151
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
152
|
Chen Y, Chen Z, Li T, Qiu M, Zhang J, Wang Y, Yuan W, Ho AHP, Al-Hartomy O, Wageh S, Al-Sehemi AG, Shi X, Li J, Xie Z, Xuejin L, Zhang H. Ultrasensitive and Specific Clustered Regularly Interspaced Short Palindromic Repeats Empowered a Plasmonic Fiber Tip System for Amplification-Free Monkeypox Virus Detection and Genotyping. ACS NANO 2023; 17:12903-12914. [PMID: 37384815 PMCID: PMC10340103 DOI: 10.1021/acsnano.3c05007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
The urgent necessity for highly sensitive diagnostic tools has been accentuated by the ongoing mpox (monkeypox) virus pandemic due to the complexity in identifying asymptomatic and presymptomatic carriers. Traditional polymerase chain reaction-based tests, despite their effectiveness, are hampered by limited specificity, expensive and bulky equipment, labor-intensive operations, and time-consuming procedures. In this study, we present a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based diagnostic platform with a surface plasmon resonance-based fiber tip (CRISPR-SPR-FT) biosensor. The compact CRISPR-SPR-FT biosensor, with a 125 μm diameter, offers high stability and portability, enabling exceptional specificity for mpox diagnosis and precise identification of samples with a fatal mutation site (L108F) in the F8L gene. The CRISPR-SPR-FT system can analyze viral double-stranded DNA from mpox virus without amplification in under 1.5 h with a limit of detection below 5 aM in plasmids and about 59.5 copies/μL when in pseudovirus-spiked blood samples. Our CRISPR-SPR-FT biosensor thus offers fast, sensitive, portable, and accurate target nucleic acid sequence detection.
Collapse
Affiliation(s)
- Yuzhi Chen
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
| | - Zhi Chen
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, People’s Republic
of China
- Shenzhen
International Institute for Biomedical Research, Shenzhen, Guangdong 518110, People’s Republic
of China
| | - Tianzhong Li
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
| | - Meng Qiu
- College
of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry
Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, People’s Republic
of China
| | - Jinghan Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
- The
Chinese University of Hong Kong, Shenzhen, Guangdong 518060, People’s Republic
of China
| | - Yan Wang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
| | - Wu Yuan
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong 999077, People’s Republic of China
| | - Aaron Ho-Pui Ho
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong 999077, People’s Republic of China
| | - Omar Al-Hartomy
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Xin Shi
- China Medical University, Shenyang, Liaoning 110001, People’s
Republic of China
- School
of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 People’s Republic
of China
- Manchester Metropolitan University (MMU), Operations, Technology, Events and Hospitality Management,
Business
School, All Saints Campus, Oxford Road, Manchester M15 6BH, United Kingdom
| | - Jingfeng Li
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
International Institute for Biomedical Research, Shenzhen, Guangdong 518110, People’s Republic
of China
| | - Zhongjian Xie
- Institute
of Pediatrics, Shenzhen Children’s
Hospital, Shenzhen, Guangdong 518038, People’s Republic of China
| | - Li Xuejin
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
- The
Chinese University of Hong Kong, Shenzhen, Guangdong 518060, People’s Republic
of China
| | - Han Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- International
Collaborative Laboratory of 2D, Materials for Optoelectronics Science
and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
153
|
O'Neill M, LePage T, Bester V, Yoon H, Browne F, Nemec EC. Mpox (Formally Known as Monkeypox). PHYSICIAN ASSISTANT CLINICS 2023; 8:483-494. [PMID: 37193533 PMCID: PMC10069639 DOI: 10.1016/j.cpha.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
This article reviews Mpox, including its epidemiology, transmission, clinical presentation, diagnosis, prevention, and management and treatment of the virus. This article also investigates the current outbreak of Mpox in nonendemic countries, including the United States. It discusses the high prevalence of Mpox affecting the men who have sex with men community. It examines the social stigma related to disease outbreaks of the past and it provides strategies that should be implemented to prevent stigmatization of the men who have sex with men community with the present-day outbreak of Mpox.
Collapse
Affiliation(s)
- Molly O'Neill
- Sacred Heart University PA Program, College of Health Professions, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| | - Tricia LePage
- Sacred Heart University PA Program, College of Health Professions, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| | - Vanessa Bester
- Augsburg University PA Program, 2211 Riverside Avenue, CB149, Minneapolis, MN 55454, USA
| | - Henry Yoon
- Sacred Heart University PA Program, College of Health Professions, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| | - Frederick Browne
- Sacred Heart University PA Program, College of Health Professions, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
- Griffin Hospital, 130 Division Street, Derby, CT 06418, USA
| | - Eric C Nemec
- Sacred Heart University PA Program, College of Health Professions, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| |
Collapse
|
154
|
Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, Jwad Kazem T, Yasamineh S, Gholizadeh O. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180:106156. [PMID: 37201635 PMCID: PMC10186953 DOI: 10.1016/j.micpath.2023.106156] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Taha
- Medical Technical College, Al-Farahidi University, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
155
|
Ogunkola IO, Abiodun OE, Bale BI, Elebesunu EE, Ujam SB, Umeh IC, Tom-James M, Musa SS, Manirambona E, Evardone SB, Lucero-Prisno DE. Monkeypox vaccination in the global south: Fighting a war without a weapon. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2023; 22:101313. [PMID: 37220529 PMCID: PMC10195808 DOI: 10.1016/j.cegh.2023.101313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Background The Mpox outbreak awakened countries worldwide to renew efforts in epidemiological surveillance and vaccination of susceptible populations. In terms of Mpox vaccination, various challenges exist in the global south, which impede adequate vaccine coverage, especially in Africa. This paper reviewed the situation of Mpox vaccination in the global south and potential ameliorative approaches. Methods A review of online literature from PubMed and Google Scholar concerning Mpox vaccination in countries belonging to the 'global south' category was done between August and September, 2022. The major focus areas included inequity in global vaccine distribution, challenges impeding vaccine coverage in the global south, and potential strategies for bridging the gap in vaccine equity. The papers that met the inclusion criteria were collated and narratively discussed. Results Our analysis revealed that, while the high-income countries secured large supplies of the Mpox vaccines, the low- and middle-income countries were unable to independently access substantial quantities of the vaccine and had to rely on vaccine donations from high-income countries, as was the case during the COVID-19 pandemic. The challenges in the global south particularly revolved around inadequate vaccine production capacity due to lack of qualified personnel and specialized infrastructure for full vaccine development and manufacturing, limited cold chain equipment for vaccine distribution, and consistent vaccine hesitancy. Conclusion To tackle the trend of vaccine inequity in the global south, African governments and international stakeholders must invest properly in adequate production and dissemination of Mpox vaccines in low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mfoniso Tom-James
- Department of Public Health, University of Calabar, Calabar, Nigeria
| | | | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
156
|
Sorayaie Azar A, Naemi A, Babaei Rikan S, Bagherzadeh Mohasefi J, Pirnejad H, Wiil UK. Monkeypox detection using deep neural networks. BMC Infect Dis 2023; 23:438. [PMID: 37370031 DOI: 10.1186/s12879-023-08408-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND In May 2022, the World Health Organization (WHO) European Region announced an atypical Monkeypox epidemic in response to reports of numerous cases in some member countries unrelated to those where the illness is endemic. This issue has raised concerns about the widespread nature of this disease around the world. The experience with Coronavirus Disease 2019 (COVID-19) has increased awareness about pandemics among researchers and health authorities. METHODS Deep Neural Networks (DNNs) have shown promising performance in detecting COVID-19 and predicting its outcomes. As a result, researchers have begun applying similar methods to detect Monkeypox disease. In this study, we utilize a dataset comprising skin images of three diseases: Monkeypox, Chickenpox, Measles, and Normal cases. We develop seven DNN models to identify Monkeypox from these images. Two scenarios of including two classes and four classes are implemented. RESULTS The results show that our proposed DenseNet201-based architecture has the best performance, with Accuracy = 97.63%, F1-Score = 90.51%, and Area Under Curve (AUC) = 94.27% in two-class scenario; and Accuracy = 95.18%, F1-Score = 89.61%, AUC = 92.06% for four-class scenario. Comparing our study with previous studies with similar scenarios, shows that our proposed model demonstrates superior performance, particularly in terms of the F1-Score metric. For the sake of transparency and explainability, Local Interpretable Model-Agnostic Explanations (LIME) and Gradient-weighted Class Activation Mapping (Grad-Cam) were developed to interpret the results. These techniques aim to provide insights into the decision-making process, thereby increasing the trust of clinicians. CONCLUSION The DenseNet201 model outperforms the other models in terms of the confusion metrics, regardless of the scenario. One significant accomplishment of this study is the utilization of LIME and Grad-Cam to identify the affected areas and assess their significance in diagnosing diseases based on skin images. By incorporating these techniques, we enhance our understanding of the infected regions and their relevance in distinguishing Monkeypox from other similar diseases. Our proposed model can serve as a valuable auxiliary tool for diagnosing Monkeypox and distinguishing it from other related conditions.
