151
|
Chen L, Zhang X, Wang W, Geng X, Shi Y, Na R, Dou D, Li H. Network and role analysis of autophagy in Phytophthora sojae. Sci Rep 2017; 7:1879. [PMID: 28500315 PMCID: PMC5431975 DOI: 10.1038/s41598-017-01988-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an evolutionarily conserved mechanism in eukaryotes with roles in development and the virulence of plant fungal pathogens. However, few reports on autophagy in oomycete species have been published. Here, we identified 26 autophagy-related genes (ATGs) belonging to 20 different groups in Phytophthora sojae using a genome-wide survey, and core ATGs in oomycetes were used to construct a preliminary autophagy pathway model. Expression profile analysis revealed that these ATGs are broadly expressed and that the majority of them significantly increase during infection stages, suggesting a central role for autophagy in virulence. Autophagy in P. sojae was detected using a GFP-PsAtg8 fusion protein and the fluorescent dye MDC during rapamycin and starvation treatment. In addition, autophagy was significantly induced during sporangium formation and cyst germination. Silencing PsAtg6a in P. sojae significantly reduced sporulation and pathogenicity. Furthermore, a PsAtg6a-silenced strain showed haustorial formation defects. These results suggested that autophagy might play essential roles in both the development and infection mechanism of P. sojae.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejing Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Risong Na
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglian Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
152
|
Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ, Kastner P, Hall NE, Templeton MD, Bowen JK. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genomics 2017; 18:339. [PMID: 28464870 PMCID: PMC5412055 DOI: 10.1186/s12864-017-3699-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.
Collapse
Affiliation(s)
- Cecilia H. Deng
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia
| | - Darcy A. B. Jones
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: The Centre for Crop and Disease Management, Curtin University, Bentley, Australia
| | - Carl H. Mesarich
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Present Address: Institute of Agriculture & Environment, Massey University, Palmerston North, New Zealand
| | - Jason Shiller
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: INRA-Angers, Beaucouzé, Cedex, France
| | - Adam P. Taranto
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Andrew J. Robinson
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Patrick Kastner
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
| | - Nathan E. Hall
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K. Bowen
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| |
Collapse
|
153
|
Jacob S, Grötsch T, Foster AJ, Schüffler A, Rieger PH, Sandjo LP, Liermann JC, Opatz T, Thines E. Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae. MICROBIOLOGY-SGM 2017; 163:541-553. [PMID: 27902426 DOI: 10.1099/mic.0.000396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pyriculol was isolated from the rice blast fungus Magnaporthe oryzae and found to induce lesion formation on rice leaves. These findings suggest that it could be involved in virulence. The gene MoPKS19 was identified to encode a polyketide synthase essential for the production of the polyketide pyriculol in the rice blast fungus M. oryzae. The transcript abundance of MoPKS19 correlates with the biosynthesis rate of pyriculol in a time-dependent manner. Furthermore, gene inactivation of MoPKS19 resulted in a mutant unable to produce pyriculol, pyriculariol and their dihydro derivatives. Inactivation of a putative oxidase-encoding gene MoC19OXR1, which was found to be located in the genome close to MoPKS19, resulted in a mutant exclusively producing dihydropyriculol and dihydropyriculariol. By contrast, overexpression of MoC19OXR1 resulted in a mutant strain only producing pyriculol. The MoPKS19 cluster, furthermore, comprises two transcription factors MoC19TRF1 and MoC19TRF2, which were both found individually to act as negative regulators repressing gene expression of MoPKS19. Additionally, extracts of ΔMopks19 and ΔMoC19oxr1 made from axenic cultures failed to induce lesions on rice leaves compared to extracts of the wild-type strain. Consequently, pyriculol and its isomer pyriculariol appear to be the only lesion-inducing secondary metabolites produced by M. oryzae wild-type (MoWT) under these culture conditions. Interestingly, the mutants unable to produce pyriculol and pyriculariol were as pathogenic as MoWT, demonstrating that pyriculol is not required for infection.
Collapse
Affiliation(s)
- Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Thomas Grötsch
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Andrew J Foster
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Patrick H Rieger
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Louis P Sandjo
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Johannes C Liermann
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Eckhard Thines
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg University of Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany.,Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| |
Collapse
|
154
|
Zwart L, Berger DK, Moleleki LN, van der Merwe NA, Myburg AA, Naidoo S. Evidence for salicylic acid signalling and histological changes in the defence response of Eucalyptus grandis to Chrysoporthe austroafricana. Sci Rep 2017; 7:45402. [PMID: 28349984 PMCID: PMC5368643 DOI: 10.1038/srep45402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Eucalyptus species are cultivated for forestry and are of economic importance. The fungal stem canker pathogen Chrysoporthe austroafricana causes disease of varying severity on E. grandis. The Eucalyptus grandis-Chrysoporthe austroafricana interaction has been established as a model system for studying Eucalyptus antifungal defence. Previous studies revealed that the phytohormone salicylic acid (SA) affects the levels of resistance in highly susceptible (ZG14) and moderately resistant (TAG5) clones. The aims of this study were to examine histochemical changes in response to wounding and inoculation as well as host responses at the protein level. The anatomy and histochemical changes induced by wounding and inoculation were similar between the clones, suggesting that anatomical differences do not underlie their different levels of resistance. Tyloses and gum-like substances were present after inoculation and wounding, but cell death occurred only after inoculation. Hyphae of C. austroafricana were observed inside dead and living cells, suggesting that the possibility of a hemibiotrophic interaction requires further investigation. Proteomics analysis revealed the possible involvement of proteins associated with cell death, SA signalling and systemic resistance. In combination with previous information, this study forms a basis for future functional characterisation of candidate genes involved in resistance of E. grandis to C. austroafricana.
Collapse
Affiliation(s)
- Lizahn Zwart
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
155
|
Razaghi P, Zafari D. Phoma crystallifera with phytotoxic effects and pathogenic potential against field bindweed (Convolvulus arvensis L.) in Iran. J Appl Microbiol 2017; 122:1275-1285. [PMID: 28160348 DOI: 10.1111/jam.13411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/07/2017] [Accepted: 01/23/2017] [Indexed: 11/30/2022]
Abstract
AIMS To identify a potential pathogenic isolate of fungus on Convolvulus arvensis and to determine its phytotoxic activity, which revealed the presence of toxic metabolites responsible for the toxicity against the target weed. METHODS AND RESULTS A high virulent isolate of the fungus, Phoma crystallifera was isolated from symptomatic field bindweed in the west of Iran and was screened for the production of phytotoxins, which promoted necrosis on the detached leaves and seedlings of field bindweed in the bioassays. The isolate was distinct from other isolates of the fungi on the basis of morphological characteristics and the combined sequence database of the ITS region, partial LSU rDNA and β-tubulin gene. Isolate P. crystalifera P6 produced the highest amount of phytotoxins after 21 days in a shacked culture of Richard's broth. The active metabolites were isolated from a cell-free culture filtrate by ethyl-acetate and purified by thin layer chromatography. The result indicated that six out of nine spots had phytotoxic activity in the bioassays, with Rf values of 0·16, 0·30, 0·36, 0·43, 0·57 and 0·81. CONCLUSIONS Phoma crystallifera P6 and its active metabolites showed significant phytotoxic effects on the detached leaves of C. arvensis. SIGNIFICANCE AND IMPACT OF THE STUDY To date, there are no reports of possible biocontrol agent(s) on C. arvensis in Iran. Thus, P. crystallifera P6 is introduced here as a severe pathogenic fungus and which can be used as a biocontrol agent against C. arvensis.
