151
|
Tai YK, Ng C, Purnamawati K, Yap JLY, Yin JN, Wong C, Patel BK, Soong PL, Pelczar P, Fröhlich J, Beyer C, Fong CHH, Ramanan S, Casarosa M, Cerrato CP, Foo ZL, Pannir Selvan RM, Grishina E, Degirmenci U, Toh SJ, Richards PJ, Mirsaidi A, Wuertz‐Kozak K, Chong SY, Ferguson SJ, Aguzzi A, Monici M, Sun L, Drum CL, Wang J, Franco‐Obregón A. Magnetic fields modulate metabolism and gut microbiome in correlation with
Pgc‐1α
expression: Follow‐up to an in vitro magnetic mitohormetic study. FASEB J 2020; 34:11143-11167. [DOI: 10.1096/fj.201903005rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yee Kit Tai
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Charmaine Ng
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Kristy Purnamawati
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Craig Wong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Bharati Kadamb Patel
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Poh Loong Soong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pawel Pelczar
- Centre for Transgenic Models University of Basel Basel Switzerland
- Institute of Laboratory Animal Science University of Zürich Zürich Switzerland
| | | | - Christian Beyer
- Centre Suisse d'électronique et de microtechnique, CSEM SA Neuchatel Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Sharanya Ramanan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Institute for Biomechanics ETH Zürich Zürich Switzerland
| | | | - Zi Ling Foo
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Elina Grishina
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Ufuk Degirmenci
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
| | - Shi Jie Toh
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pete J. Richards
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Ali Mirsaidi
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Karin Wuertz‐Kozak
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
- Department of Biomedical Engineering Rochester Institute of Technology (RIT) Rochester NY USA
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Suet Yen Chong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Stephen J. Ferguson
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institut für Neuropathologie Universitätsspital Zürich Zürich Switzerland
| | - Monica Monici
- ASAcampus JL, ASA Res. Div. ‐ Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
| | - Lei Sun
- DUKE‐NUS Graduate Medical School Singapore Singapore Singapore
| | - Chester L. Drum
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Jiong‐Wei Wang
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Alfredo Franco‐Obregón
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Institute for Health Innovation & Technology, iHealthtech National University of Singapore Singapore Singapore
| |
Collapse
|
152
|
Lin CL, Hsu YJ, Ho HH, Chang YC, Kuo YW, Yeh YT, Tsai SY, Chen CW, Chen JF, Huang CC, Lee MC. Bifidobacterium longum subsp. longum OLP-01 Supplementation during Endurance Running Training Improves Exercise Performance in Middle- and Long-Distance Runners: A Double-Blind Controlled Trial. Nutrients 2020; 12:nu12071972. [PMID: 32630786 PMCID: PMC7400043 DOI: 10.3390/nu12071972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium longum subsp. longum Olympic No. 1 (OLP-01) has been shown in previous animal experiments to improve exercise endurance performance, but this effect has not been confirmed in humans, or more particularly, in athletes. Toward this end, the current study combined OLP-01 supplementation with regular exercise training in well-trained middle- and long-distance runners at the National Taiwan Sport University. The study was designed as a double-blind placebo-controlled experiment. Twenty-one subjects (14 males and seven females aged 20–30 years) were evenly distributed according to total distance (meters) traveled in 12 min to one of the following two groups: a placebo group (seven males and three females) and an OLP-01 (1.5 × 1010 colony forming units (CFU)/day) group (seven males and four females). All the participants received placebo or OLP-01 supplements for five consecutive weeks consisting of three weeks of regular training and two weeks of de-training. Before and after the experiment, the participants were tested for 12-min running/walking distance, and body composition, blood/serum, and fecal samples were analyzed. The results showed that OLP-01 significantly increased the change in the 12-min Cooper’s test running distance and the abundance of gut microbiota. Although no significant change in body composition was found, OLP-01 caused no adverse reactions or harm to the participants’ bodies. In summary, OLP-01 can be used as a sports nutrition supplement, especially for athletes, to improve exercise performance.
Collapse
Affiliation(s)
- Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
| | - Hsieh-Hsun Ho
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Yung-Cheng Chang
- Department of Sports Training Science-Athletics, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
| | - Yi-Wei Kuo
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City 83102, Taiwan;
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Shin-Yu Tsai
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Ching-Wei Chen
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Jui-Fen Chen
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
- Correspondence: (C.-C.H.); (M.-C.L.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-3-328-3201 (ext. 2604) (M.-C.L.)
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
- Correspondence: (C.-C.H.); (M.-C.L.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-3-328-3201 (ext. 2604) (M.-C.L.)
| |
Collapse
|
153
|
Wang L, Wang J, Li G, Xiao J. Non-coding RNAs in Physiological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:149-161. [PMID: 32285410 DOI: 10.1007/978-981-15-1671-9_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Non-coding RNA (ncRNA) is a class of RNAs that are not act as translational protein templates. They are involved in the regulation of gene transcription, RNA maturation and protein translation, participating in a variety of physiological and physiological processes. NcRNAs have important functions, and are recently one of the hotspots in biomedical research. Cardiac hypertrophy is classified into physiological cardiac hypertrophy and pathological cardiac hypertrophy. Different from pathological cardiac hypertrophy, physiological cardiac hypertrophy usually developed during exercise, pregnancy, normal postnatal growth, accompanied with preservation or improvement of systolic function, while no cardiac fibrosis. In this chapter, we will briefly introduce the definition, characteristics, and functions of ncRNAs, including miRNAs, lncRNAs, and circRNAs, as well as a summary of the existing bioinformatics online databases which commonly used in the study of ncRNAs. Specially, this chapter will be focused on the characteristics and the underlying mechanisms about physiological cardiac hypertrophy. Furthermore, the regulatory mechanism of ncRNAs in physiological hypertrophy and the latest research progress will be summarized. Taken together, exploring physiologic cardiac hypertrophy-specific ncRNAs might be a unique research perspective that provides new point of view for interventions in heart failure and other cardiovascular diseases.
Collapse
Affiliation(s)
- Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
154
|
Armstrong SC, Windom M, Bihlmeyer NA, Li JS, Shah SH, Story M, Zucker N, Kraus WE, Pagidipati N, Peterson E, Wong C, Wiedemeier M, Sibley L, Berchuck SI, Merrill P, Zizzi A, Sarria C, Dressman HK, Rawls JF, Skinner AC. Rationale and design of "Hearts & Parks": study protocol for a pragmatic randomized clinical trial of an integrated clinic-community intervention to treat pediatric obesity. BMC Pediatr 2020; 20:308. [PMID: 32590958 PMCID: PMC7318397 DOI: 10.1186/s12887-020-02190-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The prevalence of child and adolescent obesity and severe obesity continues to increase despite decades of policy and research aimed at prevention. Obesity strongly predicts cardiovascular and metabolic disease risk; both begin in childhood. Children who receive intensive behavioral interventions can reduce body mass index (BMI) and reverse disease risk. However, delivering these interventions with fidelity at scale remains a challenge. Clinic-community partnerships offer a promising strategy to provide high-quality clinical care and deliver behavioral treatment in local park and recreation settings. The Hearts & Parks study has three broad objectives: (1) evaluate the effectiveness of the clinic-community model for the treatment of child obesity, (2) define microbiome and metabolomic signatures of obesity and response to lifestyle change, and (3) inform the implementation of similar models in clinical systems. METHODS Methods are designed for a pragmatic randomized, controlled clinical trial (n = 270) to test the effectiveness of an integrated clinic-community child obesity intervention as compared with usual care. We are powered to detect a difference in body mass index (BMI) between groups at 6 months, with follow up to 12 months. Secondary outcomes include changes in biomarkers for cardiovascular disease, psychosocial risk, and quality of life. Through collection of biospecimens (serum and stool), additional exploratory outcomes include microbiome and metabolomics biomarkers of response to lifestyle modification. DISCUSSION We present the study design, enrollment strategy, and intervention details for a randomized clinical trial to measure the effectiveness of a clinic-community child obesity treatment intervention. This study will inform a critical area in child obesity and cardiovascular risk research-defining outcomes, implementation feasibility, and identifying potential molecular mechanisms of treatment response. CLINICAL TRIAL REGISTRATION NCT03339440 .
