provided protection against doxorubicin-induced damage. This pretreatment significantly increased cell viability, attenuated the activation of caspases and the fragmentation of genetic material, and restored the antioxidant activity. In addition, metformin up-regulated the expression of adiponectin and its receptors, adipoR1 and adipoR2, in cardiomyocytes. In contrast, silencing either adipoR1 or adipoR2 with siRNA inhibited the AMPK activation and the protective effects of metformin. Taken together, these results demonstrate that metformin protects cardiomyocytes from doxorubicin-induced damage and that the cardiac adiponectin system plays an important role in this protective action.
Collapse
Affiliation(s)
- Mari C Asensio-López
- Heart Failure Unit, Cardiology Department, University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | | | | | | | | |
Collapse
|
187
|
Gilliam LAA, St Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal 2011; 15:2543-63. [PMID: 21457105 PMCID: PMC3176345 DOI: 10.1089/ars.2011.3965] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Fatigue is one of the most common symptoms of cancer and its treatment, manifested in the clinic through weakness and exercise intolerance. These side effects not only compromise patient's quality of life (QOL), but also diminish physical activity, resulting in limited treatment and increased morbidity. RECENT ADVANCES Oxidative stress, mediated by cancer or chemotherapeutic agents, is an underlying mechanism of the drug-induced toxicity. Nontargeted tissues, such as striated muscle, are severely affected by oxidative stress during chemotherapy, leading to toxicity and dysfunction. CRITICAL ISSUES These findings highlight the importance of investigating clinically applicable interventions to alleviate the debilitating side effects. This article discusses the clinically available chemotherapy drugs that cause fatigue and oxidative stress in cancer patients, with an in-depth focus on the anthracycline doxorubicin. Doxorubicin, an effective anticancer drug, is a primary example of how chemotherapeutic agents disrupt striated muscle function through oxidative stress. FUTURE DIRECTIONS Further research investigating antioxidants could provide relief for cancer patients from debilitating muscle weakness, leading to improved quality of life.
Collapse
|
188
|
Dayton A, Selvendiran K, Meduru S, Khan M, Kuppusamy ML, Naidu S, Kálai T, Hideg K, Kuppusamy P. Amelioration of doxorubicin-induced cardiotoxicity by an anticancer-antioxidant dual-function compound, HO-3867. J Pharmacol Exp Ther 2011; 339:350-7. [PMID: 21799049 PMCID: PMC3199994 DOI: 10.1124/jpet.111.183681] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 07/26/2011] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is a drug commonly used for the treatment of cancer. The development of resistance to DOX is common, and high cumulative doses cause potentially lethal cardiac side effects. HO-3867 (3,5-bis(4-fluorobenzylidene)-1-[(2,2,5,5-tetramethyl-2,5-dihydro-1-hydroxy-pyrrol-3-yl)methyl]piperidin-4-one), a synthetic curcumin analog, has been shown to exhibit both anticancer and cardioprotective effects. However, its cardioprotection in the setting of a conventional cancer therapy has not been established. This work investigated the use of HO-3867 and DOX to achieve a complementary outcome, i.e., increased toxicity toward cancer cells, and reduced cardiac toxicity. Combination treatment was investigated using DOX-resistant MCF-7 breast cancer cells [MCF-7 multidrug-resistant (MDR)] and BALB/c mice. Lower doses of HO-3867 and DOX (5 and 2.5 μM, respectively) reduced viability of MCF-7 MDR cells to an extent significantly greater than that when either drug was used alone, an effect equivalent to that induced by exposure to 50 μM DOX. In normal cardiac cells, the loss of viability from combination treatment was significantly lower than that induced by 50 μM DOX. Increases in apoptotic markers, e.g., cleaved caspase-3, and decreases in fatty acid synthase and pAkt expressions were observed by Western blotting. Mice treated with both HO-3867 and DOX showed significant improvement in cardiac functional parameters compared with mice treated with DOX alone. Reduced expression of Bcl-2 and pAkt was observed in mice treated with DOX alone, whereas mice given combination treatment showed levels similar to control. The study indicates that combination treatment of HO-3867 and DOX is a viable option for treatment of cancer with reduced cardiotoxic side effects.