Collapse
Affiliation(s)
- P Razaghi
- Plant Protection Department, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
| | - D Zafari
- Plant Protection Department, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
| |
Collapse
|
156
|
Pan L, Li X, Jin H, Yang X, Qin B. Antifungal activity of umbelliferone derivatives: Synthesis and structure-activity relationships. Microb Pathog 2017; 104:110-115. [PMID: 28089948 DOI: 10.1016/j.micpath.2017.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/15/2022]
Abstract
Umbelliferone was an important allelochemical with a wide spectrum bioactivity. In our previous study, C7 hydroxy in the backbone of umbelliferone was identified to be responsible for its phytotoxicity and the targeted modification of the above site could lead to the phytotoxicity loss. In view of this, a series of hydroxycoumarins and C7 O-substituted umbelliferone derivatives were efficiently synthesized to evaluate their antifungal activity against four phytopathogenic fungi. Most of them, as we predicted, exhibited improved fungicidal activity. The phytotoxicity of effective compounds was also assayed by Lactuca sativa to investigate their side effects on plant growth. Compounds 9 and 17 were identified to show strong antifungal activity with low phytotoxicity. A brief investigation on structure-activity relationships revealed that the modification at the C7 hydroxy of umbelliferone could be a promising way to enhance the antifungal activity with decreasing the phytotoxicity.
Collapse
Affiliation(s)
- Le Pan
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, People's Republic of China
| | - Xiuzhuang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Bo Qin
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
157
|
|
158
|
Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:156-165. [PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/23/2016] [Accepted: 09/18/2016] [Indexed: 05/16/2023]
Abstract
Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
Collapse
Affiliation(s)
- S A Nusaibah
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - A Siti Nor Akmar
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.
| | - A S Idris
- GanoDrop Unit, Biological Research Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, B. B. Bangi, 43000, Kajang, Selangor, Malaysia
| | - M Sariah
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Z Mohamad Pauzi
- Institute of Ocean and Earth Sciences, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
159
|
Tan W, Li Q, Dong F, Wei L, Guo Z. Synthesis, characterization, and antifungal property of chitosan ammonium salts with halogens. Int J Biol Macromol 2016; 92:293-298. [DOI: 10.1016/j.ijbiomac.2016.07.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023]
|
160
|
Floryszak-Wieczorek J, Arasimowicz-Jelonek M. Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles. PLoS One 2016; 11:e0163546. [PMID: 27695047 PMCID: PMC5047594 DOI: 10.1371/journal.pone.0163546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
Our research provides new insights into how the low and steady-state levels of nitric oxide (NO) and reactive oxygen species (ROS) in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr) P. infestans–potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR) successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr) P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.
Collapse
Affiliation(s)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61–614 Poznan, Poland
- * E-mail:
| |
Collapse
|
161
|
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL. Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis. Curr Biol 2016; 26:2399-2411. [DOI: 10.1016/j.cub.2016.06.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
|
162
|
Yong ML, Fan LL, Li DY, Liu YJ, Cheng FM, Xu Y, Wang ZY, Hu DW. Villosiclava virens infects specifically rice and barley stamen filaments due to the unique host cell walls. Microsc Res Tech 2016; 79:838-44. [PMID: 27357263 DOI: 10.1002/jemt.22710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/07/2022]
Abstract
Rice false smut, caused by the fungal pathogen Villosiclava virens, is one of the most important rice diseases in the world. Previous studies reported that the pathogen has less number of cell wall-degraded genes and attacks dominantly rice stamen filaments and extends intercellularly. To reveal why the fungus infects plant stamen filaments, inoculation test on barley was carried out with the similar protocol to rice. The experimental results showed that the fungus could penetrate quickly into barley stamen filaments and extends both intracellularly and intercellularly, usually resulting in severe damage of the stamen filament tissues. It also attacked young barley lodicules and grew intercellularly by chance. The light microscopic observations found that the epidermal and cortex cells in barley stamen filaments arranged loosely with very thick cell walls and large cell gaps. Cellulose microfibrils in barley stamen filament cell walls arranged very sparsely so that the cell walls looked like transparent. The cell walls were very soft and flexible, and often folded. However, V. virens extended dominantly in the noncellulose regions and seemed never to degrade microfibrils in barley and rice cell walls. This suggested that the unique structures of rice and barley stamen filaments should be fit for their function of elongation in anthesis, and also endow with the susceptibility to the fungus, V. virens.
Collapse
Affiliation(s)
- Ming-Li Yong
- The State Kay Laboratory for Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lin-Lin Fan
- The State Kay Laboratory for Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dan-Yang Li
- The State Kay Laboratory for Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi-Jia Liu
- The State Kay Laboratory for Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fang-Min Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ying Xu
- Electron Microscopy Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zheng-Yi Wang
- The State Kay Laboratory for Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dong-Wei Hu
- The State Kay Laboratory for Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
163
|
Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W, Dong S, Qiao Y, Tyler BM, Ma W, Wang Y. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat Commun 2016; 7:11685. [PMID: 27256489 PMCID: PMC4895818 DOI: 10.1038/ncomms11685] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 11/15/2022] Open
Abstract
Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes.
Collapse
Affiliation(s)
- Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yongli Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| |
Collapse
|
164
|
Lacerda AF, Del Sarto RP, Silva MS, de Vasconcelos EAR, Coelho RR, dos Santos VO, Godoy CV, Seixas CDS, da Silva MCM, Grossi-de-Sa MF. The recombinant pea defensin Drr230a is active against impacting soybean and cotton pathogenic fungi from the genera Fusarium, Colletotrichum and Phakopsora. 3 Biotech 2016; 6:59. [PMID: 28330129 PMCID: PMC4752952 DOI: 10.1007/s13205-015-0320-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/13/2015] [Indexed: 12/14/2022] Open
Abstract
Plant defensins are antifungal peptides produced by the innate immune system plants developed to circumvent fungal infection. The defensin Drr230a, originally isolated from pea, has been previously shown to be active against various entomopathogenic and phytopathogenic fungi. In the present study, the activity of a yeast-expressed recombinant Drr230a protein (rDrr230a) was tested against impacting soybean and cotton fungi. First, the gene was subcloned into the yeast expression vector pPICZαA and expressed in Pichia pastoris. Resulting rDrr230a exhibited in vitro activity against fungal growth and spore germination of Fusarium tucumaniae, which causes soybean sudden death syndrome, and against Colletotrichum gossypii var. cephalosporioides, which causes cotton ramulosis. The rDrr230a IC50 corresponding to inhibition of fungal growth of F. tucumaniae and C. gossypii var. cephalosporioides was 7.67 and 0.84 µM, respectively, demonstrating moderate activity against F. tucumaniae and high potency against C. gossypii var. cephalosporioides. Additionally, rDrr230a at 25 ng/µl (3.83 µM) resulted in 100 % inhibition of spore germination of both fungi, demonstrating that rDrr230a affects fungal development since spore germination. Moreover, rDrr230a at 3 µg/µl (460.12 µM) inhibited 100 % of in vitro spore germination of the obligatory biotrophic fungus Phakopsora pachyrhizi, which causes Asian soybean rust. Interestingly, rDrr230a substantially decreased the severity of Asian rust, as demonstrated by in planta assay. To our knowledge, this is the first report of a plant defensin active against an obligatory biotrophic phytopathogenic fungus. Results revealed the potential of rDrr230a as a candidate to be used in plant genetic engineering to control relevant cotton and soybean fungal diseases.