Collapse
Affiliation(s)
| | - Amin Naemi
- Center for Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | | | | | - Habibollah Pirnejad
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Erasmus School of Health Policy & Management (ESHPM), Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Uffe Kock Wiil
- Center for Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
157
|
Rabaan AA, Alasiri NA, Aljeldah M, Alshukairiis AN, AlMusa Z, Alfouzan WA, Abuzaid AA, Alamri AA, Al-Afghani HM, Al-Baghli N, Alqahtani N, Al-Baghli N, Almoutawa MY, Mahmoud Alawi M, Alabdullah M, Bati NAA, Alsaleh AA, Tombuloglu H, Arteaga-Livias K, Al-Ahdal T, Garout M, Imran M. An Updated Review on Monkeypox Viral Disease: Emphasis on Genomic Diversity. Biomedicines 2023; 11:1832. [PMID: 37509470 PMCID: PMC10376458 DOI: 10.3390/biomedicines11071832] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus has remained the most virulent poxvirus since the elimination of smallpox approximately 41 years ago, with distribution mostly in Central and West Africa. Monkeypox (Mpox) in humans is a zoonotically transferred disease that results in a smallpox-like disease. It was first diagnosed in 1970 in the Democratic Republic of the Congo (DRC), and the disease has spread over West and Central Africa. The purpose of this review was to give an up-to-date, thorough, and timely overview on the genomic diversity and evolution of a re-emerging infectious disease. The genetic profile of Mpox may also be helpful in targeting new therapeutic options based on genes, mutations, and phylogeny. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. Increased monitoring and identification of Mpox cases are critical tools for obtaining a better knowledge of the ever-changing epidemiology of this disease.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Nada A Alasiri
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abeer N Alshukairiis
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Zainab AlMusa
- Infectious Disease Section, Internal Medicine Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Aref A Alamri
- Molecular Microbiology and Cytogenetics Department, Riyadh Regional Laboratory, Riyadh 11425, Saudi Arabia
| | - Hani M Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 2022, Saudi Arabia
| | - Nadira Al-Baghli
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Nawal Alqahtani
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Nadia Al-Baghli
- Directorate of Health Affairs, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Mashahed Y Almoutawa
- Primary Healthcare, Qatif Health Network, Eastern Health Cluster, Safwa 32833, Saudi Arabia
| | - Maha Mahmoud Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22254, Saudi Arabia
- Infection Control and Environmental Health Unit, King Abdulaziz University Hospital, Jeddah 22254, Saudi Arabia
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Neda A Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Tareq Al-Ahdal
- Research Associate, Institute of Global Health, Heidelberg University, Neuenheimerfeld130/3, 69120 Heidelberg, Germany
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
158
|
Manenti A, Solfanelli N, Cantaloni P, Mazzini L, Leonardi M, Benincasa L, Piccini G, Marchi S, Boncioli M, Spertilli Raffaelli C, Tacconi D, Mattiuzzo G, Kistner O, Montomoli E, Trombetta CM. Evaluation of Monkeypox- and Vaccinia virus-neutralizing antibodies in human serum samples after vaccination and natural infection. Front Public Health 2023; 11:1195674. [PMID: 37415699 PMCID: PMC10321151 DOI: 10.3389/fpubh.2023.1195674] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction In early to mid-2022, an unexpected outbreak of Monkeypox virus infections occurred outside the African endemic regions. Vaccines originally developed in the past to protect against smallpox are one of the available countermeasures to prevent and protect against Orthopoxvirus infections. To date, there are few studies on the cross-reactivity of neutralizing antibodies elicited by previous vaccinia virus-based vaccination and/or Monkeypox virus infection. The aim of this study was to evaluate a possible approach to performing Monkeypox and vaccinia live-virus microneutralization assays in which the read-out is based on the production of cytopathic effect in the cell monolayer. Methods Given the complexity of Orthopoxviruses, the microneutralization assay was performed in such a way as to uncover a potential role of complement, with and without the addition of an external source of Baby Rabbit Complement. A set of human serum samples from individuals who had been naturally infected with Monkeypox virus and individuals who may have and not have undergone vaccinia virus vaccinations, was used to evaluate the performance, sensitivity, and specificity of the assay. Results and conclusions The results of the present study confirm the presence and cross-reactivity of antibodies elicited by vaccinia-based vaccines, which proved able to neutralize the Monkeypox virus in the presence of an external source of complement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Danilo Tacconi
- Department of Infectious Diseases, Ospedale San Donato, Arezzo, Italy
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- VisMederi Research Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Maria Trombetta
- VisMederi Research Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
159
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
160
|
Bhat S, Saha S, Garg T, Sehrawat H, Chopade BA, Gupta V. Insights into the challenging multi-country outbreak of Mpox: a comprehensive review. J Med Microbiol 2023; 72. [PMID: 37378642 DOI: 10.1099/jmm.0.001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Human monkeypox virus (hMpoxV) is of zoonotic origin and is closely related to the once-dreaded smallpox virus. It is largely endemic to the African continent but has moved out of the endemic regions as sporadic clusters in the past 20 years, raising concerns worldwide. Human Mpox is characterized by a mild to severe, self-limiting infection, with mortality ranging from less than 1% to up to 10% during different outbreaks caused by different clades of MpoxV. Bushmeat hunting is one of the primary reasons for its transmission from animals to humans. Various international and national health regulatory bodies are closely monitoring the disease and have laid down guidelines to manage and prevent hMpox cases. Emergency Use Status has been granted to Tecovirimat and Brincidofovir to treat severe cases and vaccination with the smallpox vaccine is recommended for high-risk group individuals. Strategies to repurpose and discover novel therapeutics and vaccines to control the outbreak are being researched. The current Mpox outbreak that has mainly affected men as approximately 96% of all cases are reported in men, is probably the result of a complex intersection of various factors. This necessitates a strong One Health response coordination involving human, animal and environmental health institutions. This review is an attempt to provide an all-inclusive overview of the biology, history, epidemiology, pathophysiology, diagnosis and management of hMpox in context to the recent 2022-2023 multi-country outbreak which is termed by WHO a 'Public Health Emergency of International Concern (PHEIC)'.
Collapse
Affiliation(s)
- Shreyas Bhat
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Sumana Saha
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Tanisha Garg
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | | | - Balu Ananda Chopade
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| |
Collapse
|
161
|
Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir ul Qamar M, Tahmasebian S, Pazoki-Toroudi H, Fazeli M, Ghatreh Samani M. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 2023; 18:e0286224. [PMID: 37220125 PMCID: PMC10205007 DOI: 10.1371/journal.pone.0286224] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Monkeypox virus (MPXV) outbreaks have been reported in various countries worldwide; however, there is no specific vaccine against MPXV. In this study, therefore, we employed computational approaches to design a multi-epitope vaccine against MPXV. Initially, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B lymphocytes (LBL) epitopes were predicted from the cell surface-binding protein and envelope protein A28 homolog, both of which play essential roles in MPXV pathogenesis. All of the predicted epitopes were evaluated using key parameters. A total of 7 CTL, 4 HTL, and 5 LBL epitopes were chosen and combined with appropriate linkers and adjuvant to construct a multi-epitope vaccine. The CTL and HTL epitopes of the vaccine construct cover 95.57% of the worldwide population. The designed vaccine construct was found to be highly antigenic, non-allergenic, soluble, and to have acceptable physicochemical properties. The 3D structure of the vaccine and its potential interaction with Toll-Like receptor-4 (TLR4) were predicted. Molecular dynamics (MD) simulation confirmed the vaccine's high stability in complex with TLR4. Finally, codon adaptation and in silico cloning confirmed the high expression rate of the vaccine constructs in strain K12 of Escherichia coli (E. coli). These findings are very encouraging; however, in vitro and animal studies are needed to ensure the potency and safety of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Nazarian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Elham Raeisi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fazeli
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
162
|
Kakuk B, Dörmő Á, Csabai Z, Kemenesi G, Holoubek J, Růžek D, Prazsák I, Dani VÉ, Dénes B, Torma G, Jakab F, Tóth GE, Földes FV, Zana B, Lanszki Z, Harangozó Á, Fülöp Á, Gulyás G, Mizik M, Kiss AA, Tombácz D, Boldogkői Z. In-depth Temporal Transcriptome Profiling of Monkeypox and Host Cells using Nanopore Sequencing. Sci Data 2023; 10:262. [PMID: 37160911 PMCID: PMC10170163 DOI: 10.1038/s41597-023-02149-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 05/11/2023] Open
Abstract
The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.
Collapse
Affiliation(s)
- Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Jiří Holoubek
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, 753/5, Brno, CZ-62500, Czech Republic
| | - Daniel Růžek
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, 753/5, Brno, CZ-62500, Czech Republic
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Virág Éva Dani
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143, Budapest, Hungária krt. 23-25, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Fanni V Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ákos Harangozó
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - András Attila Kiss
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary.
| |
Collapse
|
163
|
Vardhan S, Sahoo SK. Computational studies on searching potential phytochemicals against DNA polymerase activity of the monkeypox virus. J Tradit Complement Med 2023; 13:S2225-4110(23)00055-X. [PMID: 37360910 PMCID: PMC10165885 DOI: 10.1016/j.jtcme.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives The outbreak of monkeypox virus (MPXV) is an emerging epidemic of medical concern with 65353 confirmed cases of infection and a fatality of 115 worldwide. Since May 2022, MPXV has been rapidly disseminating across the globe through various modes of transmission, including direct contact, respiratory droplets, and consensual sex. Because of the limited medical countermeasures available to treat MPXV, the present study aimed to identify potential phytochemicals (limonoids, triterpenoids, and polyphenols) as antagonists to target the DNA polymerase protein of MPXV with the ultimate goal to inhibit the viral DNA replication mechanism and immune-mediated responses. Methods The protein-DNA and protein-ligand molecular docking were performed with the help of computational programs AutoDock Vina, iGEMDOCK and HDOCK server. The BIOVIA Discovery studio and ChimeraX were used to evaluate the protein-ligand interactions. The GROMACS 2021 was used for the molecular dynamics simulations. The ADME and toxicity properties were computed by using online servers SwissADME and pKCSM. Results Molecular docking of 609 phytochemicals and molecular dynamics simulations of lead phytochemicals glycyrrhizinic acid and apigenin-7-O-glucuronide generated useful data that supported the ability of phytochemicals to obstruct the DNA polymerase activity of the monkeypox virus. Conclusions The computational results supported that appropriate phytochemicals can be used to formulate an adjuvant therapy for the monkeypox virus.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
164
|
Zeng Y, Liu X, Li Y, Lu J, Wu Q, Dan D, Lv S, Xia F, Hu C, Li J, Zhang H, Du H, Jia R, Duan K, Wang Z, Li X, Yang X. The assessment on cross immunity with smallpox virus and antiviral drug sensitivity of the isolated mpox virus strain WIBP-MPXV-001 in China. Emerg Microbes Infect 2023; 12:2208682. [PMID: 37128898 PMCID: PMC10177700 DOI: 10.1080/22221751.2023.2208682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since May 2022, human mpox cases have increased unexpectedly in non-endemic countries. The first imported case of human mpox in Hong Kong was reported in September 2022. Here we report the isolation and identification of MPXV from the vesicle swabs of this patient. In this research, the vesicle swabs were inoculated in Vero and Vero E6 cells. In addition to observing cytopathic effects (CPEs) in Vero or Vero E6 cells, the isolated virus was identified as mpox virus (MPXV) using quantitative Real-Time PCR (RT-PCR), transmission electron microscopy, and high-throughput sequencing. The experiment also assessed the cross-protective efficacy of sera from the smallpox vaccinated population and preliminarily assessed the inhibitory effect of anti-smallpox virus drugs against MPXV. CPEs can be observed on Vero E6 cells at 24 hours and Vero cells at 48 hours. The virus particles could be observed by transmission electron microscope, showing typical orthopoxvirus morphology. In addition, F3L and ATI genes which from MPXV A39R, B2R, HA genes which from orthopoxvirus were confirmed by conventional PCR and Sanger sequencing. The next generation sequencing (NGS) suggests that the MPXV strain belongs to B.1 branch of the West African linage, and has a highly identity with the sequence of the 2022 ongoing outbreak. PRNT50 results showed that 26.7% of sera from individuals born before 1981 who had been immunized with smallpox were positive, but no MPXV-neutralizing antibodies were found in sera from individuals born later. All four anti-smallpox virus drugs evaluated demonstrated inhibition of mpox virus.