Collapse
Affiliation(s)
- Alex Dayton
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, 420 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Cai W, Zhang L, Song Y, Zhang B, Cui X, Hu G, Fang J. 3,4,4′-Trihydroxy-trans-stilbene, an analogue of resveratrol, is a potent antioxidant and cytotoxic agent. Free Radic Res 2011; 45:1379-87. [DOI: 10.3109/10715762.2011.629199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
190
|
Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 2011; 259:395-401. [PMID: 22015446 DOI: 10.1016/j.taap.2011.09.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of diabetic nephropathy (DN). Resveratrol has potent protective effects on diabetes and diabetic complications including diabetic nephropathy. We aimed to investigate the protective effects of resveratrol on mitochondria and the underlying mechanisms by using an in vitro model of hyperglycemia. We exposed primary cultured rat mesangial cells to high glucose (30mM) for 48h. We found that pretreatment with resveratrol (10μM) 6h prior to high glucose treatment significantly reduced hyperglycemia-induced increase in reactive oxygen species (ROS) production and mitochondrial superoxide generation, as well as stimulated MnSOD activity. In addition, resveratrol pretreatment significantly reversed the decrease of mitochondrial complex III activity in glucose-treated mesangial cells, which is considered to be the major source of mitochondrial oxidative stress in glucose-treated cells. Furthermore, resveratrol pretreatment efficiently restored the hyperpolarization of ∆Ψm, increased ATP production and preserved the mtDNA content. All of these protective effects of resveratrol were successfully blocked by siRNA targeting SIRT1 and EX-527, a specific inhibitor of SIRT1 activity. Our results indicated that resveratrol efficiently reduced oxidative stress and maintained mitochondrial function related with activating SIRT1 in glucose-treated mesangial cells. It suggested that resveratrol is pharmacologically promising for treating diabetic nephropathy.
Collapse
|
191
|
Chen MB, Wu XY, Gu JH, Guo QT, Shen WX, Lu PH. Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem Biophys 2011; 60:311-22. [PMID: 21274754 DOI: 10.1007/s12013-011-9153-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite its potent antitumor effect, clinical use of Doxorubicin is limited because of serious side effects including myocardial toxicity. Understanding the cellular mechanism involved in this process in a better manner is beneficial for optimizing Doxorubicin treatment. In the current study, the authors focus on the AMP-activated protein kinase (AMPK) in the said process. In this study, the authors discovered for the first time that Doxorubicin induces AMPK activation in cultured rat embryonic ventricular myocardial H9c2 cells. Reactive oxygen species (ROS)-dependent LKB1 activation serves as the upstream signal for AMPK activation by Doxorubicin. Evidence in support of the activation of AMPK contributing to Doxorubicin-induced H9c2 cell death/apoptosis--probably by modulating multiple downstream signal targets, including regulating JNK, p53, and inhibiting mTORC1--is provided in this article.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Medical Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, 91 Qianjin Road, Kunshan 215300, Jiangsu Province, China.
| | | | | | | | | | | |
Collapse
|
192
|
Szántó M, Rutkai I, Hegedűs C, Czikora Á, Rózsahegyi M, Kiss B, Virág L, Gergely P, Tóth A, Bai P. Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction. Cardiovasc Res 2011; 92:430-8. [DOI: 10.1093/cvr/cvr246] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
193
|
Hu Y, Liu J, Wang J, Liu Q. The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic Biol Med 2011; 51:250-6. [PMID: 21569839 DOI: 10.1016/j.freeradbiomed.2011.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
It has been widely known that slow metabolism induced by calorie restriction (CR) can extend the life span of model organisms though the underlying mechanism remains poorly understood. Accumulated evidence suggests that SIRT1 may be actively involved in CR-induced signaling pathways. As a putative activator of SIRT1, resveratrol, known for the French paradox, can partially mimic the physiological effects of CR. While the deacetylase activity of SIRT1 is important for the beneficial effects of resveratrol, resveratrol-induced SIRT1 activation has recently been challenged by the observations that resveratrol could not induce SIRT1-mediated deacetylation of native substrates in vitro. To resolve the discrepancy of resveratrol-induced activation of SIRT1 deacetylase activity between the in vitro and in vivo assays, a model of indirect SIRT1 activation by resveratrol is proposed. In this review, we will discuss the emerging roles of SIRT1 and resveratrol in CR and focus on debate over the links between SIRT1 and resveratrol.