Collapse
|
165
|
Haueisen J, Stukenbrock EH. Life cycle specialization of filamentous pathogens - colonization and reproduction in plant tissues. Curr Opin Microbiol 2016; 32:31-37. [PMID: 27153045 DOI: 10.1016/j.mib.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Filamentous plant pathogens explore host tissues to obtain nutrients for growth and reproduction. Diverse strategies for tissue invasion, defense manipulation, and colonization of inter and intra-cellular spaces have evolved. Most research has focused on effector molecules, which are secreted to manipulate plant immunity and facilitate infection. Effector genes are often found to evolve rapidly in response to the antagonistic host-pathogen co-evolution but other traits are also subject to adaptive evolution during specialization to the anatomy, biochemistry and ecology of different plant hosts. Although not directly related to virulence, these traits are important components of specialization but little is known about them. We present and discuss specific life cycle traits that facilitate exploration of plant tissues and underline the importance of increasing our insight into the biology of plant pathogens.
Collapse
Affiliation(s)
- Janine Haueisen
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany; Christian-Albrechts University Kiel, Am Botanischen Garten 1-11, 24118 Kiel, Germany
| | - Eva H Stukenbrock
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany; Christian-Albrechts University Kiel, Am Botanischen Garten 1-11, 24118 Kiel, Germany.
| |
Collapse
|
166
|
Jones K, Kim DW, Park JS, Khang CH. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC PLANT BIOLOGY 2016; 16:69. [PMID: 27000073 PMCID: PMC4802709 DOI: 10.1186/s12870-016-0756-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell death plays important roles during plant-pathogen interactions. To study pathogen-induced cell death, there is a need for cytological tools that allow determining not only host cell viability, but also cellular events leading to cell death with visualization of pathogen development. Here we describe a live cell imaging method to provide insights into the dynamics of cell death in rice (Oryza sativa). This method uses live-cell confocal microscopy of rice sheath cells mechanically damaged or invaded by fluorescently-tagged Magnaporthe oryzae together with fluorescent dyes fluorescein diacetate (FDA) and propidium iodide (PI). FDA stains the cytoplasm of live cells exclusively, thus also visualizing the vacuole, whereas PI stains nuclei of dead cells. RESULTS We first demonstrated that confocal microscopy of rice leaf sheaths stained with FDA and PI discriminated between live cells and mechanically-killed cells. FDA-derived fluorescein was confined to the cytoplasm of live cells, indicating the intact vacuolar and plasma membranes. We also observed previously unreported fluorescein patterns in mechanically damaged cells. These patterns include: (1) homogeneous distribution of fluorescein in the increased area of the cytoplasm due to the shrunken vacuole; (2) the increase of the fluorescein intensity; and (3) containment of the brighter fluorescein signal only in affected cells likely due to closure of plasmodesmata. We refer to these as novel fluorescein patterns in this study. Simultaneous imaging of fluorescently-tagged M. oryzae (red) and FDA staining (green) in rice cells revealed characteristic features of the hemibiotrophic interaction. That is, newly invaded cells are alive but subsequently become dead when the fungus spreads into neighbor cells, and biotrophic interfacial complexes are associated with the host cytoplasm. This also revealed novel fluorescein patterns in invaded cells. Time-lapse imaging suggested that the FDA staining pattern in the infected host cell progressed from typical cytoplasmic localization (live cell with the intact vacuole), to novel patterns (dying cell with closed plasmodesmata with the shrunken or ruptured vacuole), to lack of fluorescence (dead cell). CONCLUSION We have developed a method to visualize cellular events leading to host cell death during rice blast disease. This method can be used to compare and contrast host cell death associated with disease resistance and susceptibility in rice-M. oryzae and other host-pathogen interactions.
Collapse
Affiliation(s)
- Kiersun Jones
- Department of Plant Biology, University of Georgia, Athens, 30602 USA
| | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, 30602 USA
| | - Jean S. Park
- Department of Plant Biology, University of Georgia, Athens, 30602 USA
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, 30602 USA
| |
Collapse
|
167
|
Torres MF, Ghaffari N, Buiate EAS, Moore N, Schwartz S, Johnson CD, Vaillancourt LJ. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genomics 2016; 17:202. [PMID: 26956617 PMCID: PMC4782317 DOI: 10.1186/s12864-016-2546-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A "Mixed Effects" Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy. RESULTS More than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients. CONCLUSIONS This approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as 'landmarks' to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Functional Genomics Laboratory, Weill Cornell Medical College, Cornell University, Qatar Foundation - Education City, Doha, Qatar.
| | - Noushin Ghaffari
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Ester A S Buiate
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Monsanto Company Brazil, Uberlândia, Minas Gerais, Brazil.
| | - Neil Moore
- Department of Computer Science, University of Kentucky, Davis Marksbury Building, 328 Rose Street, Lexington, KY, 40506-0633, USA.
| | - Scott Schwartz
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
168
|
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak S C. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 2016; 40:182-207. [PMID: 26591004 PMCID: PMC4778271 DOI: 10.1093/femsre/fuv045] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/11/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions.
Collapse
Affiliation(s)
- Susanne Zeilinger
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, SK, Canada
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Harikesh B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Ram S Upadhyay
- Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - Eriston Vieira Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Clement Kin-Ming Tsui
- Department of Pathology and Laboratory Medicine, the University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Chandra Nayak S
- Department of Biotechnology, University of Mysore, Mysore-570001, Karnataka, India
| |
Collapse
|
169
|
Di X, Takken FLW, Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2016; 7:170. [PMID: 26909099 PMCID: PMC4754410 DOI: 10.3389/fpls.2016.00170] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/01/2016] [Indexed: 05/06/2023]
Abstract
Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA) signaling reduces plant susceptibility, whereas Jasmonic Acid (JA), Ethylene (ET), Abscisic Acid (ABA), and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa.
Collapse
|
170
|
Harris LJ, Balcerzak M, Johnston A, Schneiderman D, Ouellet T. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol 2015; 120:111-23. [PMID: 26693688 DOI: 10.1016/j.funbio.2015.10.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
Fusarium graminearum is a broad host pathogen threatening cereal crops in temperate regions around the world. To better understand how F. graminearum adapts to different hosts, we have performed a comparison of the transcriptome of a single strain of F. graminearum during early infection (up to 4 d post-inoculation) of barley, maize, and wheat using custom oligomer microarrays. Our results showed high similarity between F. graminearum transcriptomes in infected wheat and barley spike tissues. Quantitative RT-PCR was used to validate the gene expression profiles of 24 genes. Host-specific expression of genes was observed in each of the three hosts. This included expression of distinct sets of genes associated with transport and secondary metabolism in each of the three crops, as well as host-specific patterns for particular gene categories such as sugar transporters, integral membrane protein PTH11-like proteins, and chitinases. This study identified 69 F. graminearum genes as preferentially expressed in developing maize kernels relative to wheat and barley spikes. These host-specific differences showcase the genomic flexibility of F. graminearum to adapt to a range of hosts.