Collapse
Affiliation(s)
- Yan Zeng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Xiaoke Liu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Yuwei Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Jia Lu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Qin Wu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Demiao Dan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Shiyun Lv
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Fei Xia
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Chunxia Hu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Jiali Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Hao Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Hongqiao Du
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Rui Jia
- China National Biotec Group (CNBG), Beijing City, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan City, China
| | - Xiaoming Yang
- China National Biotec Group (CNBG), Beijing City, China
| |
Collapse
|
165
|
Arasu MV, Vijayaragavan P, Purushothaman S, Rathi MA, Al-Dhabi NA, Gopalakrishnan VK, Choi KC, Ilavenil S. Molecular docking of monkeypox (mpox) virus proteinase with FDA approved lead molecules. J Infect Public Health 2023; 16:784-791. [PMID: 36958173 PMCID: PMC9990884 DOI: 10.1016/j.jiph.2023.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Monkeypox virus (mpox) disease is caused by a double-stranded DNA virus from the Poxviridae family. The mpox virus showed structural similarity with smallpox virus disease. The recent outbreak of mpox infection in the rest of African countries causes public health issues of increased pandemic potential. Mpox virus is involved in the viral replication cycle through the biocatalytic reaction of precursor polyproteins cleavage. OBJECTIVES The main objective of the study was to analyze the molecular interactions between mpox and FDA-approved drugs. METHODS The primary and secondary structure of the protein was retrieved and FDA approved drug was screened using AutoDock. The best hit was analyzed and the molecular interactions were studied. Model validation analyzes the peptide, energy of hydrogen bonds, steric conflicts and bond planarity. Z-score was calculated using ProSA-web tool and the score tested the native fold from other alternative folds. RESULTS The confidence level of the submitted amino acids was> 80 % and the maximum confidence score for a single template was 98.2 %. The generated proteinase model was subjected to analyze the distribution of atoms and the using ERRAT server. The overall quality score was 88.535 and this value represents the amino acid percentage with anticipated error value and the value falling below the rejection limit. The Z-score of this study result was within the Z-score range (-4.17) validated for native enzymes. The binding pockets of the enzyme were determined in this study and two binding pockets were predicted using the automatic online tool using the web server. The selected FDA-approved drugs were ordered based on their minimum binding energy to the proteinase. CONCLUSIONS Molecular docking studies revealed the involvement of various hydrophobic interactions between FDA-approved drugs and amino acid residues of monkeypox virus proteinase.
Collapse
Affiliation(s)
- M Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - P Vijayaragavan
- Bioprocess Engineering Division, Smykon Biotech Pvt LtD, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - Sumitha Purushothaman
- Bioprocess Engineering Division, Smykon Biotech Pvt LtD, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - M A Rathi
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V K Gopalakrishnan
- School of Medicine, Bule Hora University Institute of Health, Bule Hora University, BuleHora, Ethiopia.
| | - Ki Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Republic of Korea
| | - S Ilavenil
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Republic of Korea
| |
Collapse
|
166
|
Sós E, Sós-Koroknai V. Dermatologic Aspects of Zoo Mammal Medicine. Vet Clin North Am Exot Anim Pract 2023; 26:455-474. [PMID: 36965881 DOI: 10.1016/j.cvex.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The article deals with the primary aspects of how to maintain healthy integument in zoo mammals and in particular why husbandry-related health problems can occur in general in a zoologic setting. While working with these species we are often faced with diagnostic challenges, which may include a general approach (often requiring anesthesia or medical training), lack of "normal" references, and difficulties, especially if the cutaneous signs are not a primary ailment, but a manifestation of a generalized disease (eg, immune-suppression). The different etiologies of skin problems are discussed with clinical examples.
Collapse
Affiliation(s)
- Endre Sós
- Budapest Zoo and Botanical Garden, Állatkerti krt. 6-12, Budapest, H-1146, Hungary; University of Veterinary Medicine, István u. 2. H-1078, Budapest, Hungary.
| | | |
Collapse
|
167
|
Begum JPS, Ngangom L, Semwal P, Painuli S, Sharma R, Gupta A. Emergence of monkeypox: a worldwide public health crisis. Hum Cell 2023; 36:877-893. [PMID: 36749539 PMCID: PMC9903284 DOI: 10.1007/s13577-023-00870-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
The human monkeypox virus (MPV), a zoonotic illness that was hitherto solely prevalent in Central and West Africa, has lately been discovered to infect people all over the world and has become a major threat to global health. Humans unintentionally contract this zoonotic orthopoxvirus, which resembles smallpox, when they come into contact with infected animals. Studies show that the illness can also be transferred through frequent proximity, respiratory droplets, and household linens such as towels and bedding. However, MPV infection does not presently have a specified therapy. Smallpox vaccinations provide cross-protection against MPV because of antigenic similarities. Despite scant knowledge of the genesis, epidemiology, and ecology of the illness, the incidence and geographic distribution of monkeypox outbreaks have grown recently. Polymerase chain reaction technique on lesion specimens can be used to detect MPV. Vaccines like ACAM2000, vaccinia immune globulin intravenous (VIG-IV), and JYNNEOS (brand name: Imvamune or Imvanex) as well as FDA-approved antiviral medications such as brincidofovir (brand name: Tembexa), tecovirimat (brand name: TPOXX or ST-246), and cidofovir (brand name: Vistide) are used as therapeutic medications against MPV. In this overview, we provide an outline of the MPV's morphology, evolution, mechanism, transmission, diagnosis, preventative measures, and therapeutic approaches. This study offers the fundamental information required to prevent and manage any further spread of this emerging virus.
Collapse
Affiliation(s)
- J. P. Shabaaz Begum
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Leirika Ngangom
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Rohit Sharma
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- BioIntegrate, Lawrenceville, GA 30043 USA
- Regenerative Orthopaedics, Uttar Pradesh, Noida, 201301 India
| |
Collapse
|
168
|
Gurnani B, Kaur K, Chaudhary S, Balakrishnan H. Ophthalmic manifestations of monkeypox infection. Indian J Ophthalmol 2023; 71:1687-1697. [PMID: 37203020 PMCID: PMC10391517 DOI: 10.4103/ijo.ijo_2032_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
After the global COVID-19 pandemic, there has been an alarming concern with the monkeypox (mpox) outbreak, which has affected more than 110 countries worldwide. Monkeypox virus is a doublestranded DNA virus of the genus Orthopox of the Poxviridae family, which causes this zoonotic disease. Recently, the mpox outbreak was declared by the World Health Organization (WHO) as a public health emergency of international concern (PHEIC). Monkeypox patients can present with ophthalmic manifestation and ophthalmologists have a role to play in managing this rare entity. Apart from causing systemic involvement such as skin lesions, respiratory infection and involvement of body fluids, Monkeypox related ophthalmic disease (MPXROD) causes varied ocular manifestations such as lid and adnexal involvement, periorbital and lid lesion, periorbital rash, conjunctivitis, blepharocounctivitis and keratitis. A detailed literature review shows few reports on MPXROD infections with limited overview on management strategies. The current review article is aimed to provide the ophthalmologist with an overview of the disease with a spotlight on ophthalmic features. We briefly discuss the morphology of the MPX, various modes of transmission, an infectious pathway of the virus, and the host immune response. A brief overview of the systemic manifestations and complications has also been elucidated. We especially highlight the detailed ophthalmic manifestations of mpox, their management, and prevention of vision threatening sequelae.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cornea and Refractive Services, Dr. Om Parkash Eye Institute, Mall Road, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Pediatric Ophthalmology and Strabismus, Dr. Om Parkash Eye Institute, Mall Road, Amritsar, Punjab, India
| | - Sameer Chaudhary
- Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | | |
Collapse
|
169
|
Saied AA. Mpox virus Clade IIb detection in the air. J Med Virol 2023; 95:e28775. [PMID: 37212310 DOI: 10.1002/jmv.28775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
Mpox is a viral zoonotic disease endemic in Central and West Africa that is caused by the Mpox virus, which belongs to the Orthopoxvirus genus and Poxviridae family. The clinical manifestations of mpox infection are milder than those of smallpox, and the incubation time of mpox varies from 5 to 21 days. Since May 2022, the mpox outbreak (formerly known as monkeypox) has suddenly and unexpectedly spread in non-endemic countries, suggesting that there may have been some undetected transmissions. Based on molecular analysis, there are two major genetic clades that represent the mpox virus: Clade I (formerly the Congo Basin clade OR the Central African clade) and Clade II (formerly the West African clade). It is believed that people who are asymptomatic or paucisymptomatic may spread the mpox virus. Infectious viruses cannot be distinguished by PCR testing; therefore, virus culture should be carried out. Recent evidence regarding the detection of the mpox virus (Clade IIb) in air samples collected from the patient's environment during the 2022 mpox outbreak was reviewed. Further studies are needed to evaluate the extent to which the presence of mpox virus DNA in the air could affect immunocompromised patients in healthcare facilities, and further epidemiological studies are crucial, especially in Africa.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan, Egypt
| |
Collapse
|
170
|
Tagka A, Geronikolou S, Evaggelopoulos A, Grigoropoulou S, Kavatha D, Botsi C, Papadopoulou A, Tryfinopoulou K, Katsoulidou A, Pappa S, Papa A, Paparizos V, Nicolaidou E, Tsiodras S, Stratigos AJ. Simultaneous Multiple-Stages Mpox Genital Lesions on the Same Site in a Traveler to Greece: A Case Report. Vaccines (Basel) 2023; 11:vaccines11050901. [PMID: 37243005 DOI: 10.3390/vaccines11050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
A 47-year-old Caucasian traveller from an mpox (formerly monkeypox and also best suited abbreviated MPX)-endemic country was referred for a skin rash, of recent onset, confined to the genital area. The rash consisted of erythematous umbilicated papules, vesicles and pustules with a characteristic white ring. The lesions were observed simultaneously at different stages of progression on the same anatomical site, a clinical presentation that is not encountered frequently. The patient was febrile, fatigued and had blood-tinged cough. The clinical suspicion of mpox was raised, and the initial real-time PCR identified a non-variola orthopox virus, which was confirmed at the National Reference Laboratory to belong to the West African clade.
