151
|
Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int J Mol Med 2018; 41:1817-1825. [PMID: 29393357 DOI: 10.3892/ijmm.2018.3406] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 12/13/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress is increasingly recognized as a central event contributing to the degeneration of dopaminergic neurons in the pathogenesis of Parkinson's disease (PD). Although reactive oxygen species (ROS) production is implicated as a causative factor in PD, the cellular and molecular mechanisms linking oxidative stress with dopaminergic neuron death are complex and not well characterized. The primary insults cause the greatest production of ROS, which contributes to oxidative damage by attacking all macromolecules, including lipids, proteins and nucleic acids, leading to defects in their physiological function. Consequently, the defects in these macromolecules result in mitochondrial dysfunction and neuroinflammation, which subsequently enhance the production of ROS and ultimately neuronal damage. The interaction between these various mechanisms forms a positive feedback loop that drives the progressive loss of dopaminergic neurons in PD, and oxidative stress‑mediated neuron damage appears to serve a central role in the neurodegenerative process. Thus, understanding the cellular and molecular mechanisms by which oxidative stress contributes to the loss of dopaminergic neurons may provide a promising therapeutic approach in PD treatment.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Department of Neurology, The First Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Liang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
152
|
The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:309-321. [PMID: 28669580 DOI: 10.1016/j.pnpbp.2017.06.036] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
A growing body of evidence suggests that inflammation, mitochondrial dysfunction and oxidant-antioxidant imbalance may play a significant role in the development and progression of depression. Elevated levels of reactive oxygen and nitrogen species - a result of oxidant-antioxidant imbalance - may lead to increased damage of biomolecules, including DNA. This was confirmed in depressed patients in a research study conducted by our team and other scientists. 8-oxoguanine - a marker of oxidative DNA damage - was found in the patients' lymphocytes, urine and serum. These results were confirmed using a comet assay on lymphocytes. Furthermore, it was shown that the patients' cells repaired peroxide-induced DNA damage less efficiently than controls' cells and that some single nucleotide polymorphisms (SNP) of the genes involved in oxidative DNA damage repair may modulate the risk of depression. Lastly, less efficient DNA damage repair observed in the patients can be, at least partly, attributed to the presence of specific SNP variants, as it was revealed through a genotype-phenotype analysis. In conclusion, the available literature shows that both oxidative stress and less efficient DNA damage repair may lead to increased DNA damage in depressed patients. A similar mechanism may result in mitochondrial dysfunction, which is observed in depression.
Collapse
|
153
|
Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, Liu RT. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson's disease. Food Funct 2018; 9:6414-6426. [DOI: 10.1039/c8fo00964c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol exerts neuroprotective effects on the A53T α-synuclein mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Li-fan Zhang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiao-lin Yu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Mei Ji
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shu-ying Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiao-ling Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Sources in Western China
- Ningxia University
- Yinchuan 750021
- China
| | - Yu-jiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Sources in Western China
- Ningxia University
- Yinchuan 750021
- China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
154
|
Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109:249-257. [DOI: 10.1016/j.nbd.2017.04.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
|
155
|
Zhang N, Dou D, Ran X, Kang T. Neuroprotective effect of arctigenin against neuroinflammation and oxidative stress induced by rotenone. RSC Adv 2018; 8:2280-2292. [PMID: 35541453 PMCID: PMC9077403 DOI: 10.1039/c7ra10906g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background: the present study was to investigate the neuroprotective effect of arctigenin, the major active component of a traditional Chinese medicine “Arctii Fructus”, against PD in a rat model induced by rotenone. Materials and methods: in the present study, rotenone was injected subcutaneously in the backs of rats to mimic the progressive neurodegenerative nature of PD and arctigenin was administered. Behavioral analyses including a grid test, bar test and open-field test were used to evaluate motor activities and behavioral movement abilities. Energy metabolism indexes including oxygen consumption, carbon dioxide production, heat production and energy expenditure were measured via a TSE phenoMaster/LabMaster animal monitoring system. Immunohistochemistry was performed to detect the staining of TH and the expression of α-synuclein in substantia nigra (SN). The effect of arctigenin on oxidative stress was evaluated by the levels of GSH and MDA, and activities of SOD and GSH-Px. The levels of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, IFN-γ and PGE2, the expression of Iba-1 and GFAP, and the impression of inflammatory mediators such as COX-2 and NF-κB in the SN were measured to evaluate the effect on the inflammation of SN area induced by rotenone. Results: compared with the ROT group, the deadlock time of rats treated with arctigenin was significantly shortened and the score of locomotor activity increased in the behavioral test; the number of TH+ positive DA neurons of the arctigenin treated group was increased and α-synuclein immunopositive was decreased; the level of GSH and activities of SOD and GSH-Px in the arctigenin-treated group were significantly increased; arctigenin administration induced a significant decrease in the MDA level; arctigenin also significantly decreased the levels of IL-6, IL-1β, TNF-α, IFN-γ and PGE2 and reduced the impression of COX-2 and NF-κB in SN; treatment with arctigenin decreased microglia and astrocyte activation evidenced by the reduced expression of Iba-1 and GFAP. Conclusion: the findings demonstrated that arctigenin can improve the behavior changes of PD rats and the damage of DA neurons. The oxidative stress and inflammation involved in the pathogenesis of PD and arctigenin may protect DA neurons through its potent antioxidant and anti-inflammatory activities. The present study was to investigate the neuroprotective effect of arctigenin, the major active component of a traditional Chinese medicine “Arctii Fructus”, against PD in a rat model induced by rotenone.![]()
Collapse
Affiliation(s)
- Na Zhang
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Deqiang Dou
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Xiaoku Ran
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Tingguo Kang
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| |
Collapse
|
156
|
The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8495160. [PMID: 29391926 PMCID: PMC5748124 DOI: 10.1155/2017/8495160] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023]
Abstract
Neurological function deficits due to cerebral ischemia or neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) have long been considered a thorny issue in clinical treatment. Recovery after neurologic impairment is fairly limited, which poses a major threat to health and quality of life. Accumulating evidences support that ROS and autophagy are both implicated in the onset and development of neurological disorders. Notably, oxidative stress triggered by excess of ROS not only puts the brain in a vulnerable state but also enhances the virulence of other pathogenic factors, just like mitochondrial dysfunction, which is described as the culprit of nerve cell damage. Nevertheless, autophagy is proposed as a subtle cellular defense mode against destructive stimulus by timely removal of damaged and cytotoxic substance. Emerging evidence suggests that the interplay of ROS and autophagy may establish a determinant role in the modulation of neuronal homeostasis. However, the underlying regulatory mechanisms are still largely unexplored. This review sets out to afford an overview of the crosstalk between ROS and autophagy and discusses relevant molecular mechanisms in cerebral ischemia, AD, and PD, so as to provide new insights into promising therapeutic targets for the abovementioned neurological conditions.
Collapse
|
157
|
Zhang C, Zhou Y, Yang GY, Li S. Biomimetic peptides protect cells from oxidative stress. Am J Transl Res 2017; 9:5518-5527. [PMID: 29312503 PMCID: PMC5752901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Most degenerative diseases are caused by free radicals. Antioxidin-RL peptide is a free radical scavenger found in the skin of plateau frog Odorrana livida, which is more stable than vitamin C as it resists light-induced degradation. However, whether and how antioxidin-RL protects cells from oxidative stress was not clear. Here we addressed this issue, and in addition, we designed a series of antioxidin cognates by adding tyrosine residues to enhance free radical-binding capability. We performed free radical-clearing assays in solution to screen the mutants, and found a mutant antioxidin-2 that was as stable as antioxidin-RL and cleared free radical faster. By using PC-12 cells as a model, we demonstrated that both antioxidin-2 and antioxidin-RL inhibited the accumulation of intracellular free radicals triggered by H2O2, reduced mitochondria membrane potential dissipation, maintained mitochondrial morphology, and decreased the expression of dynamin-related protein-1 in mitochondria, with antioxidin-RL more effective. Antioxidin-RL also attenuated the changes in SOD1 and GPx1 expression induced by H2O2. These findings provide insight into the anti-oxidative mechanisms of antioxidin-RL and its derivatives, which will provide rational basis for the development of more effective antioxidants to cure diseases.