Collapse
Affiliation(s)
- Sarah C. Armstrong
- Department of Pediatrics, Duke University, Durham, NC 27710 USA
- Duke Clinical Research Institute, Duke University, Durham, NC 27710 USA
| | | | | | - Jennifer S. Li
- Department of Pediatrics, Duke University, Durham, NC 27710 USA
| | - Svati H. Shah
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710 USA
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Mary Story
- Department of Family Medicine and Community Health, Duke University, Durham, NC 27710 USA
| | - Nancy Zucker
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710 USA
| | | | - Neha Pagidipati
- Duke Clinical Research Institute, Duke University, Durham, NC 27710 USA
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Eric Peterson
- Duke Clinical Research Institute, Duke University, Durham, NC 27710 USA
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Charlene Wong
- Department of Pediatrics, Duke University, Durham, NC 27710 USA
- Duke Clinical Research Institute, Duke University, Durham, NC 27710 USA
| | | | - Lauren Sibley
- University of North Carolina School of Medicine, Chapel Hill, NC 27516 USA
| | - Samuel I. Berchuck
- Department of Statistical Science, Duke University, Durham, NC 27710 USA
| | - Peter Merrill
- Duke Clinical Research Institute, Duke University, Durham, NC 27710 USA
| | - Alexandra Zizzi
- Department of Pediatrics, Duke University, Durham, NC 27710 USA
| | - Charles Sarria
- Department of Pediatrics, Duke University, Durham, NC 27710 USA
| | - Holly K. Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
| | - Asheley C. Skinner
- Duke Clinical Research Institute, Duke University, Durham, NC 27710 USA
- Department of Population Health Sciences, Duke University, 215 Morris Street, Suite 210, Durham, NC 27701 USA
| |
Collapse
|
155
|
Liao P, He Q, Zhou X, Ma K, Wen J, Chen H, Li Q, Qin D, Wang H. Repetitive Bouts of Exhaustive Exercise Induces a Systemic Inflammatory Response and Multi-Organ Damage in Rats. Front Physiol 2020; 11:685. [PMID: 32655413 PMCID: PMC7324715 DOI: 10.3389/fphys.2020.00685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple organ dysfunction syndrome can follow severe infection or injury, but its relationship to exercise is not well understood. Previous studies have observed that prolonged strenuous exercise can lead to transiently increased level and/or activity of markers for systemic inflammatory response and multiple organ damage. However, few studies have analyzed the pathogenesis of the inflammatory response and subsequent multi-organ injury in exhaustive exercise conditions. In this study, we established a rat model of repetitive bouts of exhaustive running (RBER) and investigated its effects on multiple organ damage. Rats were subjected to RBER in either uphill or downhill running modes daily for a period of 7 days. Morphologically, RBER causes tissue structural destruction and infiltration of inflammatory cells in the skeletal muscles and many visceral organs. RBER also causes sustained quantitative changes in leukocytes, erythrocytes, and platelets, and changes in the concentration of blood inflammatory factors. These inflammatory alterations are accompanied by increases in serum enzyme levels/activities which serve as functional markers of organ damage. In general, RBER in the downhill mode seemed to cause more damage evaluated by the above-mentioned measures than that produced in the uphill mode. A period of rest could recover some degree of damage, especially for organs such as the heart and kidneys with strong compensatory capacities. Together, our data suggest that, as a result of multi-organ interactions, RBER could cause a sustained inflammatory response for at least 24 h, resulting in tissue lesion and ultimately multiple organ dysfunction.
Collapse
Affiliation(s)
- Peng Liao
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Qinghua He
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Xuan Zhou
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, Jiangyin, China.,Probiotics Australia, Ormeau, QLD, Australia
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, Beijing, China
| | - Hang Chen
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Qingwen Li
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Di Qin
- Beijing Tong Ren Tang Health-Pharmaceutical, Beijing, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
156
|
Agans RT, Giles GE, Goodson MS, Karl JP, Leyh S, Mumy KL, Racicot K, Soares JW. Evaluation of Probiotics for Warfighter Health and Performance. Front Nutr 2020; 7:70. [PMID: 32582752 PMCID: PMC7296105 DOI: 10.3389/fnut.2020.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The probiotic industry continues to grow in both usage and the diversity of products available. Scientific evidence supports clinical use of some probiotic strains for certain gastrointestinal indications. Although much less is known about the impact of probiotics in healthy populations, there is increasing consumer and scientific interest in using probiotics to promote physical and psychological health and performance. Military men and women are a unique healthy population that must maintain physical and psychological health in order to ensure mission success. In this narrative review, we examine the evidence regarding probiotics and candidate probiotics for physical and/or cognitive benefits in healthy adults within the context of potential applications for military personnel. The reviewed evidence suggests potential for certain strains to induce biophysiological changes that may offer physical and/or cognitive health and performance benefits in military populations. However, many knowledge gaps exist, effects on health and performance are generally not widespread among the strains examined, and beneficial findings are generally limited to single studies with small sample sizes. Multiple studies with the same strains and using similar endpoints are needed before definitive recommendations for use can be made. We conclude that, at present, there is not compelling scientific evidence to support the use of any particular probiotic(s) to promote physical or psychological performance in healthy military personnel. However, plausibility for physical and psychological health and performance benefits remains, and additional research is warranted. In particular, research in military cohorts would aid in assessing the value of probiotics for supporting physical and psychological health and performance under the unique demands required of these populations.
Collapse
Affiliation(s)
- Richard T Agans
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Naval Medical Research Unit Dayton, Environmental Health Effects Laboratory, Dayton, OH, United States
| | - Grace E Giles
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| | - Michael S Goodson
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH, United States
| | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Samantha Leyh
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH, United States.,Oak Ridge Institute for Science and Education, Wright Patterson Air Force Base, Oak Ridge, TN, United States
| | - Karen L Mumy
- Naval Medical Research Unit Dayton, Environmental Health Effects Laboratory, Dayton, OH, United States
| | - Kenneth Racicot
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| | - Jason W Soares
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| |
Collapse
|
157
|
Zhou F, Kang L, Wang X. JumpDetector: An automated monitoring equipment for the locomotion of jumping insects. INSECT SCIENCE 2020; 27:613-624. [PMID: 30793497 PMCID: PMC7277037 DOI: 10.1111/1744-7917.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Continuous jumping behavior, a kind of endurance locomotion, plays important roles in insect ecological adaption and survival. However, the methods used for the efficient evaluation of insect jumping behavior remain largely lacking. Here, we developed a locomotion detection system named JumpDetector with automatic trajectory tracking and data analysis to evaluate the jumping of insects. This automated system exhibits more accurate, efficient, and adjustable performance than manual methods. By using this automatic system, we characterized a gradually declining pattern of continuous jumping behavior in 4th-instar nymphs of the migratory locust. We found that locusts in their gregarious phase outperformed locusts in their solitary phase in the endurance jumping locomotion. Therefore, the JumpDetector could be widely used in jumping behavior and endurance locomotion measurement.
Collapse
Affiliation(s)
- Feng Zhou
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Le Kang
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xian‐Hui Wang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
158
|
Gut microbiota and regulation of myokine-adipokine function. Curr Opin Pharmacol 2020; 52:9-17. [DOI: 10.1016/j.coph.2020.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/27/2022]
|
159
|
Castellanos N, Diez GG, Antúnez-Almagro C, Bressa C, Bailén M, González-Soltero R, Pérez M, Larrosa M. Key Bacteria in the Gut Microbiota Network for the Transition between Sedentary and Active Lifestyle. Microorganisms 2020; 8:E785. [PMID: 32456263 PMCID: PMC7285274 DOI: 10.3390/microorganisms8050785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Physical activity modifies the gut microbiota, exerting health benefits on the host; however, the specific bacteria associated with exercise are not yet known. In this work, we propose a novel method, based on hierarchical topology, to study the differences between the microbiota of active and sedentary lifestyles, and to identify relevant bacterial taxa. Our results show that the microbiota network found in active people has a significantly higher overall efficiency and higher transmissibility rate. We also identified key bacteria in active and sedentary networks that could be involved in the conversion of an active microbial network to a sedentary microbial network and vice versa.
Collapse
Affiliation(s)
- Nazareth Castellanos
- Nirakara Lab, Mindfulness and cognitive Science extraordinary Chair, Universidad Complutense de Madrid, 28223 Madrid, Spain; (N.C.); (G.G.D.)
| | - Gustavo G. Diez
- Nirakara Lab, Mindfulness and cognitive Science extraordinary Chair, Universidad Complutense de Madrid, 28223 Madrid, Spain; (N.C.); (G.G.D.)
| | | | - Carlo Bressa
- Masmicrobiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (C.B.); (M.B.); (R.G.-S.)
| | - María Bailén
- Masmicrobiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (C.B.); (M.B.); (R.G.-S.)
| | - Rocío González-Soltero
- Masmicrobiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (C.B.); (M.B.); (R.G.-S.)
| | - Margarita Pérez
- Faculty of Sport and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | - Mar Larrosa
- Masmicrobiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (C.B.); (M.B.); (R.G.-S.)
| |
Collapse
|
160
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. No correlation between microbiota composition and blood parameters in nesting flatback turtles (Natator depressus). Sci Rep 2020; 10:8333. [PMID: 32433567 PMCID: PMC7239873 DOI: 10.1038/s41598-020-65321-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The microbiota is considered critical for normal vertebrate homeostasis and it may exert its effects at a local level within the gastrointestinal tract, or systemically through the production of bacterial metabolites. To date, investigations into the role that the microbiota plays in reptile physiology are rare. To address this knowledge gap, we explored the relationship between differences in microbial communities to see if they accounted for differences in haematology and biochemistry values, in different populations of nesting flatback turtles (Natator depressus). We found that microbiota composition was not correlated to any of the blood analytes we measured in flatbacks. This study is the first of its kind in reptiles and highlights the need for further investigations to determine mechanisms by which the microbiota influences the physiology and health of reptiles.
Collapse
Affiliation(s)
- T Franciscus Scheelings
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia.
