151
|
Shein NA, Shohami E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med 2011; 17:448-56. [PMID: 21274503 DOI: 10.2119/molmed.2011.00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 01/09/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as a novel class of potentially therapeutic agents for treating acute injuries of the central nervous system (CNS). In this review, we summarize data regarding the effects of HDAC inhibitor administration in models of acute CNS injury and discuss issues warranting clinical trials. We have previously shown that the pan-HDAC inhibitor ITF2357, a compound shown to be safe and effective in humans, improves functional recovery and attenuates tissue damage when administered as late as 24 h after injury. Using a well-characterized, clinically relevant mouse model of closed head injury, we demonstrated that a single dose of ITF2357 administered 24 h after injury improves neurobehavioral recovery and reduces tissue damage. ITF2357-induced functional improvement was found to be sustained up to 14 d after trauma and was associated with augmented histone acetylation. Single postinjury administration of ITF2357 also attenuated injury-induced inflammatory responses, as indicated by reduced glial accumulation and activation as well as enhanced caspase-3 expression within microglia/macrophages after treatment. Because no specific therapeutic intervention is currently available for treating brain trauma patients, the ability to affect functional outcome by postinjury administration of HDAC inhibitors within a clinically feasible timeframe may be of great importance. Furthermore, a growing body of evidence indicates that HDAC inhibitors are beneficial for treating various forms of acute CNS injury including ischemic and hemorrhagic stroke. Because HDAC inhibitors are currently approved for other use, they represent a promising new avenue of treatment, and their use in the setting of CNS injury warrants clinical evaluation.
Collapse
Affiliation(s)
- Na'ama A Shein
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
152
|
Hancock WW. Rationale for HDAC inhibitor therapy in autoimmunity and transplantation. Handb Exp Pharmacol 2011; 206:103-23. [PMID: 21879448 DOI: 10.1007/978-3-642-21631-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While there are currently more than 70 ongoing clinical trials of inhibitors of so-called classical HDACs (HDACi) as anticancer therapies, given their potency as antiproliferative and angiostatic agents, HDACi also have considerable therapeutic potential as anti-inflammatory and immunosuppressive drugs. The utility of HDACi as anti-inflammatory agents is dependent upon their proving safe and effective in experimental models. Current pan-HDACi compounds are not well suited to this role, given the broad distribution of target HDACs and their complex and multifaceted mechanisms of action. In contrast, the development of isoform-selective HDACi may provide important new tools for therapy in autoimmunity and transplantation. This chapter discusses which HDACs are worthwhile targets in inflammation and progress toward their therapeutic inhibition, including the use of HDAC subclass and isoform-selective HDACi to promote the functions of Foxp3+ T regulatory cells.
Collapse
Affiliation(s)
- Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, 916B Abramson Research Center, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
153
|
Chapman-Rothe N, Brown R. Prospects for epigenetic compounds in the treatment of autoimmune disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:150-61. [PMID: 21627048 DOI: 10.1007/978-1-4419-8216-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is growing evidence for a role for epigenetic mechanisms in the development of autoimmune diseases. In most cases ofautoimmune disease the precise epigenetic mechanism involved remains to be resolved, however DNA hypomethylation accompanied by hypoacetylation ofhistone H3/H4 is commonly observed. Due to the reversible nature of epigenetic marks their maintenance enzymes such as DNA methyltransferases (DNMTs), histone deacetylases (HDACs) and histone lysine methyltransferases (HKMT) are attractive drug targets. Small molecule inhibitors of histone modification and DNA methylation maintenance are increasingly becoming available and will be useful chemical biological tools to dissect epigenetic mechanisms in these diseases. However, although epigenetic therapies used in cancer treatment are a promising starting point for the exploration of autoimmune disease treatment, there is a requirement for more specific and less toxic agents for these chronic diseases or for use as chemopreventative agents.
Collapse
Affiliation(s)
- Nadine Chapman-Rothe
- Department of Surgery and Cancer Hammersmith Hospital Campus, Imperial College London, London, UK.
| | | |
Collapse
|
154
|
Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010; 5:521-32. [PMID: 20157787 PMCID: PMC3115474 DOI: 10.1007/s11481-010-9192-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/14/2010] [Indexed: 12/22/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have been proposed as therapies for certain cancers and as an anti-reservoir therapy for HIV+ individuals with highly active anti-retroviral therapy, yet their roles in glial inflammatory and innate antiviral gene expression have not been defined. In this study, we examined the effects of two non-selective HDACi, trichostatin A and valproic acid, on antiviral and cytokine gene expression in primary human microglia and astrocytes stimulated with TLR3 or TLR4 ligand. HDACi potently suppressed the expression of innate antiviral molecules such as IFNβ, interferon-simulated genes, and proteins involved in TLR3/TLR4 signaling. HDACi also suppressed microglial and astrocytic cytokine and chemokine gene expression, but with different effects on different groups of cytokines. These results have important implications for the clinical use of HDACi.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
155
|
HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 2010; 25:161-8. [PMID: 21102427 PMCID: PMC3839585 DOI: 10.1038/leu.2010.244] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LBH589 is a novel pan-HDAC inhibitor which has potent antitumor activity in multiple myeloma and other hematologic malignancies. However, its impact on immune system has not been defined. We here evaluated the effects of LBH589 on human myeloid dendritic cells (DCs) at clinically relevant concentrations. Exposure to LBH589 affected the surface molecule expression on immature and mature DCs, associated with DC maturation (CD83↓), antigen presentation (HLA-ABC↓), and T cell co-stimulation (CD40↓ and CD86↑). LBH589 decreased both protein and polysaccharide antigen uptake capacities by DCs. Importantly, LBH589 impaired DCs function to stimulate antigen-specific immune responses, resulting in the significant reduction of invariant NKT cell (CD1d-restricted) and T cell (MHC-restricted) activation in innate and adaptive immunity. LBH589 also significantly repressed the production of IL-6, IL-10, IL-12p70, IL-23 and TNF-α by TLR3 and TLR4-induced DCs activation, indicating an important role of HDAC activity in immune regulation and inflammation. RelB, a component of NF-κB signaling pathway, was the key component regulated by HDAC inhibition in DCs. Together, our preclinical study demonstrates that LBH589 significantly impairs phenotype and function of DCs, indicating a need for monitoring the immune status in patients receiving HDAC inhibitor therapy. It also provides a rationale to evaluate LBH589 activity for the treatment of inflammation.
Collapse
|
156
|
Abstract
Several lines of evidence suggest the involvement of disturbance in epigenetic processes in autoimmune disease. Most noteworthy is the global DNA hypomethylation seen in lupus. Epigenetic states in difference from genetic lesions are potentially reversible and hence candidates for pharmacological intervention. Potential targets for drug development are histone modification and DNA methylating and demethylating enzymes. The most advanced set of drugs in clinical development are histone deacetylase (HDAC) inhibitors. However, the prevalence of DNA hypomethylation in lupus suggests that we should shift our attention from HDAC inhibitors to DNA demethylation inhibitors. MBD2 was recently proposed to be involved in demethylation in T cells in lupus and is, therefore, a candidate target. Although this field is at its infancy, it carries great promise.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
157
|
Suen JY, Gardiner B, Grimmond S, Fairlie DP. Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One 2010; 5:e13809. [PMID: 21072196 PMCID: PMC2970545 DOI: 10.1371/journal.pone.0013809] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 10/04/2010] [Indexed: 12/28/2022] Open
Abstract
Protease-Activated Receptor-2 (PAR2) has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD) and key events in tumor progression (angiogenesis, metastasis), but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293), a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2) and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2)). Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes), the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2) and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15). Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4) known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.