Collapse
Affiliation(s)
- Chen Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityChina
- Department of Bioengineering, University of CaliforniaLos Angeles, USA
| | - Yue Zhou
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityChina
| | - Guo-Yuan Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityChina
| | - Song Li
- Department of Bioengineering, University of CaliforniaLos Angeles, USA
| |
Collapse
|
158
|
Yu L, Wang X, Chen H, Yan Z, Wang M, Li Y. Neurochemical and Behavior Deficits in Rats with Iron and Rotenone Co-treatment: Role of Redox Imbalance and Neuroprotection by Biochanin A. Front Neurosci 2017; 11:657. [PMID: 29217997 PMCID: PMC5703859 DOI: 10.3389/fnins.2017.00657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing evidences show that the etiology of Parkinson's disease (PD) is multifactorial. Studying the combined effect of several factors is becoming a hot topic in PD research. On one hand, iron is one of the essential trace metals for human body; on the other hand, iron may be involved in the etiopathogenesis of PD. In our present study, the rats with increased neonatal iron (120 μg/g bodyweight) supplementation were treated with rotenone (0.5 mg/kg) when they were aged to 14 weeks. We observed that iron and rotenone co-treatment induced significant behavior deficits (time-dependent) and striatal dopamine depletion in the male and female rats, while they did not do so when they were used alone. No significant change in striatal 5-hydroxytryptamine content was observed in the male and female rats with iron and rotenone co-treatment. Also, iron and rotenone co-treatment significantly decreased substantia nigra TH expression in the male rats. Furthermore, co-treatment with iron and rotenone significantly induced malondialdehyde increase and glutathione decrease in the substantia nigra of male and female rats. There was no significant change in cerebellar malondialdehyde and glutathione content of the rats co-treated with iron and rotenone. Interestingly, biochanin A significantly attenuated striatal dopamine depletion and improved behavior deficits (dose-dependently) in the male and female rats with iron and rotenone co-treatment. Biochanin A treatment also significantly alleviated substantia nigra TH expression reduction in the male rats co-treated with iron and rotenone. Finally, biochanin A significantly decreased malondialdehyde content and increased glutathione content in the substantia nigra of male and female rats with iron and rotenone co-treatment. Our results indicate that iron and rotenone co-treatment may result in aggravated neurochemical and behavior deficits through inducing redox imbalance and increased neonatal iron supplementation may participate in the etiopathogenesis of PD. Moreover, biochanin A may exert dopaminergic neuroprotection by maintaining redox balance.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanqing Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Zhiqiang Yan
- Shanghai Laboratory Animal Center, Chinese Academy of Sciences, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Bonilla-Porras AR, Arevalo-Arbelaez A, Alzate-Restrepo JF, Velez-Pardo C, Jimenez-Del-Rio M. PARKIN overexpression in human mesenchymal stromal cells from Wharton's jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson's disease. Cytotherapy 2017; 20:45-61. [PMID: 29079356 DOI: 10.1016/j.jcyt.2017.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Stem cell transplantation is an excellent option for regenerative or replacement therapy. However, deleterious microenvironmental and endogenous factors (e.g., oxidative stress) compromise ongoing graft survival and longevity. Therefore, (transient or stable) genetically modified cells may be reasonably thought to resist oxidative stress-induced damage. Genetic engineering of mesenchymal stromal cells (MSCs) obtained from Wharton's jelly tissue may offer some therapeutic potential. PARKIN is a multifunctional ubiquitin ligase able to protect dopaminergic cells against stress-related signaling. We, therefore, evaluated the effect of the neurotoxicant 6-hydroxydopamine (6-OHDA) on regulated cell death signaling in MSCs and investigated whether overexpression of PARKIN in MSCs was capable of modulating the effect of 6-OHDA. METHODS We transiently transfected Wharton's jelly-derived MSCs with an mCherry-PARKIN vector using the Lipofectamine LTX method. Naïve MSCs and MSCs overexpressing PARKIN were exposed to increasing concentrations of 6-OHDA. We used light and fluorescence microscopy, flow cytometry, immunocytochemistry staining, in-cell Western and Western blot analysis. RESULTS After 12-24 h of 6-OHDA exposure, we detected dichlorofluorescein (DCF)-positive cells (80%) indicative of reactive oxygen species (H2O2) production, reduced cell viability (40-50%), decreased mitochondrial membrane potential (ΔΨm, ~35-45%), DNA fragmentation (18-30%), and G1-arrested cell cycle in the MSCs. 6-OHDA exposure increased the expression of the transcription factor c-JUN, increased the expression of the mitochondria maintenance Phosphatase and tensin homologue-induced putative kinase 1 (PINK1) protein and increased the expression of pro-apoptotic PUMA, caspase-3 and apoptosis-inducing factor (AIF). 6-OHDA exposure also significantly augmented the oxidation of the oxidative stress sensor, DJ-1. Overexpression of PARKIN in MSCs not only significantly reduced the expression of cell death and oxidative stress markers but also significantly reduced DCF-positive cells (~50% reduction). DISCUSSION 6-OHDA induced apoptosis in MSCs via generation of H2O2, activation of c-JUN and PUMA, mitochondrial depolarization and nuclei fragmentation. Our findings suggest that PARKIN protects MSCs against 6-OHDA toxicity by partly interacting with H2O2, reducing the expression of c-JUN, PUMA, AIF and caspase-3, and maintaining the mitochondrial ΔΨm.
Collapse
Affiliation(s)
- A R Bonilla-Porras
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - A Arevalo-Arbelaez
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - J F Alzate-Restrepo
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - C Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| | - M Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| |
Collapse
|
160
|
González-Burgos E, Fernández-Moriano C, Lozano R, Iglesias I, Gómez-Serranillos M. Ginsenosides Rd and Re co-treatments improve rotenone-induced oxidative stress and mitochondrial impairment in SH-SY5Y neuroblastoma cells. Food Chem Toxicol 2017; 109:38-47. [DOI: 10.1016/j.fct.2017.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 11/15/2022]
|
161
|
Kozanhan B, Inanlı I, Deniz CD, Iyisoy MS, Neselioğlu S, Sahin O, Akin F, Tutar MS, Eren I, Erel O. Dynamic thiol disulphide homeostasis in operating theater personnel exposed to anesthetic gases. Am J Ind Med 2017; 60:1003-1009. [PMID: 28857280 DOI: 10.1002/ajim.22764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the association between dynamic thiol/disulphide homeostasis and occupational exposure to volatile anesthetic gases in operating theater personnel. Decreased blood thiol levels and raised blood disulphide levels serve as biomarkers of oxidative stress. METHODS We included 65 subjects occupationally exposed and 55 unexposed healthy medical professionals into the study. A novel method enabled separate measurements of components involved in dynamic thiol/disulphide homeostasis (native thiol, disulphide, and total thiol). To control for the potential confounding effect on oxidative stress of psychological symptoms potentially caused by occupational stress, we used scores obtained from four different anxiety and depression inventories. RESULTS Mean ± standard deviation native thiol was found to be 433.35 ± 30.68 in the exposed group, lower than among controls, 446.61 ± 27.8 (P = 0.02). Disulphide in the exposed group was 15.78 ± 5.12, higher than among controls, 12.14 ± 5.33 (P < 0.001). After adjusting for anxiety and depression scores, age and gender, native thiol remained lower and disulphide higher in the exposed group (P = 0.008 and P < 0.001). CONCLUSION Dynamic thiol/disulphide homeostasis in workers exposed to anesthetic gases was found to be disturbed after adjusting for the possible contribution of anxiety. We infer that this is due to the oxidative effect of exposure to anesthetic gases.
