151
|
Strioga M, Schijns V, Powell DJ, Pasukoniene V, Dobrovolskiene N, Michalek J. Dendritic cells and their role in tumor immunosurveillance. Innate Immun 2012; 19:98-111. [PMID: 22732734 DOI: 10.1177/1753425912449549] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) comprise a heterogeneous population of cells that play a key role in initiating, directing and regulating adaptive immune responses, including those critically involved in tumor immunosurveillance. As a riposte to the central role of DCs in the generation of antitumor immune responses, tumors have developed various mechanisms which impair the immunostimulatory functions of DCs or even instruct them to actively contribute to tumor growth and progression. In the first part of this review we discuss general aspects of DC biology, including their origin, subtypes, immature and mature states, and functional plasticity which ensures a delicate balance between active immune response and immune tolerance. In the second part of the review we discuss the complex interactions between DCs and the tumor microenvironment, and point out the challenges faced by DCs during the recognition of tumor Ags. We also discuss the role of DCs in tumor angiogenesis and vasculogenesis.
Collapse
Affiliation(s)
- Marius Strioga
- Department of Immunology, Center of Oncosurgery, Institute of Oncology, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
152
|
Hernández T, Mateo de Acosta C, Pérez R. Immunopotentiating properties of a multispecific α-anti-idiotype antibody. MAbs 2012; 4:398-402. [DOI: 10.4161/mabs.19872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
153
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.
Collapse
|
154
|
Abstract
Cancer immunotherapy attempts to harness the power and specificity of the immune system to treat tumours. The molecular identification of human cancer-specific antigens has allowed the development of antigen-specific immunotherapy. In one approach, autologous antigen-specific T cells are expanded ex vivo and then re-infused into patients. Another approach is through vaccination; that is, the provision of an antigen together with an adjuvant to elicit therapeutic T cells in vivo. Owing to their properties, dendritic cells (DCs) are often called 'nature's adjuvants' and thus have become the natural agents for antigen delivery. After four decades of research, it is now clear that DCs are at the centre of the immune system owing to their ability to control both immune tolerance and immunity. Thus, DCs are an essential target in efforts to generate therapeutic immunity against cancer.
Collapse
Affiliation(s)
- Karolina Palucka
- Baylor Institute for Immunology Research, 3434 Live Oak Avenue, Dallas, Texas 75204, USA.
| | | |
Collapse
|
155
|
Fu J, Zhang A, Ju X. Tolerogenic dendritic cells as a target for the therapy of immune thrombocytopenia. Clin Appl Thromb Hemost 2012; 18:469-75. [PMID: 22387587 DOI: 10.1177/1076029612438612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease in which platelets are destroyed by special antiplatelet autoantibodies produced by B cells. Dendritic cells (DCs) are professional antigen-presenting cells involved in humoral immunity and cellular immunity and among them DCs that induce autoimmune tolerance are called tolerogenic DCs (tDCs). As a promising immunotherapeutic strategy for ITP, tDCs have received increasing attention. In this review, we describe the significant role of DCs in regulating autoimmune balances, introduce the manipulation strategies to generate tDCs, summarize recent progress on the experimental application of tDCs for ITP therapy, and finally discuss the perspectives of tolerogenic vaccination for ITP treatment in the clinic.
Collapse
Affiliation(s)
- Jinqiu Fu
- Shandong University, Shandong, China
| | | | | |
Collapse
|
156
|
Influence of dendritic cells on B-cell responses during HIV infection. Clin Dev Immunol 2012; 2012:592187. [PMID: 22461837 PMCID: PMC3296217 DOI: 10.1155/2012/592187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) modulate B-cell differentiation, activation, and survival mainly through production of growth factors such as B lymphocyte stimulator (BLyS/BAFF). DC populations have been reported to be affected in number, phenotype and function during HIV infection and such alterations may contribute to the dysregulation of the B-cell compartment. Herein, we reflect on the potential impact of DC on the pathogenesis of HIV-related B cell disorders, and how DC status may modulate the outcome of mucosal B cell responses against HIV, which are pivotal to the control of disease. A concept that could be extrapolated to the overall outcome of HIV disease, whereby control versus progression may reside in the host's capacity to maintain DC homeostasis at mucosal sites, where DC populations present an inherent capacity of modulating the balance between tolerance and protection, and are amongst the earliest cell types to be exposed to the virus.
Collapse
|
157
|
Vaccination of neonates: Problem and issues. Vaccine 2012; 30:1541-59. [PMID: 22189699 DOI: 10.1016/j.vaccine.2011.12.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/30/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
|
158
|
Tsourkas PK, Liu W, Das SC, Pierce SK, Raychaudhuri S. Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cell Mol Immunol 2012; 9:62-74. [PMID: 21909127 PMCID: PMC3756518 DOI: 10.1038/cmi.2011.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 02/02/2023] Open
Abstract
B-cell receptor signaling in response to membrane-bound antigen increases with antigen affinity, a process known as affinity discrimination. We use computational modeling to show that B-cell affinity discrimination requires that kinetic proofreading predominate over serial engagement. We find that if B-cell receptors become signaling-capable immediately upon antigen binding, which results in decreasing serial engagement as affinity increases, then increasing affinity can lead to weaker signaling. Rather, antigen must stay bound to B-cell receptors for a threshold time of several seconds before becoming signaling-capable, a process similar to kinetic proofreading. This process overcomes the loss in serial engagement due to increasing antigen affinity, and replicates the monotonic increase in B-cell signaling with increasing affinity that has been observed in B-cell activation experiments. This finding matches well with the experimentally observed time (∼20 s) required for the B-cell receptor signaling domains to undergo antigen and lipid raft-mediated conformational changes that lead to Src-family kinase recruitment. We hypothesize that the physical basis for a threshold time of antigen binding might lie in the formation timescale of B-cell receptor dimers. The time required for dimer formation decreases with increasing antigen affinity, thereby resulting in shorter threshold antigen binding times as affinity increases. Such an affinity-dependent kinetic proofreading requirement results in affinity discrimination very similar to that observed in biological experiments. B-cell affinity discrimination is critical to the process of affinity maturation and the production of high-affinity antibodies, and thus our results have important implications in applications such as vaccine design.