Collapse
Affiliation(s)
- Jacky Y. Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Brooke Gardiner
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sean Grimmond
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
158
|
Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010; 7:494-506. [PMID: 20880511 PMCID: PMC2952540 DOI: 10.1016/j.nurt.2010.07.003] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 12/30/2022] Open
Abstract
Reactive astrogliosis has long been recognized as a ubiquitous feature of CNS pathologies. Although its roles in CNS pathology are only beginning to be defined, genetic tools are enabling molecular dissection of the functions and mechanisms of reactive astrogliosis in vivo. It is now clear that reactive astrogliosis is not simply an all-or-nothing phenomenon but, rather, is a finely gradated continuum of molecular, cellular, and functional changes that range from subtle alterations in gene expression to scar formation. These changes can exert both beneficial and detrimental effects in a context-dependent manner determined by specific molecular signaling cascades. Dysfunction of either astrocytes or the process of reactive astrogliosis is emerging as an important potential source of mechanisms that might contribute to, or play primary roles in, a host of CNS disorders via loss of normal or gain of abnormal astrocyte activities. A rapidly growing understanding of the mechanisms underlying astrocyte signaling and reactive astrogliosis has the potential to open doors to identifying many molecules that might serve as novel therapeutic targets for a wide range of neurological disorders. This review considers general principles and examines selected examples regarding the potential of targeting specific molecular aspects of reactive astrogliosis for therapeutic manipulations, including regulation of glutamate, reactive oxygen species, and cytokines.
Collapse
Affiliation(s)
- Mary E. Hamby
- grid.19006.3e0000000096326718Department of Neurobiology, David Geffen School of Medicine, University of California, 90095 Los Angeles, California
| | - Michael V. Sofroniew
- grid.19006.3e0000000096326718Department of Neurobiology, David Geffen School of Medicine, University of California, 90095 Los Angeles, California
| |
Collapse
|
159
|
Mechelli R, Annibali V, Ristori G, Vittori D, Coarelli G, Salvetti M. Multiple sclerosis etiology: beyond genes and environment. Expert Rev Clin Immunol 2010; 6:481-90. [PMID: 20441432 DOI: 10.1586/eci.10.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a disorder of the CNS with inflammatory and neurodegenerative components. The etiology is unknown, but there is evidence for a role of both genetic and environmental factors. Among the heritable factors, MHC class II genes are strongly involved, as well as genes coding for others molecules of immunological relevance, genes controlling neurobiological pathways and genes of unknown function. Among nonheritable factors, many infectious agents (mainly viruses) and environmental factors (e.g., smoke, sun exposition and diet) seem to be of etiologic importance. Here, we report and discuss recent findings in MS on largely unexplored fields: the alternative splicing of mRNAs and regulatory noncoding RNAs, the major sources of transcriptome diversity; and epigenetic changes with special attention paid to DNA methylation and histone acetylation, the main regulators of gene expression.
Collapse
Affiliation(s)
- Rosella Mechelli
- Neurology and Center for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | | | | | | | | | | |
Collapse
|
160
|
Susick L, Senanayake T, Veluthakal R, Woster PM, Kowluru A. A novel histone deacetylase inhibitor prevents IL-1beta induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med 2010. [PMID: 20141611 DOI: 10.1111/j.1582-4934.2008.00672.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) has recently been shown to inhibit deleterious effects of cytokines on beta-cells, but it is unable to protect beta-cells from death due to its own cytotoxicity. Herein, we investigated novel HDAC inhibitors for their cytoprotective effects against IL-1beta-induced damage to isolated beta-cells. We report that three novel compounds (THS-73-44, THS-72-5 and THS-78-5) significantly inhibited HDAC activity and increased the acetylation of histone H4 in isolated beta-cells. Further, these compounds exerted no toxic effects on metabolic cell viability in these cells. However, among the three compounds tested, only THS-78-5 protected against IL-1beta-mediated loss in beta-cell viability. THS-78-5 was also able to attenuate IL-1beta-induced inducible nitric oxide synthase expression and subsequent NO release. Our data also indicate that the cytoprotective properties of THS-78-5 against IL-1beta-mediated effects may, in part, be due to inhibition of IL-1beta-induced transactivation of nuclear factor kappaB (NF-kappaB) in these cells. Together, we provide evidence for a novel HDAC inhibitor with a significant potential to prevent IL-1beta-mediated effects on isolated beta-cells. Potential implications of these findings in the development of novel therapeutics to prevent deleterious effects of cytokines and the onset of autoimmune diabetes are discussed.
Collapse
Affiliation(s)
- Laura Susick
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
161
|
Susick L, Senanayake T, Veluthakal R, Woster PM, Kowluru A. A novel histone deacetylase inhibitor prevents IL-1beta induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med 2010; 13:1877-85. [PMID: 20141611 DOI: 10.1111/j.1582-4934.2009.00672.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) has recently been shown to inhibit deleterious effects of cytokines on beta-cells, but it is unable to protect beta-cells from death due to its own cytotoxicity. Herein, we investigated novel HDAC inhibitors for their cytoprotective effects against IL-1beta-induced damage to isolated beta-cells. We report that three novel compounds (THS-73-44, THS-72-5 and THS-78-5) significantly inhibited HDAC activity and increased the acetylation of histone H4 in isolated beta-cells. Further, these compounds exerted no toxic effects on metabolic cell viability in these cells. However, among the three compounds tested, only THS-78-5 protected against IL-1beta-mediated loss in beta-cell viability. THS-78-5 was also able to attenuate IL-1beta-induced inducible nitric oxide synthase expression and subsequent NO release. Our data also indicate that the cytoprotective properties of THS-78-5 against IL-1beta-mediated effects may, in part, be due to inhibition of IL-1beta-induced transactivation of nuclear factor kappaB (NF-kappaB) in these cells. Together, we provide evidence for a novel HDAC inhibitor with a significant potential to prevent IL-1beta-mediated effects on isolated beta-cells. Potential implications of these findings in the development of novel therapeutics to prevent deleterious effects of cytokines and the onset of autoimmune diabetes are discussed.
Collapse
Affiliation(s)
- Laura Susick
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
162
|
Abstract
The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. The few treatments that are available for combating myelin damage in MS and related disorders, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably be accomplished by early intervention with combinatorial therapies that target inflammation and other processes-for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS, with a focus on signals that affect differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling.