Collapse
Affiliation(s)
- Betul Kozanhan
- Department of Anesthesiology and Reanimation; Konya Training and Research Hospital; Konya Turkey
| | - Ikbal Inanlı
- Department of Psychiatry; Konya Training and Research Hospital; Konya Turkey
| | - Cigdem Damla Deniz
- Department of Clinical Biochemistry; Konya Training and Research Hospital; Konya Turkey
| | - Mehmet Sinan Iyisoy
- Meram Faculty of Medicine; Department of Medical Education and Informatics; Necmettin Erbakan University; Konya Turkey
| | - Salim Neselioğlu
- Faculty of Medicine; Department of Clinical Biochemistry; Yildirim Beyazit University; Ankara Turkey
| | - Osman Sahin
- Department of Anesthesiology and Reanimation; Konya Training and Research Hospital; Konya Turkey
| | - Fatma Akin
- Department of Anesthesiology and Reanimation; Konya Training and Research Hospital; Konya Turkey
| | - Mahmut Sami Tutar
- Department of Anesthesiology and Reanimation; Konya Training and Research Hospital; Konya Turkey
| | - Ibrahim Eren
- Department of Psychiatry; Konya Training and Research Hospital; Konya Turkey
| | - Ozcan Erel
- Faculty of Medicine; Department of Clinical Biochemistry; Yildirim Beyazit University; Ankara Turkey
| |
Collapse
|
162
|
Di Domenico F, Tramutola A, Butterfield DA. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med 2017; 111:253-261. [PMID: 27789292 DOI: 10.1016/j.freeradbiomed.2016.10.490] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 01/21/2023]
Abstract
Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
163
|
Isingrini E, Guinaudie C, C Perret L, Rainer Q, Moquin L, Gratton A, Giros B. Genetic elimination of dopamine vesicular stocks in the nigrostriatal pathway replicates Parkinson's disease motor symptoms without neuronal degeneration in adult mice. Sci Rep 2017; 7:12432. [PMID: 28963508 PMCID: PMC5622135 DOI: 10.1038/s41598-017-12810-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022] Open
Abstract
The type 2 vesicular monoamine transporter (VMAT2), by regulating the storage of monoamines transmitters into synaptic vesicles, has a protective role against their cytoplasmic toxicity. Increasing evidence suggests that impairment of VMAT2 neuroprotection contributes to the pathogenesis of Parkinson’s disease (PD). Several transgenic VMAT2 mice models have been developed, however these models lack specificity regarding the monoaminergic system targeting. To circumvent this limitation, we created VMAT2-KO mice specific to the dopamine (DA) nigrostriatal pathway to analyze VMAT2’s involvement in DA depletion-induced motor features associated to PD and examine the relevance of DA toxicity in the pathogenesis of neurodegeneration. Adult VMAT2 floxed mice were injected in the substancia nigra (SN) with an adeno-associated virus (AAV) expressing the Cre-recombinase allowing VMAT2 removal in DA neurons of the nigrostriatal pathway solely. VMAT2 deletion in the SN induced both DA depletion exclusively in the dorsal striatum and motor dysfunction. At 16 weeks post-injection, motor symptoms were accompanied with a decreased in food and water consumption and weight loss. However, despite an accelerating death, degeneration of nigrostriatal neurons was not observed in this model during this time frame. This study highlights a non-cytotoxic role of DA in our genetic model of VMAT2 deletion exclusively in nigrostriatal neurons.
Collapse
Affiliation(s)
- Elsa Isingrini
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Chloé Guinaudie
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Léa C Perret
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Quentin Rainer
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Luc Moquin
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada. .,Sorbonne Universités, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
164
|
Guo C, Ding P, Xie C, Ye C, Ye M, Pan C, Cao X, Zhang S, Zheng S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget 2017; 8:75767-75777. [PMID: 29088908 PMCID: PMC5650463 DOI: 10.18632/oncotarget.20801] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/27/2017] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are generated after exposure to harmful environmental factors and during normal cellular metabolic processes. The balance of the generating and scavenging of ROS plays a significant role in living cells. The accumulation of ROS will lead to oxidative damage to biomolecules including nucleic acid. Although many types of oxidative nucleic acid damage products have been identified, 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoG) has been commonly chosen as the biomarkers of oxidative damage to DNA and RNA, respectively. It has been demonstrated that oxidative damage to nucleic acid is an initiator in pathogenesis of numerous diseases. Thus, oxidative nucleic acid damage biomarkers have the potential to be utilized for detection of diseases. Herein, we reviewed the relationship of oxidative nucleic acid damage and development of various diseases including cancers (colorectal cancer, gastrointestinal cancer, breast cancer, lung cancer, epithelial ovarian carcinoma, esophageal squamous cell carcinoma), neurodegenerative disorders and chronic diseases (diabetes and its complications, cardiovascular diseases). The potential of oxidative nucleic acid damage biomarkers for detection of diseases and drug development were described. Moreover, the approaches for detection of these biomarkers were also summarized.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Peili Ding
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cong Xie
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenyang Ye
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Chi Pan
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Suzhan Zhang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
165
|
Zhu Z, Wang Y, Ge D, Lu M, Liu W, Xiong J, Hu G, Li X, Yang J. Downregulation of DEC1 contributes to the neurotoxicity induced by MPP + by suppressing PI3K/Akt/GSK3β pathway. CNS Neurosci Ther 2017; 23:736-747. [PMID: 28734031 PMCID: PMC6492752 DOI: 10.1111/cns.12717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/20/2023] Open
Abstract
AIM Differentiated embryonic chondrocyte gene 1 (DEC1) is involved in the neuronal differentiation and development. The aim of this study is to investigate the role of DEC1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPP+ )-induced PD model. METHODS The location of DEC1 and tyrosine hydroxylase (TH)-positive neurons were detected by immunofluorescence. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse subacute model of PD was established to evaluate the change of DEC1 expression in midbrain. Then, SH-SY5Y cells were used to investigate the role of DEC1 in MPP+ -induced neurotoxicity. RESULTS We showed that the co-expressed DEC1 and TH neurons took up more than 80% of the expressed TH neurons in the midbrain of mice. DEC1/TH double-positive neurons decreased by 40.6% in SNpc and 28.8% in VTA of MPTP-injured mice. Consistently, DEC1, TH and dopamine transporter (DAT) expression decreased in the midbrain of MPTP mice. In SY-SY5Y cells, MPP+ significantly suppressed DEC1 expression and increased the cleaved caspase 3/caspase 3 and Bax/Bcl-2. DEC1 overexpression relieved, whereas DEC1 knockdown aggravated MPP+ -induced cytotoxicity. Likewise, DEC1 overexpression and knockdown inversely regulated the expression of β-catenin and PI3Kp110α (PIK3CA), an essential role in Wnt/β-catenin and PI3K/Akt signaling pathways. Interestingly, LY294002, an inhibitor of PI3K/Akt signaling, aggravated, whereas LiCl, an activator of Wnt/β-catenin signaling, abolished the reduction in DEC1 by MPP+ . It is established that these two pathways are interconnected by the phosphorylation status of GSK3β. DEC1 overexpression increased but MPP+ and DEC1 knockdown decreased GSK3β phosphorylation. CONCLUSION Downregulation of DEC1 contributes to MPP+ -induced neurotoxicity by suppressing PI3K/Akt/GSK3β pathway.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Yu‐Wen Wang
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Ding‐Hao Ge
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Ming Lu
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Wei Liu
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Jing Xiong
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Gang Hu
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Xiao‐Ping Li
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| | - Jian Yang
- Department of pharmacologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
166
|
Abstract
Alzheimer's disease and Parkinson's disease are the two most common, progressive central neurodegenerative diseases affecting the population over the age of 60 years. Apart from treatments that temporarily improve symptoms, there is no medicine currently available to inhibit or reverse the progression of Alzheimer's disease and Parkinson's disease. In traditional Chinese medicine, the root of Scutellaria baicalensis Georgi is a classic compatible component in the decoction of herbal medicine used for treating central nervous system diseases. Modern pharmacokinetic studies have confirmed that baicalein (5,6,7-trihydroxyflavone) is a major bioactive flavone constituent root of S. baicalensis Georgi. Studies showed that baicalein possesses a range of key pharmacological properties, such as reducing oxidative stress, anti-inflammatory properties, inhibiting aggregation of disease-specific amyloid proteins, inhibiting excitotoxicity, stimulating neurogenesis and differentiation action, and anti-apoptosis effects. Based on these properties, baicalein shows therapeutic potential for Alzheimer's disease and Parkinson's disease. In this review, we summarize the pharmacological protective actions of baicalein that make it suitable for the treatment of Alzheimer's disease and Parkinson's disease, and discuss the potential mechanisms underlying the effects.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China.