Collapse
Affiliation(s)
- Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada.
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada.
| | - Anne Johnston
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada.
| | - Danielle Schneiderman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada.
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
171
|
Abstract
Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.
Collapse
Affiliation(s)
- Peter Spiteller
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße NW2C, D-28359 Bremen, Germany.
| |
Collapse
|
172
|
Hofer K, Linkmeyer A, Textor K, Hückelhoven R, Hess M. MILDEW LOCUS O Mutation Does Not Affect Resistance to Grain Infections with Fusarium spp. and Ramularia collo-cygni. PHYTOPATHOLOGY 2015; 105:1214-9. [PMID: 25871859 DOI: 10.1094/phyto-12-14-0381-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
MILDEW LOCUS O defines a major susceptibility gene for powdery mildew, and recessive mlo resistance alleles are widely used in breeding for powdery mildew resistance in spring barley. Barley powdery mildew resistance, which is conferred by mlo genes, is considered to be costly in terms of spontaneous defense reactions and enhanced susceptibility to cell-death-inducing pathogens. We assessed fungal infestation of barley (Hordeum vulgare) grain by measuring fungal DNA after natural infection with Fusarium spp. and Ramularia collo-cygni or after inoculation with Fusarium spp. in the field. Powdery-mildew-resistant mlo5 genotypes did not show enhanced Fusarium spp. or R. collo-cygni DNA content of grain over four consecutive years. Data add to our understanding of pleiotropic effects of mlo-mediated powdery mildew resistance and contributes to the discussion of whether or not application of barley mlo mutations may support pathogenesis of cell-death-inducing fungal pathogens under field conditions.
Collapse
Affiliation(s)
- Katharina Hofer
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85354 Freising, Germany
| | - Andrea Linkmeyer
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85354 Freising, Germany
| | - Katharina Textor
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85354 Freising, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85354 Freising, Germany
| | - Michael Hess
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85354 Freising, Germany
| |
Collapse
|
173
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
174
|
Jing M, Ma H, Li H, Guo B, Zhang X, Ye W, Wang H, Wang Q, Wang Y. Differential regulation of defense-related proteins in soybean during compatible and incompatible interactions between Phytophthora sojae and soybean by comparative proteomic analysis. PLANT CELL REPORTS 2015; 34:1263-80. [PMID: 25906415 DOI: 10.1007/s00299-015-1786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Few proteomic studies have focused on the plant- Phytophthora interactions, our study provides important information regarding the use of proteomic methods for investigation of the basic mechanisms of plant-Phytophthora interactions. Phytophthora sojae is a fast-spreading and devastating pathogen that is responsible for root and stem rot in soybean crops worldwide. To better understand the response of soybean seedlings to the stress of infection by virulent and avirulent pathogens at the proteomic level, proteins extracted from the hypocotyls of soybean reference cultivar Williams 82 infected by P. sojae P6497 (race 2) and P7076 (race 19), respectively, were analyzed by two-dimensional gel electrophoresis. 95 protein spots were differently expressed, with 83 being successfully identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to further analysis. Based on the majority of the 83 defense-responsive proteins, and defense-related pathway genes supplemented by a quantitative reverse transcription PCR assay, a defense-related network for soybean infected by virulent and avirulent pathogens was proposed. We found reactive oxygen species (ROS) burst, the expression levels of salicylic acid (SA) signal pathway and biosynthesis of isoflavones were significantly up-regulated in the resistant soybean. Our results imply that following the P. sojae infection, ROS and SA signal pathway in soybean play the major roles in defense against P. sojae. This research will facilitate further investigation of the molecular regulatory mechanism of the defense response in soybean following infection by P. sojae.
Collapse
Affiliation(s)
- Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Delprato ML, Krapp AR, Carrillo N. Green Light to Plant Responses to Pathogens: The Role of Chloroplast Light-Dependent Signaling in Biotic Stress. Photochem Photobiol 2015; 91:1004-11. [DOI: 10.1111/php.12466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/09/2015] [Indexed: 01/13/2023]
Affiliation(s)
- María Laura Delprato
- División Biología Molecular; Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET); Universidad Nacional de Rosario; Rosario Argentina
| | - Adriana R. Krapp
- División Biología Molecular; Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET); Universidad Nacional de Rosario; Rosario Argentina
| | - Néstor Carrillo
- División Biología Molecular; Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET); Universidad Nacional de Rosario; Rosario Argentina
| |
Collapse
|
176
|
Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc Natl Acad Sci U S A 2015; 112:E3651-60. [PMID: 26056261 DOI: 10.1073/pnas.1504552112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.
Collapse
|
177
|
FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2015; 79:54-62. [DOI: 10.1016/j.fgb.2015.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
|
178
|
Eloy YRG, Vasconcelos IM, Barreto ALH, Freire-Filho FR, Oliveira JTA. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp]. Fungal Biol 2015; 119:747-57. [PMID: 26228563 DOI: 10.1016/j.funbio.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/18/2022]
Abstract
Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction.
Collapse
Affiliation(s)
- Ygor R G Eloy
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Campus do Pici, Fortaleza, Ceara 60451-970, Brazil; University of Fortaleza (UNIFOR), Fortaleza, Ceara 60811-905, Brazil.
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Campus do Pici, Fortaleza, Ceara 60451-970, Brazil.
| | - Ana L H Barreto
- Brazilian Agricultural Research Corporation (EMBRAPA) - Meio-Norte, Teresina, Piaui 64006-220, Brazil.
| | - Francisco R Freire-Filho
- Brazilian Agricultural Research Corporation (EMBRAPA) - Meio-Norte, Teresina, Piaui 64006-220, Brazil.
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Campus do Pici, Fortaleza, Ceara 60451-970, Brazil.
| |
Collapse
|
179
|
Lee WS, Devonshire BJ, Hammond-Kosack KE, Rudd JJ, Kanyuka K. Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of Zymoseptoria tritici on Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:590-604. [PMID: 25496594 DOI: 10.1094/mpmi-10-14-0346-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplasts have a critical role in plant defense as sites for the biosynthesis of the signaling compounds salicylic acid (SA), jasmonic acid (JA), and nitric oxide (NO) and as major sites of reactive oxygen species production. Chloroplasts, therefore, regarded as important players in the induction and regulation of programmed cell death (PCD) in response to abiotic stresses and pathogen attack. The predominantly foliar pathogen of wheat Zymoseptoria tritici is proposed to exploit the plant PCD, which is associated with the transition in the fungus to the necrotrophic phase of infection. In this study virus-induced gene silencing was used to silence two key genes in carotenoid and chlorophyll biosynthesis, phytoene desaturase (PDS) and Mg-chelatase H subunit (ChlH). The chlorophyll-deficient, PDS- and ChlH-silenced leaves of susceptible plants underwent more rapid pathogen-induced PCD but were significantly less able to support the subsequent asexual sporulation of Z. tritici. Conversely, major gene (Stb6)-mediated resistance to Z. tritici was partially compromised in PDS- and ChlH-silenced leaves. Chlorophyll-deficient wheat ears also displayed increased Z. tritici disease lesion formation accompanied by increased asexual sporulation. These data highlight the importance of chloroplast functionality and its interaction with regulated plant cell death in mediating different genotype and tissue-specific interactions between Z. tritici and wheat.