Collapse
Affiliation(s)
- Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milan, Italy
| | | | | |
Collapse
|
163
|
Abstract
Psychiatric diseases place a tremendous burden on affected individuals, their caregivers, and the health care system. Although evidence exists for a strong inherited component to many of these conditions, dedicated efforts to identify DNA sequence-based causes have not been exceptionally productive, and very few pharmacologic treatment options are clinically available. Many features of psychiatric diseases are consistent with an epigenetic dysregulation, such as discordance of monozygotic twins, late age of onset, parent-of-origin and sex effects, and fluctuating disease course. In recent years, experimental technologies have significantly advanced, permitting indepth studies of the epigenome and its role in maintenance of normal genomic functions, as well as disease etiopathogenesis. Here, we present an epigenetic explanation for many characteristics of psychiatric disease, review the current literature on the epigenetic mechanisms involved in major psychosis, Alzheimer's disease, and autism spectrum disorders, and describe some future directions in the field of psychiatric epigenomics.
Collapse
Affiliation(s)
- Carolyn Ptak
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|
164
|
Wang QH, Nishiyama C, Nakano N, Kanada S, Hara M, Kitamura N, Shimokawa N, Lu CL, Ogawa H, Okumura K. Opposite effects of Trichostatin A on activation of mast cells by different stimulants. FEBS Lett 2010; 584:2315-20. [PMID: 20371366 DOI: 10.1016/j.febslet.2010.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 11/18/2022]
Abstract
Mast cells (MCs) are activated upon stimulation via TLRs or FcepsilonRI, contributing to immune protection and/or leading to allergic diseases. In the present study, the effects of Trichostatin A (TSA) on the activation of MCs were analyzed with bone marrow-derived (BM) MCs. TSA increased the transcription and protein secretion of IL-6 in case of LPS-stimulation, in contrast to the suppressive effect on IgE-mediated activation of BMMCs. Chromatin immunoprecipitation assay showed IgE-mediated signaling-specific suppression of transcription factors recruitment to the IL-6 promoter. TSA-treatment inhibited nuclear translocation of NF-kappaB following IgE-mediated, but not LPS-induced activation in MCs.
Collapse
Affiliation(s)
- Qing-hui Wang
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Ni YF, Wang J, Yan XL, Tian F, Zhao JB, Wang YJ, Jiang T. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respir Res 2010; 11:33. [PMID: 20302656 PMCID: PMC2848144 DOI: 10.1186/1465-9921-11-33] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/20/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors, developed as promising anti-tumor drugs, exhibit their anti-inflammatory properties due to their effects on reduction of inflammatory cytokines. OBJECTIVE To investigate the protective effect of butyrate, a HDAC inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. METHODS ALI was induced in Balb/c mice by intratracheally instillation of LPS (1 mg/kg). Before 1 hour of LPS administration, the mice received butyrate (10 mg/kg) orally. The animals in each group were sacrificed at different time point after LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha in bronchoalveolar lavage fluid (BALF) and concentrations of nitric oxide (NO) and myeloperoxidase (MPO) activity in lung tissue homogenates were measured by enzyme-linked immunosorbent assay (ELISA). Expression of nuclear factor (NF)-kappaB p65 in cytoplasm and nucleus was determined by Western blot analysis respectively. RESULTS Pretreatment with butyrate led to significant attenuation of LPS induced evident lung histopathological changes, alveolar hemorrhage, and neutrophils infiltration with evidence of reduced MPO activity. The lung wet/dry weight ratios, as an index of lung edema, were reduced by butyrate administration. Butyrate also repressed the production of TNF-alpha, IL-1beta and NO. Furthermore, the expression of NF-kappaB p65 in nucleus was markedly suppressed by butyrate pretreatment. CONCLUSIONS Butyrate had a protective effect on LPS-induced ALI, which may be related to its effect on suppression of inflammatory cytokines production and NF-kappaB activation.
Collapse
Affiliation(s)
- Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Jie Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| |
Collapse
|
166
|
Abstract
Acetylation of histone and nonhistone proteins provides a key mechanism for controlling signaling and gene expression in heart and kidney. Pharmacological inhibition of protein deacetylation with histone deacetylase (HDAC) inhibitors has shown promise in preclinical models of cardiovascular and renal disease. Efficacy of HDAC inhibitors appears to be governed by pleiotropic salutary actions on a variety of cell types and pathophysiological processes, including myocyte hypertrophy, fibrosis, inflammation and epithelial-to-mesenchymal transition, and occurs at compound concentrations below the threshold required to elicit toxic side effects. We review the roles of acetylation/deacetylation in the heart and kidney and provide rationale for extending HDAC inhibitors into clinical testing for indications involving these organs.
Collapse
Affiliation(s)
- Erik W Bush
- Gilead Colorado Inc, 3333 Walnut St, Boulder, CO 80301, USA.
| | | |
Collapse
|
167
|
Halili MA, Andrews MR, Labzin LI, Schroder K, Matthias G, Cao C, Lovelace E, Reid RC, Le GT, Hume DA, Irvine KM, Matthias P, Fairlie DP, Sweet MJ. Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS. J Leukoc Biol 2010; 87:1103-14. [PMID: 20200406 DOI: 10.1189/jlb.0509363] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.