Collapse
Affiliation(s)
- Anna Tagka
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Styliani Geronikolou
- Clinical Translational and Experimental Surgery Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Apostolos Evaggelopoulos
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Sotiria Grigoropoulou
- 4th Department of Internal Medicine, Athens Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Athens Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Chryssoula Botsi
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Aggeliki Papadopoulou
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Kyriaki Tryfinopoulou
- Central Public Health Laboratory, National Public Health Organization, 15123 Athens, Greece
| | - Antigoni Katsoulidou
- Central Public Health Laboratory, National Public Health Organization, 15123 Athens, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasilios Paparizos
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Electra Nicolaidou
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Athens Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Alexandros J Stratigos
- 1st Department of Dermatology and Venereology, Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, National and Kapodistrian University, 15772 Athens, Greece
| |
Collapse
|
171
|
Martínez-Murcia A, Navarro A, Garcia-Sirera A, Pérez L, Bru G. Internal Validation of a Real-Time qPCR Kit following the UNE/EN ISO/IEC 17025:2005 for Detection of the Re-Emerging Monkeypox virus. Diagnostics (Basel) 2023; 13:diagnostics13091560. [PMID: 37174951 PMCID: PMC10177549 DOI: 10.3390/diagnostics13091560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Human mpox is caused by the Monkeypox virus, a microorganism closely related to the Variola virus, both belonging to the Orthopoxvirus genus. Mpox had been considered a rare disease until a global outbreak occurred in 2022. People infected with the virus present similar symptoms to patients suffering smallpox and other rash illnesses, hindering diagnosis. The WHO indicated that no commercial PCR or serology kits are currently widely available. In the present study, the MPXV MONODOSE dtec-qPCR kit was validated following guidelines of the UNE/EN ISO/IEC 17025:2005. The parameters evaluated for the acceptance of the assay were in silico and in vitro specificity, quantitative phase analysis, reliability, and sensitivity. The assay passed validation criteria and yielded an efficiency of 95.8%, high repeatability, reproducibility, and a Limit of Detection and Quantification of at least 10 copies. Results from the validation of the MPXV dtec-qPCR kit were satisfactory. The use of the MONODOSE format (dehydrated single PCR-tubes, ready to use) provided considerable advantages allowing the detection of the Monkeypox virus to be accurately achieved. This detection kit may be considered a reliable, fast, simple, and universally available option.
Collapse
Affiliation(s)
- Antonio Martínez-Murcia
- Department of Microbiology, University Miguel Hernández, 03312 Orihuela, Spain
- Genetic PCR Solutions™, 03300 Orihuela, Spain
| | | | | | - Laura Pérez
- Genetic PCR Solutions™, 03300 Orihuela, Spain
| | - Gema Bru
- Genetic PCR Solutions™, 03300 Orihuela, Spain
| |
Collapse
|
172
|
Almufareh MF, Tehsin S, Humayun M, Kausar S. A Transfer Learning Approach for Clinical Detection Support of Monkeypox Skin Lesions. Diagnostics (Basel) 2023; 13:diagnostics13081503. [PMID: 37189603 DOI: 10.3390/diagnostics13081503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Monkeypox (MPX) is a disease caused by monkeypox virus (MPXV). It is a contagious disease and has associated symptoms of skin lesions, rashes, fever, and respiratory distress lymph swelling along with numerous neurological distresses. This can be a deadly disease, and the latest outbreak of it has shown its spread to Europe, Australia, the United States, and Africa. Typically, diagnosis of MPX is performed through PCR, by taking a sample of the skin lesion. This procedure is risky for medical staff, as during sample collection, transmission and testing, they can be exposed to MPXV, and this infectious disease can be transferred to medical staff. In the current era, cutting-edge technologies such as IoT and artificial intelligence (AI) have made the diagnostics process smart and secure. IoT devices such as wearables and sensors permit seamless data collection while AI techniques utilize the data in disease diagnosis. Keeping in view the importance of these cutting-edge technologies, this paper presents a non-invasive, non-contact, computer-vision-based method for diagnosis of MPX by analyzing skin lesion images that are more smart and secure compared to traditional methods of diagnosis. The proposed methodology employs deep learning techniques to classify skin lesions as MPXV positive or not. Two datasets, the Kaggle Monkeypox Skin Lesion Dataset (MSLD) and the Monkeypox Skin Image Dataset (MSID), are used for evaluating the proposed methodology. The results on multiple deep learning models were evaluated using sensitivity, specificity and balanced accuracy. The proposed method has yielded highly promising results, demonstrating its potential for wide-scale deployment in detecting monkeypox. This smart and cost-effective solution can be effectively utilized in underprivileged areas where laboratory infrastructure may be lacking.
Collapse
Affiliation(s)
- Maram Fahaad Almufareh
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 72388, Saudi Arabia
| | - Samabia Tehsin
- Department of Computer Science, Bahria University, Islamabad 44220, Pakistan
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 72388, Saudi Arabia
| | - Sumaira Kausar
- Department of Computer Science, Bahria University, Islamabad 44220, Pakistan
| |
Collapse
|
173
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
174
|
Kirchner S, Lei V, Kim P, Patel M, Shannon J, Corcoran D, Hughes D, Waters D, Dzirasa K, Erdmann D, Coers J, MacLeod A, Zhang JY. An Aging-Susceptible Circadian Rhythm Controls Cutaneous Antiviral Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536934. [PMID: 37131751 PMCID: PMC10153172 DOI: 10.1101/2023.04.14.536934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aged skin is prone to viral infections, but the mechanisms responsible for this immunosenescent immune risk are unclear. We observed that aged murine and human skin expressed reduced antiviral proteins (AVPs) and circadian regulators including Bmal1 and Clock. Bmal1 and Clock were found to control rhythmic AVP expression in skin and such circadian-control of AVPs was diminished by disruption of immune cell interleukin 27 signaling and deletion of Bmal1/Clock genes in mouse skins, as well as siRNA-mediated knockdown of CLOCK in human primary keratinocytes. We found that treatment of circadian enhancing agents, nobiletin and SR8278, reduced infection of herpes simplex virus 1 (HSV1) in epidermal explants and human keratinocytes in a Bmal1/Clock-dependent manner. Circadian enhancing treatment also reversed susceptibility of aging murine skin and human primary keratinocytes to viral infection. These findings reveal an evolutionarily conserved and age-sensitive circadian regulation of cutaneous antiviral immunity, underscoring circadian restoration as an antiviral strategy in aging populations.
Collapse
|
175
|
Dodaro A, Pavan M, Moro S. Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? Int J Mol Sci 2023; 24:7119. [PMID: 37108279 PMCID: PMC10138331 DOI: 10.3390/ijms24087119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral zoonosis to public health. The lack of specific treatments against this infection and the success of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought the monkeypox virus I7L protease under the spotlight as a potential target for the development of specific and compelling drugs against this emerging disease. In the present work, the structure of the monkeypox virus I7L protease was modeled and thoroughly characterized through a dedicated computational study. Furthermore, structural information gathered in the first part of the study was exploited to virtually screen the DrugBank database, consisting of drugs approved by the Food and Drug Administration (FDA) and clinical-stage drug candidates, in search for readily repurposable compounds with similar binding features as TTP-6171, the only non-covalent I7L protease inhibitor reported in the literature. The virtual screening resulted in the identification of 14 potential inhibitors of the monkeypox I7L protease. Finally, based on data collected within the present work, some considerations on developing allosteric modulators of the I7L protease are reported.
Collapse
Affiliation(s)
| | | | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
176
|
Pomari E, Mori A, Accordini S, Donini A, Cordioli M, Tacconelli E, Castilletti C. Evaluation of a ddPCR Commercial Assay for the Absolute Quantification of the Monkeypox Virus West Africa in Clinical Samples. Diagnostics (Basel) 2023; 13:diagnostics13071349. [PMID: 37046567 PMCID: PMC10093040 DOI: 10.3390/diagnostics13071349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the orthopoxvirus genus in the family Poxviridae. Distinct clades are identified: the clade I belonging to the Central African (or Congo Basin) clade and the subclades IIa and IIb belonging to the West African clade. Here, a commercial droplet digital PCR (ddPCR) assay was evaluated for the quantification of the MPXV West Africa clade in clinical samples. METHODS The ddPCR reaction was assessed as a duplex assay using RPP30 as an internal amplification control. A total of 60 clinical specimens were tested, 40 positives (skin lesions, n=10; rectal swabs, n = 10; pharyngeal swabs, n = 10; and whole blood, n = 10), and 20 negatives (n = 5 for each biological matrix) were found at the routine molecular diagnostics (orthopoxvirus qPCR followed by confirmation with Sanger sequencing). To evaluate the analytical sensitivity, the ddPCR reaction was first analyzed on serial dilutions of synthetic DNA spiked in water and in negative biological matrices, achieving a limit of detection of 3.5 copy/µL. RESULTS Regarding the clinical samples, compared to routine molecular diagnostics, the ddPCR duplex assay showed 100% of specificity for all biological matrices and 100% sensitivity (10/10) for lesions, 100% (10/10) for rectal swabs, 90% (9/10) for pharyngeal swabs, and 60% (6/10) for whole blood. CONCLUSION Overall, our data showed that the commercial ddPCR assay allowed the DNA detection of MPXV in 87.5% (35/40) of our cohort, highlighting useful technical indications for the different specimens with a potential greatest performance for skin lesions and rectal swabs.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Antonio Mori
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Accordini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Annalisa Donini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Maddalena Cordioli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, 37100 Verona, Italy
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37100 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37100 Verona, Italy
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
177
|
Maj J, Wala K, Szepietowski JC. Monkeypox with exclusive genital lesions. J Eur Acad Dermatol Venereol 2023; 37:e522-e523. [PMID: 36177525 DOI: 10.1111/jdv.18621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Joanna Maj
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Poland
| | - Kamila Wala
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Poland
| |
Collapse
|
178
|
Abstract
ABSTRACT Mpox (formerly "monkeypox") is a viral zoonosis that presents similarly to smallpox but is less contagious and causes less severe disease. Mpox may be transmitted from infected animals to humans through direct contact or a scratch or bite. Human-to-human transmission occurs through direct contact, respiratory droplets, and fomites. Two vaccines, JYNNEOS® and ACAM2000®, are currently available for postexposure prophylaxis as well as for prevention in certain populations at high risk for mpox. Most cases of mpox are self-limited; however, tecovirimat, brincidofovir, and cidofovir are available as treatments for at-risk populations.