| | - Jinying Zhao
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China
| | - Christian Hölscher
- Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
167
|
Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis. Nutrients 2017; 9:nu9080795. [PMID: 28757580 PMCID: PMC5579589 DOI: 10.3390/nu9080795] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/31/2023] Open
Abstract
Taurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood. Therefore, the present study examined the hypothesis that overproduction of reactive oxygen species (ROS) by complex I of the respiratory chain triggers mitochondria-dependent apoptosis in hearts of taurine transporter knockout (TauTKO) mice. In support of the hypothesis, a 60% decrease in mitochondrial taurine content of 3-month-old TauTKO hearts was observed, which was associated with diminished complex I activity and the onset of mitochondrial oxidative stress. Oxidative damage to stressed mitochondria led to activation of a caspase cascade, with stimulation of caspases 9 and 3 prevented by treatment of 3-month-old TauTKO mice with the mitochondria specific antioxidant, MitoTempo. In 12 month-old, but not 3-month-old, TauTKO hearts, caspase 12 activation contributes to cell death, revealing a pathological role for endoplasmic reticulum (ER) stress in taurine deficient, aging mice. Thus, taurine is a cytoprotective nutrient that ensures normal mitochondrial and ER function, which is important for the reduction of risk for apoptosis and premature death.
Collapse
|
168
|
Liu Y, Chong L, Li X, Tang P, Liu P, Hou C, Zhang X, Li R. Astragaloside IV rescues MPP +-induced mitochondrial dysfunction through upregulation of methionine sulfoxide reductase A. Exp Ther Med 2017; 14:2650-2656. [PMID: 28962208 DOI: 10.3892/etm.2017.4834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Methionine sulfoxide reductase (Msr) repairs oxidatively damaged proteins through acting as an antioxidant. Oxidative stress has been postulated to cause the mitochondrial dysfunction that is associated with aging and certain diseases, including Parkinson's disease (PD). The present study investigated the protective effects of astragaloside IV (AS-IV) on 1-methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction through MsrA in PC12 cells. This revealed that oxidative stress reduced the expression of MsrA following MPP+ treatment. AS-IV was demonstrated to protect PC12 cells from MPP+-induced oxidative damage through upregulating MsrA. MsrA expression was dependent on the Sirt1-FOXO3a signaling pathway. In addition, knockdown of MsrA reduced the protective effects of AS-IV, indicating that the antioxidant effects of AS-UV occurred through MsrA. These results suggest that AS-IV exerts antioxidant effects and regulates mitochondrial function. Thus, AS-IV may serve as an effective therapeutic agent for aging and PD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Li Chong
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaoqing Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Tang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chen Hou
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Zhang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Rui Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
169
|
de Rus Jacquet A, Tambe MA, Ma SY, McCabe GP, Vest JHC, Rochet JC. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:393-407. [PMID: 28088492 PMCID: PMC6149223 DOI: 10.1016/j.jep.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a multifactorial neurodegenerative disorder affecting 5% of the population over the age of 85 years. Current treatments primarily involve dopamine replacement therapy, which leads to temporary relief of motor symptoms but fails to slow the underlying neurodegeneration. Thus, there is a need for safe PD therapies with neuroprotective activity. In this study, we analyzed contemporary herbal medicinal practices used by members of the Pikuni-Blackfeet tribe from Western Montana to treat PD-related symptoms, in an effort to identify medicinal plants that are affordable to traditional communities and accessible to larger populations. AIM OF THE STUDY The aims of this study were to (i) identify medicinal plants used by the Pikuni-Blackfeet tribe to treat individuals with symptoms related to PD or other CNS disorders, and (ii) characterize a subset of the identified plants in terms of antioxidant and neuroprotective activities in cellular models of PD. MATERIALS AND METHODS Interviews of healers and local people were carried out on the Blackfeet Indian reservation. Plant samples were collected, and water extracts were produced for subsequent analysis. A subset of botanical extracts was tested for the ability to induce activation of the Nrf2-mediated transcriptional response and to protect against neurotoxicity elicited by the PD-related toxins rotenone and paraquat. RESULTS The ethnopharmacological interviews resulted in the documentation of 26 medicinal plants used to treat various ailments and diseases, including symptoms related to PD. Seven botanical extracts (out of a total of 10 extracts tested) showed activation of Nrf2-mediated transcriptional activity in primary cortical astrocytes. Extracts prepared from Allium sativum cloves, Trifolium pratense flowers, and Amelanchier arborea berries exhibited neuroprotective activity against toxicity elicited by rotenone, whereas only the extracts prepared from Allium sativum and Amelanchier arborea alleviated PQ-induced dopaminergic cell death. CONCLUSIONS Our findings highlight the potential clinical utility of plants used for medicinal purposes over generations by the Pikuni-Blackfeet people, and they shed light on mechanisms by which the plant extracts could slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Mitali Arun Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
170
|
de Rus Jacquet A, Timmers M, Ma SY, Thieme A, McCabe GP, Vest JHC, Lila MA, Rochet JC. Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:408-425. [PMID: 28214539 PMCID: PMC6149226 DOI: 10.1016/j.jep.2017.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/28/2017] [Accepted: 02/13/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta and the presence in surviving neurons of Lewy body inclusions enriched with aggregated forms of the presynaptic protein α-synuclein (aSyn). Although current therapies provide temporary symptomatic relief, they do not slow the underlying neurodegeneration in the midbrain. In this study, we analyzed contemporary herbal medicinal practices used by members of the Lumbee tribe to treat PD-related symptoms, in an effort to identify safe and effective herbal medicines to treat PD. AIM OF THE STUDY The aims of this study were to (i) document medicinal plants used by Lumbee Indians to treat PD and PD-related symptoms, and (ii) characterize a subset of plant candidates in terms of their ability to alleviate neurotoxicity elicited by PD-related insults and their potential mechanisms of neuroprotection. MATERIALS AND METHODS Interviews of Lumbee healers and local people were carried out in Pembroke, North Carolina, and in surrounding towns. Plant samples were collected and prepared as water extracts for subsequent analysis. Extracts were characterized in terms of their ability to induce activation of the nuclear factor E2-related factor 2 (Nrf2) antioxidant response in cortical astrocytes. An extract prepared from Sambucus caerulea flowers (elderflower extract) was further examined for the ability to induce Nrf2-mediated transcription in induced pluripotent stem cell (iPSC)-derived astrocytes and primary midbrain cultures, to ameliorate mitochondrial dysfunction, and to alleviate rotenone- or aSyn-mediated neurotoxicity. RESULTS The ethnopharmacological interviews resulted in the documentation of 32 medicinal plants used to treat PD-related symptoms and 40 plants used to treat other disorders. A polyphenol-rich extract prepared from elderflower activated the Nrf2-mediated antioxidant response in cortical astrocytes, iPSC-derived astrocytes, and primary midbrain cultures, apparently via the inhibition of Nrf2 degradation mediated by the ubiquitin proteasome system. Furthermore, the elderflower extract rescued mitochondrial functional deficits in a neuronal cell line and alleviated neurotoxicity elicited by rotenone and aSyn in primary midbrain cultures. CONCLUSIONS These results highlight potential therapeutic benefits of botanical extracts used in traditional Lumbee medicine, and they provide insight into mechanisms by which an elderflower extract could suppress neurotoxicity elicited by environmental and genetic PD-related insults.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Michael Timmers