Collapse
Affiliation(s)
- Maria A Halili
- The University of Queensland, Institute for Molecular Bioscience, S. Lucia, Brisbane, Queensland, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Dietz KC, Casaccia P. HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res 2010; 62:11-7. [PMID: 20123018 DOI: 10.1016/j.phrs.2010.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/15/2010] [Indexed: 12/22/2022]
Abstract
The use of histone deacetylase inhibitors (HDACIs) as a therapeutic tool for neurodegenerative disorders has been examined with great interest in the last decade. The functional response to treatment with broad-spectrum inhibitors however, has been heterogeneous: protective in some cases and detrimental in others. In this review we discuss potential underlying causes for these apparently contradictory results. Because HDACs are part of repressive complexes, the functional outcome has been characteristically attributed to enhanced gene expression due to increased acetylation of lysine residues on nucleosomal histones. However, it is important to take into consideration that the up-regulation of diverse sets of genes (i.e. pro-apoptotic and anti-apoptotic) may orchestrate different responses in diverse cell types. An alternative possibility is that broad-spectrum pharmacological inhibition may target nuclear or cytosolic HDAC isoforms, with distinct non-histone substrates (i.e. transcription factors; cytoskeletal proteins). Thus, for any given neurological disorder, it is important to take into account the effect of HDACIs on neuronal, glial and inflammatory cells and define the relative contribution of distinct HDAC isoforms to the pathological process. This review article addresses how opposing effects on distinct cell types may profoundly influence the overall therapeutic potential of HDAC inhibitors when investigating treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Karen C Dietz
- Department of Neuroscience and Genetics & Genomics, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1065, New York, NY 10029, United States
| | | |
Collapse
|
169
|
Grabiec AM, Krausz S, de Jager W, Burakowski T, Groot D, Sanders ME, Prakken BJ, Maslinski W, Eldering E, Tak PP, Reedquist KA. Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. THE JOURNAL OF IMMUNOLOGY 2010; 184:2718-28. [PMID: 20100935 DOI: 10.4049/jimmunol.0901467] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones, transcription factors, and structural proteins. Although histone deacetylase (HDAC) inhibitors (HDACis) demonstrate therapeutic effects in animal models of chronic inflammatory disease, depressed macrophage HDAC activity in patients with asthma, chronic obstructive pulmonary disease, or RA may contribute to inflammation in these diseases, potentially contraindicating the therapeutic administration of HDACis. In this study, we directly examined whether HDACis could influence the activation of macrophages derived from the inflamed joints of patients with RA. We found that inhibition of class I/II HDACs or class III sirtuin HDACs potently blocked the production of IL-6 and TNF-alpha by macrophages from healthy donors and patients with RA. Two HDACis, trichostatin A and nicotinamide, selectively induced macrophage apoptosis associated with specific downregulation of the antiapoptotic protein Bfl-1/A1, and inflammatory stimuli enhanced the sensitivity of macrophages to HDACi-induced apoptosis. Importantly, inflammatory and angiogenic cytokine production in intact RA synovial biopsy explants was also suppressed by HDACis. Our study identifies redundant, but essential, roles for class I/II and sirtuin HDACs in promoting inflammation, angiogenesis, and cell survival in RA.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Qureshi IA, Mehler MF. Genetic and epigenetic underpinnings of sex differences in the brain and in neurological and psychiatric disease susceptibility. PROGRESS IN BRAIN RESEARCH 2010; 186:77-95. [PMID: 21094887 PMCID: PMC4465286 DOI: 10.1016/b978-0-444-53630-3.00006-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are numerous examples of sex differences in brain and behavior and in susceptibility to a broad range of brain diseases. For example, gene expression is sexually dimorphic during brain development, adult life, and aging. These differences are orchestrated by the interplay between genetic, hormonal, and environmental influences. However, the molecular mechanisms that underpin these differences have not been fully elucidated. Because recent studies have highlighted the key roles played by epigenetic processes in regulating gene expression and mediating brain form and function, this chapter reviews emerging evidence that shows how epigenetic mechanisms including DNA methylation, histone modifications, and chromatin remodeling, and non-coding RNAs (ncRNAs) are responsible for promoting sexual dimorphism in the brain. Differential profiles of DNA methylation and histone modifications are found in dimorphic brain regions such as the hypothalamus as a result of sex hormone exposure during developmental critical periods. The elaboration of specific epigenetic marks is also linked with regulating sex hormone signaling pathways later in life. Furthermore, the expression and function of epigenetic factors such as the methyl-CpG-binding protein, MeCP2, and the histone-modifying enzymes, UTX and UTY, are sexually dimorphic in the brain. ncRNAs are also implicated in promoting sex differences. For example, X inactivation-specific transcript (XIST) is a long ncRNA that mediates X chromosome inactivation, a seminal developmental process that is particularly important in brain. These observations imply that understanding epigenetic mechanisms, which regulate dimorphic gene expression and function, is necessary for developing a more comprehensive view of sex differences in brain. These emerging findings also suggest that epigenetic mechanisms are, in part, responsible for the differential susceptibility between males and females that is characteristic of a spectrum of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
171
|
Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 2009; 8:969-81. [PMID: 19855427 PMCID: PMC2884987 DOI: 10.1038/nrd3031] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical zinc-dependent histone deacetylases (HDACs) catalyse the removal of acetyl groups from histone tails and also from many non-histone proteins, including the transcription factor FOXP3, a key regulator of the development and function of regulatory T cells. Many HDAC inhibitors are in cancer clinical trials, but a subset of HDAC inhibitors has important anti-inflammatory or immunosuppressive effects that might be of therapeutic benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of HDAC inhibitors to enhance the production and suppressive functions of FOXP3(+) regulatory T cells. Understanding which HDACs contribute to the regulation of the functions of regulatory T cells may further stimulate the development of new class- or subclass-specific HDAC inhibitors with applications beyond oncology.
Collapse
Affiliation(s)
- Liqing Wang
- Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
172
|
Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8:1056-72. [PMID: 19833297 DOI: 10.1016/s1474-4422(09)70262-5] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms such as DNA methylation and modifications to histone proteins regulate high-order DNA structure and gene expression. Aberrant epigenetic mechanisms are involved in the development of many diseases, including cancer. The neurological disorder most intensely studied with regard to epigenetic changes is Rett syndrome; patients with Rett syndrome have neurodevelopmental defects associated with mutations in MeCP2, which encodes the methyl CpG binding protein 2, that binds to methylated DNA. Other mental retardation disorders are also linked to the disruption of genes involved in epigenetic mechanisms; such disorders include alpha thalassaemia/mental retardation X-linked syndrome, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. Moreover, aberrant DNA methylation and histone modification profiles of discrete DNA sequences, and those at a genome-wide level, have just begun to be described for neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and in other neurological disorders such as multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis. In this Review, we describe epigenetic changes present in neurological diseases and discuss the therapeutic potential of epigenetic drugs, such as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Catalonia, Spain
| | | | | |
Collapse
|
173
|
Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF. Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS One 2009; 4:e7665. [PMID: 19888342 PMCID: PMC2766030 DOI: 10.1371/journal.pone.0007665] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/03/2009] [Indexed: 02/07/2023] Open
Abstract
Background The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. Methodology/Principal Findings We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. Conclusions/Significance Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states.
Collapse
Affiliation(s)
- Joseph J Abrajano
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | | | | | | | | |
Collapse
|
174
|
Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2009; 29:157-73. [DOI: 10.1038/onc.2009.334] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
175
|
Saouaf SJ, Li B, Zhang G, Shen Y, Furuuchi N, Hancock WW, Greene MI. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol 2009; 87:99-104. [PMID: 19577564 PMCID: PMC2753738 DOI: 10.1016/j.yexmp.2009.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/19/2009] [Indexed: 11/22/2022]
Abstract
Collagen-induced arthritis (CIA) is an established mouse model of disease with hallmarks of clinical rheumatoid arthritis. Histone/protein deacetylase inhibitors (HDACi) are known to inhibit the pathogenesis of CIA and other models of autoimmune disease, although the mechanisms responsible are unclear. Regulatory T cell (Treg) function is defective in rheumatoid arthritis. FOXP3 proteins in Tregs are present in a dynamic protein complex containing histone acetyltransferase and HDAC enzymes, and FOXP3 itself is acetylated on lysine residues. We therefore investigated the effects of HDACi therapy on regulatory T cell function in the CIA model. Administration of an HDACi, valproic acid (VPA), significantly decreased disease incidence (p<0.005) and severity (p<0.03) in CIA. In addition, VPA treatment increased both the suppressive function of CD4(+)CD25(+) Tregs (p<0.04) and the numbers of CD25(+)FOXP3(+) Tregs in vivo. Hence, clinically approved HDACi such as VPA may limit autoimmune disease in vivo through effects on the production and function of FOXP3(+) Treg cells.