Collapse
|
179
|
Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, Smajlović S, Ćordić S, Rabaan AA, Alsuhaimi E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J Infect Public Health 2023; 16:531-541. [PMID: 36801633 PMCID: PMC9908738 DOI: 10.1016/j.jiph.2023.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the Poxviridae family of the genus Orthopoxvirus with two different clades known as West African and Congo Basin. Monkeypox (MPX) is a zoonosis that arises from the MPXV and causes a smallpox-like disease. The endemic disease status of MPX was updated to an outbreak worldwide in 2022. Thus, the condition was declared a global health emergency independent of travel issues, accounting for the primary reason for its prevalence outside Africa. In addition to identified transmission mediators through animal-to-human and human-to-human, especially sexual transmission among men who have sex with men came to prominence in the 2022 global outbreak. Although the severity and prevalence of the disease differ depending on age and gender, some symptoms are commonly observed. Clinical signs such as fever, muscle and headache pain, swollen lymph nodes, and skin rashes in defined body regions are standard and an indicator for the first step of diagnosis. By following the clinical signs, laboratory diagnostic tests like conventional polymerase chain reaction (PCR) or real-time PCR (RT-PCR) are the most common and accurate diagnostic methods. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir are used for symptomatic treatment. There is no MPXV-specific vaccine; however, currently available vaccines against smallpox enhance the immunization rate. This comprehensive review covers the MPX disease history and the current state of knowledge by assessing broad topics and views related to disease origin, transmission, epidemiology, severity, genome organization and evolution, diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Aysel Karagoz
- Quality Assurance Department, Turk Pharmaceutical and Serum Ind. Inc., Ankara, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia.
| | - Moneerah Alsaeed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Amal Mahmoud
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Samira Smajlović
- Laboratory Diagnostics Institute Dr. Dedić, Bihać 77000, Bosnia and Herzegovina
| | - Sabahudin Ćordić
- Cantonal hospital "Dr. Irfan Ljubijankić", Microbiological laboratory, Bihać 77000, Bosnia and Herzegovina
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition. The University of Haripur, Haripur 22610, Pakistan
| | - Ebtesam Alsuhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
180
|
Majie A, Saha R, Sarkar B. The outbreak of the monkeypox virus in the shadow of the pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48686-48702. [PMID: 36854947 PMCID: PMC9974386 DOI: 10.1007/s11356-023-26098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/20/2023] [Indexed: 04/16/2023]
Abstract
The human monkeypox virus (MPXV) was first identified in 1959. Since then, the incidence of the disease has been sporadic. The endemic regions were identified in Africa's central and western areas. However, the infection started to spread in 2017 to non-endemic regions such as North and South America, Europe, and Asia. Since May 2022, the non-endemic areas reported 62,635 till 20th September 2022. Although the monkeypox virus has a mortality of ≥ 10%, it showed only 82 mortalities worldwide in 2022. The common symptoms include chills, fever, fatigue, and skin lesions, and the complications include secondary respiratory tract infections, encephalitis, blindness, and severe diarrhea. The factors responsible for spreading the virus include improper handling and consumption of infected bushmeat, unprotected sexual intercourse, contact with an infected person, no smallpox vaccination, improper hygiene, lower diagnostic capacity, and strong travel history from the endemic regions. The therapeutic strategy is symptom-based treatment and supportive care. Antivirals and vaccines such as Tecovirimat, Brincidofovir, Cidofovir, Imvamune, and ACAM2000 have shown promising results. The primary purpose of the review is to perform an epidemiological study and investigate the pathobiology, diagnosis, prevention, treatment, and some associated complications of the monkeypox virus in 2022.
Collapse
Affiliation(s)
- Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Rajdeep Saha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| |
Collapse
|
181
|
Bala D, Hossain MS, Hossain MA, Abdullah MI, Rahman MM, Manavalan B, Gu N, Islam MS, Huang Z. MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification. Neural Netw 2023; 161:757-775. [PMID: 36848828 PMCID: PMC9943560 DOI: 10.1016/j.neunet.2023.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
The monkeypox virus poses a new pandemic threat while we are still recovering from COVID-19. Despite the fact that monkeypox is not as lethal and contagious as COVID-19, new patient cases are recorded every day. If preparations are not made, a global pandemic is likely. Deep learning (DL) techniques are now showing promise in medical imaging for figuring out what diseases a person has. The monkeypox virus-infected human skin and the region of the skin can be used to diagnose the monkeypox early because an image has been used to learn more about the disease. But there is still no reliable Monkeypox database that is available to the public that can be used to train and test DL models. As a result, it is essential to collect images of monkeypox patients. The "MSID" dataset, short form of "Monkeypox Skin Images Dataset", which was developed for this research, is free to use and can be downloaded from the Mendeley Data database by anyone who wants to use it. DL models can be built and used with more confidence using the images in this dataset. These images come from a variety of open-source and online sources and can be used for research purposes without any restrictions. Furthermore, we proposed and evaluated a modified DenseNet-201 deep learning-based CNN model named MonkeyNet. Using the original and augmented datasets, this study suggested a deep convolutional neural network that was able to correctly identify monkeypox disease with an accuracy of 93.19% and 98.91% respectively. This implementation also shows the Grad-CAM which indicates the level of the model's effectiveness and identifies the infected regions in each class image, which will help the clinicians. The proposed model will also help doctors make accurate early diagnoses of monkeypox disease and protect against the spread of the disease.
Collapse
Affiliation(s)
- Diponkor Bala
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh; Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| | - Md Shamim Hossain
- School of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China.
| | | | - Md Ibrahim Abdullah
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | - Md Mizanur Rahman
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| | - Naijie Gu
- School of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China.
| | - Mohammad S Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Zhangjin Huang
- School of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China; USTC-Deqing Alpha Innovation Institute, Huzhou, 313299, China.
| |
Collapse
|
182
|
Niu L, Liang D, Ling Q, Zhang J, Li Z, Zhang D, Xia P, Zhu Z, Lin J, Shi A, Ma J, Yu P, Liu X. Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Front Immunol 2023; 14:1132250. [PMID: 37026012 PMCID: PMC10070694 DOI: 10.3389/fimmu.2023.1132250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
On 23rd July 2022, the World Health Organization (WHO) recognized the ongoing monkeypox outbreak as a public medical crisis. Monkeypox virus (MPV), the etiological agent of monkeypox, is a zoonotic, linear, double-stranded DNA virus. In 1970, the Democratic Republic of the Congo reported the first case of MPV infection. Human-to-human transmission can happen through sexual contact, inhaled droplets, or skin-to-skin contact. Once inoculated, the viruses multiply rapidly and spread into the bloodstream to cause viremia, which then affect multiple organs, including the skin, gastrointestinal tract, genitals, lungs, and liver. By September 9, 2022, more than 57,000 cases had been reported in 103 locations, especially in Europe and the United States. Infected patients are characterized by physical symptoms such as red rash, fatigue, backache, muscle aches, headache, and fever. A variety of medical strategies are available for orthopoxviruses, including monkeypox. Monkeypox prevention following the smallpox vaccine has shown up to 85% efficacy, and several antiviral drugs, such as Cidofovir and Brincidofovir, may slow the viral spread. In this article, we review the origin, pathophysiology, global epidemiology, clinical manifestation, and possible treatments of MPV to prevent the propagation of the virus and provide cues to generate specific drugs.
Collapse
Affiliation(s)
- Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Dingfa Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qin Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Ziwen Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Panpan Xia
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Zicheng Zhu
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Jitao Lin
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Ao Shi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Peng Yu
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
183
|
Patel CN, Mall R, Bensmail H. AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for Monkeypox virus. J Infect Public Health 2023; 16:799-807. [PMID: 36966703 PMCID: PMC10014505 DOI: 10.1016/j.jiph.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
Monkeypox virus (MPXV) was confirmed in May 2022 and designated a global health emergency by WHO in July 2022. MPX virions are big, enclosed, brick-shaped, and contain a linear, double-stranded DNA genome as well as enzymes. MPXV particles bind to the host cell membrane via a variety of viral-host protein interactions. As a result, the wrapped structure is a potential therapeutic target. DeepRepurpose, an artificial intelligence-based compound-viral proteins interaction framework, was used via a transfer learning setting to prioritize a set of FDA approved and investigational drugs which can potentially inhibit MPXV viral proteins. To filter and narrow down the lead compounds from curated collections of pharmaceutical compounds, we used a rigorous computational framework that included homology modeling, molecular docking, dynamic simulations, binding free energy calculations, and binding pose metadynamics. We identified Elvitegravir as a potential inhibitor of MPXV virus using our comprehensive pipeline.