Collapse
Affiliation(s)
- Philippos K Tsourkas
- Department of Biomedical Engineering, University of California-Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
159
|
Kaminski DA, Lee FEH. Antibodies against conserved antigens provide opportunities for reform in influenza vaccine design. Front Immunol 2011; 2:76. [PMID: 22566865 PMCID: PMC3342000 DOI: 10.3389/fimmu.2011.00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/26/2011] [Indexed: 11/13/2022] Open
Abstract
High-performance neutralizing antibody against influenza virus typically recognizes the globular head region of its hemagglutinin (HA) envelope glycoprotein. To-date, approved human vaccination strategies have been designed to induce such antibodies as a sole means of preventing the consequences of this infection. However, frequent amino-acid changes in the HA globular head allow for efficient immune evasion. Consequently, vaccines inducing such neutralizing antibodies need to be annually re-designed and re-administered at a great expense. These vaccines furthermore provide little-to-no immunity against antigenic-shift strains, which arise from complete replacement of HA or of neuraminidase genes, and pose pandemic risks. To address these issues, laboratory research has focused on inducing immunity effective against all strains, regardless of changes in the HA globular head. Despite prior dogma that such cross-protection needs to be induced by cellular immunity alone, several advances in recent years demonstrate that antibodies of other specificities are capable of cross-strain protection in mice. This review discusses the reactivity, induction, efficacy, and mechanisms of antibodies that react with poorly accessible epitopes in the HA stalk, with the matrix 2 membrane ion channel, and even with the internal nucleoprotein. These advances warrant further investigation of the inducibility and efficacy of such revolutionary antibody strategies in humans.
Collapse
Affiliation(s)
- Denise A Kaminski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Rochester, NY, USA.
| | | |
Collapse
|
160
|
Watanabe T, Kanamaru Y, Liu C, Suzuki Y, Tada N, Okumura K, Horikoshi S, Tomino Y. Negative regulation of inflammatory responses by immunoglobulin A receptor (FcαRI) inhibits the development of Toll-like receptor-9 signalling-accelerated glomerulonephritis. Clin Exp Immunol 2011; 166:235-50. [PMID: 21985370 DOI: 10.1111/j.1365-2249.2011.04452.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myeloid FcαRI, a receptor for immunoglobulin (Ig)A, mediates cell activation or inhibition depending on the type of ligand interaction, which can be either multivalent or monovalent. Anti-inflammatory signalling is triggered by monomeric targeting using anti-FcαRI Fab or IgA ligand binding, which inhibits immune and non-immune-mediated renal inflammation. The participation of Toll-like receptors (TLRs) in kidney pathology in experimental models and various forms of human glomerular nephritis has been discussed. However, little is known about negative regulation of innate-immune activation. In the present study, we generated new transgenic mice that express FcαRI(R209L) /FcRγ chimeric protein and showed that the monovalent targeting of FcαRI exhibited inhibitory effects in an in vivo model of TLR-9 signalling-accelerated nephritis. Mouse monoclonal anti-FcαRI MIP8a Fab improved urinary protein levels and reduced the number of macrophages and immunoglobulin deposition in the glomeruli. Monovalent targeting using MIP8a Fab attenuates the TLR-9 signalling pathway and is associated with phosphorylation of extracellular signal-related protein kinases [extracellular signal-regulated kinase (ERK), P38, c-Jun N-terminal kinase (JNK)] and the activation of nuclear factor (NF)-κB. The inhibitory mechanism involves recruitment of tyrosine phosphatase Src homology 2 domain-containing phosphatase-1 (SHP-1) to FcαRI. Furthermore, cell transfer studies with macrophages pretreated with MIP8a Fab showed that blockade of FcαRI signalling in macrophages prevents the development of TLR-9 signalling-accelerated nephritis. These results suggest a role of anti-FcαRI Fab as a negative regulator in controlling the magnitude of the innate immune response and a new type of anti-inflammatory drug for treatment of kidney disease.
Collapse
Affiliation(s)
- T Watanabe
- Department of Internal Medicine, Division of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Mekhaiel DNA, Czajkowsky DM, Andersen JT, Shi J, El-Faham M, Doenhoff M, McIntosh RS, Sandlie I, He J, Hu J, Shao Z, Pleass RJ. Polymeric human Fc-fusion proteins with modified effector functions. Sci Rep 2011; 1:124. [PMID: 22355641 PMCID: PMC3216605 DOI: 10.1038/srep00124] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022] Open
Abstract
The success of Fc-fusion bio-therapeutics has spurred the development of other Fc-fusion products for treating and/or vaccinating against a range of diseases. We describe a method to modulate their function by converting them into well-defined stable polymers. This strategy resulted in cylindrical hexameric structures revealed by tapping mode atomic force microscopy (AFM). Polymeric Fc-fusions were significantly less immunogenic than their dimeric or monomeric counterparts, a result partly owing to their reduced ability to interact with critical Fc-receptors. However, in the absence of the fusion partner, polymeric IgG1-Fc molecules were capable of binding selectively to FcγRs, with significantly increased affinity owing to their increased valency, suggesting that these reagents may prove of immediate utility in the development of well-defined replacements for intravenous immunoglobulin (IVIG) therapy. Overall, these findings establish an effective IgG Fc-fusion based polymeric platform with which the therapeutic and vaccination applications of Fc-fusion immune-complexes can now be explored.
Collapse
Affiliation(s)
- David N A Mekhaiel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Divekar RD, Haymaker CL, Cascio JA, Guloglu BF, Ellis JS, Tartar DM, Hoeman CM, Franklin CL, Zinselmeyer BH, Lynch JN, Miller MJ, Zaghouani H. T cell dynamics during induction of tolerance and suppression of experimental allergic encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:3979-86. [PMID: 21911603 DOI: 10.4049/jimmunol.1100531] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell dynamics associated with induction of peripheral T cell tolerance remain largely undefined. In this study, an in vivo model was adapted to two-photon microscopy imaging, and T cell behavior was analyzed on tolerogen-induced modulation. FcγR-deficient (FcγR(-/-)) mice were unable to resist or alleviate experimental allergic encephalomyelitis when treated with Ig-myelin oligodendrocyte glycoprotein (MOG) tolerogen, an Ig carrying the MOG35-55 peptide. However, when FcγR(+/+) dendritic cells (DCs) are adoptively transferred into FcγR(-/-) mice, uptake and presentation of Ig-MOG occurs and the animals were able to overcome experimental allergic encephalomyelitis. We then fluorescently labeled FcγR(+/+) DCs and 2D2 MOG-specific TCR-transgenic T cells, transferred them into FcγR(-/-) mice, administered Ig-MOG, and analyzed both T cell-DC contact events and T cell motility. The results indicate that tolerance takes place in lymphoid organs, and surprisingly, the T cells do not become anergic but instead have a Th2 phenotype. The tolerant Th2 cells displayed reduced motility after tolerogen exposure similar to Th1 cells after immunization. However, the Th2 cells had higher migration speeds and took longer to exhibit changes in motility. Therefore, both Th1 immunity and Th2 tolerance alter T cell migration on Ag recognition, but the kinetics of this effect differ among the subsets.