Collapse
Affiliation(s)
- Sandra J. Saouaf
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Bin Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Geng Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Yuan Shen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Narumi Furuuchi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
- Department of Pathology and Laboratory Medicine, Joseph Stokes, Jr. Research Institute, Children’s Hospital of Philadelphia, PA, 19104-4318, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| |
Collapse
|
176
|
Nalivaeva NN, Belyaev ND, Turner AJ. Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 2009; 30:509-14. [PMID: 19762089 DOI: 10.1016/j.tips.2009.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/19/2009] [Accepted: 07/21/2009] [Indexed: 01/16/2023]
Abstract
Sodium valproate, or Epilim, has been widely used as a broad spectrum, anticonvulsant drug for over 40 years and exhibits a good safety profile. Some of the actions of valproate arise from its more recently described histone deacetylase (HDAC) inhibitory properties and hence it can specifically modulate gene expression. There is now accumulating evidence that HDAC inhibitors may have potential in the treatment of CNS disorders and, in this context, valproate has much potential as a brain-penetrant, clinically available and well tested drug. This article reviews the pharmacology of this remarkable molecule, focusing on its actions as a neuroprotectant and hence with new potential in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
177
|
Dombrowsky H, Barrenschee M, Kunze M, Uhlig S. Conserved responses to trichostatin A in rodent lungs exposed to endotoxin or stretch. Pulm Pharmacol Ther 2009; 22:593-602. [PMID: 19744573 DOI: 10.1016/j.pupt.2009.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/30/2009] [Accepted: 08/31/2009] [Indexed: 12/20/2022]
Abstract
Histone deacetylase (HDAC) isoenzymes have been suggested as possible drug targets in pulmonary cancer and in inflammatory lung diseases such as asthma and COPD. Whether HDAC inhibition is pro- or anti-inflammatory is under debate. To further examine this clinically relevant paradigm, we analyzed 8 genes that are upregulated by two pro-inflammatory stimuli, i.e. endotoxin and mechanical stress (overventilation), in isolated rat and mouse lungs, respectively. We studied the effect of the HDAC inhibitor trichostatin A (TSA) under control conditions, in response to endotoxin and overventilation, and on the effects of the steroid dexamethasone. TSA affected gene expression largely independent of the stimulus (endotoxin, overventilation) and the species (rat, mouse) leading to upregulation of some genes (Tnf, Cxcl2) and downregulation of others (Cxcl10, Timp1, Selp, Il6). At the protein level, TSA reduced the stimulated release of TNF, MIP-2alpha and IL-6, indicating that TSA may affect protein translation independent from gene transcription. In general, the anti-inflammatory effects of TSA on gene expression and protein release were additive to that of dexamethasone, suggesting that both drugs employ different mechanisms. We conclude that pro-inflammatory stimuli induce distinct sets of genes that are regulated by HDAC in a diverse, but consistent manner across two rodent species. The present findings together with previous in vivo studies suggest that the effect of HDAC inhibition in the intact lung is in part anti-inflammatory.
Collapse
Affiliation(s)
- Heike Dombrowsky
- Division of Pulmonary Pharmacology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | | | | | |
Collapse
|
178
|
Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, Trembovler V, Mascagni P, Dinarello CA, Shohami E. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J 2009; 23:4266-75. [PMID: 19723705 DOI: 10.1096/fj.09-134700] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite efforts aimed at developing novel therapeutics for traumatic brain injury (TBI), no specific pharmacological agent is currently clinically available. Here, we show that the pan-histone deacetylase (HDAC) inhibitor ITF2357, a compound shown to be safe and effective in humans, improves functional recovery and attenuates tissue damage when administered as late as 24 h postinjury. Using a well-characterized, clinically relevant mouse model of closed head injury (CHI), we demonstrate that a single dose of ITF2357 administered 24 h postinjury improves neurobehavioral recovery from d 6 up to 14 d postinjury (improved neurological score vs. vehicle; P< or =0.05), and that this functional benefit is accompanied by decreased neuronal degeneration, reduced lesion volume (22% reduction vs. vehicle; P< or =0.01), and is preceded by increased acetylated histone H3 levels and attenuation of injury-induced decreases in cytoprotective heat-shock protein 70 kDa and phosphorylated Akt. Moreover, reduced glial accumulation and activation were observed 3 d postinjury, and total p53 levels at the area of injury and caspase-3 immunoreactivity within microglia/macrophages at the trauma area were elevated, suggesting enhanced clearance of these cells via apoptosis following treatment. Hence, our findings underscore the relevance of HDAC inhibitors for ameliorating trauma-induced functional deficits and warrant consideration of applying ITF2357 for this indication.
Collapse
Affiliation(s)
- Na'ama A Shein
- Department of Pharmacology, The Hebrew University School of Pharmacy, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Dagtas AS, Edens RE, Gilbert KM. Histone deacetylase inhibitor uses p21(Cip1) to maintain anergy in CD4+ T cells. Int Immunopharmacol 2009; 9:1289-97. [PMID: 19664724 DOI: 10.1016/j.intimp.2009.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
T cell anergy defined as antigen-specific proliferative unresponsiveness was induced in CD4+ T cells exposed to antigen (Ag) in the presence of the histone deacetylase (HDAC) inhibitors n-butyrate, trichostatin A or scriptaid. However, the ability of HDAC inhibitors to induce anergy in Th1 cells was not due to general histone hyperacetylation. Instead, the anergy induced by HDAC inhibitors was associated with upregulation of p21(Cip1), a secondary effect of histone acetylation. Induction of p21(Cip1) in the absence of histone hyperacetylation by exposure to okadaic acid also resulted in T cell anergy. In addition, Ag-specific p21(Cip1)-deficient CD4+ T cells were much less susceptible to anergy induction by n-butyrate. Thus, p21(Cip1) appears to mediate the proliferative unresponsiveness found in CD4+ T cell anergized by exposure to Ag in the presence of HDAC inhibitors.
Collapse
Affiliation(s)
- A Selma Dagtas
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | | | | |
Collapse
|
180
|
Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 2009; 36:269-79. [PMID: 19635561 DOI: 10.1016/j.nbd.2009.07.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/08/2009] [Accepted: 07/17/2009] [Indexed: 01/29/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are emerging tools for epigenetic modulation of gene expression and suppress the inflammatory response in models of systemic immune activation. Yet, their effects within the brain are still controversial. Also, whether HDACs are expressed in astrocytes or microglia is unclear. Here, we report the identification of transcripts for HDAC 1-11 in cultured mouse glial cells. Two HDACi such as SAHA and ITF2357 induce dramatic increase of histone acetylation without causing cytotoxicity of cultured cells. Of note, the two compounds inhibit expression of pro-inflammatory mediators by LPS-challenged glial cultures, and potentiate immunosuppression triggered by dexamethasone in vitro. The anti-inflammatory effect is not due to HDACi-induced transcription of immunosuppressant proteins, (including SOCS-1/3) or microRNA-146. Rather, it is accompanied by direct alteration of transcription factor DNA binding and ensuing transcriptional activation. Indeed, both HDACi impair NFkappaB-dependent IkappaBalpha resynthesis in glial cells exposed to LPS, and, among various AP1 subunits and NFkappaB p65, affect the DNA binding activity of c-FOS, c-JUN and FRA2. Importantly, ITF2357 reduces the expression of pro-inflammatory mediators in the striatum of mice iontophoretically injected with LPS. Data demonstrate that mouse glial cells have ongoing HDAC activity, and its inhibition suppresses the neuroinflammatory response because of a direct impairment of the transcriptional machinery.