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
161
|
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ. Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 2020; 12:nu12051451. [PMID: 32443396 PMCID: PMC7285193 DOI: 10.3390/nu12051451] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive training may limit physiological muscle adaptation through chronic oxidative stress and inflammation. Improper diet and overtraining may also disrupt intestinal homeostasis and in consequence enhance inflammation. Altogether, these factors may lead to an imbalance in the gut ecosystem, causing dysregulation of the immune system. Therefore, it seems to be important to optimize the intestinal microbiota composition, which is able to modulate the immune system and reduce oxidative stress. Moreover, the optimal intestinal microbiota composition may have an impact on muscle protein synthesis and mitochondrial biogenesis and function, as well as muscle glycogen storage. Aproperly balanced microbiome may also reduce inflammatory markers and reactive oxygen species production, which may further attenuate macromolecules damage. Consequently, supplementation with probiotics may have some beneficial effect on aerobic and anaerobic performance. The phenomenon of gut-muscle axis should be continuously explored to function maintenance, not only in athletes.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marcin Folwarski
- Departmentof Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | | | | | - Jan Jacek Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-516-191-109
| |
Collapse
|
162
|
Zhu Q, Jiang S, Du G. Effects of exercise frequency on the gut microbiota in elderly individuals. Microbiologyopen 2020; 9:e1053. [PMID: 32356611 PMCID: PMC7424259 DOI: 10.1002/mbo3.1053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Growing evidence has shown that exercise can affect the gut microbiota. The effects of exercise frequency on the gut microbiota in elderly individuals are still largely unknown. In the present study, samples from 897 elderly and 1,589 adult individuals (18–60 years old) from the American Gut Project were screened. Microbial diversity and composition were analyzed by QIIME2, and microbial function was predicted by PICRUSt2. The outcomes were further analyzed by STAMP. The analysis showed that the α‐diversity of gut microbiota increased with increasing age, and regular exercise reshaped the alterations in microbial composition and function induced by aging. Moreover, the α‐diversity of gut microbiota was higher in overweight elderly individuals than in normoweight elderly individuals, and regular exercise significantly affected the microbial composition and function in overweight elderly individuals. In conclusion, we revealed that regular exercise benefits elderly individuals, especially overweight elderly individuals, by modulating the gut microbiota.
Collapse
Affiliation(s)
- Qiwei Zhu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Shangfei Jiang
- Human Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
163
|
Effect of Increased Daily Water Intake and Hydration on Health in Japanese Adults. Nutrients 2020; 12:nu12041191. [PMID: 32340375 PMCID: PMC7231288 DOI: 10.3390/nu12041191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Increased hydration is recommended as healthy habit with several merits. However, supportive data are sparse. To assess the efficacy of increased daily water intake, we tested the effect of water supplementation on biomarkers in blood, urine, and saliva. Twenty-four healthy Japanese men and 31 healthy Japanese women with fasting blood glucose levels ranging from 90–125 mg/dL were included. An open-label, two-arm, randomized controlled trial was conducted for 12 weeks. Two additional 550 mL bottles of water on top of habitual fluid intake were consumed in the intervention group. The subjects drank one bottle of water (550 mL) within 2 h of waking, and one bottle (550 mL) 2 h before bedtime. Subjects increased mean fluid intake from 1.3 L/day to 2.0 L/day, without changes in total energy intake. Total body water rate increased with associated water supplementation. There were no significant changes in fasting blood glucose and arginine vasopressin levels, but systolic blood pressure was significantly decreased in the intervention group. Furthermore, water supplementation increased body temperature, reduced blood urea nitrogen concentration, and suppressed estimated glomerular filtration rate reduction. Additionally, existence of an intestinal microbiome correlated with decreased systolic blood pressure and increased body temperature. Habitual water supplementation after waking up and before bedtime in healthy subjects with slightly elevated fasting blood glucose levels is not effective in lowering these levels. However, it represents a safe and promising intervention with the potential for lowering blood pressure, increasing body temperature, diluting blood waste materials, and protecting kidney function. Thus, increasing daily water intake could provide several health benefits.
Collapse
|
164
|
Huang WC, Hsu YJ, Huang CC, Liu HC, Lee MC. Exercise Training Combined with Bifidobacterium longum OLP-01 Supplementation Improves Exercise Physiological Adaption and Performance. Nutrients 2020; 12:nu12041145. [PMID: 32325851 PMCID: PMC7231274 DOI: 10.3390/nu12041145] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics exert multiple health benefits, including gastrointestinal health, immunoregulation, and metabolic disease improvement, by modulating microbiota to maintain eubiosis via the hypothalamic–pituitary–adrenal (HPA) and brain–gut–microbiome axes. Physiological fatigue, mental stress, and gastrointestinal discomfort under the demands of athletic performance as well as immunosuppression are common during endurance training and competition. Limited studies investigated the functional effects of probiotic supplementation on endurance training. Bifidobacterium longum subsp. Longum OLP-01 (OLP-01), isolated from an elite Olympic athlete, was combined with a six-week exercise training program with gradually increasing intensity. In this study, Institute of Cancer Research (ICR) mice were assigned to sedentary, exercise, OLP-01, or exercise + OLP-01 groups and administered probiotic and/or treadmill exercise training for six weeks to assess exercise performance, physiological adaption, and related metabolites. The exercise + OLP-01 group demonstrated higher performance in terms of endurance and grip strength, as well as improved fatigue-associated indexes (lactate, ammonia, creatine kinase (CK), lactate dehydrogenase (LDH), and glycogen content), compared with the other groups. OLP-01 supplementation significantly ameliorated inflammation and injury indexes (platelet/lymphocyte ratio (PLR), aminotransferase (AST), and CK) caused by prolonged endurance exercise test. Moreover, acetate, propionate, and butyrate levels were significantly higher in the exercise + OLP-01 group than in the sedentary and OLP-01 groups. Athletes often experience psychological and physiological stress caused by programed intensive exercise, competition, and off-site training, often leading to poor exercise performance and gastrointestinal issues. Functional OLP-01 probiotics are considered to be a nutritional strategy for improving physiological adaption, oxidative stress, inflammation, and energy balance to ensure high physical performance. Based on these results, probiotics combined with exercise training is a potential strategy for ensuring high physical performance of athletes, which should be further investigated through microbiota validation.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
- Correspondence: (W.-C.H.); (M.-C.L.); Tel.: +886-2-2822-7101 (W.-C.H.); +886-3-328-3201 (M.-C.L.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Hsuan-Chen Liu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
- Correspondence: (W.-C.H.); (M.-C.L.); Tel.: +886-2-2822-7101 (W.-C.H.); +886-3-328-3201 (M.-C.L.)
| |
Collapse
|
165
|
Lee MC, Hsu YJ, Ho HH, Hsieh SH, Kuo YW, Sung HC, Huang CC. Lactobacillus salivarius Subspecies salicinius SA-03 is a New Probiotic Capable of Enhancing Exercise Performance and Decreasing Fatigue. Microorganisms 2020; 8:microorganisms8040545. [PMID: 32283729 PMCID: PMC7232535 DOI: 10.3390/microorganisms8040545] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are increasingly being used as a nutritional supplement by athletes to improve exercise performance and reduce post-exercise fatigue. Lactobacillus salivarius is a natural flora in the gastrointestinal tract of humans and animals. Lactobacillus salivarius subspecies salicinius (SA-03) is an isolate from the 2008 Olympic women’s 48 kg weightlifting gold medalist’s gut microbiota. In this study, we investigated its beneficial effects on physical fitness. Male ICR mice were divided into four groups (n = 10 per group) and orally administered with SA-03 for 4 weeks at 0, 2.05 × 109, 4.10 × 109, or 1.03 × 1010 CFU/kg/day. Results showed that 4 weeks of SA-03 supplementation significantly improved muscle strength and endurance performance, increased hepatic and muscular glycogen storage, and decreased lactate, blood urea nitrogen (BUN), ammonia, and creatine kinase (CK) levels after exercise. These observations suggest that SA-03 could be used as a nutritional supplement to enhance exercise performance and reduce.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Hsieh-Hsun Ho
- Glac Biotech Co. Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (S.-H.H.); (Y.-W.K.)
| | - Shih-Hung Hsieh
- Glac Biotech Co. Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (S.-H.H.); (Y.-W.K.)
| | - Yi-Wei Kuo
- Glac Biotech Co. Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (S.-H.H.); (Y.-W.K.)
| | - Hsin-Ching Sung
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33301, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Township, Taoyuan City, Taoyuan 33301, Taiwan
- Correspondence: (H.-C.S.); (C.-C.H.); Tel.: +886-3-211-8800 (ext. 5977) (H.-C.S.); +886-3-328-3201 (ext. 2409) (C.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
- Correspondence: (H.-C.S.); (C.-C.H.); Tel.: +886-3-211-8800 (ext. 5977) (H.-C.S.); +886-3-328-3201 (ext. 2409) (C.-C.H.)
| |
Collapse
|
166
|
Calero CQ, Rincón EO, Marqueta PM. Probiotics, prebiotics and synbiotics: useful for athletes and active individuals? A systematic review. Benef Microbes 2020; 11:135-149. [DOI: 10.3920/bm2019.0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this review was to synthesise available knowledge on the main health effects associated with the use of probiotics, prebiotics and/or synbiotics in athletes and active individuals, including their effects on the immune system, oxidative stress, the gastrointestinal and respiratory symptoms, as well as other possible clinical outcomes. A systematic and comprehensive search in electronic databases, including Web of Science (WOS, Scielo), PubMed-MEDLINE, Biblioteca virtual de la Salud (LILACS, IBECS), EBSCO (Academic Search Complete CINAHL; SPORTDiscus) and Cochrane Library, focused on generic articles about probiotics, prebiotics and/or synbiotics and their functionality and effects on human health. The search process was completed using the keywords: ‘probiotics’, ‘prebiotics’, ‘synbiotics’, ‘athletes’ and ‘health’. The only exclusion criterion was experimental studies with animals. A total of 31 studies met the inclusion criteria and were included in the review. The vast majority were experimental studies about probiotics and health effects (n=28), while only a few demonstrated the results of consuming prebiotics and/or synbiotics (n=3) in athletes and active individuals. Although most of the studies reported positive health effects in athletes and active individuals, there is still no substantial scientific evidence to suggest that probiotics, prebiotics and synbiotics play an important role in improving an athlete´s performance. These studies are currently limited in number and quality, hence it is necessary to improve the selection of functional biomarkers and methodological approaches, as well as determining the specific nutritional supplement and exercise doses.