Collapse
Affiliation(s)
- Rohit D Divekar
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
|
164
|
Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik KO, Hallgren J, Heyman B. IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells. PLoS One 2011; 6:e21760. [PMID: 21765910 PMCID: PMC3130775 DOI: 10.1371/journal.pone.0021760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
IgE antibodies, administered to mice together with their specific antigen, enhance antibody and CD4(+) T cell responses to this antigen. The effect is dependent on the low affinity receptor for IgE, CD23, and the receptor must be expressed on B cells. In vitro, IgE-antigen complexes are endocytosed via CD23 on B cells, which subsequently present the antigen to CD4(+) T cells. This mechanism has been suggested to explain also IgE-mediated enhancement of immune responses in vivo. We recently found that CD23(+) B cells capture IgE-antigen complexes in peripheral blood and rapidly transport them to B cell follicles in the spleen. This provides an alternative explanation for the requirement for CD23(+) B cells. The aim of the present study was to determine whether B-cell mediated antigen presentation of IgE-antigen complexes explains the enhancing effect of IgE on immune responses in vivo. The ability of spleen cells, taken from mice 1-4 h after immunization with IgE-antigen, to present antigen to specific CD4(+) T cells was analyzed. Antigen presentation was intact when spleens were depleted of CD19(+) cells (i.e., primarily B cells) but was severely impaired after depletion of CD11c(+) cells (i.e., primarily dendritic cells). In agreement with this, the ability of IgE to enhance proliferation of CD4(+) T cells was abolished in CD11c-DTR mice conditionally depleted of CD11c(+) cells. Finally, the lack of IgE-mediated enhancemen of CD4(+) T cell responses in CD23(-/-) mice could be rescued by transfer of MHC-II-compatible as well as by MHC-II-incompatible CD23(+) B cells. These findings argue against the idea that IgE-mediated enhancement of specific CD4(+) T cell responses in vivo is caused by increased antigen presentation by B cells. A model where CD23(+) B cells act as antigen transporting cells, delivering antigen to CD11c(+) cells for presentation to T cells is consistent with available experimental data.
Collapse
Affiliation(s)
- Frida Henningsson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Joakim S. Dahlin
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Marius Linkevicius
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Fredrik Carlsson
- Department of Immunology, Pathology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kjell-Olov Grönvik
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
- National Veterinary Institute, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
165
|
Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10:336-45. [PMID: 20619360 PMCID: PMC3030666 DOI: 10.1016/j.arr.2010.06.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self-antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-α in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, USA
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, USA
| |
Collapse
|
166
|
Abstract
Mucosal surfaces are colonized by large communities of commensal bacteria and represent the primary site of entry for pathogenic agents. To prevent microbial intrusion, mucosal B cells release large amounts of immunoglobulin (Ig) molecules through multiple follicular and extrafollicular pathways. IgA is the most abundant antibody isotype in mucosal secretions and owes its success in frontline immunity to its ability to undergo transcytosis across epithelial cells. In addition to translocating IgA onto the mucosal surface, epithelial cells educate the mucosal immune system as to the composition of the local microbiota and instruct B cells to initiate IgA responses that generate immune protection while preserving immune homeostasis. Here we review recent advances in our understanding of the cellular interactions and signaling pathways governing IgA production at mucosal surfaces and discuss new findings on the regulation and function of mucosal IgD, the most enigmatic isotype of our mucosal antibody repertoire.
Collapse
Affiliation(s)
- Andrea Cerutti
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, Spain.
| | | | | |
Collapse
|
167
|
Ciechomska M, Lennard TWJ, Kirby JA, Knight AM. B lymphocytes acquire and present intracellular antigens that have relocated to the surface of apoptotic target cells. Eur J Immunol 2011; 41:1850-61. [PMID: 21590765 DOI: 10.1002/eji.201141472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/05/2023]
Abstract
The induction of an effective immune response requires the activation of CD4+ T lymphocytes by APCs. While DCs have been shown to be pivotal in this process, it is now apparent that optimal CD4+ T-cell activation also requires B-lymphocyte APC function. Along with the acquisition of soluble antigens, it is known that B cells also acquire membrane-tethered antigens. Recent reports have described the relocation of intracellular antigens to the cell surface following immunogenic apoptosis. This study was designed to determine whether B cells can acquire and present such antigens to CD4+ T cells. By targeting the model antigen tetanus toxin C fragment to various cellular locations, we show that antigen-specific B cells acquire intracellular antigens that have relocated to the surface of cells undergoing immunogenic apoptosis. Crucially, we also demonstrate that antigen-specific B cells acquiring relocated antigen from apoptotic targets are capable of efficiently inducing CD4+ T-cell activation. We propose that the acquisition and presentation of intracellular antigens that have relocated to the cell surface during immunogenic apoptosis represents a novel means by which antigen-specific B cells contribute to the generation of immunity.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
168
|
Affiliation(s)
- Andrew M Platt
- Department of Gene and Cell Medicine, and the Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| | | |
Collapse
|
169
|
Liu X, Lu L, Yang Z, Palaniyandi S, Zeng R, Gao LY, Mosser DM, Roopenian DC, Zhu X. The neonatal FcR-mediated presentation of immune-complexed antigen is associated with endosomal and phagosomal pH and antigen stability in macrophages and dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4674-86. [PMID: 21402891 DOI: 10.4049/jimmunol.1003584] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The FcγRs found on macrophages (Ms) and dendritic cells (DCs) efficiently facilitate the presentation or cross-presentation of immune-complexed Ags to T cells. We found that the MHC class I-related neonatal FcR for IgG (FcRn) in both Ms and DCs failed to have a strong effect on the cross-presentation of immune complex (IC) OVA Ag to CD8(+) T cells. Interestingly, endosomal FcRn enhanced the presentation of the monomeric OVA-IC to CD4(+) T cells robustly, whereas FcRn in phagosomes exerted distinctive effects on Ag presentation between Ms and DCs. The presentation of phagocytosed OVA-ICs to CD4(+) T cells was considerably enhanced on wild-type versus FcRn-deficient Ms, but was not affected in FcRn-deficient DCs. This functional discrepancy was associated with the dependence of IgG-FcRn binding in an acidic pH. Following phagocytosis, the phagosomal pH dropped rapidly to <6.5 in Ms but remained in the neutral range in DCs. This disparity in pH determined the rate of degradation of phagocytosed ICs. Thus, our findings reveal that FcRn expression has a different effect on Ag processing and presentation of ICs to CD4(+) T cells in the endosomal versus phagosomal compartments of Ms versus DCs.