Collapse
Affiliation(s)
- Yi Hu
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
194
|
Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1477-89. [PMID: 21749920 DOI: 10.1016/j.bbadis.2011.06.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/05/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
Calorie restriction is one of the most effective nutritional interventions that reproducibly protects against obesity, diabetes and cardiovascular disease. Recent evidence suggests that even when implemented over a short period, calorie restriction is a safe and effective treatment for cardiovascular disease. Herein, we review the effects of calorie restriction on the cardiovascular system as well as the biological effects of resveratrol, the most widely studied molecule that appears to mimic calorie restriction. An overview of microarray data reveals that the myocardial transcriptional effects of calorie restriction overlap with the transcriptional responses to resveratrol treatment. In addition, calorie restriction and resveratrol modulate similar pathways to improve mitochondrial function, reduce oxidative stress and increase nitric oxide production that are involved in atherosclerosis prevention, blood pressure reduction, attenuation of left-ventricular hypertrophy, resistance to myocardial ischemic injury and heart failure prevention. We also review the data that suggest that the effects of calorie restriction and resveratrol on the cardiovascular system may involve signaling through the silent information regulator of transcription (SIRT), Akt and the AMP-activated protein kinase (AMPK) pathways. While accumulating data demonstrate the health benefits of calorie restriction and resveratrol in experimental animal models, whether these interventions translate to patients with cardiovascular disease remains to be determined.
Collapse
|
195
|
Sebai H, Sani M, Aouani E, Ghanem-Boughanmi N. Cardioprotective effect of resveratrol on lipopolysaccharide-induced oxidative stress in rat. Drug Chem Toxicol 2011; 34:146-50. [PMID: 21314464 DOI: 10.3109/01480545.2010.494666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipopolysaccharide (LPS) is a glycolipid component of the cell wall of Gram-negative bacteria, which induces a deleterious effect on several organs, including the heart, eventually leading to septic shock and death. Endotoxemia-induced cardiotoxicity is characterized by disturbed intracellular redox balance, excessive reactive oxygen species (ROS) accumulation, inducing DNA, protein, and membrane lipid damage. Resveratrol (trans-3,5,4' trihydroxystilbene; RVT) is a phytoalexin polyphenol that exhibits antioxidant and -inflammatory properties. We investigated the putative effect of a subacute treatment with this natural compound on LPS-induced cardiotoxicity in the rat. We found that resveratrol counteracted LPS-induced lipoperoxidation and decreased superoxide dismutase (SOD) activity, but had no effect on the LPS-induced decrease in catalase (CAT) nor on the increase in peroxidase (POD) activity. Resveratrol also reversed LPS-induced myocardial nitric oxide (NO) elevation. More important, LPS-induced iron depletion from plasma to the myocardial compartment was abolished upon resveratrol treatment. All these data suggest that resveratrol is capable of alleviating LPS-induced cardiotoxicity, and that its mode of action may involve iron-shuttling proteins.
Collapse
Affiliation(s)
- Hichem Sebai
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, Zarzouna, Tunisie.
| | | | | | | |
Collapse
|
196
|
Tang BL. Sirt1's systemic protective roles and its promise as a target in antiaging medicine. Transl Res 2011; 157:276-284. [PMID: 21497775 DOI: 10.1016/j.trsl.2010.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 12/14/2022]
Abstract
Silent information regulator 2 (Sir2/Sirt1), a member of the sirtuin family of class III histone deacetylases, has been implicated extensively in lifespan extension and is a prominent drug target in antiaging medicine. The mammalian Sirt1 has multiple targets, which include histones, transcription factors, and other molecules that collectively modulate energy metabolism, stress response, and cell/tissue survival. Several of Sirt1's substrates regulate key metabolic processes, and Sirt1 activation may underlie the lifespan prolonging effect of caloric restriction. Recent studies have also identified multifaceted protective roles for Sirt1 against cellular senescence and stress in the neural, cardiovascular, and renal systems. Sirt1's activity in multiple tissues may decline with aging, and sustaining or reactivating this activity seems invariably beneficial. Several studies also point towards a general tumor suppressive role for Sirt1, at least in the context of certain human cancers. Development of Sirt1-based therapeutic interventions against systemic aging and aging-associated diseases will benefit from a thorough understanding of underlying pathological mechanisms of diseases as well as metabolic connections between different tissues and organs.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597.