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Andrew Thieme
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | - Jay Hansford C Vest
- University of North Carolina at Pembroke, PO Box 1510, Pembroke, NC 28372, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
171
|
Shen D, Tian X, Zhang B, Song R. Mechanistic evaluation of neuroprotective effect of estradiol on rotenone and 6-OHDA induced Parkinson's disease. Pharmacol Rep 2017; 69:1178-1185. [PMID: 29128798 DOI: 10.1016/j.pharep.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/27/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The present study was intended to investigate the protective effect of estradiol against Parkinson's disease through the use of rotenone-induced neurotoxicity model. METHODS To define the effect on the behavioral function, Tail suspension test, morris water maize test and cylinder tests were performed. Several biochemical and histological markers related to Parkinson's disease was determined in animal and cell culture models. To evaluate the effect of estradiol on the cellular architecture in rotenone-induced brain tissue, the histopathological examination was carried out by using Haemotoxylin and Eosin staining. Moreover, estradiol effect was also been investigated for its protective effect against Parkinson's disease using cell culture model with use of brain endothelial cells. The flowcytometric analysis was carried out to measure apoptosis in cell culture model. RESULTS The abnormal level of antioxidant enzymes and lipid peroxidation were regulated toward the normal intensity under the influence of estradiol. Furthermore, intracellular ROS level and apoptosis were found to be reduced following estradiol treatment. During the 6-OHDA induced PD, the level of antioxidant marker such as GSH, ROS and TRAP, found to be significantly modulated by the estradiol. CONCLUSION In view of the above results, it may be suggested that the estradiol may be as a useful therapeutic agent against rotenone-induced neurotoxicity such as Parkinson's disease.
Collapse
Affiliation(s)
- Dongfang Shen
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoyan Tian
- Department of Gerontology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Binbin Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Rongrong Song
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
172
|
Sanders LH, Paul KC, Howlett EH, Lawal H, Boppana S, Bronstein JM, Ritz B, Greenamyre JT. Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk. Toxicol Sci 2017; 158:188-198. [PMID: 28460087 PMCID: PMC6075191 DOI: 10.1093/toxsci/kfx086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exposure to certain pesticides induces oxidative stress and increases Parkinson's disease (PD) risk. Mitochondrial DNA (mtDNA) damage is found in dopaminergic neurons in idiopathic PD and following pesticide exposure in experimental models thereof. Base excision repair (BER) is the major pathway responsible for repairing oxidative DNA damage in cells. Whether single nucleotide polymorphisms (SNPs) in BER genes alone or in combination with pesticide exposure influence PD risk is unknown. We investigated the contributions of functional SNPs in 2 BER genes (APEX1 and OGG1) and mitochondrial dysfunction- or oxidative stress-related pesticide exposure, including paraquat, to PD risk. We also studied the effect of paraquat on levels of mtDNA damage and mitochondrial bioenergetics. 619 PD patients and 854 population-based controls were analyzed for the 2 SNPs, APEX1 rs1130409 and OGG1 rs1052133. Ambient pesticide exposures were assessed with a geographic information system. Individually, or in combination, the BER SNPs did not influence PD risk. Mitochondrial-inhibiting (OR = 1.79, 95% CI [1.32, 2.42]), oxidative stress-inducing pesticides (OR = 1.61, 95% CI [1.22, 2.11]), and paraquat (OR = 1.54, 95% CI [1.23, 1.93]) were associated with PD. Statistical interactions were detected, including for a genetic risk score based on rs1130409 and rs1052133 and oxidative stress inducing pesticides, where highly exposed carriers of both risk genotypes were at the highest risk of PD (OR = 2.21, 95% CI [1.25, 3.86]); similar interactions were estimated for mitochondrial-inhibiting pesticides and paraquat alone. Additionally, paraquat exposure was found to impair mitochondrial respiration and increase mtDNA damage in in vivo and in vitro systems. Our findings provide insight into possible mechanisms involved in increased PD risk due to pesticide exposure in the context of BER genotype variants.
Collapse
Affiliation(s)
- Laurie H. Sanders
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kimberly C. Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, California 90095
| | - Evan H. Howlett
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hakeem Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Sridhar Boppana
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, California 90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - J. Timothy Greenamyre
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
173
|
Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 2017; 276:108-114. [DOI: 10.1016/j.toxlet.2017.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
|
174
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
175
|
Arumugam M, Jayapalan JJ, Abdul-Rahman PS, Hashim OH, Subramanian P. Effect of hesperidin on the temporal regulation of redox homeostasis in clock mutant (Cryb) ofDrosophila melanogaster. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1333567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Manjula Arumugam
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - Jaime Jacqueline Jayapalan
- Faculty of Medicine, University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Faculty of Medicine, University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- Faculty of Medicine, University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| |
Collapse
|
176
|
Manjula A, Subashini R, Punitha R, Subramanian P. Modulating effects of hesperidin on circadian pattern indices of rotenone induced redox homeostasis in clock mutant (cryb) of Drosophila melanogaster. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1319641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A. Manjula
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - R. Subashini
- Dharmapuram Gnagambigai Government Arts College for Women, Mayiladuthurai, India
| | - R. Punitha
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - P. Subramanian
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| |
Collapse
|
177
|
Bal-Price A, Meek MEB. Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther 2017; 179:84-95. [PMID: 28529068 PMCID: PMC5869951 DOI: 10.1016/j.pharmthera.2017.05.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments have prompted the transition of empirically based testing of late stage toxicity in animals for a range of different endpoints including neurotoxicity to more efficient and predictive mechanistically based approaches with greater emphasis on measurable key events early in the progression of disease. The adverse outcome pathway (AOP) has been proposed as a simplified organizational construct to contribute to this transition by linking molecular initiating events and earlier (more predictive) key events at lower levels of biological organization to disease outcomes. As such, AOPs are anticipated to facilitate the compilation of information to increase mechanistic understanding of pathophysiological pathways that are responsible for human disease. In this review, the sequence of key events resulting in adverse outcome (AO) defined as parkinsonian motor impairment and learning and memory deficit in children, triggered by exposure to environmental chemicals has been briefly described using the AOP framework. These AOPs follow convention adopted in an Organization for Economic Cooperation and Development (OECD) AOP development program, publically available, to permit tailored application of AOPs for a range of different purposes. Due to the complexity of disease pathways, including neurodegenerative disorders, a specific symptom of the disease (e.g. parkinsonian motor deficit) is considered as the AO in a developed AOP. Though the description is necessarily limited by the extent of current knowledge, additional characterization of involved pathways through description of related AOPs interlinked into networks for the same disease has potential to contribute to more holistic and mechanistic understanding of the pathophysiological pathways involved, possibly leading to the mechanism-based reclassification of diseases, thus facilitating more personalized treatment.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Ispra, Italy.