Collapse
Affiliation(s)
- Xindong Liu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
LaMere MW, Lam HT, Moquin A, Haynes L, Lund FE, Randall TD, Kaminski DA. Contributions of antinucleoprotein IgG to heterosubtypic immunity against influenza virus. THE JOURNAL OF IMMUNOLOGY 2011; 186:4331-9. [PMID: 21357542 DOI: 10.4049/jimmunol.1003057] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza A virus causes recurring seasonal epidemics and occasional influenza pandemics. Because of changes in envelope glycoprotein Ags, neutralizing Abs induced by inactivated vaccines provide limited cross-protection against new viral serotypes. However, prior influenza infection induces heterosubtypic immunity that accelerates viral clearance of a second strain, even if the external proteins are distinct. In mice, cross-protection can also be elicited by systemic immunization with the highly conserved internal nucleoprotein (NP). Both T lymphocytes and Ab contribute to such cross-protection. In this paper, we demonstrate that anti-NP IgG specifically promoted influenza virus clearance in mice by using a mechanism involving both FcRs and CD8(+) cells. Furthermore, anti-NP IgG rescued poor heterosubtypic immunity in B cell-deficient mice, correlating with enhanced NP-specific CD8 T cell responses. Thus, Ab against this conserved Ag has potent antiviral activity both in naive and in influenza-immune subjects. Such antiviral activity was not seen when mice were vaccinated with another internal influenza protein, nonstructural 1. The high conservation of NP Ag and the known longevity of Ab responses suggest that anti-NP IgG may provide a critically needed component of a universal influenza vaccine.
Collapse
Affiliation(s)
- Mark W LaMere
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Clatworthy MR, Espeli M, Torpey N, Smith KGC. The generation and maintenance of serum alloantibody. Curr Opin Immunol 2011; 22:669-81. [PMID: 20932734 DOI: 10.1016/j.coi.2010.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/31/2010] [Indexed: 01/29/2023]
Abstract
Donor-specific alloantibodies (DSA) mediate hyperacute and acute antibody-mediated rejection (AMR), which can lead to early graft damage and loss, and are also associated with chronic AMR and reduced long-term graft survival. Such alloantibodies can be generated by previous exposure to major histocompatibility (MHC) antigens (usually via blood transfusions, previous allografts or pregnancy) or can occur de novo after transplantation. Recent studies also suggest that non-MHC antibodies, including those recognising major histocompatibility complex class I-related chain A (MICA), MICB, vimentin, angiotensin II type I receptor may also have an adverse impact on allograft outcomes. In this review, we consider how the dose, route and context of antigen exposure influences DSA induction and describe factors which control the generation, maintenance and survival of alloantibody-producing plasma cells. Finally, we discuss the implications of these variables on therapeutic approaches to DSA.
Collapse
Affiliation(s)
- M R Clatworthy
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, CB2 0XY, Cambridge, UK
| | | | | | | |
Collapse
|
172
|
Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 2011; 23:21-7. [PMID: 21277223 DOI: 10.1016/j.smim.2011.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/05/2011] [Indexed: 11/21/2022]
Abstract
Dendritic cells (DCs) were discovered in 1973 by Ralph Steinman as a previously undefined cell type in the mouse spleen and are now recognized as a group of related cell populations that induce and regulate adaptive immune responses. Studies of the past decade show that, both in mice and humans, DCs are composed of subsets that differ in their localization, phenotype, and functions. These progresses in our understanding of DC biology provide a new framework for improving human health. In this review, we discuss human DC subsets in the context of their medical applications, with a particular focus on DC targeting.
Collapse
|
173
|
Gujer C, Sandgren KJ, Douagi I, Adams WC, Sundling C, Smed-Sörensen A, Seder RA, Karlsson Hedestam GB, Loré K. IFN-α produced by human plasmacytoid dendritic cells enhances T cell-dependent naïve B cell differentiation. J Leukoc Biol 2011; 89:811-21. [PMID: 21233412 DOI: 10.1189/jlb.0810460] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development and quality of a humoral immune response are largely influenced by the environment that supports the activation of naïve B cells. Human PDCs, through their unique capacity to produce high levels of IFN-α, have been shown earlier to enhance B cell responses stimulated by selected TLR ligands. In this study, we investigated whether PDCs also promote B cell activation induced by Th cell interactions and BCR ligation. Sorted human naive CD19(+) CD27(-) B cells were activated in vitro with anti-Ig and irradiated CD4(+) T cells. Under these conditions, the presence of supernatants from TLR-stimulated PDCs increased B cell proliferation, the frequency of B cells that differentiated to CD27(high) CD38(high) cells, and secretion of IgM. Similar results were observed when the B cells were activated in the presence of purified IFN-α. In contrast, supernatants from stimulated MDCs did not augment these functions. Also, IFN-α treatment of B cells up-regulated the expression of costimulatory molecule CD86 but not CD40, CD80, MHC class II, or CD25. Although direct IFN-α exposure of T cells suppressed their proliferative capacity, IFN-α treatment of B cells led to a small increase in their capacity to induce superantigen-driven activation of autologous CD4(+) T cells. In summary, PDCs, via their production of IFN-α, may render B cells more responsive to T cell contact, which in turn, facilitates B cell proliferation and differentiation to antibody-producing cells.