Collapse
Affiliation(s)
- C.D. Quero Calero
- International Chair of Sport Medicine, Faculty of Medicine, Catholic University of Murcia, Campus de los Jerónimos, 30107, Murcia, Spain
| | - E. Ortega Rincón
- Immunophysiology Group, University Institute of Biosanitary Research of Extremadura (INUBE), University of Extremadura, Av. Elvas, s/n, 06006 Badajoz, Spain
| | - P. Manonelles Marqueta
- International Chair of Sport Medicine, Faculty of Medicine, Catholic University of Murcia, Campus de los Jerónimos, 30107, Murcia, Spain
| |
Collapse
|
167
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
168
|
Abstract
Investigation of gut microbiome composition and diversity with respect to human personality. Analyses targeted bacterial genera linked to behaviour in animal and human psychiatric studies. Bacterial genera were modelled (using negative binomial regression) with respect to personality. Genera linked to autism are also related to social behaviour in the general population. Sociability is associated with higher diversity, and anxiety and stress with reduced diversity.
The gut microbiome has a measurable impact on the brain, influencing stress, anxiety, depressive symptoms and social behaviour. This microbiome–gut–brain axis may be mediated by various mechanisms including neural, immune and endocrine signalling. To date, the majority of research has been conducted in animal models, while the limited number of human studies has focused on psychiatric conditions. Here the composition and diversity of the gut microbiome is investigated with respect to human personality. Using regression models to control for possible confounding factors, the abundances of specific bacterial genera are shown to be significantly predicted by personality traits. Diversity analyses of the gut microbiome reveal that people with larger social networks tend to have a more diverse microbiome, suggesting that social interactions may shape the microbial community of the human gut. In contrast, anxiety and stress are linked to reduced diversity and an altered microbiome composition. Together, these results add a new dimension to our understanding of personality and reveal that the microbiome–gut–brain axis may also be relevant to behavioural variation in the general population as well as to cases of psychiatric disorders.
Collapse
|
169
|
Gut-Joint Axis: The Role of Physical Exercise on Gut Microbiota Modulation in Older People with Osteoarthritis. Nutrients 2020; 12:nu12020574. [PMID: 32098380 PMCID: PMC7071456 DOI: 10.3390/nu12020574] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is considered one of the most common joint disorders worldwide and its prevalence is constantly increasing due to the global longevity and changes in eating habits and lifestyle. In this context, the role of gut microbiota (GM) in the pathogenesis of OA is still unclear. Perturbation of GM biodiversity and function, defined as ‘gut dysbiosis’, might be involved in the development of inflammaging, one of the main risk factors of OA development. It is well known that physical exercise could play a key role in the prevention and treatment of several chronic diseases including OA, and it is recommended by several guidelines as a first line intervention. Several studies have shown that physical exercise could modulate GM composition, boosting intestinal mucosal immunity, increasing the Bacteroidetes–Firmicutes ratio, modifying the bile acid profile, and improving the production of short chain fatty acids. Moreover, it has been shown that low intensity exercise might reduce the risk of gastrointestinal diseases, confirming the hypothesis of a strict correlation between skeletal muscle and GM. However, up to date, there is still a lack of clinical trials focusing on this research field. Therefore, in this narrative, we aimed to summarize the state-of-the-art of the literature regarding the correlation between these conditions, supporting the hypothesis of a ‘gut–joint axis’ and highlighting the role of physical exercise combined with adequate diet and probiotic supplements in rebalancing microbial dysbiosis.
Collapse
|
170
|
Tysnes KR, Angell IL, Fjellanger I, Larsen SD, Søfteland SR, Robertson LJ, Skancke E, Rudi K. Pre- and Post-Race Intestinal Microbiota in Long-Distance Sled Dogs and Associations with Performance. Animals (Basel) 2020; 10:ani10020204. [PMID: 31991779 PMCID: PMC7071093 DOI: 10.3390/ani10020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The impact of the gut microbiota on endurance performance remains unresolved. Here, we present an association between endurance performance and gut microbiota dysbiosis in sled dogs. We present evidence that normobiosis-associated bacteria prevent the outgrowth of dysbiosis-associated bacteria during the race. Abstract Although our understanding of the role of the gut microbiota in different diseases is improving, our knowledge regarding how the gut microbiota affects functioning in healthy individuals is still limited. Here, we hypothesize that the gut microbiota could be associated with sled dog endurance-race performance. We investigated the gut microbiota in 166 fecal samples from 96 Alaskan Huskies, representing 16 teams participating in the 2016 Femund Race (400 km) in Norway, relating the microbiota composition to performance and metadata derived from questionnaires. For 16S rRNA gene sequencing-derived compositional data, we found a strong negative association between Enterobacteriaceae (dysbiosis-associated) and Clostridium hiranonis (normobiosis-associated). The teams with the best performances showed both the lowest levels of dysbiosis-associated bacteria prior to the race and the lowest change (decrease) in these bacteria after the race. Taken together, our results support the hypothesis that normobiosis-associated bacteria are involved in resilience mechanisms, potentially preventing growth of Enterobacteriaceae during the race.
Collapse
Affiliation(s)
- Kristoffer Relling Tysnes
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.B. 369 Sentrum, 0102 Oslo, Norway; (K.R.T.); (I.F.); (S.D.L.); (S.R.S.); (L.J.R.)
| | - Inga Leena Angell
- Department of Chemistry, Biotechnology and Food science (IKBM), Norwegian University of Life Sciences, 1430, Box 5003 Ås, Norway;
| | - Iselin Fjellanger
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.B. 369 Sentrum, 0102 Oslo, Norway; (K.R.T.); (I.F.); (S.D.L.); (S.R.S.); (L.J.R.)
| | - Sigrid Drageset Larsen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.B. 369 Sentrum, 0102 Oslo, Norway; (K.R.T.); (I.F.); (S.D.L.); (S.R.S.); (L.J.R.)
| | - Silje Rebekka Søfteland
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.B. 369 Sentrum, 0102 Oslo, Norway; (K.R.T.); (I.F.); (S.D.L.); (S.R.S.); (L.J.R.)
| | - Lucy J. Robertson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.B. 369 Sentrum, 0102 Oslo, Norway; (K.R.T.); (I.F.); (S.D.L.); (S.R.S.); (L.J.R.)
| | - Ellen Skancke
- Department of Companion Animal Clinical Sciences (SportFaMed), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102 Oslo, Norway;
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food science (IKBM), Norwegian University of Life Sciences, 1430, Box 5003 Ås, Norway;
- Correspondence:
| |
Collapse
|
171
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
172
|
Wang H, Ma Y, Lin Y, Chen R, Xu B, Deng J. SHU00238 Promotes Colorectal Cancer Cell Apoptosis Through miR-4701-3p and miR-4793-3p. Front Genet 2020; 10:1320. [PMID: 31998373 PMCID: PMC6965150 DOI: 10.3389/fgene.2019.01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer is one of the most leading causes of death. Searching for new therapeutic targets for colorectal cancer is urgently needed. SHU00238, an isoxazole derivative, was reported to suppress colorectal tumor growth through microRNAs. But the underlying mechanisms still remain unknown. Here, we explored the mechanism of SHU00238 on colorectal cancer by RT-PCR, CCK-8, flow cytometry, mirTarBase, and GO enrichment analysis. We screened partial microRNAs regulated by SHU00238 in colorectal cancer cells. Furthermore, we identified that miR-4701-3p and miR-4793-3p can reverse the acceleration of SHU00238 on colorectal cancer cell apoptosis in HCT116 Cells. Finally, we found that SMARCA5, MBD3, VPS53, EHD4 are estimated to mediate the regulation of miR-4701-3p and miR-4793-3p on colorectal cancer cell apoptosis, which targets ATP-dependent chromatin remodeling pathway and endocytic recycling pathway. Taken together, our study reveals that SHU00238 promotes colorectal cancer cell apoptosis through miR-4701-3p and miR-4793-3p, which provide a potential drug target and therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China.,School of Life Science, Shanghai University, Shanghai, China
| | - Yurui Ma
- School of Life Science, Shanghai University, Shanghai, China
| | - Yifan Lin
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China
| | - Rui Chen
- School of Life Science, Shanghai University, Shanghai, China
| | - Bin Xu
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China.,Innovative Drug Research Center, Shanghai University, Shanghai, China
| | - Jiali Deng
- School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
173
|
Hughes RL. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front Nutr 2020; 6:191. [PMID: 31998739 PMCID: PMC6966970 DOI: 10.3389/fnut.2019.00191] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome is a key factor in determining inter-individual variability in response to diet. Thus, far, research in this area has focused on metabolic health outcomes such as obesity and type 2 diabetes. However, understanding the role of the gut microbiome in determining response to diet may also lead to improved personalization of sports nutrition for athletic performance. The gut microbiome has been shown to modify the effect of both diet and exercise, making it relevant to the athlete's pursuit of optimal performance. This area of research can benefit from recent developments in the general field of personalized nutrition and has the potential to expand our knowledge of the nexus between the gut microbiome, lifestyle, and individual physiology.
Collapse
Affiliation(s)
- Riley L. Hughes
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
174
|
Wang J, Liu S, Li G, Xiao J. Exercise Regulates the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:395-408. [PMID: 32342473 DOI: 10.1007/978-981-15-1792-1_27] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The profound effect of exercise on the normal functioning of the immune system has been well-known. Exercise and immune regulation are interrelated and affect each other. Exercise changes immune regulation by affecting leucocytes, red blood cells, and cytokines, etc. Regular exercise could reduce the risk of chronic metabolic and cardiorespiratory diseases, partially by the anti-inflammatory effects of exercise. However, these effects are also likely to be responsible for the suppressed immunity that make our bodies more susceptible to infections. Here we summarize the known mechanisms by which exercise-both acute and chronic-exerts its immune regulation effects.