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
178
|
Guo C, Li X, Ye M, Xu F, Yu J, Xie C, Cao X, Guo M, Yuan Y, Zheng S. Discriminating patients with early-stage breast cancer from benign lesions by detection of oxidative DNA damage biomarker in urine. Oncotarget 2017; 8:53100-53109. [PMID: 28881796 PMCID: PMC5581095 DOI: 10.18632/oncotarget.17831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed and death-related cancers in women worldwide. Mammography is routinely used for screening and invasive examinations such as painful tissue biopsies were recommended for patients with abnormal screening outcomes. However, a considerable proportion of these cases turn out to be benign lesions. Thus, novel non-invasive approach for discriminating breast cancer from benign lesions is desirable. Herein, we applied a high-throughput ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis to determine the oxidative DNA damage biomarker, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in urine samples from 60 patients with early-stage breast cancer (stage I, II), 51 patients with benign breast diseases and 73 healthy volunteers. We demonstrated that the concentration of urinary 8-oxodG in patients with early-stage breast cancer was significantly higher not only than that in healthy controls, but also than that in patients with benign breast diseases, whereas no significant difference of urinary 8-oxodG level was observed between benign breast diseases group and healthy control group. Moreover, there was significant difference between early-stage breast cancer group and non-cancerous group which consisted of benign breast diseases patients and healthy controls. Besides, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were also performed. Our findings indicate that the marked increase of 8-oxodG in urine may serve as a potential biomarker for the risk estimation, early screening and detection of breast cancer, particularly for discriminating early-stage breast cancer from benign lesions.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cong Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
179
|
Olive Leaves Extract Improved Sperm Quality and Antioxidant Status in the Testis of Rat Exposed to Rotenone. Nephrourol Mon 2017. [DOI: 10.5812/numonthly.47127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
180
|
Toni M, Massimino ML, De Mario A, Angiulli E, Spisni E. Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach. Front Neurosci 2017; 11:3. [PMID: 28154522 PMCID: PMC5243831 DOI: 10.3389/fnins.2017.00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the β sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression “prion-like diseases” refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid β, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and on low intake of meat, could play a preventive or delaying role in prion and prion-like neurodegenerative diseases. In this review, metal role in the onset of prion and prion-like diseases is dealt with from a nutritional, cellular, and molecular point of view.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Maria L Massimino
- National Research Council (CNR), Neuroscience Institute c/o Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Elisa Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
181
|
Rasheed MZ, Tabassum H, Parvez S. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease. PROTOPLASMA 2017; 254:33-42. [PMID: 26825389 DOI: 10.1007/s00709-015-0930-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Among the neurodegenerative diseases (ND), Parkinson's disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson's disease (PD). Imbalance in Ca2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.
Collapse
Affiliation(s)
- Md Zeeshan Rasheed
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
182
|
Design of chalcogen-containing norepinephrines: efficient GPx mimics and strong cytotoxic agents against HeLa cells. Future Med Chem 2016; 8:2185-2195. [PMID: 27845568 DOI: 10.4155/fmc-2016-0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Numerous chronic diseases exhibit multifactorial etiologies, so focusing on a single therapeutic target is usually an inadequate treatment; instead, multi-target drugs are preferred. Herein, a panel of phenolic thioureas and selenoureas were designed as new prototypes against multifactorial diseases concerning antioxidation and cytotoxicity, as a pro-oxidant environment is usually found in such diseases. RESULTS Selenoureas were excellent antiradical agents and biomimetic catalysts of glutathione peroxidase for the scavenging of H2O2. They were also potent and selective cytotoxic agents against cancer cells, in particular HeLa (IC50 2.77-6.13 μM), apoptosis being involved. Selenoureas also reduced oxidative stress in HeLa cells (IC50= 3.76 μM). CONCLUSION Phenolic selenoureas are promising lead structures for the development of drugs targeting multifactorial diseases like cancer.
Collapse
|
183
|
Chen M, Li Y, Yang M, Chen X, Chen Y, Yang F, Lu S, Yao S, Zhou T, Liu J, Zhu L, Du S, Wu JY. A new method for quantifying mitochondrial axonal transport. Protein Cell 2016; 7:804-819. [PMID: 27225265 PMCID: PMC5084152 DOI: 10.1007/s13238-016-0268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.
Collapse
Affiliation(s)
- Mengmeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yang Li
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Mengxue Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yemeng Chen
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Fan Yang
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Sheng Lu
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengyu Yao
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Timothy Zhou
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jianghong Liu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sidan Du
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Jane Y Wu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
184
|
Yaman S, Öztürk N, Çömelekoğlu Ü, Değirmenci E. Determination of Dichlorvos Effect on Uterine Contractility Using Wavelet Transform. Ing Rech Biomed 2016. [DOI: 10.1016/j.irbm.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
185
|
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016; 100:14-31. [PMID: 27085844 DOI: 10.1016/j.freeradbiomed.2016.04.001] [Citation(s) in RCA: 721] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD+; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site IIIQo) and the site in complex I active during reverse electron transport (site IQ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites IIIQo and IQ are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts.
Collapse
Affiliation(s)
- Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, United States.
| |
Collapse
|
186
|
Yonny ME, García EM, López A, Arroquy JI, Nazareno MA. Measurement of malondialdehyde as oxidative stress biomarker in goat plasma by HPLC-DAD. Microchem J 2016. [DOI: 10.1016/j.microc.2016.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
187
|
Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 2016; 524:13-30. [PMID: 27789233 DOI: 10.1016/j.ab.2016.10.021] [Citation(s) in RCA: 1187] [Impact Index Per Article: 131.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
Abstract
Malondialdehyde (MDA), 4-hydroxy-nonenal (HNE) and the F2-isoprostane 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α) are the best investigated products of lipid peroxidation. MDA, HNE and 15(S)-8-iso-PGF2α are produced from polyunsaturated fatty acids (PUFAs) both by chemical reactions and by reactions catalyzed by enzymes. 15(S)-8-iso-PGF2α and other F2-isoprostanes are derived exclusively from arachidonic acid (AA). The number of PUFAs that may contribute to MDA and HNE is much higher. MDA is the prototype of the so called thiobarbituric acid reactive substances (TBARS). MDA, HNE and 15(S)-8-iso-PGF2α are the most frequently measured biomarkers of oxidative stress, namely of lipid peroxidation. In many diseases, higher concentrations of MDA, HNE and 15(S)-8-iso-PGF2α are measured in biological samples as compared to health. Therefore, elevated oxidative stress is generally regarded as a pathological condition. Decreasing the concentration of biomarkers of oxidative stress by changing life style, by nutritional intake of antioxidants or by means of drugs is generally believed to be beneficial to health. Reliable assessment of oxidative stress by measuring MDA, HNE and 15(S)-8-iso-PGF2α in biological fluids is highly challenging for two important reasons: Because of the duality of oxidative stress, i.e., its origin from chemical and enzymatic reactions, and because of pre-analytical and analytical issues. This article focuses on these key issues. It reviews reported analytical methods and their principles for the quantitative measurement of MDA, HNE and 15(S)-8-iso-PGF2α in biological samples including plasma and urine, and critically discusses their biological and biomedical outcome which is rarely crystal clear and free of artefacts.