Collapse
Affiliation(s)
- Cornelia Gujer
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Gonzalez SF, Degn SE, Pitcher LA, Woodruff M, Heesters BA, Carroll MC. Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol 2011; 29:215-33. [PMID: 21219172 DOI: 10.1146/annurev-immunol-031210-101255] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clonal selection theory first proposed by Macfarlane Burnet is a cornerstone of immunology (1). At the time, it revolutionized the thinking of immunologists because it provided a simple explanation for lymphocyte specificity, immunological memory, and elimination of self-reactive clones (2). The experimental demonstration by Nossal & Lederberg (3) that B lymphocytes bear receptors for a single antigen raised the central question of where B lymphocytes encounter antigen. This question has remained mostly unanswered until recently. Advances in techniques such as multiphoton intravital microscopy (4, 5) have provided new insights into the trafficking of B cells and their antigen. In this review, we summarize these advances in the context of our current view of B cell circulation and activation.
Collapse
Affiliation(s)
- Santiago F Gonzalez
- The Immune Disease Institute and Program in Molecular and Cellular Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
175
|
Abstract
Dendritic cells (DCs) play a pivotal role in regulating the balance between immunity and tolerance of the immune system. Recent advancements in DC biology and techniques for manipulating the function of these cells have shown their immense therapeutic potential for treating a variety of immune disorders. Theoretically, antigen-specific tolerogenic DCs can be generated in vitro and delivered to patients to correct the dysfunctional immune responses that attack their own tissues or over-react to innocuous foreign antigens. However, DCs are a heterogeneous population of cells with differences in cell surface makers, differentiation pathways and functions. Studies are needed to examine which subset of DCs can be used for what type of applications. Furthermore, most of the information on tolerogenic DCs has been obtained from animal models and translational studies are needed to examine how a DC therapeutic strategy can be implemented clinically to modulate immunity.
Collapse
Affiliation(s)
- Jim Hu
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada.
| | | |
Collapse
|
176
|
Palucka K, Ueno H, Roberts L, Fay J, Banchereau J. Dendritic cell subsets as vectors and targets for improved cancer therapy. Curr Top Microbiol Immunol 2011; 344:173-92. [PMID: 20490776 PMCID: PMC2944902 DOI: 10.1007/82_2010_48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Current active immunotherapy trials have shown durable tumor regressions in a fraction of patients. However, the clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory Type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease.
Collapse
Affiliation(s)
- Karolina Palucka
- Baylor Institute for Immunology Research, 3434 Live Oak, Dallas, TX 75204, USA.
| | | | | | | | | |
Collapse
|
177
|
Abstract
T cells can reject established tumours when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumour-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumours skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumour microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets that respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease.
Collapse
Affiliation(s)
- K Palucka
- Baylor Institute for Immunology Research, Baylor University Medical Center, Dallas, TX, USA.
| | | | | | | |
Collapse
|
178
|
Teichmann LL, Ols ML, Kashgarian M, Reizis B, Kaplan DH, Shlomchik MJ. Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity 2010; 33:967-78. [PMID: 21167752 PMCID: PMC3010763 DOI: 10.1016/j.immuni.2010.11.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) initiate and control the adaptive immune response against infections. However, their contributions to the anti-self adaptive immune response in autoimmune disorders like systemic lupus erythematosus are uncertain. By constitutively deleting DCs in MRL.Fas(lpr) mice, we show that they have complex roles in murine lupus. The net effect of DC deletion was to ameliorate disease. DCs were crucial for the expansion and differentiation of T cells but, surprisingly, not required for their initial activation. Correspondingly, kidney interstitial infiltrates developed in the absence of DCs, but failed to progress. DC deletion concomitantly decreased inflammatory and regulatory T cell numbers. Unexpectedly, plasmablast numbers and autoantibody concentrations depended on DCs, in contrast to total serum immunoglobulin concentrations, suggesting an effect of DCs on extrafollicular humoral responses. These findings reveal that DCs operate in unanticipated ways in murine lupus and validate them as a potential therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- Lino L. Teichmann
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Michelle L. Ols
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Daniel H. Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark J. Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
179
|
Bremel RD, Homan EJ. An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological characteristics. Immunome Res 2010; 6:8. [PMID: 21044290 PMCID: PMC2991286 DOI: 10.1186/1745-7580-6-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/02/2010] [Indexed: 11/25/2022] Open
Abstract
Background Improving our understanding of the immune response is fundamental to developing strategies to combat a wide range of diseases. We describe an integrated epitope analysis system which is based on principal component analysis of sequences of amino acids, using a multilayer perceptron neural net to conduct QSAR regression predictions for peptide binding affinities to 35 MHC-I and 14 MHC-II alleles. Results The approach described allows rapid processing of single proteins, entire proteomes or subsets thereof, as well as multiple strains of the same organism. It enables consideration of the interface of diversity of both microorganisms and of host immunogenetics. Patterns of binding affinity are linked to topological features, such as extracellular or intramembrane location, and integrated into a graphical display which facilitates conceptual understanding of the interplay of B-cell and T-cell mediated immunity. Patterns which emerge from application of this approach include the correlations between peptides showing high affinity binding to MHC-I and to MHC-II, and also with predicted B-cell epitopes. These are characterized as coincident epitope groups (CEGs). Also evident are long range patterns across proteins which identify regions of high affinity binding for a permuted population of diverse and heterozygous HLA alleles, as well as subtle differences in reactions with MHCs of individual HLA alleles, which may be important in disease susceptibility, and in vaccine and clinical trial design. Comparisons are shown of predicted epitope mapping derived from application of the QSAR approach with experimentally derived epitope maps from a diverse multi-species dataset, from Staphylococcus aureus, and from vaccinia virus. Conclusions A desktop application with interactive graphic capability is shown to be a useful platform for development of prediction and visualization tools for epitope mapping at scales ranging from individual proteins to proteomes from multiple strains of an organism. The possible functional implications of the patterns of peptide epitopes observed are discussed, including their implications for B-cell and T-cell cooperation and cross presentation.
Collapse
Affiliation(s)
- Robert D Bremel
- 1ioGenetics LLC, 3591 Anderson Street, Madison, WI 53704, USA.
| | | |
Collapse
|
180
|
Abstract
Defining where and in what form lymphocytes encounter antigen is fundamental to understanding how immune responses occur. Although knowledge of the recognition of antigen by CD4(+) and CD8(+) T cells has advanced greatly, understanding of the dynamics of B cell-antigen encounters has lagged. With the application of advanced imaging approaches, encounters of this third kind are now being brought into focus. Multiple processes facilitate these encounters, from the filtering functions of lymphoid tissues and migration paths of B cells to the antigen-presenting properties of macrophages and follicular dendritic cells. This Review will discuss how these factors work together in the lymph node to ensure efficient and persistent exposure of B cells to diverse forms of antigen and thus effective triggering of the humoral response.