Collapse
Affiliation(s)
- Jing Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Shuqin Liu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
175
|
Wu D, Cao W, Xiang D, Hu YP, Luo B, Chen P. Exercise induces tissue hypoxia and HIF-1α redistribution in the small intestine. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:82-89. [PMID: 31921483 PMCID: PMC6943782 DOI: 10.1016/j.jshs.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exercise induces blood flow redistribution among tissues, leading to splanchnic hypoperfusion. Intestinal epithelial cells are positioned between the anaerobic lumen and the highly metabolic lamina propria with an oxygen gradient. Hypoxia-inducible factor (HIF)-1α is pivotal in the transcriptional response to the oxygen flux. METHODS In this study, the pimonidazole hydrochloride staining was applied to observe the tissue hypoxia in different organs, which might be affected by the blood flow redistribution. The HIF-1α luciferase reporter ROSA26 oxygen-dependent degradation domain (ODD)-Luc/+ mouse model (ODD domain-Luc; female, n = 3-6/group) was used to detect the HIF-1α expression in the intestine. We used 3 swimming models: moderate exercise for 30 min, heavy-intensity exercise bearing 5% bodyweight for 1.5 h, and long-time exercise for 3 h. RESULTS We found that 1 session of swimming at different intensities could induce tissue hypoxia redistribution in the small intestine, colon, liver and kidney, but not in the spleen, heart, and skeletal muscle. Our data showed that exercise exacerbated the extent of physiological hypoxia in the small intestine. Next, using ODD-Luc mice, we found that moderate exercise increased the in vivo HIF-1α level in the small intestine. The post-exercise HIF-1α level was gradually decreased in a time-dependent manner. Interestingly, the redistribution of tissue hypoxia and the increase of HIF-1α expression were not related to the exercise intensity and duration. CONCLUSION This study provided evidence that the small intestine is the primary target organ for exercise-induced tissue hypoxia and HIF-1α redistribution, suggesting that HIF-1α may be a potential target for the regulation of gastrointestinal functions after exercise.
Collapse
Affiliation(s)
- Die Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Dao Xiang
- Department of Diving Medicine, Naval Medical Research Institute, Second Military Medical University, Shanghai 200432, China
| | - Yi-Ping Hu
- Department of Cell Biology, Second Military Medical University, Shanghai 200432, China
| | - Beibei Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| |
Collapse
|
176
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
177
|
Huang WC, Lee MC, Lee CC, Ng KS, Hsu YJ, Tsai TY, Young SL, Lin JS, Huang CC. Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients 2019; 11:nu11112836. [PMID: 31752370 PMCID: PMC6893516 DOI: 10.3390/nu11112836] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Probiotics have been rapidly developed for health promotion, but clinical validation of the effects on exercise physiology has been limited. In a previous study, Lactobacillus plantarum TWK10 (TWK10), isolated from Taiwanese pickled cabbage as a probiotic, was demonstrated to improve exercise performance in an animal model. Thus, in the current study, we attempted to further validate the physiological function and benefits through clinical trials for the purpose of translational research. The study was designed as a double-blind placebo-controlled experiment. A total of 54 healthy participants (27 men and 27 women) aged 20–30 years without professional athletic training were enrolled and randomly allocated to the placebo, low (3 × 1010 colony forming units (CFU)), and high dose (9 × 1010 CFU) TWK10 administration groups (n = 18 per group, with equal sexes). The functional and physiological assessments were conducted by exhaustive treadmill exercise measurements (85% VO2max), and related biochemical indices were measured before and after six weeks of administration. Fatigue-associated indices, including lactic acid, blood ammonia, blood glucose, and creatinine kinase, were continuously monitored during 30 min of exercise and a 90 min rest period using fixed intensity exercise challenges (60% VO2max) to understand the physiological adaptation. The systemic inflammation and body compositions were also acquired and analyzed during the experimental process. The results showed that TWK10 significantly elevated the exercise performance in a dose-dependent manner and improved the fatigue-associated features correlated with better physiological adaptation. The change in body composition shifted in the healthy direction for TWK10 administration groups, especially for the high TWK10 dose group, which showed that body fat significantly decreased and muscle mass significantly increased. Taken together, our results suggest that TWK10 has the potential to be an ergogenic aid to improve aerobic endurance performance via physiological adaptation effects.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
| | - Ker-Sin Ng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - San-Land Young
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
- Correspondence: (J.-S.L.); (C.-C.H.); Tel.: +886-7-6955680 (J.-S.L.); +886-3-3283201 (ext. 2409) (C.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
- Correspondence: (J.-S.L.); (C.-C.H.); Tel.: +886-7-6955680 (J.-S.L.); +886-3-3283201 (ext. 2409) (C.-C.H.)
| |
Collapse
|
178
|
Biver E, Berenbaum F, Valdes AM, Araujo de Carvalho I, Bindels LB, Brandi ML, Calder PC, Castronovo V, Cavalier E, Cherubini A, Cooper C, Dennison E, Franceschi C, Fuggle N, Laslop A, Miossec P, Thomas T, Tuzun S, Veronese N, Vlaskovska M, Reginster JY, Rizzoli R. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res Rev 2019; 55:100946. [PMID: 31437484 DOI: 10.1016/j.arr.2019.100946] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of osteoarthritis (OA) increases not only because of longer life expectancy but also because of the modern lifestyle, in particular physical inactivity and diets low in fiber and rich in sugar and saturated fats, which promote chronic low-grade inflammation and obesity. Adverse alterations of the gut microbiota (GMB) composition, called microbial dysbiosis, may favor metabolic syndrome and inflammaging, two important components of OA onset and evolution. Considering the burden of OA and the need to define preventive and therapeutic interventions targeting the modifiable components of OA, an expert working group was convened by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) to review the potential contribution of GMB to OA. Such a contribution is supported by observational or dietary intervention studies in animal models of OA and in humans. In addition, several well-recognized risk factors of OA interact with GMB. Lastly, GMB is a critical determinant of drug metabolism and bioavailability and may influence the response to OA medications. Further research targeting GMB or its metabolites is needed to move the field of OA from symptomatic management to individualized interventions targeting its pathogenesis.
Collapse
Affiliation(s)
- Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Francis Berenbaum
- Sorbonne Université, INSERM CRSA, Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islene Araujo de Carvalho
- Department of Ageing and Life Course, World Health Organization, 20 Avenue Appia, 1211, Geneva 27, Switzerland
| | - Laure B Bindels
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Vincenzo Castronovo
- Metastases Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CHU de Liège, Liège, Belgium
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Claudio Franceschi
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Nicholas Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Andrea Laslop
- Scientific Office, Austrian Medicines & Medical Devices Agency, Federal Office for Safety in Health Care, Vienna, Austria
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, University of Lyon, and Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, CHU de Saint-Etienne, and INSERM U1059, University of Lyon, Saint-Etienne, France
| | - Sansin Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Mila Vlaskovska
- Medical Faculty, Department of Pharmacology, Medical University Sofia, Sofia, Bulgaria
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium; Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
179
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2620] [Impact Index Per Article: 436.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
180
|
Wosinska L, Cotter PD, O'Sullivan O, Guinane C. The Potential Impact of Probiotics on the Gut Microbiome of Athletes. Nutrients 2019; 11:E2270. [PMID: 31546638 PMCID: PMC6835687 DOI: 10.3390/nu11102270] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
There is accumulating evidence that physical fitness influences the gut microbiome and as a result, promotes health. Indeed, exercise-induced alterations in the gut microbiome can influence health parameters crucial to athletic performance, specifically, immune function, lower susceptibility to infection, inflammatory response and tissue repair. Consequently, maintenance of a healthy gut microbiome is essential for an athlete's health, training and performance. This review explores the effect of exercise on the microbiome while also investigating the effect of probiotics on various potential consequences associated with over-training in athletes, as well as their associated health benefits.
Collapse
Affiliation(s)
- Laura Wosinska
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
- APC Microbiome Ireland, T12 YT20 Cork, Ireland.
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
- APC Microbiome Ireland, T12 YT20 Cork, Ireland.
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
- APC Microbiome Ireland, T12 YT20 Cork, Ireland.
| | - Caitriona Guinane
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland.