Collapse
Affiliation(s)
- Wing-Sham Lee
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - B Jean Devonshire
- 2Bioimaging, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Kim E Hammond-Kosack
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Jason J Rudd
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Kostya Kanyuka
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| |
Collapse
|
180
|
Kabbage M, Yarden O, Dickman MB. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:53-60. [PMID: 25711813 DOI: 10.1016/j.plantsci.2014.12.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 05/02/2023]
Abstract
Plants and fungi have had many years of friendly and not-so friendly competition for resources and quality of life. As a result, diverse pathosystems evolved numerous strategies, coupled with the emergence of multifaceted pathogenic and saprophytic lifestyles. We discuss fungal lifestyle classifications and how the views associated with certain fungal pathogens, particularly necrotophs, are changing as we learn more about the complexities of their interactions with a given host plant. We discuss the physiological events leading to the transition from biotrophy to necrotrophy in hemi-biotrophs, and conclude that both the control of plant immune responses and the need for a more efficient mode of nutrient acquisition are possible triggers for the transition to necrotrophy. Based on recent findings, we focus on the polyphagous plant pathogen Sclerotinia sclerotiorum. Rather than overwhelming plant foes, S. sclerotiorum has evolved clever means to compromise host recognition and establish disease, resulting in a broad and immensely successful pathogenic lifestyle. The tactics used by this fungus to achieve pathogenic success are being clarified. We propose that the hemi-biotrophic lifestyle may be more temporally and spatially complex than currently depicted, and that combining lifestyle attributes with damage response curves that consider the contribution of both the fungus and the host to pathogenesis, may provide a more holistic manner to view plant pathogens.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7600, Israel
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
181
|
Bazghaleh N, Hamel C, Gan Y, Tar'an B, Knight JD. Genotype-specific variation in the structure of root fungal communities is related to chickpea plant productivity. Appl Environ Microbiol 2015; 81:2368-77. [PMID: 25616789 PMCID: PMC4357931 DOI: 10.1128/aem.03692-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 11/20/2022] Open
Abstract
Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques.
Collapse
Affiliation(s)
- Navid Bazghaleh
- Semiarid Prairie Agricultural Research Centre, Swift Current, SK, Canada Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chantal Hamel
- Semiarid Prairie Agricultural Research Centre, Swift Current, SK, Canada Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yantai Gan
- Semiarid Prairie Agricultural Research Centre, Swift Current, SK, Canada Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan Diane Knight
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
182
|
Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, Maloku I, Berthiller F, Adam G, Krska R, Schuhmacher R. Biotransformation of the mycotoxin deoxynivalenol in fusarium resistant and susceptible near isogenic wheat lines. PLoS One 2015; 10:e0119656. [PMID: 25775425 PMCID: PMC4361057 DOI: 10.1371/journal.pone.0119656] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/18/2014] [Indexed: 12/27/2022] Open
Abstract
In this study, a total of nine different biotransformation products of the Fusarium mycotoxin deoxynivalenol (DON) formed in wheat during detoxification of the toxin are characterized by liquid chromatography—high resolution mass spectrometry (LC-HRMS). The detected metabolites suggest that DON is conjugated to endogenous metabolites via two major metabolism routes, namely 1) glucosylation (DON-3-glucoside, DON-di-hexoside, 15-acetyl-DON-3-glucoside, DON-malonylglucoside) and 2) glutathione conjugation (DON-S-glutathione, “DON-2H”-S-glutathione, DON-S-cysteinyl-glycine and DON-S-cysteine). Furthermore, conjugation of DON to a putative sugar alcohol (hexitol) was found. A molar mass balance for the cultivar ‘Remus’ treated with 1 mg DON revealed that under the test conditions approximately 15% of the added DON were transformed into DON-3-glucoside and another 19% were transformed to the remaining eight biotransformation products or irreversibly bound to the plant matrix. Additionally, metabolite abundance was monitored as a function of time for each DON derivative and was established for six DON treated wheat lines (1 mg/ear) differing in resistance quantitative trait loci (QTL) Fhb1 and/or Qfhs.ifa-5A. All cultivars carrying QTL Fhb1 showed similar metabolism kinetics: Formation of DON-Glc was faster, while DON-GSH production was less efficient compared to cultivars which lacked the resistance QTL Fhb1. Moreover, all wheat lines harboring Fhb1 showed significantly elevated D3G/DON abundance ratios.
Collapse
Affiliation(s)
- Bernhard Kluger
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marc Lemmens
- Institute for Biotechnology in Plant Production, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Alexandra Malachova
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Andrea Koutnik
- Institute for Biotechnology in Plant Production, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Imer Maloku
- Institute for Biotechnology in Plant Production, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Franz Berthiller
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- * E-mail:
| |
Collapse
|
183
|
Muria-Gonzalez MJ, Chooi YH, Breen S, Solomon PS. The past, present and future of secondary metabolite research in the Dothideomycetes. MOLECULAR PLANT PATHOLOGY 2015; 16:92-107. [PMID: 24889519 PMCID: PMC6638331 DOI: 10.1111/mpp.12162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Dothideomycetes represents a large and diverse array of fungi in which prominent plant pathogens are over-represented. Species within the Cochliobolus, Alternaria, Pyrenophora and Mycosphaerella (amongst others) all cause diseases that threaten food security in many parts of the world. Significant progress has been made over the past decade in understanding how some of these pathogens cause disease at a molecular level. It is reasonable to suggest that much of this progress can be attributed to the increased availability of genome sequences. However, together with revealing mechanisms of pathogenicity, these genome sequences have also highlighted the capacity of the Dothideomycetes to produce an extensive array of secondary metabolites, far greater than originally thought. Indeed, it is now clear that we appear to have only scratched the surface to date in terms of the identification of secondary metabolites produced by these fungi. In the first half of this review, we examine the current status of secondary metabolite research in the Dothideomycetes and highlight the diversity of the molecules discovered thus far, in terms of both structure and biological activity. In the second part of this review, we survey the emerging techniques and technologies that will be required to shed light on the vast array of secondary metabolite potential that is encoded within these genomes. Experimental design, analytical chemistry and synthetic biology are all discussed in the context of how they will contribute to this field.