Collapse
|
181
|
Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10:787-96. [DOI: 10.1038/nri2868] [Citation(s) in RCA: 1300] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
182
|
Al Gadban MM, Smith KJ, Soodavar F, Piansay C, Chassereau C, Twal WO, Klein RL, Virella G, Lopes-Virella MF, Hammad SM. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress. PLoS One 2010; 5. [PMID: 20824093 PMCID: PMC2932722 DOI: 10.1371/journal.pone.0012534] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/11/2010] [Indexed: 02/08/2023] Open
Abstract
Background Oxidized low-density lipoproteins (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to formation of lipid-laden macrophages (foam cells). It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCγ receptor I (FCγ RI). This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress. Methodology/Findings Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70) and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC. Conclusions/Significance Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the endosomal compartment. This mechanism could ultimately influence macrophage function and survival. Furthermore, oxLDL-IC might regulate the intracellular trafficking of free oxLDL possibly through the induction of HSP70/70B'.
Collapse
Affiliation(s)
- Mohammed M. Al Gadban
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kent J. Smith
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Farzan Soodavar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christabelle Piansay
- Summer Undergraduate Research Program, College of Graduate Studies, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Charlyne Chassereau
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Waleed O. Twal
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Richard L. Klein
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
183
|
White AL, Tutt AL, James S, Wilkinson KA, Castro FVV, Dixon SV, Hitchcock J, Khan M, Al-Shamkhani A, Cunningham AF, Glennie MJ. Ligation of CD11c during vaccination promotes germinal centre induction and robust humoral responses without adjuvant. Immunology 2010; 131:141-51. [PMID: 20465572 PMCID: PMC2966766 DOI: 10.1111/j.1365-2567.2010.03285.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigated the mouse dendritic cell (DC) receptor, complement receptor 4 (CR4; CD11c/CD18), as an immunotarget for triggering humoral immunity. Comparison of antibody titres generated against a panel of 13 anti-antigen-presenting cell receptor monoclonal antibodies, with or without conjugated ovalbumin (OVA), revealed uniquely rapid and robust responses following CR4 targeting, with antibody titres approaching 1 : 100 000 7 days after a single dose of antigen. Furthermore, using just 100 ng OVA conjugated to anti-CD11c Fab', we generated anti-OVA titres greater than those produced by a 100-fold higher dose of OVA in complete Freund's adjuvant at day 28. These anti-OVA antibody titres were sustained and could be boosted further with targeted OVA on day 21. Investigations to explain this vaccine potency showed that, in addition to targeting splenic DC, anti-CDl1c antibodies delivered a powerful adjuvant effect and could boost humoral immunity against OVA even when the OVA was targeted to other molecules on DC, such as major histocompatibility complex class II, CD11a and CD11b. However, interestingly, this adjuvant effect was lost if OVA was targeted to other cells such as B cells via CD21 or CD19. The adjuvant effect was mediated through a marked enhancement of both germinal centre and extrafollicular plasma cell formation in responding spleens. These results demonstrate that anti-CD11c monoclonal antibody can both target antigen and act as a powerful adjuvant for rapid and sustained antibody responses. They also point to an interesting role for CR4 on DC in triggering B cells during humoral immunity.
Collapse
Affiliation(s)
- Ann L White
- Tenovus Research Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE, Turley SJ, Carroll MC. Complement-dependent transport of antigen into B cell follicles. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2659-64. [PMID: 20724732 PMCID: PMC3477863 DOI: 10.4049/jimmunol.1000522] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the original proposal by Fearon and Locksley (Fearon and Locksley. 1996. Science 272: 50-53) that the complement system linked innate and adaptive immunity, there has been a rapid expansion of studies on this topic. With the advance of intravital imaging, a number of recent papers revealed an additional novel pathway in which complement C3 and its receptors enhance humoral immunity through delivery of Ag to the B cell compartment. In this review, we discuss this pathway and highlight several novel exceptions recently found with a model influenza vaccine, such as mannose-binding lectin opsonization of influenza and uptake by macrophages, and the capture of virus by dendritic cells residing in the medullary compartment of peripheral lymph nodes.
Collapse
Affiliation(s)
- Santiago F Gonzalez
- The Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Weisel FJ, Appelt UK, Schneider AM, Horlitz JU, van Rooijen N, Korner H, Mach M, Winkler TH. Unique Requirements for Reactivation of Virus-Specific Memory B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:4011-21. [DOI: 10.4049/jimmunol.1001540] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
186
|
Zhang CY, Booth JW. Divergent intracellular sorting of Fc{gamma}RIIA and Fc{gamma}RIIB2. J Biol Chem 2010; 285:34250-8. [PMID: 20736173 DOI: 10.1074/jbc.m110.143834] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human low affinity FcγRII family includes both the activating receptor FcγRIIA and the inhibitory receptor FcγRIIB2. These receptors have opposing signaling functions but are both capable of internalizing IgG-containing immune complexes through clathrin-mediated endocytosis. We demonstrate that upon engagement by multivalent aggregated human IgG, FcγRIIA expressed in ts20 Chinese hamster fibroblasts is delivered along with its ligand to lysosomal compartments for degradation, while FcγRIIB2 dissociates from the ligand and is routed separately into the recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase activity or ubiquitylation of receptor lysine residues. The sorting of FcγRIIB2 away from a degradative fate is not due to its lower affinity for IgG and occurs even upon persistent receptor aggregation. Upon co-engagement of FcγRIIA and FcγRIIB2, the receptors are sorted independently to distinct final fates after dissociation of co-clustering ligand. These results reveal fundamental differences in the trafficking behavior of different Fcγ receptors.