Collapse
|
188
|
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 2016; 147:1-19. [PMID: 27769868 DOI: 10.1016/j.pneurobio.2016.07.005] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
Oxidative stress reflects an imbalance between the overproduction and incorporation of free radicals and the dynamic ability of a biosystem to detoxify reactive intermediates. Free radicals produced by oxidative stress are one of the common features in several experimental models of diseases. Free radicals affect both the structure and function of neural cells, and contribute to a wide range of neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the precise mechanisms that result in the degeneration of neurons and the relevant pathological changes remain unclear, the crucial role of oxidative stress in the pathogenesis of neurodegenerative diseases is associated with several proteins (such as α-synuclein, DJ-1, Amyloid β and tau protein) and some signaling pathways (such as extracellular regulated protein kinases, phosphoinositide 3-kinase/Protein Kinase B pathway and extracellular signal-regulated kinases 1/2) that are tightly associated with the neural damage. In this review, we present evidence, gathered over the last decade, concerning a variety of pathogenic proteins, their important signaling pathways and pathogenic mechanisms associated with oxidative stress in Parkinson's disease and Alzheimer's disease. Proper control and regulation of these proteins' functions and the related signaling pathways may be a promising therapeutic approach to the patients. We also emphasizes antioxidative options, including some new neuroprotective agents that eliminate excess reactive oxygen species efficiently and have a certain therapeutic effect; however, controversy surrounds some of them in terms of the dose and length of therapy. These agents require further investigation by clinical application in patients suffering Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Sun
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science & Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
189
|
Alpha-synuclein aggregates are excluded from calbindin-D28k-positive neurons in dementia with Lewy bodies and a unilateral rotenone mouse model. Mol Cell Neurosci 2016; 77:65-75. [PMID: 27746320 DOI: 10.1016/j.mcn.2016.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/14/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
α-Synuclein (α-syn) aggregates (Lewy bodies) in Dementia with Lewy Bodies (DLB) may be associated with disturbed calcium homeostasis and oxidative stress. We investigated the interplay between α-syn aggregation, expression of the calbindin-D28k (CB) neuronal calcium-buffering protein and oxidative stress, combining immunofluorescence double labelling and Western analysis, and examining DLB and normal human cases and a unilateral oxidative stress lesion model of α-syn disease (rotenone mouse). DLB cases showed a greater proportion of CB+ cells in affected brain regions compared to normal cases with Lewy bodies largely present in CB- neurons and virtually undetected in CB+ neurons. The unilateral rotenone-lesioned mouse model showed a greater proportion of CB+ cells and α-syn aggregates within the lesioned hemisphere than the control hemisphere, especially proximal to the lesion site, and α-syn inclusions occurred primarily in CB- cells and were almost completely absent in CB+ cells. Consistent with the immunofluorescence data, Western analysis showed the total CB level was 25% higher in lesioned compared to control hemisphere in aged animals that are more sensitive to lesion and 20% higher in aged compared to young mice in lesioned hemisphere, but not significantly different between young and aged in the control hemisphere. Taken together, the findings show α-syn aggregation is excluded from CB+ neurons, although the increased sensitivity of aged animals to lesion was not related to differential CB expression.
Collapse
|
190
|
Guo C, Li X, Wang R, Yu J, Ye M, Mao L, Zhang S, Zheng S. Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2'-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep 2016; 6:32581. [PMID: 27585556 PMCID: PMC5009303 DOI: 10.1038/srep32581] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
Oxidative DNA damage plays crucial roles in the pathogenesis of numerous diseases including cancer. 8-hydroxy-2′-deoxyguanosine (8-OHdG) is the most representative product of oxidative modifications of DNA, and urinary 8-OHdG is potentially the best non-invasive biomarker of oxidative damage to DNA. Herein, we developed a sensitive, specific and accurate method for quantification of 8-OHdG in human urine. The urine samples were pretreated using off-line solid-phase extraction (SPE), followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. By the use of acetic acid as an additive to the mobile phase, we improved the UPLC-MS/MS detection of 8-OHdG by 2.7−5.3 times. Using the developed strategy, we measured the contents of 8-OHdG in urine samples from 142 healthy volunteers and 84 patients with colorectal cancer (CRC). We observed increased levels of urinary 8-OHdG in patients with CRC and patients with tumor metastasis, compared to healthy controls and patients without tumor metastasis, respectively. Additionally, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed. Our findings implicate that oxidative stress plays important roles in the development of CRC and the marked increase of urinary 8-OHdG may serve as a potential liquid biomarker for the risk estimation, early warning and detection of CRC.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Lingna Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,International Health Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
191
|
Zhang Q, Chen S, Yu S, Qin J, Zhang J, Cheng Q, Ke K, Ding F. Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease. Neuropharmacology 2016; 108:238-51. [DOI: 10.1016/j.neuropharm.2016.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
|
192
|
Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol Sin 2016; 37:1178-89. [PMID: 27498777 DOI: 10.1038/aps.2016.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023]
Abstract
AIM Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. METHODS A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. RESULTS In rotenone-treated BV2 cells, MK-4 (0.5-20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5-20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5-20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5-20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5-20 μmol/L). CONCLUSION Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation.
Collapse
|
193
|
Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2, and autophagy pathways. Sci Rep 2016; 6:32206. [PMID: 27553905 PMCID: PMC4995453 DOI: 10.1038/srep32206] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane, a naturally occurring compound found in cruciferous vegetables, has been shown to be neuroprotective in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of sulforaphane in an in vivo Parkinson's disease (PD) model, based on rotenone-mediated neurotoxicity. Our results showed that sulforaphane inhibited rotenone-induced locomotor activity deficiency and dopaminergic neuronal loss. Additionally, sulforaphane treatment inhibited the rotenone-induced reactive oxygen species production, malondialdehyde (MDA) accumulation, and resulted in an increased level of total glutathione and reduced glutathione (GSH): oxidized glutathione (GSSG) in the brain. Western blot analysis illustrated that sulforaphane increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1), the latter two of which are anti-oxidative enzymes. Moreover, sulforaphane treatment significantly attenuated rotenone-inhibited mTOR-mediated p70S6K and 4E-BP1 signalling pathway, as well as neuronal apoptosis. In addition, sulforaphane rescued rotenone-inhibited autophagy, as detected by LC3-II. Collectively, these findings demonstrated that sulforaphane exert neuroprotective effect involving Nrf2-dependent reductions in oxidative stress, mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal autophagy. Sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing PD.