| |
Collapse
|
181
|
Tung YT, Hsu YJ, Liao CC, Ho ST, Huang CC, Huang WC. Physiological and Biochemical Effects of Intrinsically High and Low Exercise Capacities Through Multiomics Approaches. Front Physiol 2019; 10:1201. [PMID: 31620020 PMCID: PMC6759823 DOI: 10.3389/fphys.2019.01201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Regular exercise prevents lipid abnormalities and conditions such as diabetes mellitus, hypertension, and obesity; it considerably benefits sedentary individuals. However, individuals exhibit highly variable responses to exercise, probably due to genetic variations. Animal models are typically used to investigate the relationship of intrinsic exercise capacity with physiological, pathological, psychological, behavioral, and metabolic disorders. In the present study, we investigated differential physiological adaptations caused by intrinsic exercise capacity and explored the regulatory molecules or mechanisms through multiomics approaches. Outbred ICR mice (n = 100) performed an exhaustive swimming test and were ranked based on the exhaustive swimming time to distinguish intrinsically high- and low-capacity groups. Exercise performance, exercise fatigue indexes, glucose tolerance, and body compositions were assessed during the experimental processes. Furthermore, the gut microbiota, transcriptome, and proteome of soleus muscle with intrinsically high exercise capacity (HEC) and low exercise capacity (LEC) were further analyzed to reveal the most influential factors associated with differential exercise capacities. HEC mice outperformed LEC mice in physical activities (exhaustive swimming and forelimb grip strength tests) and exhibited higher glucose tolerance than LEC mice. Exercise-induced peripheral fatigue and the level of injury biomarkers (lactate, ammonia, creatine kinase, and aspartate aminotransferase) were also significantly lower in HEC mice than in LEC mice. Furthermore, the gut of the HEC mice contained significantly more Butyricicoccus than that of the LEC mice. In addition, transcriptome data of the soleus muscle revealed that the expression of microRNAs that are strongly associated with exercise performance-related physiological and metabolic functions (i.e., miR-383, miR-107, miR-30b, miR-669m, miR-191, miR-218, and miR-224) was higher in HEC mice than in LEC mice. The functional proteome data of soleus muscle indicated that the levels of key proteins related to muscle function and carbohydrate metabolism were also significantly higher in HEC mice than in LEC mice. Our study demonstrated that the mice with various intrinsic exercise capacities have different gut microbiome as well as transcriptome and proteome of soleus muscle by using multiomics approaches. The specific bacteria and regulatory factors, including miRNA and functional proteins, may be highly correlated with the adaptation of physiological functions and exercise capacity.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shang-Tse Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
182
|
Chung S, Barnes JL, Astroth KS. Gastrointestinal Microbiota in Patients with Chronic Kidney Disease: A Systematic Review. Adv Nutr 2019; 10:888-901. [PMID: 31165878 PMCID: PMC6743837 DOI: 10.1093/advances/nmz028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests that gastrointestinal (GI) microbiota dysbiosis is associated with chronic kidney disease (CKD) and metabolite concentrations. The purpose of this systematic review was to evaluate and contextualize the research characterizing GI microbiota in patients with CKD. We searched for full-text, peer-reviewed, English studies in PubMed, Cumulative Index to Nursing and Allied Health Literature, Web of Science, and Google Scholar using a combination of MeSH terms and keywords. Eleven of the 20 studies examined GI microbiota in patients with CKD, and 9 studies focused on the effect of interventions on GI microbiota or metabolites. Available data characterizing GI microbiota in patients with CKD suggest a decline in saccharolytic bacteria and an increase in fermenters of nitrogen-containing compounds, serving as a source for circulating uremic toxins. However, studies examined limited sets of predetermined microbes, which do not reflect the entire GI microbial community and its influence on host physiology. We recommend further studies examining the entire microbial community and the potential role in regulating host physiology in CKD.
Collapse
Affiliation(s)
- SeonYoon Chung
- Organizational Systems and Adult Health Department, University of Maryland School of Nursing, Baltimore, MD
| | | | | |
Collapse
|
183
|
Huang WC, Chen YH, Chuang HL, Chiu CC, Huang CC. Investigation of the Effects of Microbiota on Exercise Physiological Adaption, Performance, and Energy Utilization Using a Gnotobiotic Animal Model. Front Microbiol 2019; 10:1906. [PMID: 31551939 PMCID: PMC6736621 DOI: 10.3389/fmicb.2019.01906] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
The wide diversity in gut microbiota that is found among individuals is affected by factors including environment, genetics, dietary habits, and lifestyle after birth. The gastrointestinal tract, the largest and most complicated in vivo ecosystem, is a natural habitat for microbe colonization. Gut microbiota acts as “metabolic organ” that interacts with the human host symbiotically and performs an important role in maintaining health. In addition to the above factors, microbiota distributions/proportions are affected by exercise and other forms of physical activity. However, diet, lifestyle, and nutritional supplementation may impede the actual analytic relationship in practice. Therefore, the purpose of this study is to understand the effects of several microbiota on physical fitness, exercise performance, energy metabolism, and biochemistries using the concept of gnotobiote based on a germ-free model. The microbes Eubacterium rectale, Lactobacillus plantarum TWK10, and Clostridium coccoides were separately inoculated into gnotobiotic animal models. Fecal analysis was regularly done for the entire duration of the experiment. The exercise capacities were measured repeatedly with and without aerobic exercise training using an exhaustive swimming test. Various fatigue-associated biochemical variables, including lactate, ammonia, glucose, lactic dehydrogenase (LDH), and creatine kinase (CK) were also measured to assess physiological adaption. In addition, metabolic phenotype was applied to record basal metabolic rate, diet, behavior, and activities. Body composition, glycogen content, and histopathology were further evaluated to assess the gnotobiotic effects. E. rectale engendered capacities, physiological adaption, and physical activities that were significantly better than other two microbes, possible due to energy regulation and bioavailability. In addition, L. plantarum TWK10 and C. coccoides were found to significantly increase the basal metabolic rate and to alter the body compositions, although no exercise capacity benefit was found in the gnotobiotic models. The E. rectale and L. plantarum gnotobiotic animals all showed normal histological observations with the exception of the C. coccoides gnotobiote, which showed the pathological observation of hepatic necrosis. The gnotobiotic model directly demonstrates the interactions between microbes and hosts, which are especially relevant and applicable to the field of sports science. This study supports the development of beneficial microbiota for application to exercise and fitness, which is an emerging area of health promotion.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yi-Hsun Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chien-Chao Chiu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
184
|
Rosenberg E, Zilber‐Rosenberg I. The hologenome concept of evolution: do mothers matter most? BJOG 2019; 127:129-137. [DOI: 10.1111/1471-0528.15882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- E Rosenberg
- Department of Molecular Microbiology and Biotechnology Tel Aviv University Ramat Aviv Israel
| | | |
Collapse
|
185
|
Sohail MU, Yassine HM, Sohail A, Al Thani AA. Impact of Physical Exercise on Gut Microbiome, Inflammation, and the Pathobiology of Metabolic Disorders. Rev Diabet Stud 2019; 15:35-48. [PMID: 31380886 DOI: 10.1900/rds.2019.15.35] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gastrointestinal tract (GIT) harbors a complex and diverse microbial composition that outnumbers our own body cells and their gene contents. These microbes play a significant role in host metabolism and energy homeostasis. Emerging evidence suggests that the GIT microbiome significantly contributes to host health and that impairments in the microbiome may cause the development of metabolic diseases. The microbiome architecture is shaped by several genetic and environmental factors, including nutrition and physical activity. Physical exercise has preventive or therapeutic effects in respiratory, cardiovascular, neuroendocrine, and muscular diseases. Yet, we still have little information of the beneficial effects of physical exercise on GIT health and microbial composition. Furthermore, we are not aware whether exercise-derived benefits on microbiome diversity can beneficially influence other tissues and body organs. OBJECTIVES The aim of this article is to review the available literature on exercise-induced microbiome changes and to explain how these changes may induce inflammatory, immune, and oxidative responses that may contribute to the improvement of metabolic disorders. METHODS A systemic and comprehensive search of the relevant literature using MEDLINE and Google Scholar databases was conducted during fall 2018 and spring 2019. The search identified sixty-two research and review articles that discussed exercise-induced microbiome changes. RESULTS The review of the relevant literature suggests that exercise-induced microbial changes affect the host's immune pathways and improve energy homeostasis. Microbes release certain neuroendocrine and immune-modulatory factors that may lower inflammatory and oxidative stress and relieve patients suffering from metabolic disorders. CONCLUSIONS Exercise-induced changes in microbial diversity are able to improve tissue metabolism, cardiorespiratory fitness, and insulin resistance.
Collapse
Affiliation(s)
- Muhammad U Sohail
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Clinical and Experimental Infection Research, Hannover, Germany
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
186
|
Indira M, Venkateswarulu TC, Abraham Peele K, Nazneen Bobby M, Krupanidhi S. Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech 2019; 9:306. [PMID: 31355115 PMCID: PMC6656846 DOI: 10.1007/s13205-019-1841-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
The bacteria residing in the gut environment do play a pivotal role in metabolic activities of the host. The metabolites produced by these bacteria affect the physiology and health of the host. The gut bacteria are exposed to environmental conditions where multiple factors such as lifestyle, stress, antibiotics, host genetics and infections have an influence on them. In case of pathogenesis of a disease, the gut bacterial composition is altered which leads to a diseased state. This stage is due to colonization of bacterial pathogens in the gut environment. The pathological condition can be alleviated by administering probiotic strains into the gut environment. The probiotic strains produce therapeutic molecules such as amino acids, vitamins, bacteriocins, enzymes, immunomodulatory compounds and short-chain fatty acids. This review discusses recent evidences of the impact of bioactive molecules produced by probiotic bacteria and their mechanism of action in the gut environment to maintain homeostasis and health of the host without any effect on beneficial bacteria sharing the same niche. In addition, the manufacturing challenges of probiotic products for various applications are discussed here.
Collapse
Affiliation(s)
- M. Indira
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| | - T. C. Venkateswarulu
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| | - K. Abraham Peele
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| | - Md. Nazneen Bobby
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| | - S. Krupanidhi
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| |
Collapse
|
187
|
Plancade S, Clark A, Philippe C, Helbling JC, Moisan MP, Esquerré D, Le Moyec L, Robert C, Barrey E, Mach N. Unraveling the effects of the gut microbiota composition and function on horse endurance physiology. Sci Rep 2019; 9:9620. [PMID: 31270376 PMCID: PMC6610142 DOI: 10.1038/s41598-019-46118-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
An integrated analysis of gut microbiota, blood biochemical and metabolome in 52 endurance horses was performed. Clustering by gut microbiota revealed the existence of two communities mainly driven by diet as host properties showed little effect. Community 1 presented lower richness and diversity, but higher dominance and rarity of species, including some pathobionts. Moreover, its microbiota composition was tightly linked to host blood metabolites related to lipid metabolism and glycolysis at basal time. Despite the lower fiber intake, community type 1 appeared more specialized to produce acetate as a mean of maintaining the energy supply as glucose concentrations fell during the race. On the other hand, community type 2 showed an enrichment of fibrolytic and cellulolytic bacteria as well as anaerobic fungi, coupled to a higher production of propionate and butyrate. The higher butyrate proportion in community 2 was not associated with protective effects on telomere lengths but could have ameliorated mucosal inflammation and oxidative status. The gut microbiota was neither associated with the blood biochemical markers nor metabolome during the endurance race, and did not provide a biomarker for race ranking or risk of failure to finish the race.