Collapse
Affiliation(s)
- Christine Y Zhang
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
187
|
Goodnow CC, Vinuesa CG, Randall KL, Mackay F, Brink R. Control systems and decision making for antibody production. Nat Immunol 2010; 11:681-8. [PMID: 20644574 DOI: 10.1038/ni.1900] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper synthesizes recent progress toward understanding the integrated control systems and fail-safes that guide the quality and quantity of antibody produced by B cells. We focus on four key decisions: (1) the choice between proliferation or death in perifollicular B cells in the first 3 days after antigen encounter; (2) differentiation of proliferating perifollicular B cells into extrafollicular plasma cells or germinal center B cells; (3) positive selection of B cell antigen receptor (BCR) affinity for foreign antigen versus negative selection of BCR affinity for self antigen in germinal center B cells; and (4) survival versus death of antibody-secreting plasma cells. Understanding the engineering of these control systems represents a challenging future step for treating disorders of antibody production in autoimmunity, allergy and immunodeficiency.
Collapse
Affiliation(s)
- Christopher C Goodnow
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | |
Collapse
|
188
|
Hauser AE, Kerfoot SM, Haberman AM. Cellular choreography in the germinal center: new visions from in vivo imaging. Semin Immunopathol 2010; 32:239-55. [PMID: 20614218 DOI: 10.1007/s00281-010-0214-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/22/2010] [Indexed: 11/25/2022]
Abstract
Germinal centers (GC) are large aggregates of proliferating B lymphocytes within follicles of lymphoid tissue that form during adaptive immune responses. GCs are the source of long-lived B cells that form the basis for pathogen-specific lifelong B cell immunity. The complex architecture of these structures includes subdomains that differ significantly in their stromal cell and T lymphocyte subset composition. In part due to their structural complexity and potential to generate some lymphomas, much interest and many theories about GC dynamics have emerged. Here, we review recent research employing in vivo imaging that has begun to untangle some of the mysteries.
Collapse
Affiliation(s)
- Anja E Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin 10117, Germany
| | | | | |
Collapse
|
189
|
Soloff AC, Barratt-Boyes SM. Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Res 2010; 20:872-85. [PMID: 20603644 DOI: 10.1038/cr.2010.94] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are diverse and specialized hematopoietic cells serving as an essential bridge between innate and adaptive immunity. DC exist in all lymphoid and nonlymphoid organs and are amongst the first responders to infection at epithelial surfaces including mucosal tissues. DC of the lung, gut, and vaginal mucosa display different phenotypes and functions reflecting each unique tissue and, in contrast to their counterparts in spleen and lymph nodes, are constantly exposed to both harmful and benign factors of their environments. Mucosal DC recognize and respond to pathogens through engagement of pattern recognition receptors, and activated DC migrate to draining lymph nodes to induce adaptive immune responses. The specialized function of DC aids in the induction of immunity and pathogen control at the mucosa. Such specialization includes the potent antiviral interferon response of plasmacytoid DC to viral nucleic acids, the ability of mucosal DC to capture organisms in the gut lumen, the capacity of DC to cross-present antigen from other infected cells, and the ability of mucosal DC to initiate IgA class switching in B cells. DC plasticity is also critical in the immune response to mucosal pathogens, as DC can respond to the microenvironment and sense pathogen-induced stress in neighboring epithelial cells. Finally, DC interact with each other through crosstalk to promote antigen presentation and T-cell immunity. Together, these processes condition mucosal DC for the induction of a tailored immune response to pathogens.
Collapse
Affiliation(s)
- Adam C Soloff
- Center for Vaccine Research, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
190
|
Abstract
Decades of high-titered antibody are sustained due to the persistence of memory B cells and long-lived plasma cells (PCs). The differentiation of each of these subsets is antigen- and T-cell driven and is dependent on signals acquired and integrated during the germinal center response. Inherent in the primary immune response must be the delivery of signals to B cells to create these populations, which have virtual immortality. Differences in biology and chemotactic behavior disperse memory B cells and long-lived PCs to a spectrum of anatomic sites. Each subset must rely on survival factors that can support their longevity. This review focuses on the generation of each of these subsets, their survival, and renewal, which must occur to sustain serological memory. In this context, we discuss the role of antigen, bystander inflammation, and cellular niches. The contribution of BAFF (B-cell activating factor belonging to the tumor necrosis factor family) and APRIL (a proliferation-inducing ligand) to the persistence of memory B cells and PCs are also detailed. Insights that have been provided over the past few years in the regulation of long-lived B-cell responses will have profound impact on vaccine development, the treatment of pre-sensitized patients for organ transplantation, and therapeutic interventions in both antibody- and T-cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Nephrology and Transplantation, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | | | |
Collapse
|
191
|
Abstract
Cancer vaccines have undergone a renaissance because of recent clinical trials showing promising immunologic data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells, and regulatory T cells, all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome regulatory T cells and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease.
Collapse
Affiliation(s)
- Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.
| | | | | | | | | |
Collapse
|
192
|
Abstract
Recent years have seen a major advance in our understanding of the organization of the dendritic cell (DC) compartment. Particularly rewarding in this respect have been studies investigating DC origins, based on the identification of transcription factor and growth factor requirements, as well as direct demonstrations of precursor/progeny relationships by adoptive cell transfers. However, to fully understand the organization of the DC compartment, functional definitions of DC subsets must be provided and potential task divisions revealed that distinguish DC from other immune cells, including the closely related mononuclear phagocytes, such as macrophages. In fact, functional definitions might eventually replace the current distinction between DC and macrophages, which is in part based on arbitrary historic considerations, i.e. mononuclear phagocytes identified before the advent of DC in the mid 1970s generally termed macrophages. In this article, we review recent insight in the functions of classical DC in the mouse, focusing on our own work involving conditional and constitutive cell ablation.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
193
|
Goins CL, Chappell CP, Shashidharamurthy R, Selvaraj P, Jacob J. Immune complex-mediated enhancement of secondary antibody responses. THE JOURNAL OF IMMUNOLOGY 2010; 184:6293-8. [PMID: 20439912 DOI: 10.4049/jimmunol.0902530] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunologic memory is a hallmark of the vertebrate immune system. The first antigenic exposure leads to a slow and modest immune response, whereas repeated exposure, even many years later, leads to a rapid and exaggerated response that is two to three orders of magnitude greater than the primary. In the case of humoral immunity, the increased efficacy of recall responses is due to the production of amplified levels of Ag-specific Ab, as well as the accelerated kinetics of their production. Current thinking suggests that this is due to selective activation of long-lived, Ag-specific memory B cells. A downside of restricting secondary responses solely to memory cells is that the repertoire of the memory B cell pool remains static while pathogens continue to evolve. In this study, we propose that during secondary responses, naive Ag-specific B cells participate alongside memory cells. We show that immune complexes formed in vivo between the Ag and pre-existing Abs from the primary response activate these naive B cells, inducing them to respond with accelerated kinetics and increased magnitude. Thus, the continued recruitment of new B cell clones after each antigenic exposure enables the immune system to stay abreast of rapidly changing pathogens.