Collapse
Affiliation(s)
- Chirag N. Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad-380009, India,Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD-21702, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee-38105, USA,Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi-9639, United Arab Emirates,Corresponding author at: Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee-38105, USA
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha-34110, Qatar,Corresponding author
| |
Collapse
|
184
|
Muñoz-Barrera A, Ciuffreda L, Alcoba-Florez J, Rubio-Rodríguez LA, Rodríguez-Pérez H, Gil-Campesino H, García-Martínez de Artola D, Salas-Hernández J, Rodríguez-Núñez J, Íñigo-Campos A, García-Olivares V, Díez-Gil O, González-Montelongo R, Valenzuela-Fernández A, Lorenzo-Salazar JM, Flores C. Bioinformatic approaches to draft the viral genome sequence of Canary Islands cases related to the multicountry mpox virus 2022-outbreak. Comput Struct Biotechnol J 2023; 21:2197-2203. [PMID: 36968018 PMCID: PMC10015108 DOI: 10.1016/j.csbj.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
On July 23, 2022, monkeypox disease (mpox) was declared a Public Emergency of International Concern (PHEIC) by the World Health Organization (WHO) due to a multicountry outbreak. In Europe, several cases of mpox virus (MPXV) infection related to this outbreak were detected in the Canary Islands (Spain). Here we describe the combination of viral DNA sequencing and bioinformatic approaches, including methods for de novo genome assembly and short- and long-read technologies, used to reconstruct the first MPXV genome isolated in the Canary Islands on the 31st of May 2022 from a male adult patient with mild symptoms. The same sequencing and bioinformatic approaches were then validated with three other positive cases of MPXV infection from the same mpox outbreak. We obtained the best results using a reference-based approach with short reads, evidencing 46-79 nucleotide variants against viral sequences from the 2018-2019 mpox outbreak and placing the viral sequences in the new B.1 sublineage of clade IIb of the MPXV classification. This study of MPXV demonstrates the potential of metagenomics sequencing for rapid and precise pathogen identification.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Josmar Salas-Hernández
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Julia Rodríguez-Núñez
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Agustín Valenzuela-Fernández
- Laboratorio “Inmunología Celular y Viral”, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Correspondence to: Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario s/n, 38010 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
185
|
Gandhi AP, Gupta PC, Padhi BK, Sandeep M, Suvvari TK, Shamim MA, Satapathy P, Sah R, León-Figueroa DA, Rodriguez-Morales AJ, Barboza JJ, Dziedzic A. Ophthalmic Manifestations of the Monkeypox Virus: A Systematic Review and Meta-Analysis. Pathogens 2023; 12:pathogens12030452. [PMID: 36986374 PMCID: PMC10056031 DOI: 10.3390/pathogens12030452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023] Open
Abstract
Background: The accurate estimation of the prevalence of mpox-induced ophthalmic lesions will enable health departments to allocate resources more effectively during the ongoing mpox pandemic. The aim of this meta-analysis was to estimate the global prevalence of ophthalmic manifestations in mpox patients. Methods: A systematic search was carried out in seven databases—Pub Med, Scopus, Web of Science, EMBASE, ProQuest, EBSCOHost, and Cochrane—for studies published on or before 12 December 2022. The pooled prevalence of ophthalmic manifestations was estimated by the random effects model. Risk of bias assessment of the studies and sub-group analysis to explain heterogeneity were undertaken. Results: Overall, 12 studies were included, with 3239 confirmed mpox cases, among which 755 patients reported ophthalmic manifestations. The pooled prevalence of ophthalmic manifestations was 9% (95% confidence interval (CI), 3–24). Studies from Europe reported a very low prevalence of ocular manifestations of 0.98% (95% CI 0.14–2.31), compared to studies from Africa with a substantially higher prevalence of 27.22% (95% CI 13.69–43.26). Conclusions: A wide variation in the prevalence of ocular manifestations among mpox patients was observed globally. Healthcare workers involved in mpox-endemic African countries should be aware of ocular manifestations for early detection and management.
Collapse
Affiliation(s)
- Aravind P. Gandhi
- Department of Community Medicine, ESIC Medical College & Hospital, Sanathnagar, Hyderabad 500038, India
| | - Parul Chawla Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bijaya K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
- Correspondence: (B.K.P.); (J.J.B.); Tel.: +91-8763766300 (B.K.P.)
| | - Mokanpally Sandeep
- School of Medical Sciences, University of Hyderabad, Telangana 500046, India
| | - Tarun Kumar Suvvari
- Medicine and Surgery, Rangaraya Medical College, Kakinada 533003, Andhra Pradesh, India
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Prakasini Satapathy
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 46000, Nepal
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha 442001, India
| | - Darwin A. León-Figueroa
- Facultad de Medicina Humana, Universidad de San Martín de Porres, Chiclayo 15011, Peru
- Centro de Investigación en Atención Primaria en Salud, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Américas, Sede Pereira, Risaralda, Pereira 660003, Colombia
| | - Joshuan J. Barboza
- Escuela de Medicina, Universidad Cesar Vallejo, Trujillo 13007, Peru
- Correspondence: (B.K.P.); (J.J.B.); Tel.: +91-8763766300 (B.K.P.)
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
186
|
Rong HG, Zhang XW, Han M, Sun X, Wu XD, Lai XZ, Shen C, Yu WJ, Fang H, Fei YT, Liu JP. Evidence synthesis of Chinese medicine for monkeypox: Suggestions from other contagious pox-like viral diseases. Front Pharmacol 2023; 14:1121580. [PMID: 36992826 PMCID: PMC10040637 DOI: 10.3389/fphar.2023.1121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Monkeypox, a zoonotic disease caused by an Orthopoxvirus, presents an etiology similar to smallpox in humans. Currently, there are no licensed treatments for human monkeypox, so clear and urgent research on its prophylaxis and treatment is needed.Objective: The purpose of this study was to explore the evidence of Chinese medicine for contagious pox-like viral diseases and provide suggestions for the multi-country outbreak management of monkeypox.Methods: The review was registered on INPLASY (INPLASY202270013). Ancient classics in China and clinical trials involving randomized controlled trials , non-RCTs, and comparative observational studies of CM on the prevention and treatment of monkeypox, smallpox, measles, varicella, and rubella were retrieved from the Chinese Medical Code (fifth edition), Database of China Ancient Medicine, PubMed, the Cochrane Library, China National Knowledge Infrastructure, Chongqing VIP, Wanfang, Google Scholar, International Clinical Trial Registry Platform, and Chinese Clinical Trial Registry until 6 July 2022. Both quantitative and qualitative methods were applied to present the data collected.Results: The use of CM to control contagious pox-like viral diseases was traced back to ancient Chinese practice cited in Huangdi’s Internal Classic, where the pathogen was recorded nearly two thousand years back. There were 85 articles (36 RCTs, eight non-RCTs, one cohort study, and 40 case series) that met the inclusion criteria, of which 39 studies were for measles, 38 for varicella, and eight for rubella. Compared with Western medicine for contagious pox-like viral diseases, CM combined with Western medicine showed significant improvements in fever clearance time (mean difference, −1.42 days; 95% CI, −1.89 to −0.95; 10 RCTs), rash/pox extinction time (MD, −1.71 days; 95% CI, −2.65 to −0.76; six RCTs), and rash/pox scab time (MD, −1.57 days; 95% CI, −1.94 to −1.19; five RCTs). When compared with Western medicine, CM alone could reduce the time of rash/pox extinction and fever clearance. Chinese herbal formulas, including modified Yinqiao powder, modified Xijiao Dihaung decoction, modified Qingjie Toubiao decoction, and modified Shengma Gegen decoction, were frequently applied to treat pox-like viral diseases and also showed significant effects in shortening the time of fever clearance, rash/pox extinction, and rash/pox scabs. Compared with Western medicine (placental globulin) or no intervention, eight non-randomized trials and observational studies on the prevention of contagious pox-like viral diseases showed a significant preventive effect of Leiji powder among high-risk populations.Conclusion: Based on historical records and clinical studies of CM in managing contagious pox-like viral diseases, some botanical drugs could be an alternative approach for treating and preventing human monkeypox. Prospective, rigorous clinical trials are urgently needed to confirm the potential preventive and treatment effect of Chinese herbal formulas.Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY202270013].
Collapse
Affiliation(s)
- Hong-guo Rong
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-wen Zhang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mei Han
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-dan Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-zhen Lai
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Chen Shen
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jie Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Fang
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Yu-tong Fei
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-ping Liu
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- The National Research Center in Complementary and Alternative Medicine (NAFKAM), Department of Community Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Jian-ping Liu,
| |
Collapse
|
187
|
Ahmed SK, Abdulqadir SO, Omar RM, Abdullah AJ, Rahman HA, Hussein SH, Mohammed Amin HI, Chandran D, Sharma AK, Dhama K, Sallam M, Harapan H, Salari N, Chakraborty C, Abdulla AQ. Knowledge, Attitude and Worry in the Kurdistan Region of Iraq during the Mpox (Monkeypox) Outbreak in 2022: An Online Cross-Sectional Study. Vaccines (Basel) 2023; 11:610. [PMID: 36992194 PMCID: PMC10054073 DOI: 10.3390/vaccines11030610] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid spread of monkeypox (mpox) has been declared as a public health emergency of international concern (PHEIC). The present study aimed to assess the knowledge, attitude, and worry levels of the general population in the Kurdistan region of Iraq regarding the ongoing mpox multi-country outbreak. An online cross-sectional survey was conducted between 27-30 July 2022, using a convenience sampling method. The questionnaire was adapted from previous studies addressing the same topic. The independent Student's t-test, one-way ANOVA, and logistic regression were used to assess possible factors associated with knowledge, attitude, and worry toward mpox. A total of 510 respondents were included in the final analysis. The participants showed a moderate level of mpox knowledge, a neutral attitude towards mpox, and a relatively moderate worry level. The logistic regression analysis showed that age, gender, marital status, religion, level of education, and place of residence were associated with mpox knowledge; however, the significant variables in the multivariate regression analysis were gender, religion, level of education, and residential area. Gender and residential area were associated with attitudes toward mpox; however, the significant variables in the multivariate regression analysis were gender and residential areas. The worry toward mpox was influenced by gender, marital status, religion, and place of residence, yet the significant variables in the multivariate regression analysis were gender, religion, educational level, and residential area. In conclusion, the Kurdish population had moderate knowledge, a neutral attitude, and a moderate level of worry about mpox. Considering the continuous rapid rise in mpox cases in several countries, and its possible risk as pandemic amid the ongoing COVID-19 pandemic, proactive control measures, adequate disease prevention strategies, and preparedness plans need to be formulated and immediately implemented to tackle the appearance of fears among people, and to safeguard the mental health of the public.