Collapse
Affiliation(s)
- Mariano Jordi Muria-Gonzalez
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, 0200, Australia
| | | | | | | |
Collapse
|
184
|
Ramond JB, Pienaar A, Armstrong A, Seely M, Cowan DA. Niche-partitioning of edaphic microbial communities in the Namib Desert gravel plain Fairy Circles. PLoS One 2014; 9:e109539. [PMID: 25279514 PMCID: PMC4184855 DOI: 10.1371/journal.pone.0109539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022] Open
Abstract
Endemic to the Namib Desert, Fairy Circles (FCs) are vegetation-free circular patterns surrounded and delineated by grass species. Since first reported the 1970's, many theories have been proposed to explain their appearance, but none provide a fully satisfactory explanation of their origin(s) and/or causative agent(s). In this study, we have evaluated an early hypothesis stating that edaphic microorganisms could be involved in their formation and/or maintenance. Surface soils (0–5cm) from three different zones (FC center, FC margin and external, grass-covered soils) of five independent FCs were collected in April 2013 in the Namib Desert gravel plains. T-RFLP fingerprinting of the bacterial (16S rRNA gene) and fungal (ITS region) communities, in parallel with two-way crossed ANOSIM, showed that FC communities were significantly different to those of external control vegetated soil and that each FC was also characterized by significantly different communities. Intra-FC communities (margin and centre) presented higher variability than the controls. Together, these results provide clear evidence that edaphic microorganisms are involved in the Namib Desert FC phenomenon. However, we are, as yet, unable to confirm whether bacteria and/or fungi communities are responsible for the appearance and development of FCs or are a general consequence of the presence of the grass-free circles.
Collapse
Affiliation(s)
- Jean-Baptiste Ramond
- Center for Microbial Ecology and Genomics (CMEG), Genomic Research Institute, University of Pretoria, Pretoria, South Africa
| | - Annelize Pienaar
- Center for Microbial Ecology and Genomics (CMEG), Genomic Research Institute, University of Pretoria, Pretoria, South Africa
| | - Alacia Armstrong
- Center for Microbial Ecology and Genomics (CMEG), Genomic Research Institute, University of Pretoria, Pretoria, South Africa
| | - Mary Seely
- Gobabeb Research and Training Center (GRTC), Walvis Bay, Namibia
| | - Don A. Cowan
- Center for Microbial Ecology and Genomics (CMEG), Genomic Research Institute, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
185
|
Schliebner I, Becher R, Hempel M, Deising HB, Horbach R. New gene models and alternative splicing in the maize pathogen Colletotrichum graminicola revealed by RNA-Seq analysis. BMC Genomics 2014; 15:842. [PMID: 25281481 PMCID: PMC4194422 DOI: 10.1186/1471-2164-15-842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND An annotated genomic sequence of the corn anthracnose fungus Colletotrichum graminicola has been published previously, but correct identification of gene models by means of automated gene annotation remains a challenge. RNA-Seq offers the potential for substantially improved gene annotations and for the identification of posttranscriptional RNA modifications, such as alternative splicing and RNA editing. RESULTS Based on the nucleotide sequence information of transcripts, we identified 819 novel transcriptionally active regions (nTARs) and revised 906 incorrectly predicted gene models, including revisions of exon-intron structure, gene orientation and sequencing errors. Among the nTARs, 146 share significant similarity with proteins that have been identified in other species suggesting that they are hitherto unidentified genes in C. graminicola. Moreover, 5'- and 3'-UTR sequences of 4378 genes have been retrieved and alternatively spliced variants of 69 genes have been identified. Comparative analysis of RNA-Seq data and the genome sequence did not provide evidence for RNA editing in C. graminicola. CONCLUSIONS We successfully employed deep sequencing RNA-Seq data in combination with an elaborate bioinformatics strategy in order to identify novel genes, incorrect gene models and mechanisms of transcript processing in the corn anthracnose fungus C. graminicola. Sequence data of the revised genome annotation including several hundreds of novel transcripts, improved gene models and candidate genes for alternative splicing have been made accessible in a comprehensive database. Our results significantly contribute to both routine laboratory experiments and large-scale genomics or transcriptomic studies in C. graminicola.
Collapse
Affiliation(s)
- Ivo Schliebner
- />Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Rayko Becher
- />Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Marcus Hempel
- />Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Holger B Deising
- />Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
- />Institute for Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Ralf Horbach
- />Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
186
|
Siersleben S, Penselin D, Wenzel C, Albert S, Knogge W. PFP1, a gene encoding an Epc-N domain-containing protein, is essential for pathogenicity of the barley pathogen Rhynchosporium commune. EUKARYOTIC CELL 2014; 13:1026-35. [PMID: 24906413 PMCID: PMC4135795 DOI: 10.1128/ec.00043-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/30/2014] [Indexed: 11/20/2022]
Abstract
Scald caused by Rhynchosporium commune is an important foliar disease of barley. Insertion mutagenesis of R. commune generated a nonpathogenic fungal mutant which carries the inserted plasmid in the upstream region of a gene named PFP1. The characteristic feature of the gene product is an Epc-N domain. This motif is also found in homologous proteins shown to be components of histone acetyltransferase (HAT) complexes of fungi and animals. Therefore, PFP1 is suggested to be the subunit of a HAT complex in R. commune with an essential role in the epigenetic control of fungal pathogenicity. Targeted PFP1 disruption also yielded nonpathogenic mutants which showed wild-type-like growth ex planta, except for the occurrence of hyphal swellings. Complementation of the deletion mutants with the wild-type gene reestablished pathogenicity and suppressed the hyphal swellings. However, despite wild-type-level PFP1 expression, the complementation mutants did not reach wild-type-level virulence. This indicates that the function of the protein complex and, thus, fungal virulence are influenced by a position-affected long-range control of PFP1 expression.
Collapse
Affiliation(s)
- Sylvia Siersleben
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Daniel Penselin
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Claudia Wenzel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Sylvie Albert
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Wolfgang Knogge
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| |
Collapse
|
187
|
Pellissier L, Niculita-Hirzel H, Dubuis A, Pagni M, Guex N, Ndiribe C, Salamin N, Xenarios I, Goudet J, Sanders IR, Guisan A. Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Mol Ecol 2014; 23:4274-90. [PMID: 25041483 DOI: 10.1111/mec.12854] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 06/18/2014] [Accepted: 07/05/2014] [Indexed: 01/20/2023]
Abstract
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below-ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km(2)). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity-area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine-scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage-specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.
Collapse
Affiliation(s)
- L Pellissier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Lecomte M, Hamama L, Voisine L, Gatto J, Hélesbeux JJ, Séraphin D, Peña-Rodriguez LM, Richomme P, Boedo C, Yovanopoulos C, Gyomlai M, Briard M, Simoneau P, Poupard P, Berruyer R. Partial resistance of carrot to Alternaria dauci correlates with in vitro cultured carrot cell resistance to fungal exudates. PLoS One 2014; 9:e101008. [PMID: 24983469 PMCID: PMC4077726 DOI: 10.1371/journal.pone.0101008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/30/2014] [Indexed: 11/25/2022] Open
Abstract
Although different mechanisms have been proposed in the recent years, plant pathogen partial resistance is still poorly understood. Components of the chemical warfare, including the production of plant defense compounds and plant resistance to pathogen-produced toxins, are likely to play a role. Toxins are indeed recognized as important determinants of pathogenicity in necrotrophic fungi. Partial resistance based on quantitative resistance loci and linked to a pathogen-produced toxin has never been fully described. We tested this hypothesis using the Alternaria dauci-carrot pathosystem. Alternaria dauci, causing carrot leaf blight, is a necrotrophic fungus known to produce zinniol, a compound described as a non-host selective toxin. Embryogenic cellular cultures from carrot genotypes varying in resistance against A. dauci were confronted with zinniol at different concentrations or to fungal exudates (raw, organic or aqueous extracts). The plant response was analyzed through the measurement of cytoplasmic esterase activity, as a marker of cell viability, and the differentiation of somatic embryos in cellular cultures. A differential response to toxicity was demonstrated between susceptible and partially resistant genotypes, with a good correlation noted between the resistance to the fungus at the whole plant level and resistance at the cellular level to fungal exudates from raw and organic extracts. No toxic reaction of embryogenic cultures was observed after treatment with the aqueous extract or zinniol used at physiological concentration. Moreover, we did not detect zinniol in toxic fungal extracts by UHPLC analysis. These results suggest that strong phytotoxic compounds are present in the organic extract and remain to be characterized. Our results clearly show that carrot tolerance to A. dauci toxins is one component of its partial resistance.