Collapse
Affiliation(s)
- Chelsey L Goins
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
194
|
Smith KGC, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 2010; 10:328-43. [PMID: 20414206 PMCID: PMC4148599 DOI: 10.1038/nri2762] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
FcgammaRIIB is the only inhibitory Fc receptor. It controls many aspects of immune and inflammatory responses, and variation in the gene encoding this protein has long been associated with susceptibility to autoimmune disease, particularly systemic lupus erythematosus (SLE). FcgammaRIIB is also involved in the complex regulation of defence against infection. A loss-of-function polymorphism in FcgammaRIIB protects against severe malaria, the investigation of which is beginning to clarify the evolutionary pressures that drive ethnic variation in autoimmunity. Our increased understanding of the function of FcgammaRIIB also has potentially far-reaching therapeutic implications, being involved in the mechanism of action of intravenous immunoglobulin, controlling the efficacy of monoclonal antibody therapy and providing a direct therapeutic target.
Collapse
Affiliation(s)
- Kenneth G C Smith
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0XY, UK.
| | | |
Collapse
|
195
|
Multiple bovine FcγRIIb sub-isoforms generated by alternative splicing. Vet Immunol Immunopathol 2010; 135:43-51. [DOI: 10.1016/j.vetimm.2009.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/22/2022]
|
196
|
Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD. CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 2010; 11:303-12. [PMID: 20228797 PMCID: PMC2923071 DOI: 10.1038/ni.1853] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/12/2010] [Indexed: 12/19/2022]
Abstract
Invariant natural killer T cells (iNKT cells) are involved in the host defense against microbial infection. Although it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. Here we used multiphoton microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. After antigen administration, iNKT cells became confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169(+) macrophages. These macrophages retained, internalized and presented lipid antigen and were required for iNKT cell activation, cytokine production and population expansion. Thus, CD169(+) macrophages can act as true antigen-presenting cells controlling early iNKT cell activation and favoring the fast initiation of immune responses.
Collapse
Affiliation(s)
- Patricia Barral
- Lymphocyte Interaction Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - Paolo Polzella
- Tumor Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vincenzo Cerundolo
- Tumor Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Facundo D. Batista
- Lymphocyte Interaction Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
197
|
Catron DM, Pape KA, Fife BT, van Rooijen N, Jenkins MK. A protease-dependent mechanism for initiating T-dependent B cell responses to large particulate antigens. THE JOURNAL OF IMMUNOLOGY 2010; 184:3609-17. [PMID: 20208013 DOI: 10.4049/jimmunol.1000077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ab production is critical for antimicrobial immunity, and the initial step in this process is the binding of Ag to the BCR. It has been shown that small soluble proteins can directly access the lymph node follicles to reach naive B cells, but virus particles must be translocated into follicles via subcapsular sinus macrophages. In this article, we explore how large particulate Ags generate humoral immune responses. Ag-specific follicular B cells rapidly acquired Ag, presented peptide:MHC class II ligands, and produced T-dependent Ab responses following s.c. injection of 1-mum, Ag-linked microspheres, despite the microspheres being confined to the subcapsular sinus. The mechanism of Ag acquisition did not require dendritic cells, subcapsular sinus macrophages, or B cell movement to the subcapsular sinus. Rather, B cell Ag acquisition was protease-dependent, suggesting that some protein Ags are cleaved from the surface of particles to directly initiate humoral immune responses.
Collapse
Affiliation(s)
- Drew M Catron
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
198
|
Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzales A, Matsui T, Zurawski G, Oh S, Fay J, Pascual V, Banchereau J, Palucka K. Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010; 234:199-212. [PMID: 20193020 PMCID: PMC2847489 DOI: 10.1111/j.0105-2896.2009.00884.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunity results from a complex interplay between the antigen-non-specific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors, and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. In this article, we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines.
Collapse
Affiliation(s)
- Hideki Ueno
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | - Nathalie Schmitt
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | - Eynav Klechevsky
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | | | - Toshimichi Matsui
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | - Gerard Zurawski
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | - SangKon Oh
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | - Joseph Fay
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
- Sammons Cancer Center, Baylor University Medical Center, Dallas, TX
| | - Virginia Pascual
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
| | - Jacques Banchereau
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
- Department of Gene and Cell Medicine and Department of Medicine (Clinical Immunology Division), Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Karolina Palucka
- Baylor Institute for Immunology Research and INSERM U899, Dallas, TX
- Department of Gene and Cell Medicine and Department of Medicine (Clinical Immunology Division), Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
199
|
Liu W, Won Sohn H, Tolar P, Meckel T, Pierce SK. Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. THE JOURNAL OF IMMUNOLOGY 2010; 184:1977-89. [PMID: 20083655 DOI: 10.4049/jimmunol.0902334] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The FcgammaRIIB is a potent inhibitory coreceptor that blocks BCR signaling in response to immune complexes and, as such, plays a decisive role in regulating Ab responses. The recent application of high-resolution live cell imaging to B cell studies is providing new molecular details of the earliest events in the initiation BCR signaling that follow within seconds of Ag binding. In this study, we report that when colligated to the BCR through immune complexes, the FcgammaRIIB colocalizes with the BCR in microscopic clusters and blocks the earliest events that initiate BCR signaling, including the oligomerization of the BCR within these clusters, the active recruitment of BCRs to these clusters, and the resulting spreading and contraction response. Fluorescence resonance energy transfer analyses indicate that blocking these early events may not require molecular proximity of the cytoplasmic domains of the BCR and FcgammaRIIB, but relies on the rapid and sustained association of FcgammaRIIB with raft lipids in the membrane. These results may provide novel early targets for therapies aimed at regulating the FcgammaRIIB to control Ab responses in autoimmune disease.
Collapse
Affiliation(s)
- Wanli Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852,USA
| | | | | | | | | |
Collapse
|
200
|
Niederer HA, Clatworthy MR, Willcocks LC, Smith KG. FcγRIIB, FcγRIIIB, and systemic lupus erythematosus. Ann N Y Acad Sci 2010; 1183:69-88. [DOI: 10.1111/j.1749-6632.2009.05132.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|