Collapse
Affiliation(s)
- Sirwan Khalid Ahmed
- Department of Pediatrics, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaymaniyah 46012, Iraq
- Department of Nursing, University of Raparin, Rania, Sulaymaniyah 46012, Iraq
| | | | - Rukhsar Muhammad Omar
- Department of Kindergarten, College of Basic Education, University of Raparin, Rania, Sulaymaniyah 46012, Iraq
| | | | - Hawre Asaad Rahman
- Department of Business Information Technology, Haibat Sultan Technical Institute, Koya, Erbil 46017, Iraq
| | - Safin Hassan Hussein
- Department of Medical Laboratory Science, College of Science, University of Raparin, Rania, Sulaymaniyah 46012, Iraq
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar University Deemed to Be University, Mullana-Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Nader Salari
- Department of Biostatistics, Faculty of Public Health, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Araz Qadir Abdulla
- Department of Emergency Nursing, Hibat Sultan Technical Institute, Koye, Erbil 46017, Iraq
| |
Collapse
|
188
|
Habib AM, Johns JD, Hakimi A, Maxwell JH. Upper Airway Manifestations of Monkeypox: A Case Report and Literature Review. J Laparoendosc Adv Surg Tech A 2023; 33:287-290. [PMID: 36383119 DOI: 10.1089/lap.2022.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The monkeypox virus (MPXV) has spread globally, causing an infection similar to that of smallpox. In July 2022, MPXV was declared an international public health emergency by the World Health Organization. Although the prodromal and cutaneous symptoms are described, the literature is lacking with regard to the upper airway manifestations of the disease. Methods: This case report describes a 39-year-old gentleman with a history of human immunodeficiency virus who presented to the emergency department with fever, sore throat, and cough. A literature review was also performed to determine the clinical presentation and physical examination findings of patients presenting with MPXV. Results: The patient underwent flexible laryngoscopy on two separate occasions due to his symptoms of fever and sore throat. He was noted to have white plaque-like lesions throughout the upper aerodigestive tract that could not be excised with manipulation. Ultimately, he tested positive for MPXV and was treated with full recovery. Conclusions: To our knowledge, this is the first report describing upper airway manifestations of MPXV. Since patients with MPXV often present initially with pharyngitis, understanding the physical examination findings of MPXV in the upper airway is imperative for early diagnosis and public health awareness.
Collapse
Affiliation(s)
- Andy M Habib
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - James D Johns
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Amir Hakimi
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Jessica H Maxwell
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA.,Department of Surgery, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
189
|
Vatsyayan A, Arvinden VR, Scaria V. Systematic In-Silico Evaluation of the Diagnostic Impact of Mpox Genome Variants in the Current Outbreak. Mol Diagn Ther 2023; 27:275-280. [PMID: 36495397 PMCID: PMC9736716 DOI: 10.1007/s40291-022-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE The rapid rate at which the current mpox virus outbreak has spread across the globe has led the World Health Organization to declare it a Public Health Emergency of International Concern. Polymerase chain reaction-based methods are one of the cornerstones for effective molecular detection of viruses including mpox virus. Genetic variants in primer binding sites are known to impact the efficiency of polymerase chain reaction and therefore diagnosis. Here we have analyzed the genetic variants and their impact on efficient binding of oligonucleotides used in diagnostics. METHODS In this study, we have systematically collected primers and probes used in the detection of mpox virus from published literature and public resources, and assessed the impact of primer binding region genetic variants in the detection of mpox virus by analysing the thermodynamic parameters, Gibbs free energy and melting temperature. These were calculated using the nearest neighbour method for variants in mpox virus genomes available and the deviation in parameters was computed with respect to the reference genome sequence. RESULTS We have identified 170 genetic variations that fall within the oligo binding region in 1176 mpox virus genomes out of which five oligos showed at least a 2 °C decrease in melting temperature, which could potentially affect the diagnostic efficacy. CONCLUSIONS Our analysis shows the importance of continuous monitoring of mpox virus detection primer efficacy and provides the list of oligos with potentially reduced detection efficiency in the current mpox virus outbreak.
Collapse
Affiliation(s)
- Aastha Vatsyayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - V R Arvinden
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
190
|
Khan MI, Qureshi H, Bae SJ, Awan UA, Saadia Z, Khattak AA. Predicting monkeypox incidence: Fear is not over! J Infect 2023; 86:256-308. [PMID: 36577479 PMCID: PMC9790189 DOI: 10.1016/j.jinf.2022.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammad Imran Khan
- Department of Industrial Engineering, Hanyang University, Seoul, South Korea
| | - Humera Qureshi
- Department of Industrial Engineering, Hanyang University, Seoul, South Korea
| | - Suk Joo Bae
- Department of Industrial Engineering, Hanyang University, Seoul, South Korea.
| | - Usman Ayub Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Zaheera Saadia
- Department of Obstetrics and Gynaecology, Qassim University College of Medicine, Buraidah, Saudi Arabia
| | - Aamer Ali Khattak
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
191
|
Perzia B, Theotoka D, Li K, Moss E, Matesva M, Gill M, Kibe M, Chow J, Green S. Treatment of ocular-involving monkeypox virus with topical trifluridine and oral tecovirimat in the 2022 monkeypox virus outbreak. Am J Ophthalmol Case Rep 2023; 29:101779. [PMID: 36573234 PMCID: PMC9744718 DOI: 10.1016/j.ajoc.2022.101779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose To report a case of ocular involving monkeypox infection in the United States during the 2022 outbreak, and to review the literature regarding its clinical manifestations and management known to date. Observations A 36-year-old man with well controlled HIV presented to the emergency department with anal pain, diffuse rash, right eye pain, and right eye redness after he tested positive for monkeypox one week prior. Ocular examination showed bilateral periorbital vesicular lesions, right eye conjunctival injection, and a single white plaque on his right medial bulbar conjunctiva. Macular, vesicular, and pustular lesions were noted throughout his body, including the genital and perianal region. His ocular and systemic symptoms completely resolved after treatment with a ten-day course of 1% trifluridine and moxifloxacin drops in both eyes, as well as two weeks of oral tecovirimat. Conclusion and Importance In July of 2022, monkeypox virus was declared a global health emergency by the World Health Organization; however, there are no standard guidelines for monkeypox treatment. Data on its clinical presentation and course, especially pertaining to ocular manifestations, is limited. We highlight the importance of recognizing ophthalmic manifestations of monkeypox virus and a possible therapeutic approach to help guide the management of these patients.
Collapse
Key Words
- ART, Antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Conjunctival lesion
- Conjunctivitis
- MPV, Monkeypox virus
- Monkeypox virus
- OCT, Optical coherence tomography
- OD, right eye
- OS, left eye
- OSSN, Ocular surface squamous neoplasia
- OU, both eyes
- Ocular manifestations
- PCP, Primary care physician
- STI, Sexually transmitted infection
- VIG, Vaccinia immune globulin
Collapse
Affiliation(s)
- Brittany Perzia
- Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, New Haven, CT, 06510, USA
| | - Despoina Theotoka
- Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, New Haven, CT, 06510, USA
| | - Katie Li
- Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, New Haven, CT, 06510, USA,Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Emily Moss
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Mitchelle Matesva
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Mohsain Gill
- Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, New Haven, CT, 06510, USA
| | - Mercy Kibe
- Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, New Haven, CT, 06510, USA
| | - Jessica Chow
- Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, New Haven, CT, 06510, USA
| | - Stephanie Green
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA,Corresponding author
| |
Collapse
|
192
|
Malik S, Ahmad T, Ahsan O, Muhammad K, Waheed Y. Recent Developments in Mpox Prevention and Treatment Options. Vaccines (Basel) 2023; 11:500. [PMID: 36992085 PMCID: PMC10057056 DOI: 10.3390/vaccines11030500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Human mpox is an emerging epidemic in the world. The monkey pox virus (MPXV) belongs to the same family of zoonotic Orthopoxviridae as that of the smallpox virus and exhibits similar clinical symptomology. Information regarding its diagnostics, disease epidemiology, surveillance, preventive methods, and treatment strategies are being collated with time. The purpose of this review is to trace the recent events in the scientific platform that have defined new preventive and treatment strategies against mpox. A methodological approach has been used to gather data from the latest literature to comprehensively overview the emerging treatment options. The results portion will cover details regarding the prevention of mpox. It will also shed light on a brief description of contemporary vaccines and antiviral agents that have been evaluated for their treatment potential since the emergence of the mpox threat. These treatment options are setting the pace for controlling the widespread monkeypox infection. However, the limitations attached to these treatment strategies need to be tackled quickly to increase their efficacy so that they can be deployed on a large scale for the prevention of this epidemic becoming another pandemic in this decade.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Omar Ahsan
- Department of Medicine, Foundation University School of Health Sciences, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
193
|
Malik S, Asghar M, Waheed Y. Mitigation Measures to Control the Expected Mpox Outbreak in a Developing Country-Pakistani Scenario. Vaccines (Basel) 2023; 11:502. [PMID: 36992086 PMCID: PMC10053896 DOI: 10.3390/vaccines11030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Mpox (previously named Monkeypox) is one of the neglected viral infectious diseases that remained silent for a long period before finally emerging as a threat to the healthcare system in endemic regions of the world in recent years. It has been mostly centered in African countries but has now been reported in other non-endemic regions as well. While keeping a strict eye on COVID pandemic handling, there is a need to remain concerned and alert about viral threats such as Mpox infections in the future. This situation has altered the healthcare system of endemic regions, including Pakistan, to stay vigilant against the expected Mpox outbreaks in the coming months. Though no specific cases have been reported in Pakistan, the healthcare system needs to take mitigation measures to tackle an expected threat before it arrives. This is important in order to avoid another major shock to the health care system of Pakistan. Moreover, since no specific treatment is available for Mpox, we can only rely upon mitigation measures, involving preventive and treatment strategies devised around some already in-use antiviral agents against Mpox viruses. Moreover, there is an imperative need to proactively prepare the healthcare system against Mpox outbreaks, spread awareness, and involve the public in a participatory approach to stay well prepared against any such infection. Moreover, there is a need to utilize financial sources, aids, and funds wisely, to create awareness in the public about such expected healthcare outbreaks in the future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, 22100 Lund, Sweden
- Department of Health Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar, Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
194
|
Orthopoxvirus Zoonoses—Do We Still Remember and Are Ready to Fight? Pathogens 2023; 12:pathogens12030363. [PMID: 36986285 PMCID: PMC10052541 DOI: 10.3390/pathogens12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses’ zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections.