Collapse
Affiliation(s)
- Sandra Plancade
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- ISBA, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Allison Clark
- Gastroenterology Department, Vall d'Hebron Institut de Reserca, Barcelona, Spain
| | - Catherine Philippe
- UMR 1319, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Marie-Pierre Moisan
- UMR 1286, INRA, Université Bordeaux, Nutrition et neurobiologie intégrée, Bordeaux, France
| | | | - Laurence Le Moyec
- Unité de Biologie Intégrative et Adaptation à l'Exercice, UBIAE, EA7362, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Céline Robert
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Barrey
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Núria Mach
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
188
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
189
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
190
|
Thomas B, Smallwood S, Cutler C, Bescos R. The oral nitrate-reducing capacity correlates with peak power output and peak oxygen uptake in healthy humans. Nitric Oxide 2019; 87:43-51. [PMID: 30853629 DOI: 10.1016/j.niox.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Interest in inorganic nitrate and nitrite has grown substantially over the past decade as research has revealed the role of these anions in enhancing nitric oxide (NO) availability through an oral pathway. Nitrite synthesis in the mouth seems to be an important mechanism to feed the circulatory system with this anion. This is interesting since greater plasma nitrite concentration has been associated with better fitness levels in humans, but this question has not been investigated in relation to salivary nitrite concentration. Additionally, no previous study has investigated the oral nitrate-reducing capacity in regards to peak oxygen uptake (VO2peak) or peak power output (Wpeak) in humans. Thus, the main goal of this study was to investigate whether salivary nitrite and nitrate concentration and the oral nitrate-reducing capacity were associated with VO2peak and Wpeak in healthy humans. Fifty individuals (22 females and 28 males; 38.8 ± 14.3 years/old; BMI = 22.8 ± 3.9) performed a graded exercise test on a cycle ergometer to assess their VO2peak and Wpeak. Unstimulated salivary samples were taken before and 20 min after exercise to measure nitrate/nitrite, pH and lactate. The oral nitrate-reducing capacity was also assessed in 25 subjects before and after exercise. Oral nitrate-reducing capacity was positively associated with Wpeak (rs = 0.64; P = 0.001) and the VO2peak (rs = 0.54; P = 0.005). Similar correlations were found when these variables were analysed after exercise. In addition, a significant decrease in salivary pH (pre: 7.28 ± 0.361; post-exercise: 7.16 ± 0.33; P = 0.003) accompanied by an increase of salivary lactate (pre: 0.17 ± 0.14 mmol/L; post-exercise: 0.48 ± 0.38; P < 0.001) was found after exercise. However, these changes did not have any impact on salivary nitrate/nitrite concentration and the oral nitrate-reducing capacity after exercise. In conclusion, this is the first evidence showing a link between the oral nitrate-reducing capacity and markers of aerobic fitness levels in healthy humans.
Collapse
Affiliation(s)
- B Thomas
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK
| | - S Smallwood
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK
| | - C Cutler
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK
| | - R Bescos
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK; Institute of Health & Community, University of Plymouth, UK.
| |
Collapse
|
191
|
The Development of a Personalised Training Framework: Implementation of Emerging Technologies for Performance. J Funct Morphol Kinesiol 2019; 4:jfmk4020025. [PMID: 33467340 PMCID: PMC7739422 DOI: 10.3390/jfmk4020025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, there has been considerable interest in the individualisation of athlete training, including the use of genetic information, alongside more advanced data capture and analysis techniques. Here, we explore the evidence for, and practical use of, a number of these emerging technologies, including the measurement and quantification of epigenetic changes, microbiome analysis and the use of cell-free DNA, along with data mining and machine learning. In doing so, we develop a theoretical model for the use of these technologies in an elite sport setting, allowing the coach to better answer six key questions: (1) To what training will my athlete best respond? (2) How well is my athlete adapting to training? (3) When should I change the training stimulus (i.e., has the athlete reached their adaptive ceiling for this training modality)? (4) How long will it take for a certain adaptation to occur? (5) How well is my athlete tolerating the current training load? (6) What load can my athlete handle today? Special consideration is given to whether such an individualised training framework will outperform current methods as well as the challenges in implementing this approach.
Collapse
|
192
|
Tiller NB, Chiesa ST, Roberts JD, Turner LA, Jones S, Romer LM. Physiological and Pathophysiological Consequences of a 25-Day Ultra-Endurance Exercise Challenge. Front Physiol 2019; 10:589. [PMID: 31156464 PMCID: PMC6530658 DOI: 10.3389/fphys.2019.00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background: This case-report characterized the respiratory, cardiovascular, and nutritional/gastrointestinal (GI) responses of a trained individual to a novel ultra-endurance exercise challenge. Case Presentation: A male athlete (age 45 years; V˙O2max 54.0 mL⋅kg-1⋅min-1) summited 100 mountains on foot in 25 consecutive days (all elevations >600 m). Measures: Laboratory measures of pulmonary function (spirometry, whole-body plethysmography, and single-breath rebreathe), respiratory muscle function (maximum static mouth-pressures), and cardiovascular structure and function (echocardiography, electrocardiography, large vessel ultrasound, and flow-mediated dilatation) were made at baseline and 48 h post-challenge. Dietary intake (four-day food diary), self-reported GI symptoms and plasma endotoxin concentrations were assessed at baseline, pre/post mid-point, pre/post end-point, and 48 h post-challenge. Results: The challenge was completed in a total exercise time of 142 h (5.3 ± 2.8 h⋅d-1), with a distance of 1141 km (42.3 ± 43.9 km⋅d-1), and energy expenditure of 80460 kcal (2980 ± 1451 kcal⋅d-1). Relative to baseline, there were post-challenge decreases in pulmonary capacities and expiratory flows (≤34%), maximum expiratory mouth-pressure (19%), and maximum voluntary ventilation (29%). Heart rate variability deteriorated, manifesting as a 48% decrease in the root mean square of successive differences and a 70% increase in the low-frequency/high-frequency ratio. Pre- to post-challenge endotoxin concentrations were elevated by 60%, with a maximum increase of 130% after a given stage, congruent with an increased frequency and severity of GI symptoms. Conclusion: The challenge resulted in pulmonary and autonomic dysfunction, endotoxaemia, and GI distress. The findings extend our understanding of the limits of physiological function and may inform medical best-practice for personnel supporting ultra-endurance events.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Scott T Chiesa
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Justin D Roberts
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Louise A Turner
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Siana Jones
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Lee M Romer
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, London, United Kingdom
| |
Collapse
|
193
|
Newton RU, Christophersen CT, Fairman CM, Hart NH, Taaffe DR, Broadhurst D, Devine A, Chee R, Tang CI, Spry N, Galvão DA. Does exercise impact gut microbiota composition in men receiving androgen deprivation therapy for prostate cancer? A single-blinded, two-armed, randomised controlled trial. BMJ Open 2019; 9:e024872. [PMID: 30987986 PMCID: PMC6500366 DOI: 10.1136/bmjopen-2018-024872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION A potential link exists between prostate cancer (PCa) disease and treatment and increased inflammatory levels from gut dysbiosis. This study aims to examine if exercise favourably alters gut microbiota in men receiving androgen deprivation therapy (ADT) for PCa. Specifically, this study will explore whether: (1) exercise improves the composition of gut microbiota and increases the abundance of bacteria associated with health promotion and (2) whether gut health correlates with favourable inflammatory status, bowel function, continence and nausea among patients participating in the exercise intervention. METHODS AND ANALYSIS A single-blinded, two-armed, randomised controlled trial will explore the influence of a 3-month exercise programme (3 days/week) for men with high-risk localised PCa receiving ADT. Sixty patients will be randomly assigned to either exercise intervention or usual care. The primary endpoint (gut health and function assessed via feacal samples) and secondary endpoints (self-reported quality of life via standardised questionnaires, blood biomarkers, body composition and physical fitness) will be measured at baseline and following the intervention. A variety of statistical methods will be used to understand the covariance between microbial diversity and metabolomics profile across time and intervention. An intention-to-treat approach will be utilised for the analyses with multiple imputations followed by a secondary sensitivity analysis to ensure data robustness using a complete cases approach. ETHICS AND DISSEMINATION Ethics approval was obtained from the Human Research Ethics Committee of Edith Cowan University (ID: 19827 NEWTON). Findings will be reported in peer-reviewed publications and scientific conferences in addition to working with national support groups to translate findings for the broader community. If exercise is shown to result in favourable changes in gut microbial diversity, composition and metabolic profile, and reduce gastrointestinal complications in PCa patients receiving ADT, this study will form the basis of a future phase III trial. TRIAL REGISTRATION NUMBER ANZCTR12618000280202.