| |
Collapse
|
197
|
Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria. J Bioenerg Biomembr 2011; 43:101-7. [DOI: 10.1007/s10863-011-9349-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/24/2010] [Indexed: 01/12/2023]
|
198
|
He MD, Xu SC, Lu YH, Li L, Zhong M, Zhang YW, Wang Y, Li M, Yang J, Zhang GB, Yu ZP, Zhou Z. L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol Appl Pharmacol 2011; 253:38-44. [PMID: 21419151 DOI: 10.1016/j.taap.2011.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is thought to be a part of the mechanism underlying nickel-induced neurotoxicity. L-carnitine (LC), a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine in all mammalian species, manifests its neuroprotective effects by improving mitochondrial energetics and function. The purpose of this study was to investigate whether LC could efficiently protect against nickel-induced neurotoxicity. Here, we exposed a mouse neuroblastoma cell line (Neuro-2a) to different concentrations of nickel chloride (NiCl₂) (0.25, 0.5, 1, and 2 mM) for 24 h, or to 0.5 mM and 1 mM NiCl₂ for various periods (0, 3, 6, 12, or 24 h). We found that nickel significantly increased the cell viability loss and lactate dehydrogenase (LDH) release in Neuro-2a cells. In addition, nickel exposure significantly elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, disrupted the mitochondrial membrane potential (ΔΨ(m)), reduced adenosine-5'-triphosphate (ATP) concentrations and decreased mitochondrial DNA (mtDNA) copy numbers and mtRNA transcript levels. However, all of the cytotoxicities and mitochondrial dysfunctions that were triggered by nickel were efficiently attenuated by pretreatment with LC. These protective effects of LC may be attributable to its role in maintaining mitochondrial function in nickel-treated cells. Our results suggest that LC may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.
Collapse
Affiliation(s)
- Min-Di He
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Csiszar A. Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease. Ann N Y Acad Sci 2011; 1215:117-22. [PMID: 21261649 DOI: 10.1111/j.1749-6632.2010.05848.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases are the most common cause of death among the elderly in the Western world. Resveratrol (3,5,4'-trihydroxystilbene) is a plant-derived polyphenol that was shown to exert diverse anti-aging activity mimicking some of the molecular and functional effects of caloric restriction. This mini-review focuses on the molecular and cellular mechanisms activated by resveratrol in the vascular system, and explores the links between its anti-oxidative and anti-inflammatory effects, which could be exploited for the prevention or amelioration of vascular aging in the elderly.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Physiology, Oklahoma City, USA.
| |
Collapse
|
200
|
Valdecantos MP, Pérez-Matute P, Quintero P, Martínez JA. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox Rep 2011; 15:207-16. [PMID: 21062536 DOI: 10.1179/135100010x12826446921464] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Modulating mitochondrial antioxidant status is a nutritional issue of great interest in the treatment or prevention of several oxidative stress related diseases such as obesity. Thus, the aim of the present study was to analyze the effects of three antioxidants on hepatic mitochondrial function and antioxidant status. Isolated rat liver mitochondria were incubated with vitamin C, resveratrol and lipoic acid. The activity of antioxidant enzymes (manganese superoxide dismutase and glutathione peroxidase), ROS generation and respiratory parameters (RCR, P/O ratio and respiratory states) were measured. Vitamin C influenced mitochondrial function by decreasing of ROS generation (P < 0.0001), by stimulating the activity of manganese superoxide dismutase (197.60 ± 35.99%; P < 0.001) as well as glutathione peroxidase (15.70 ± 5.76%; P < 0.05) and by altering the activity of the electron transport chain, mainly by decreasing the P/O ratio (P < 0.05). Resveratrol induced a significant increase in manganese superoxide dismutase activity (160 ± 11.78%; P < 0.0001) and a decrease in ROS generation (P < 0.05 to P < 0.0001). By contrast, lipoic acid inhibited glutathione peroxidase activity (16.48 ± 3.27%; P < 0.05) and induced the uncoupling of the electron transport chain (P < 0.01). Moreover, this antioxidant induced a strong decrease in the P/O ratio (P < 0.05 to P < 0.0001). In conclusion, our results suggest that the three tested antioxidants produced direct effects on mitochondrial function, although the magnitude and intensity of these actions were significantly different, which may have implications when administrated as antioxidants.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Department of Nutrition, Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Navarra, Spain
| | | | | | | |
Collapse
|