Collapse
|
195
|
Ju W, Sannusi SN, Mohamad E. Stigmatizing Monkeypox and COVID-19: A Comparative Framing Study of The Washington Post's Online News. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3347. [PMID: 36834039 PMCID: PMC9965175 DOI: 10.3390/ijerph20043347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Stigma relating to health can result in a broad range of vulnerabilities and risks for patients and healthcare providers. The media play a role in people's understanding of health, and stigma is socially constructed through many communication channels, including media framing. Recent health issues affected by stigma include monkeypox and COVID-19. OBJECTIVES This research aimed to examine how The Washington Post (WP) framed the stigma around monkeypox and COVID-19. Guided by framing theory and stigma theory, online news coverage of monkeypox and COVID-19 was analyzed to understand the construction of social stigma through media frames. METHODS This research used qualitative content analysis to compare news framings in The Washington Post's online news coverage of monkeypox and COVID-19. RESULTS Using endemic, reassurance, and sexual-transmission frames, The Washington Post predominantly defined Africa as the source of monkeypox outbreaks, indirectly labeled gays as a specific group more likely to be infected with monkeypox, and emphasized that there was no need to worry about the spread of the monkeypox virus. In its COVID-19 coverage, The Washington Post adopted endemic and panic frames to describe China as the source of the coronavirus and to construct an image of panic regarding the spread of the virus. CONCLUSIONS These stigma discourses are essentially manifestations of racism, xenophobia, and sexism in public health issues. This research confirms that the media reinforces the stigma phenomenon in relation to health through framing and provides suggestions for the media to mitigate this issue from a framing perspective.
Collapse
Affiliation(s)
- Weilun Ju
- Centre for Research in Media and Communication, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shahrul Nazmi Sannusi
- Centre for Research in Media and Communication, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Emma Mohamad
- Centre for Research in Media and Communication, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- UKM × UNICEF Communication for Development Centre in Health, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
196
|
Rampogu S, Kim Y, Kim SW, Lee KW. An overview on monkeypox virus: Pathogenesis, transmission, host interaction and therapeutics. Front Cell Infect Microbiol 2023; 13:1076251. [PMID: 36844409 PMCID: PMC9950268 DOI: 10.3389/fcimb.2023.1076251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
Orthopoxvirus is one of the most notorious genus amongst the Poxviridae family. Monkeypox (MP) is a zoonotic disease that has been spreading throughout Africa. The spread is global, and incidence rates are increasing daily. The spread of the virus is rapid due to human-to-human and animals-to-human transmission. World Health Organization (WHO) has declared monkeypox virus (MPV) as a global health emergency. Since treatment options are limited, it is essential to know the modes of transmission and symptoms to stop disease spread. The information from host-virus interactions revealed significantly expressed genes that are important for the progression of the MP infection. In this review, we highlighted the MP virus structure, transmission modes, and available therapeutic options. Furthermore, this review provides insights for the scientific community to extend their research work in this field.
Collapse
Affiliation(s)
- Shailima Rampogu
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yongseong Kim
- Department of Pharmaceutical Engineering, Kyungnam University, Changwon, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
197
|
Monkeypox Outbreak Analysis: An Extensive Study Using Machine Learning Models and Time Series Analysis. COMPUTERS 2023. [DOI: 10.3390/computers12020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The sudden unexpected rise in monkeypox cases worldwide has become an increasing concern. The zoonotic disease characterized by smallpox-like symptoms has already spread to nearly twenty countries and several continents and is labeled a potential pandemic by experts. monkeypox infections do not have specific treatments. However, since smallpox viruses are similar to monkeypox viruses administering antiviral drugs and vaccines against smallpox could be used to prevent and treat monkeypox. Since the disease is becoming a global concern, it is necessary to analyze its impact and population health. Analyzing key outcomes, such as the number of people infected, deaths, medical visits, hospitalizations, etc., could play a significant role in preventing the spread. In this study, we analyze the spread of the monkeypox virus across different countries using machine learning techniques such as linear regression (LR), decision trees (DT), random forests (RF), elastic net regression (EN), artificial neural networks (ANN), and convolutional neural networks (CNN). Our study shows that CNNs perform the best, and the performance of these models is evaluated using statistical parameters such as mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and R-squared error (R2). The study also presents a time-series-based analysis using autoregressive integrated moving averages (ARIMA) and seasonal auto-regressive integrated moving averages (SARIMA) models for measuring the events over time. Comprehending the spread can lead to understanding the risk, which may be used to prevent further spread and may enable timely and effective treatment.
Collapse
|
198
|
Migaud P, Hosmann K, Drauz D, Mueller M, Haumann J, Stocker H. A case of occupational transmission of mpox. Infection 2023:10.1007/s15010-023-01989-x. [PMID: 36735196 PMCID: PMC9897149 DOI: 10.1007/s15010-023-01989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Between May 2022 and January 2023, a global mpox outbreak affected more than 84,000 patients across all continents. Transmission of mpox occurs through large respiratory droplets and direct contact with skin lesions. CASE PRESENTATION We present the case of a 31-year-old previously healthy male with mpox-Infection following occupational exposure to mpox from a needle stick injury with a sterile needle through a contaminated glove. The patient presented with a three-day history of fever, malaise, and an increasing erythema and swelling of one fingertip. The patient works as a medical doctor with regular exposure to patients infected with mpox. Mpox-PCR from a swab of the lesion and an oro-pharyngeal swab were positive. The lesion on his finger evolved into a necrotic skin lesion finally healing, leaving a scar. He did not develop any secondary pox on his skin and recovered fully. DISCUSSION Only a minority of patients with mpox infection develop illness with pronounced local complications as in this case. CONCLUSION Mpox can potentially be transmitted in an occupational context. Medical personnel should be informed about this possible route of transmission.
Collapse
Affiliation(s)
- Pascal Migaud
- Department of Infectious Diseases, St. Joseph Hospital, Berlin-Tempelhof, Germany.
| | - Kai Hosmann
- Department of Infectious Diseases, St. Joseph Hospital, Berlin-Tempelhof, Germany
| | - Daniela Drauz
- Department of Infectious Diseases, St. Joseph Hospital, Berlin-Tempelhof, Germany
| | - Markus Mueller
- Department of Infectious Diseases, St. Joseph Hospital, Berlin-Tempelhof, Germany
| | - Jonas Haumann
- Department of Gastroenterology, St. Joseph Hospital, Berlin-Tempelhof, Germany
| | - Hartmut Stocker
- Department of Infectious Diseases, St. Joseph Hospital, Berlin-Tempelhof, Germany
| |
Collapse
|
199
|
Ghaseminia M. Preventing monkeypox outbreaks: Focus on diagnosis, care, treatment, and vaccination. J Clin Transl Sci 2023; 7:e60. [PMID: 37008622 PMCID: PMC10052442 DOI: 10.1017/cts.2023.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
The first human case of monkeypox virus (Mpox) was reported in 1970. In the years after 1970, human infection with Mpox and human-to-human transmission was not widely observed, and more cases were seen in endemic areas. In that year, Mpox spread was confirmed through the export of infected animals to other parts of the world. Every few years, sporadic infections were reported in different parts of the world from human contamination and human-to-human transmission. In recent years, with the slow decline of the COVID-19 pandemic, the outbreak of Mpox was observed in many countries of the world. To deal with the spread of this viral infection, we need to know the ways to diagnose the infection, treat the infection, care for the patients, and implement a wide program of vaccination. Currently, there are no specific drugs available for this virus, but according to previous studies related to smallpox, drugs such as tecovirimat, cidofovir, and brincidofovir, which were used for smallpox and other orthopoxviruses in the past, can be considered to deal with Mpox. Also, some vaccines such as JYNNEOS, IMVAMUNE, and MoVIHvax that have been used against smallpox can be useful to some extent in preventing Mpox.
Collapse
Affiliation(s)
- Moslem Ghaseminia
- Department of Microbiology & Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
200
|
Ahmed SK, Mohamed MG, Dabou EA, Abuijlan I, Chandran D, El-Shall NA, Chopra H, Dhama K. Monkeypox (mpox) in immunosuppressed patients. F1000Res 2023; 12:127. [PMID: 37089133 PMCID: PMC10113800 DOI: 10.12688/f1000research.130272.2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
The World Health Organization (WHO) proclaimed a public health emergency in July 2022 due to the emergence of Mpox (formerly monkeypox) while the globe was still dealing with the COVID-19 epidemic. The characteristics of mpox in immunocompetent individuals are well-characterized, despite difficulties in diagnostics, immunization, and access to treatment that persist in low-income countries. Patients with weakened immune systems are more likely to spread an illness and die from it than healthy people because they cannot mount a protective immune response against it, such as a neutralizing IgG and poxvirus-specific Th1 response. A health warning on severe mpox in people who are immunocompromised due to Human Immunodeficiency virus (HIV) and other illnesses was released by the U.S. Centers for Disease Control and Prevention (CDC) on September 29, 2022. The advice does not specifically include primary immunodeficiency, but it does define other immunocompromising disorders as "having autoimmune disease with immunodeficiency as a clinical component". Both those with healthy immune systems and those with weakened immune systems, such as those who are immunosuppressed, older people, children, etc., have encountered serious health issues, but the latter group is more likely to do so. According to the advisory, "of the people with severe mpox manifestations for whom CDC has been consulted, the majority have had HIV with CD4 counts 200 cells/ml, indicating substantial immunosuppression". However, new cases are still expected to be discovered, especially in low-income countries with limited access to diagnosis, treatment, and prevention, and where a large percentage of the mpox-infected population also has advanced HIV infection. Thus, further research is always needed to determine the best way to treat mpox in immunocompromised people. In this context, we discussed /reviewed the mpox clinical presentation, available treatment options and current preventive guidelines in immunocompromised patients.
Collapse
Affiliation(s)
- Sirwan Khalid Ahmed
- Department of Pediatrics, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Mona Gamal Mohamed
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Eman Abdelaziz Dabou
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Israa Abuijlan
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|