Collapse
|
181
|
Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke 2009; 40:2899-905. [PMID: 19478231 DOI: 10.1161/strokeaha.108.540229] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Achieving therapeutic efficacy in ischemic stroke represents one of the biggest challenges in translational neurobiology. Despite extensive efforts, tissue plasminogen activator remains the only available intervention for enhancing functional recovery in humans once a stroke has occurred. To expand the repertoire of therapeutic options in stroke, one must consider and target its diverse pathophysiologies that trigger cell loss in a manner that also permits and enhances neuronal plasticity and repair. Several converging lines of inquiry suggest that histone deacetylase (HDAC) inhibition could be a strategy to achieve these goals. Here, we review evidence that targeting HDACs with low-molecular-weight inhibitors significantly decreases neuronal injury and improves functional outcome in multiple preclinical models of focal ischemia. These salutary effects emanate, in part, from modifications of chromatin and nonchromatin proteins that enhance adaptive gene expression or adaptive protein function. Together, the findings suggest that HDAC inhibition is a strategy capable of targeting diverse pathophysiologies of stroke with a wide therapeutic window.
Collapse
Affiliation(s)
- Brett Langley
- Burke/Cornell Medical Research Institute, 785 Mamaroneck Road, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
182
|
Identification of trichostatin A as a novel transcriptional up-regulator of scavenger receptor BI both in HepG2 and RAW 264.7 cells. Atherosclerosis 2009; 204:127-35. [DOI: 10.1016/j.atherosclerosis.2008.08.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 08/23/2008] [Accepted: 08/26/2008] [Indexed: 12/17/2022]
|
183
|
Jung I, Lee J, Jeong YI, Lee CM, Chang J, Jeong S, Chun S, Park W, Han J, Shin Y, Park YM. Apicidin, the Histone Deacetylase Inhibitor, Suppresses TH1 Polarization of Murine Bone Marrow-Derived Dendritic Cells. Int J Immunopathol Pharmacol 2009; 22:501-15. [DOI: 10.1177/039463200902200227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apicidin is a fungal metabolite shown to exhibit anti-proliferative, anti-invasive, and anti-inflammatory properties by the inhibition of histone deacetylase (HDAC). However, the effects of apicidin on the maturation and immunostimulatory function of dendritic cells (DCs) remain unknown. In this study, we investigated whether apicidin modulates surface molecule expression, cytokine production, endocytosis capacity, and underlying signaling pathways in murine bone marrow-derived DCs. We observed that apicidin significantly attenuated surface molecule expression in LPS-stimulated DCs, suppressed production of interleukin (IL)-12 and proinflammatory cytokines (IL-6 and TNF-α) by DCs, and reduced IFN-γ production by T cells. The apicidin-treated DCs were found to be highly efficient in antigen capture via mannose receptor-mediated endocytosis. Apicidin also inhibited LPS-induced MAPK activation and NF-κB nuclear translocation in DCs. Moreover, the apicidin-treated DCs were incapable of inducing Th1 responses and normal cell-mediated immune responses. These novel findings not only provide new insights into the immunopharmacological role of apicidin in terms of its effects on DCs, but also broaden current perspectives of the immunopharmacological functions of apicidin, and have implications for the development of therapeutic adjuvants for the treatment of DC-related acute and chronic diseases.
Collapse
Affiliation(s)
| | | | - Y-I. Jeong
- Department of Microbiology, Pusan National University, College of Natural Science, Changjeon-dong, Geumjeong-Gu, Busan
| | | | - J.H. Chang
- Department of Clinical Laboratory Science, Daegu Haany University, College of Health & Therapy, Gyeongsangbuk-do, Gyeongsan
| | | | | | - W.S. Park
- National Research Laboratory for Mitochondria Signaling, FIRST Mitochondria Research Group, Department of Physiology and Biophysics, Inje University, College of Medicine, Gaegeum-dong, Busanjin-Gu, Busan
| | - J. Han
- National Research Laboratory for Mitochondria Signaling, FIRST Mitochondria Research Group, Department of Physiology and Biophysics, Inje University, College of Medicine, Gaegeum-dong, Busanjin-Gu, Busan
| | - Y.K. Shin
- Department of Pharmacology, Chung-Ang University, College of Medicine, Heuksuk-Dong, Dongjak-Ku, Seoul, South Korea
| | | |
Collapse
|
184
|
Wang L, Tao R, Hancock WW. Using histone deacetylase inhibitors to enhance Foxp3(+) regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol 2009; 87:195-202. [PMID: 19172156 DOI: 10.1038/icb.2008.106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The histone/protein deacetylase inhibitor (HDACi), trichostatin A (TsA), increases the production and suppressive function of Foxp3(+) regulatory T cells (T(regs)), at least in part, by promoting the acetylation of Foxp3 protein itself. Acetylation of Foxp3 is required for effective binding of Foxp3 to the promoter of the interleukin-2 (IL-2) gene and the suppression of IL-2 expression. We have sought to identify agents that had similar effects on T(regs), but without the associated toxicity of TsA. This review summarizes the contrasting effects of various HDACis on T(reg) functions in vitro and in vivo. Agents that block primarily class I HDAC had minimal or no effect on T(reg) suppression, whereas multiple inhibitors of both class I and class II HDAC enhanced T(reg) suppression in vitro and in vivo. These data indicate tools for further analysis of T(reg) functions, and point to a critical role of class II HDAC in the regulation of T(regs). Such knowledge has direct implications for the development of in vivo approaches to treat autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Pathology and Laboratory Medicine, Stokes Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | | | | |
Collapse
|
185
|
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10:32-42. [PMID: 19065135 PMCID: PMC3215088 DOI: 10.1038/nrg2485] [Citation(s) in RCA: 1964] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylases (HDACs) are part of a vast family of enzymes that have crucial roles in numerous biological processes, largely through their repressive influence on transcription. The expression of many HDAC isoforms in eukaryotic cells raises questions about their possible specificity or redundancy, and whether they control global or specific programmes of gene expression. Recent analyses of HDAC knockout mice have revealed highly specific functions of individual HDACs in development and disease. Mutant mice lacking individual HDACs are a powerful tool for defining the functions of HDACs in vivo and the molecular targets of HDAC inhibitors in disease.
Collapse
Affiliation(s)
- Michael Haberland
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
186
|
HDAC inhibitors in models of inflammation-related tumorigenesis. Cancer Lett 2008; 280:154-9. [PMID: 19101082 DOI: 10.1016/j.canlet.2008.11.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 11/20/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been described in detail for their anti-proliferative potency. Recently, an anti-inflammatory property was characterized in vitro and in vivo. This dual efficacy of HDAC inhibitors is highly attractive, since chronic inflammations such as ulcerative colitis are associated with an increased risk of developing carcinomas. Additionally, in models of colitis and inflammation-induced tumorigenesis inflammation as well as tumor development was significantly inhibited by HDAC inhibitor treatment. The mechanisms involved reach beyond the simple regulation of histone acetylation and deacetylation. The currently known key target structures and mechanisms mediating this dual effect will be discussed in this review.