Collapse
Affiliation(s)
- Mickaël Lecomte
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Latifa Hamama
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Linda Voisine
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Julia Gatto
- Université d'Angers, UPRES EA921SONAS, SFR 4207 QUASAV, Angers, France
| | | | - Denis Séraphin
- Université d'Angers, UPRES EA921SONAS, SFR 4207 QUASAV, Angers, France
| | - Luis M. Peña-Rodriguez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Pascal Richomme
- Université d'Angers, UPRES EA921SONAS, SFR 4207 QUASAV, Angers, France
| | - Cora Boedo
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Claire Yovanopoulos
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Melvina Gyomlai
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Mathilde Briard
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Philippe Simoneau
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Pascal Poupard
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Romain Berruyer
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| |
Collapse
|
189
|
Ye F, Albarouki E, Lingam B, Deising HB, von Wirén N. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola. PHYSIOLOGIA PLANTARUM 2014; 151:280-292. [PMID: 24512386 DOI: 10.1111/ppl.12166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/23/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Iron (Fe) is an essential element for plant pathogens as well as for their host plants. As Fe plays a central role in pathogen virulence, most plants have evolved Fe-withholding strategies to reduce Fe availability to pathogens. On the other hand, plants need Fe for an oxidative burst in their basal defense response against pathogens. To investigate how the plant Fe nutritional status affects plant tolerance to a hemibiotrophic fungal pathogen, we employed the maize-Colletotrichum graminicola pathosystem. Fungal infection progressed rapidly via biotrophic to necrotrophic growth in Fe-deficient leaves, while an adequate Fe nutritional status suppressed the formation of infection structures of C. graminicola already during the early biotrophic growth phase. As indicated by Prussian blue and 3,3'-diaminobenzidine (DAB) staining, the retarding effect of an adequate Fe nutritional status on fungal development coincided temporally and spatially with the recruitment of Fe to infection sites and a local production of H2 O2 . A similar coincidence between local Fe and H2 O2 accumulation was found in a parallel approach employing C. graminicola mutants affected in Fe acquisition and differing in virulence. These results indicate that an adequate Fe nutritional status delays and partially suppresses the fungal infection process and the biotrophic growth phase of C. graminicola, most likely via the recruitment of free Fe to the fungal infection site for a timely oxidative burst.
Collapse
Affiliation(s)
- Fanghua Ye
- Martin-Luther-Universität Halle-Wittenberg, Interdisziplinäres Zentrum für Nutzpflanzenforschung (IZN), Halle, D-06120, Germany; Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Abteilung Physiologie und Zellbiologie, Molekulare Pflanzenernährung, Stadt Seeland, D-06466, Germany
| | | | | | | | | |
Collapse
|
190
|
Nagygyörgy E, Kovács B, Leiter É, Miskei M, Pócsi I, Hornok L, Ádám A. Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance. Acta Microbiol Immunol Hung 2014; 61:189-208. [PMID: 24939687 DOI: 10.1556/amicr.61.2014.2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.
Collapse
Affiliation(s)
- Emese Nagygyörgy
- 1 Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O. Box 102 Hungary
| | - Barbara Kovács
- 2 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Sciences H-4032 Debrecen Egyetem tér 1 Hungary
| | - Éva Leiter
- 2 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Sciences H-4032 Debrecen Egyetem tér 1 Hungary
| | - Márton Miskei
- 2 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Sciences H-4032 Debrecen Egyetem tér 1 Hungary
| | - István Pócsi
- 2 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Sciences H-4032 Debrecen Egyetem tér 1 Hungary
| | - László Hornok
- 3 Szent István University Mycology Group of the Hungarian Academy of Sciences, Institute of Plant Protection H-2103 Gödöllő Páter K. u. 1 Hungary
| | - Attila Ádám
- 1 Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O. Box 102 Hungary
| |
Collapse
|
191
|
Zhao H, Xu C, Lu HL, Chen X, St. Leger RJ, Fang W. Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathog 2014; 10:e1004009. [PMID: 24722668 PMCID: PMC3983072 DOI: 10.1371/journal.ppat.1004009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/03/2014] [Indexed: 12/14/2022] Open
Abstract
Metarhizium robertsii is a plant root colonizing fungus that is also an insect pathogen. Its entomopathogenicity is a characteristic that was acquired during evolution from a plant endophyte ancestor. This transition provides a novel perspective on how new functional mechanisms important for host switching and virulence have evolved. From a random T-DNA insertion library, we obtained a pathogenicity defective mutant that resulted from the disruption of a sterol carrier gene (Mr-npc2a). Phylogenetic analysis revealed that Metarhizium acquired Mr-npc2a from an insect by horizontal gene transfer (HGT). Mr-NPC2a binds to cholesterol, an animal sterol, rather than the fungal sterol ergosterol, indicating it retains the specificity of insect NPC2 proteins. Mr-NPC2a is an intracellular protein and is exclusively expressed in the hemolymph of living insects. The disruption of Mr-npc2a reduced the amount of sterol in cell membranes of the yeast-like hyphal bodies that facilitate dispersal in the host body. These were consequently more susceptible to insect immune responses than the wild type. Transgenic expression of Mr-NPC2a increased the virulence of Beauveria bassiana, an endophytic insect-pathogenic fungus that lacks a Mr-NPC2a homolog.
Collapse
Affiliation(s)
- Hong Zhao
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Xiaoxuan Chen
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Weiguo Fang
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
192
|
Ludwig N, Löhrer M, Hempel M, Mathea S, Schliebner I, Menzel M, Kiesow A, Schaffrath U, Deising HB, Horbach R. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:315-27. [PMID: 24261846 DOI: 10.1094/mpmi-09-13-0267-r] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ascomycete and causative agent of maize anthracnose and stem rot, Colletotrichum graminicola, differentiates melanized infection cells called appressoria that are indispensable for breaching the plant cell wall. High concentrations of osmolytes accumulate within the appressorium, and the internal turgor pressure of up to 5.4 MPa provides sufficient force to penetrate the leaf epidermis directly. In order to assess the function of melanin in C. graminicola appressoria, we identified and characterized the polyketide synthase 1 (CgPKS1) gene which displayed high similarity to fungal polyketide synthases (PKS) involved in synthesis of 1,3,6,8-tetrahydronaphthalene, the first intermediate in melanin biosynthesis. Cgpks1 albino mutants created by targeted gene disruption were unable to penetrate intact leaves and ruptured frequently but, surprisingly, were able to penetrate ultrathin polytetrafluoroethylene membranes mimicking the plant surface. Nonmelanized Cgpks1 appressoria were sensitive to externally applied cell-wall-degrading enzymes whereas melanized appressoria were not affected. Expression studies using a truncated CgPKS1 fused to green fluorescent protein revealed fluorescence in immature appressoria and in setae, which is in agreement with transcript data obtained by RNA-Seq and quantitative polymerase chain reaction. Unexpectedly, surface scans of mutant and wild-type appressoria revealed considerable differences in cell-wall morphology. Melanization of appressoria is indispensable for successful infection of intact leaves. However, cell collapse experiments and analysis of the appressorial osmolyte content by Mach-Zehnder interferometry convincingly showed that melanin is not required for solute accumulation and turgor generation, thus questioning the role of melanin as a barrier for osmolytes in appressoria of C. graminicola.