Collapse
|
194
|
Javed H, Azimullah S, Abul Khair SB, Ojha S, Haque ME. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci 2016; 17:58. [PMID: 27549180 PMCID: PMC4994214 DOI: 10.1186/s12868-016-0293-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Background Parkinson disease (PD) is a movement disorder affecting 1 % of people over the age of 60. The etiology of the disease is unknown; however, accumulating evidence suggests that mitochondrial defects, oxidative stress, and neuroinflammation play important roles in developing the disease. Current medications for PD can only improve its symptoms, but are unable to halt its progressive nature. Although many therapeutic approaches are available, new drugs are urgently needed for the treatment of PD. Thus, the present study was undertaken to investigate the neuroprotective potential of nerolidol, a sesquiterpene alcohol, on a rotenone-induced experimental model of PD, where male Wistar rats intraperitoneally received rotenone (ROT) at a dose of 2.5 mg/kg of body weight once daily for 4 weeks. Results Nerolidol, which has antioxidant and anti-inflammatory properties, was injected intraperitoneally at 50 mg/kg of body weight, once daily for 4 weeks, and at 30 min prior to ROT administration. ROT administration significantly reduced the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the level of the antioxidant tripeptide glutathione (GSH). Moreover, ROT increased the levels of the lipid peroxidation product malondialdehyde (MDA), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), and inflammatory mediators (COX-2 and iNOS) in rat brain tissues. Immunostaining of brain tissue sections revealed a significant increase in the number of activated astrocytes (GFAP) and microglia (Iba-1), along with the concomitant loss of dopamine (DA) neurons in the substantia nigra pars compacta and dopaminergic nerve fibers in the striatum of ROT-treated rats. As expected, nerolidol supplementation to ROT-injected rats significantly increased the level of SOD, CAT, and GSH, and decreased the level of MDA. Nerolidol also inhibited the release of proinflammatory cytokines and inflammatory mediators. Finally, nerolidol treatment prevented ROT-induced glial cell activation and the loss of dopaminergic neurons and nerve fibers, and ultimately attenuated ROT-induced dopaminergic neurodegeneration. Conclusion Our findings are the first to show that the neuroprotective effect of nerolidol is mediated through its anti-oxidant and anti-inflammatory activities, which strongly supports its therapeutic potential for the treatment of PD.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Salema B Abul Khair
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE.
| | - M Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE.
| |
Collapse
|
195
|
Ellwanger JH, Franke SIR, Bordin DL, Prá D, Henriques JAP. Biological functions of selenium and its potential influence on Parkinson's disease. AN ACAD BRAS CIENC 2016; 88:1655-1674. [PMID: 27556332 DOI: 10.1590/0001-3765201620150595] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 03/01/2023] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special role in the prevention and in the nutritional management of Parkinson's disease. Currently, few researchers have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or very low body levels of selenium can (possibly) contribute to the pathogenesis of Parkinson's disease, because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is to review and discuss studies that have addressed these topics and to finally associate the information obtained from them so that these data and associations serve as input to new research.
Collapse
Affiliation(s)
- Joel H Ellwanger
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Silvia I R Franke
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - Diana L Bordin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Daniel Prá
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Bloco 12, sala 1206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - João A P Henriques
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil.,Instituto de Biotecnologia, Universidade de Caxias do Sul/UCS, Rua Francisco Getúlio Vargas, 1130, 95070-560 Caxias do Sul, RS, Brasil
| |
Collapse
|
196
|
Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2016; 53:4094-4125. [PMID: 26198567 PMCID: PMC4937091 DOI: 10.1007/s12035-015-9337-5] [Citation(s) in RCA: 514] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.
Collapse
Affiliation(s)
- Ewa Niedzielska
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maciej Gawlik
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Andrzej Moniczewski
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Piotr Stankowicz
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University, Medical College, Botaniczna 3, 31-503, Krakow, Poland
| | - Małgorzata Filip
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
197
|
Mukai K, Nagai K, Egawa Y, Ouchi A, Nagaoka SI. Kinetic Study of Aroxyl-Radical-Scavenging and α-Tocopherol-Regeneration Rates of Five Catecholamines in Solution: Synergistic Effect of α-Tocopherol and Catecholamines. J Phys Chem B 2016; 120:7088-97. [PMID: 27346174 DOI: 10.1021/acs.jpcb.6b04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detailed kinetic studies have been performed for reactions of aroxyl (ArO(•)) and α-tocopheroxyl (α-Toc(•)) radicals with five catecholamines (CAs) (dopamine (DA), norepinephrine (NE), epinephrine (EN), and 5- and 6-hydroxydopamine (5- and 6-OHDA)) and two catechins (epicatechin (EC) and epigallocatechin gallate (EGCG)) to clarify the free-radical-scavenging activity of CAs. Second-order rate constants (ks and kr) for reactions of ArO(•) and α-Toc(•) radicals with the above antioxidants were measured in 2-propanol/water (5:1, v/v) solution at 25.0 °C, using single- and double-mixing stopped-flow spectrophotometries, respectively. Both the rate constants (ks and kr) increased in the order NE < EN < DA < EC < 5-OHDA < EGCG < 6-OHDA. The ks and kr values of 6-OHDA are large and comparable to the corresponding values of ubiquinol-10 and sodium ascorbate, which show high free-radical-scavenging activity. The ultraviolet-visible absorption of α-Toc(•) (λmax = 428 nm), which was produced by the reaction of α-tocopherol (α-TocH) with ArO(•), disappeared under the coexistence of CAs due to the α-TocH-regeneration reaction. The results suggest that the CAs may contribute to the protection from oxidative damage in nervous systems, by scavenging free radicals (such as lipid peroxyl radical) and regenerating α-TocH from the α-Toc(•) radical.
Collapse
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Kanae Nagai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Yoshifumi Egawa
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Aya Ouchi
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Shin-Ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| |
Collapse
|
198
|
Xie Y, Chen Y. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease. Front Neurosci 2016; 10:298. [PMID: 27445669 PMCID: PMC4923223 DOI: 10.3389/fnins.2016.00298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/13/2016] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. This chronic, progressive disease is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the presence of cytoplasmic inclusions called Lewy bodies (LBs) in surviving neurons. PD is attributed to a combination of environment and genetic factors, but the precise underlying molecular mechanisms remain elusive. Oxidative stress is generally recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS) can lead to DA neuron vulnerability and eventual death. Several studies have demonstrated that small non-coding RNAs termed microRNAs (miRNAs) can regulate oxidative stress in vitro and in vivo models of PD. Relevant miRNAs involved in oxidative stress can prevent ROS-mediated damage to DA neurons, suggesting that specific miRNAs may be putative targets for novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China; Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China; Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
199
|
Douiri S, Bahdoudi S, Hamdi Y, Cubì R, Basille M, Fournier A, Vaudry H, Tonon MC, Amri M, Vaudry D, Masmoudi-Kouki O. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes. J Neurochem 2016; 137:913-30. [DOI: 10.1111/jnc.13614] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
| | - Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - Roger Cubì
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
| | - Magali Basille
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
| | - Alain Fournier
- INRS - Institut Armand-Frappier; Laval Quebec Canada
- Laboratoire International Associé Samuel de Champlain; Institut Armand-Frappier; Laval Quebec Canada
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Hubert Vaudry
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Marie-Christine Tonon
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - David Vaudry
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| |
Collapse
|
200
|
Wang H, Liu J, Gao G, Wu X, Wang X, Yang H. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res 2016; 1639:214-27. [PMID: 26232071 DOI: 10.1016/j.brainres.2015.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
Currently available treatment approaches for Parkinson׳s disease (PD) are limited in terms of variety and efficacy. Piper longum L. (PLL; Piperaceae) is used in traditional medicine in Asia and the Pacific Islands, with demonstrated anti-inflammatory and antioxidant activities in preclinical studies, and alkaloid extracts of PLL have shown protective effects in PD models. The present study investigated the mechanistic basis for the observed protective effects of PLL. Rats treated with PLL-derived alkaloids showed improvement in rotenone-induced motor deficits, while reactive oxygen species (ROS) production was decreased, mitochondrial membrane potential was stabilized, and the opening of the mitochondrial permeability transition pore (mPTP)-which is involved in ROS production-was inhibited. In addition, rotenone-induced apoptosis was abrogated in the presence of these alkaloids, while a pretreatment stimulated autophagy, likely mitigating neuronal injury by the removal of damaged mitochondria. These findings provide novel insight into the neuroprotective function of PLL as well as evidence in favor of its use in PD treatment. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hao Wang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Jia Liu
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Ge Gao
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Xia Wu
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Xiaomin Wang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Hui Yang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China.
| |
Collapse
|