Collapse
|
187
|
Casaccia-Bonnefil P, Pandozy G, Mastronardi F. Evaluating epigenetic landmarks in the brain of multiple sclerosis patients: a contribution to the current debate on disease pathogenesis. Prog Neurobiol 2008; 86:368-78. [PMID: 18930111 PMCID: PMC2656687 DOI: 10.1016/j.pneurobio.2008.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
The evidence suggesting a role of epigenetics in the definition of complex trait diseases is rapidly increasing. The gender prevalence of multiple sclerosis, the low level concordance in homozygous twins and the linkage to several genetic loci, suggest an epigenetic component to the definition of this demyelinating disorder. While the immune etio-pathogenetic mechanism of disease progression has been well characterized, still relatively little is known about the initial events contributing to onset and progression of the demyelinating lesion. This article addresses the challenging question of whether loss of the mechanisms of epigenetic regulation of gene expression in the myelinating cells may contribute to the pathogenesis of multiple sclerosis, by affecting the repair process and by modulating the levels of enzymes involved in neo-epitope formation. The role of altered post-translational modifications of nucleosomal histones and DNA methylation in white matter oligodendroglial cells are presented in terms of pathogenetic concepts and the relevance to therapeutic intervention is then discussed.
Collapse
Affiliation(s)
- Patrizia Casaccia-Bonnefil
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY10029, USA.
| | | | | |
Collapse
|
188
|
Kürtüncü M, Tüzün E. Multiple sclerosis: Could it be an epigenetic disease? Med Hypotheses 2008; 71:945-7. [DOI: 10.1016/j.mehy.2008.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 11/27/2022]
|
189
|
Jiang Y, Langley B, Lubin FD, Renthal W, Wood MA, Yasui DH, Kumar A, Nestler EJ, Akbarian S, Beckel-Mitchener AC. Epigenetics in the nervous system. J Neurosci 2008; 28:11753-9. [PMID: 19005036 PMCID: PMC3844836 DOI: 10.1523/jneurosci.3797-08.2008] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 01/12/2023] Open
Abstract
It is becoming increasingly clear that epigenetic modifications are critical factors in the regulation of gene expression. With regard to the nervous system, epigenetic alterations play a role in a diverse set of processes and have been implicated in a variety of disorders. Gaining a more complete understanding of the essential components and underlying mechanisms involved in epigenetic regulation could lead to novel treatments for a number of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Yan Jiang
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604
| | - Brett Langley
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, New York 10021
| | - Farah D. Lubin
- Department of Neurobiology, The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
| | - William Renthal
- Department of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697-3800
| | - Dag H. Yasui
- Departments of Medical Microbiology and Immunology, Rowe Program in Human Genetics, School of Medicine, University of California, Davis, Davis, California 95616-8500, and
| | - Arvind Kumar
- Department of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Eric J. Nestler
- Department of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604
| | | |
Collapse
|
190
|
Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008; 28:11500-10. [PMID: 18987186 PMCID: PMC2617713 DOI: 10.1523/jneurosci.3203-08.2008] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/27/2008] [Accepted: 09/07/2008] [Indexed: 12/29/2022] Open
Abstract
Memory loss is the signature feature of Alzheimer's disease, and therapies that prevent or delay its onset are urgently needed. Effective preventive strategies likely offer the greatest and most widespread benefits. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance memory and synaptic plasticity. We evaluated the efficacy of nicotinamide, a competitive inhibitor of the sirtuins or class III NAD(+)-dependent HDACs in 3xTg-AD mice, and found that it restored cognitive deficits associated with pathology. Nicotinamide selectively reduces a specific phospho-species of tau (Thr231) that is associated with microtubule depolymerization, in a manner similar to inhibition of SirT1. Nicotinamide also dramatically increased acetylated alpha-tubulin, a primary substrate of SirT2, and MAP2c, both of which are linked to increased microtubule stability. Reduced phosphoThr231-tau was related to a reduction of monoubiquitin-conjugated tau, suggesting that this posttranslationally modified form of tau may be rapidly degraded. Overexpression of a Thr231-phospho-mimic tau in vitro increased clearance and decreased accumulation of tau compared with wild-type tau. These preclinical findings suggest that oral nicotinamide may represent a safe treatment for AD and other tauopathies, and that phosphorylation of tau at Thr231 may regulate tau stability.
Collapse
Affiliation(s)
| | | | | | | | - Steven S. Schreiber
- Neurology
- Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697-4545
| | - Leslie Michels Thompson
- Departments of Neurobiology and Behavior
- Psychiatry and Human Behavior
- Biological Chemistry, and
| | | |
Collapse
|
191
|
Lawless MW, Norris S, O'Byrne KJ, Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2008; 13:826-52. [PMID: 19175682 PMCID: PMC3823402 DOI: 10.1111/j.1582-4934.2008.00571.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ‘histone code’ is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular ‘code’ recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment.
Collapse
Affiliation(s)
- M W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital - University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
192
|
Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7:854-68. [PMID: 18827828 DOI: 10.1038/nrd2681] [Citation(s) in RCA: 562] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs)--enzymes that affect the acetylation status of histones and other important cellular proteins--have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Pharmacological manipulations using small-molecule HDAC inhibitors--which may restore transcriptional balance to neurons, modulate cytoskeletal function, affect immune responses and enhance protein degradation pathways--have been beneficial in various experimental models of brain diseases. Although mounting data predict a therapeutic benefit for HDAC-based therapy, drug discovery and development of clinical candidates face significant challenges. Here, we summarize the current state of development of HDAC therapeutics and their application for the treatment of human brain disorders such as Rubinstein-Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Aleksey G Kazantsev
- Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129-4404, USA.
| | | |
Collapse
|
193
|
Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJM, Casaccia-Bonnefil P. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 2008; 11:1024-34. [PMID: 19160500 PMCID: PMC2656679 DOI: 10.1038/nn.2172] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cuprizone
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/pathology
- Demyelinating Diseases/physiopathology
- Disease Models, Animal
- Enzyme Inhibitors/administration & dosage
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/ultrastructure
- Microscopy, Electron, Transmission/methods
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Neurosecretory Systems/drug effects
- Neurosecretory Systems/pathology
- Rats
- Regeneration/drug effects
- Regeneration/physiology
- Stem Cells/drug effects
- Stem Cells/physiology
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Siming Shen
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Bäckdahl L, Bushell A, Beck S. Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int J Biochem Cell Biol 2008; 41:176-84. [PMID: 18793748 DOI: 10.1016/j.biocel.2008.08.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 12/19/2022]
Abstract
Recent successes of therapeutic intervention in chronic inflammatory diseases using epigenetic modifiers such as histone deacetylase inhibitors and inhibitors of DNA methylation suggest that epigenetic reprogramming plays a role in the aetiology of these diseases. The epigenetic signature of a given immune cell is reflected in the history of modifications from different signals the cell has been subjected to during differentiation. Like other cells, differentiating immune cells are dependent on a complex combination of inter- and intracell signalling as well as transcription machineries to modulate their epigenomes in order to mediate differentiation. Despite extensive research into these processes, the link between cellular signalling and epigenetic modulation remains poorly understood. Here, we review recent progress and discuss key factors driving epigenetic modulation in chronic inflammation.