Collapse
|
193
|
Albarouki E, Schafferer L, Ye F, von Wirén N, Haas H, Deising HB. Biotrophy-specific downregulation of siderophore biosynthesis in Colletotrichum graminicola is required for modulation of immune responses of maize. Mol Microbiol 2014; 92:338-55. [PMID: 24674132 PMCID: PMC4235341 DOI: 10.1111/mmi.12561] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 12/01/2022]
Abstract
The hemibiotrophic maize pathogen Colletotrichum graminicola synthesizes one intracellular and three secreted siderophores. eGFP fusions with the key siderophore biosynthesis gene, SID1, encoding l-ornithine-N(5) -monooxygenase, suggested that siderophore biosynthesis is rigorously downregulated specifically during biotrophic development. In order to investigate the role of siderophores during vegetative development and pathogenesis, SID1, which is required for synthesis of all siderophores, and the non-ribosomal peptide synthetase gene NPS6, synthesizing secreted siderophores, were deleted. Mutant analyses revealed that siderophores are required for vegetative growth under iron-limiting conditions, conidiation, ROS tolerance, and cell wall integrity. Δsid1 and Δnps6 mutants were hampered in formation of melanized appressoria and impaired in virulence. In agreement with biotrophy-specific downregulation of siderophore biosynthesis, Δsid1 and Δnps6 strains were not affected in biotrophic development, but spread of necrotrophic hyphae was reduced. To address the question why siderophore biosynthesis is specifically downregulated in biotrophic hyphae, maize leaves were infiltrated with siderophores. Siderophore infiltration alone did not induce defence responses, but formation of biotrophic hyphae in siderophore-infiltrated leaves caused dramatically increased ROS formation and transcriptional activation of genes encoding defence-related peroxidases and PR proteins. These data suggest that fungal siderophores modulate the plant immune system.
Collapse
Affiliation(s)
- Emad Albarouki
- Martin-Luther-Universität Halle-Wittenberg, Interdisziplinäres Zentrum für Nutzpflanzenforschung (IZN), Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany; Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften, Phytopathologie und Pflanzenschutz, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
194
|
García-Guzmán G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. THE NEW PHYTOLOGIST 2014; 201:1106-1120. [PMID: 24171899 DOI: 10.1111/nph.12562] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/19/2013] [Indexed: 05/26/2023]
Abstract
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens.
Collapse
Affiliation(s)
| | - Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, México
| |
Collapse
|
195
|
Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. FRONTIERS IN PLANT SCIENCE 2014; 5:249. [PMID: 24917874 PMCID: PMC4042593 DOI: 10.3389/fpls.2014.00249] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 05/14/2023]
Abstract
Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvain Cordelier
- *Correspondence: Sylvain Cordelier, Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail:
| |
Collapse
|
196
|
Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. MOLECULAR PLANT PATHOLOGY 2014; 15:5-21. [PMID: 24118686 PMCID: PMC6638674 DOI: 10.1111/mpp.12073] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UNLABELLED The ascomycete Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) causes a lethal disease known as ash dieback on Fraxinus excelsior and Fraxinus angustifolia in Europe. The pathogen was probably introduced from East Asia and the disease emerged in Poland in the early 1990s; the subsequent epidemic is spreading to the entire native distribution range of the host trees. This pathogen profile represents a comprehensive review of the state of research from the discovery of the pathogen and points out knowledge gaps and research needs. TAXONOMY Members of the genus Hymenoscyphus (Helotiales, Leotiomycetidae, Leotiomycetes, Ascomycota) are small discomycetes which form their ascomata on dead plant material. A phylogeny based on the internal transcribed spacers (ITSs) of the rDNA indicated the avirulent Hymenoscyphus albidus, a species native to Europe, as the closest relative of H. pseudoalbidus. SYMPTOMS Hymenoscyphus pseudoalbidus causes necrotic lesions on leaves, twigs and stems, eventually leading to wilting and dieback of girdled shoots. Bark lesions are characterized by a typical dark- to cinnamon-brown discoloration. LIFE CYCLE Hymenoscyphus pseudoalbidus is heterothallic and reproduces sexually on ash petioles in the litter once a year. Ascospores are wind dispersed and infect ash leaves during the summer. The asexual spores only serve as spermatia. TOOLS AND TECHNIQUES The most important techniques for fungal handling, such as detection, isolation, culturing, storage, crossing and ascocarp production, are briefly described. MANAGEMENT Once the disease is established, management is hardly possible. The occurrence of a small fraction of partially tolerant trees constitutes hope for resistance breeding in the future. Healthy-looking trees should be preserved.
Collapse
Affiliation(s)
- Andrin Gross
- Forest Pathology and Dendrology, Institute of Integrative Biology (IBZ), ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
197
|
Wang X, Jiang N, Liu J, Liu W, Wang GL. The role of effectors and host immunity in plant-necrotrophic fungal interactions. Virulence 2014; 5:722-32. [PMID: 25513773 PMCID: PMC4189878 DOI: 10.4161/viru.29798] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.
Collapse
Affiliation(s)
- Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
| | - Nan Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy; Hunan Agricultural University; Changsha, Hunan, PR China
| | - Jinling Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy; Hunan Agricultural University; Changsha, Hunan, PR China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
- Department of Plant Pathology; Ohio State University; Columbus, OH USA
| |
Collapse
|
198
|
Fernandez J, Marroquin-Guzman M, Wilson RA. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:155-74. [PMID: 24848414 DOI: 10.1146/annurev-phyto-102313-050135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Foliar fungal pathogens challenge global food security, but how they optimize growth and development during infection is understudied. Despite adopting several lifestyles to facilitate nutrient acquisition from colonized cells, little is known about the genetic underpinnings governing pathogen adaption to host-derived nutrients. Homologs of common global and pathway-specific gene regulatory elements are likely to be involved, but their contribution to pathogenicity, and how they are connected to broader genetic networks, is largely unspecified. Here, we focus on carbon and nitrogen metabolism in foliar pathogens and consider what is known, and what is not known, about fungal exploitation of host nutrient and ask how common metabolic regulators have been co-opted to the plant-pathogenic lifestyle as well as how nutrients are utilized to drive infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583; , ,
| | | | | |
Collapse
|
199
|
Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:427-51. [PMID: 25001456 DOI: 10.1146/annurev-phyto-102313-045831] [Citation(s) in RCA: 485] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.
Collapse
|
200
|
Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 2013; 61:146-57. [PMID: 24021881 DOI: 10.1016/j.fgb.2013.08.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections.
Collapse
|