Collapse
Affiliation(s)
- Liselotte Bäckdahl
- Medical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| | | | | |
Collapse
|
195
|
Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 2008; 1226:181-91. [PMID: 18582446 PMCID: PMC2652585 DOI: 10.1016/j.brainres.2008.05.085] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/23/2023]
Abstract
Traumatic brain injury (TBI) produces a rapid and robust inflammatory response in the brain characterized in part by activation of microglia. A novel histone deacetylase (HDAC) inhibitor, 4-dimethylamino-N-[5-(2-mercaptoacetylamino)pentyl]benzamide (DMA-PB), was administered (0, 0.25, 2.5, 25 mg/kg) systemically immediately after lateral fluid percussion TBI in rats. Hippocampal CA2/3 tissue was processed for acetyl-histone H3 immunolocalization, OX-42 immunolocalization (for microglia), and Fluoro-Jade B histofluorescence (for degenerating neurons) at 24 h after injury. Vehicle-treated TBI rats exhibited a significant reduction in acetyl-histone H3 immunostaining in the ipsilateral CA2/3 hippocampus compared to the sham TBI group (p<0.05). The reduction in acetyl-histone H3 immunostaining was attenuated by each of the DMA-PB dosage treatment groups. Vehicle-treated TBI rats exhibited a high density of phagocytic microglia in the ipsilateral CA2/3 hippocampus compared to sham TBI in which none were observed. All doses of DMA-PB significantly reduced the density of phagocytic microglia (p<0.05). There was a trend for DMA-PB to reduce the number of degenerating neurons in the ipsilateral CA2/3 hippocampus (p=0.076). We conclude that the HDAC inhibitor DMA-PB is a potential novel therapeutic for inhibiting neuroinflammation associated with TBI.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Pharmacology, Shandong University School of Medicine, No.44, Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616
| | - Eric J. West
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616
| | - Ken C. Van
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616
| | - Jia Zhou
- PsychoGenics Inc., Tarrytown, NY 10591
| | - Xiu-Mei Zhang
- Department of Pharmacology, Shandong University School of Medicine, No.44, Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 60612
| | - Bruce G. Lyeth
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616
| |
Collapse
|
196
|
Bonfils C, Walkinshaw DR, Besterman JM, Yang XJ, Li Z. Pharmacological inhibition of histone deacetylases for the treatment of cancer, neurodegenerative disorders and inflammatory diseases. Expert Opin Drug Discov 2008; 3:1041-65. [DOI: 10.1517/17460441.3.9.1041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
197
|
Takizawa T, Meshorer E. Chromatin and nuclear architecture in the nervous system. Trends Neurosci 2008; 31:343-52. [PMID: 18538423 DOI: 10.1016/j.tins.2008.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 01/24/2023]
Abstract
Neurons are arguably the most varied cell type both morphologically and functionally. Their fate during differentiation and development and the activity of mature neurons are significantly determined and regulated by chromatin. The nucleus is compartmentalized and the arrangement of these compartments, termed the nuclear architecture, distinguishes one cell type from another and dictates many nuclear processes. Nuclear architecture determines the arrangement of chromosomes, the positioning of genes within chromosomes, the distribution of nuclear bodies and the interplay between these different factors. Importantly, chromatin regulation has been shown to be the basis for a variety of central nervous system processes including grooming and nursing, depression and stress, and drug abuse, among others. Here we review the regulation and function of nuclear architecture and chromatin structure in the context of the nervous system and discuss the potential use of histone deacetylase inhibitors as chromatin-directed therapy for nervous system disorders.
Collapse
Affiliation(s)
- Takumi Takizawa
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
198
|
Abstract
The treatment of alcoholism requires the proper management of ethanol withdrawal symptoms, such as anxiety, to prevent further alcohol use and abuse. In this study, we investigated the potential role of brain chromatin remodeling, caused by histone modifications, in alcoholism. We found that the anxiolytic effects produced by acute alcohol were associated with a decrease in histone deacetylase (HDAC) activity and increases in acetylation of histones (H3 and H4), levels of CREB (cAMP-responsive element binding) binding protein (CBP), and neuropeptide Y (NPY) expression in the amygdaloid brain regions of rats. However, the anxiety-like behaviors during withdrawal after chronic alcohol exposure were associated with an increase in HDAC activity and decreases in acetylation of H3 and H4, and levels of both CBP and NPY in the amygdala. Blocking the observed increase in HDAC activity during alcohol withdrawal with the HDAC inhibitor, trichostatin A, rescued the deficits in H3 and H4 acetylation and NPY expression (mRNA and protein levels) in the amygdala (central and medial nucleus of amygdala) and prevented the development of alcohol withdrawal-related anxiety in rats as measured by the elevated plus maze and light/dark box exploration tests. These results reveal a novel role for amygdaloid chromatin remodeling in the process of alcohol addiction and further suggest that HDAC inhibitors may be potential therapeutic agents in treating alcohol withdrawal symptoms.
Collapse
|
199
|
Shen S, Casaccia-Bonnefil P. Post-translational modifications of nucleosomal histones in oligodendrocyte lineage cells in development and disease. J Mol Neurosci 2008; 35:13-22. [PMID: 17999198 PMCID: PMC2323904 DOI: 10.1007/s12031-007-9014-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.
Collapse
Affiliation(s)
- Siming Shen
- Department Neuroscience and Cell Biology, Robert Wood Johnson Medical School, R-304 Research Tower 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
200
|
Johnson J, Pahuja A, Graham M, Hering B, Hancock WW, Bansal-Pakala P. Effects of histone deacetylase inhibitor SAHA on effector and FOXP3+regulatory T cells in rhesus macaques. Transplant Proc 2008; 40:459-61. [PMID: 18374101 PMCID: PMC2638761 DOI: 10.1016/j.transproceed.2008.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA) a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrests the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potential preclinical applications. In this study, we show that SAHA inhibits polyclonal activation and proliferation of rhesus T cells and that the antiproliferative effects are due to inhibition of T-effector (Teff) cells and enhancement of Treg cells. Cryopreserved rhesus macaque splenocytes were CFSE labeled, stimulated with anti-CD3/anti-CD28 and cultured for 5 days in the presence of varying concentrations of SAHA. Samples were then costained to evaluate CD4 and CD8 expression. Concentrations of SAHA (10 and 5 micromol/L) were toxic to splenocytes. Proliferation was inhibited by 57% in CD4 cells and 47% in CD8 cells when unseparated splenocytes were cultured with 3 micromol/L SAHA. Effector cells alone showed decreased inhibition to proliferation when cultured with 3 micromol/L and 1 micromol/L SAHA when compared to Teff plus Treg cells. Our data suggest that SAHA can be used as part of an immunosuppressive protocol to enhance graft survival by limiting Teff cell proliferation as well as increasing Treg cells, thereby promoting tolerance.
Collapse
Affiliation(s)
- J Johnson
- Diabetes Institute for Immunology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|