Collapse
Affiliation(s)
- Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Claus T Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Molecular and Life Science, Curtin University - Perth City Campus, Perth, Western Australia, Australia
| | - Ciaran M Fairman
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicolas H Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Institute for Health Research, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David Broadhurst
- School of Science, Edith Cowan University, Perth, Western Australia, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, Western Australia, Australia
| | - Raphael Chee
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Radiation Oncology, Genesis Cancer Care, Perth, Western Australia, Australia
| | - Colin I Tang
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Nigel Spry
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Radiation Oncology, Genesis Cancer Care, Perth, Western Australia, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
194
|
Li Z, Rasmussen TS, Rasmussen ML, Li J, Henríquez Olguín C, Kot W, Nielsen DS, Jensen TE. The Gut Microbiome on a Periodized Low-Protein Diet Is Associated With Improved Metabolic Health. Front Microbiol 2019; 10:709. [PMID: 31019501 PMCID: PMC6458274 DOI: 10.3389/fmicb.2019.00709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
A periodized (14 days on/14 days off) 5% low protein-high carbohydrate (pLPHC) diet protects against weight gain, improves glucose tolerance in mice and interacts with concurrent voluntary activity wheel training on several parameters including weight maintenance and liver FGF21 secretion. The gut microbiome (GM) responds to both diet and exercise and may influence host metabolism. This study compared the cecal GM after a 13.5-week intervention study in mice on a variety of dietary interventions ± concurrent voluntary exercise training in activity wheels. The diets included chronic chow diet, LPHC diet, 40 E% high protein-low carbohydrate (HPLC) diet, an obesigenic chronic high-fat diet (HFD) and the pLPHC diet. Our hypothesis was that the GM changes with pLPHC diet would generally reflect the improved metabolic health of the host and interact with concurrent exercise training. The GM analyses revealed greater abundance phylum Bacteroidetes and the genus Akkermansia on chronic and periodized LPHC and higher abundance of Oscillospira and Oscillibacter on HFD. The differences in diet-induced GM correlated strongly with the differences in a range of host metabolic health-measures. In contrast, no significant effect of concurrent exercise training was observed. In conclusion, pLPHC diet elicits substantial changes in the GM. In contrast, only subtle and non-significant effects of concurrent activity wheel exercise were observed. The pLPHC-associated microbiome may contribute to the healthier host phenotype observed in these mice.
Collapse
Affiliation(s)
- Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Torben Sølbeck Rasmussen
- Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Line Rasmussen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henríquez Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Witold Kot
- Department of Environmental Sciences, Aarhus University, Roskilde, Denmark
| | - Dennis Sandris Nielsen
- Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
195
|
Abstract
Lactobacillus rhamnosus GG (LGG) was the first strain belonging to the genus Lactobacillus to be patented in 1989 thanks to its ability to survive and to proliferate at gastric acid pH and in medium containing bile, and to adhere to enterocytes. Furthermore LGG is able to produces both a biofilm that can mechanically protect the mucosa, and different soluble factors beneficial to the gut by enhancing intestinal crypt survival, diminishing apoptosis of the intestinal epithelium, and preserving cytoskeletal integrity. Moreover LGG thanks to its lectin-like protein 1 and 2 inhibits some pathogens such as Salmonella species. Finally LGG is able to promote type 1 immune-responsiveness by reducing the expression of several activation and inflammation markers on monocytes and by increasing the production of interleukin-10, interleukin-12 and tumor necrosis factor-α in macrophages. A large number of research data on Lactobacillus GG is the basis for the use of this probiotic for human health. In this review we have considered predominantly randomized controlled trials, meta-analysis, Cochrane Review, guide lines of Scientific Societies and anyway studies whose results were evaluated by means of relative risk, odds ratio, weighted mean difference 95% confidence interval. The effectiveness of LGG in gastrointestinal infections and diarrhea, antibiotic and Clostridium difficile associated diarrhea, irritable bowel syndrome, inflammatory bowel disease, respiratory tract infections, allergy, cardiovascular diseases, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, cystic fibrosis, cancer, elderly end sport were analyzed.
Collapse
|
196
|
Abstract
The microbiome in the gut is a diverse environment, housing the majority of our bacterial microbes. This microecosystem has a symbiotic relationship with the surrounding multicellular organism, and a balance and diversity of specific phyla of bacteria support general health. When gut bacteria diversity diminishes, there are systemic consequences, such as gastrointestinal and psychological distress. This pathway of communication is known as the microbiome-gut-brain axis. Interventions such as probiotic supplementation that influence microbiome also improve both gut and brain disorders. Recent evidence suggests that aerobic exercise improves the diversity and abundance of genera from the Firmcutes phylum, which may be the link between the positive effects of exercise on the gut and brain. The purpose of this review is to explain the complex communication pathway of the microbiome-gut-brain axis and further examine the role of exercise on influencing this communication highway.
Collapse
Affiliation(s)
- Alyssa Dalton
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Micah Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA,CONTACT Micah Zuhl Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
197
|
Abstract
All natural animals and plants are holobionts, consisting of the host and microbiome, which is composed of abundant and diverse microorganisms. Health and disease of holobionts depend as much on interactions between host and microbiome and within the microbiome, as on interactions between organs and body parts of the host. Recent evidence indicates that a significant fraction of the microbiome is transferred by a variety of mechanisms from parent to offspring for many generations. Genetic variation in holobionts can occur in the microbiome as well as in the host genome, and it occurs more rapidly and by more mechanisms in genomes of microbiomes than in host genomes (e.g. via acquisition of novel microbes and horizontal gene transfer of microbial genes into host chromosomes). Evidence discussed in this review supports the concept that holobionts with their hologenomes can be considered levels of selection in evolution. Though changes in the microbiome can lead to evolution of the holobiont, it can also lead to dysbiosis and diseases (e.g. obesity, diarrhea, inflammatory bowel disease, and autism). In practice, the possibility of manipulating microbiomes offers the potential to prevent and cure diseases.
Collapse
|
198
|
Nguyen LH, Liu PH, Zheng X, Keum N, Zong X, Li X, Wu K, Fuchs CS, Ogino S, Ng K, Willett WC, Chan AT, Giovannucci EL, Cao Y. Sedentary Behaviors, TV Viewing Time, and Risk of Young-Onset Colorectal Cancer. JNCI Cancer Spectr 2019; 2:pky073. [PMID: 30740587 PMCID: PMC6361621 DOI: 10.1093/jncics/pky073] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer (CRC) diagnosed before age 50 years, or young-onset CRC, is increasing globally with undefined etiology. A sedentary lifestyle is an emerging risk factor for CRC after age 50 years, but its role in young-onset CRC is unknown. Methods We prospectively evaluated sedentary behaviors, primarily time watching television (TV), and risk of young-onset CRC among 89 278 women in the Nurses' Health Study II ages 25-42 years at recruitment (1991-2011). We used Cox proportional hazards modelling to estimate relative risks (RR) and 95% confidence intervals (CIs). Statistical tests were two-sided. Results We documented 118 young-onset CRCs over 1 262 540 person-years. Sedentary TV viewing time was statistically significantly associated with increased risk of young-onset CRC, after adjusting for putative risk factors, including obesity and physical activity. Compared 7 hours, women with 7.1-14 hours per week of TV time had a multivariable relative risk (RR) of 1.12 (95% confidence interval [CI] = 0.72 to 1.75), further increased for greater than14 hours per week (RR = 1.69, 95% CI = 1.07 to 2.67, P trend = .03). This association was observed among participants without a CRC family history and was more pronounced for rectal cancer (RR for >14 vs <7 hours per week 2.44, 95% CI = 1.03 to 5.78, P trend = .04). Overweight or obese participants may be more susceptible. Conclusion Independent of exercise and obesity, prolonged sedentary TV viewing time, a surrogate for a more inactive lifestyle, was associated with increased risk of young-onset CRC, particularly of the rectum. These findings provide further evidence on the importance of maintaining an active lifestyle.
Collapse
Affiliation(s)
- Long H Nguyen
- Division of Gastroenterology.,Division of Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Po-Hong Liu
- Division of Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Xiaobin Zheng
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases XBZ and Department of Colorectal Surgery XBZ, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, Republic of Korea
| | - Xiaoyu Zong
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Xiao Li
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (SO, ELG)
| | - Kimmie Ng
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Andrew T Chan
- Division of Gastroenterology.,Division of Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (SO, ELG).,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO.,Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
199
|
Tota Ł, Piotrowska A, Pałka T, Morawska M, Mikuľáková W, Mucha D, Żmuda-Pałka M, Pilch W. Muscle and intestinal damage in triathletes. PLoS One 2019; 14:e0210651. [PMID: 30657773 PMCID: PMC6338373 DOI: 10.1371/journal.pone.0210651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the paper was to assess indicators of muscle and intestinal damage in triathletes. The study involved 15 triathletes whose objective for the season was to start in the XTERRA POLAND 2017 event (1,500-m swimming, 36-km cycling, and 10-km mountain running). Before the 14-week preparatory period, the competitors’ body composition was measured, aerobic capacity was tested (graded treadmill test) and blood samples were collected to determine markers showing the level of muscle and intestinal damage. Subsequent tests for body composition were carried out before and after the competition. Blood samples for biochemical indicators were collected the day before the competition, after the completed race, and 24 and 48 hours later. A significant decrease in body mass was observed after completing the race (–3.1±1.5%). The mean maximal oxygen uptake level among the studied athletes equalled 4.9±0.4 L·min–1, 58.8±4.5 mL·kg–1·min–1. The significant increase in concentrations of cortisol, c-reactive protein and myoglobin after the competition, significantly correlated with the significant increase in zonulin concentration (post 1h: r = 0.88, p = 0.007, r = 0,79, p = 0.001, r = 0.78, p = 0.001, and post 12h: r = 0.75, p = 0.01, r = 0.71, p = 0.011, r = 0.83, p = 0.02). No significant changes in the concentration of tumour necrosis factor alpha among the examined competitors were noted at following stages of the study. The results of our research showed that in order to monitor overload in the training of triathletes, useful markers reflecting the degree of muscle and intestinal damage include cortisol, testosterone, testosterone to cortisol ratio, c-reactive protein, myoglobin and zonulin. Changes in muscle cell damage markers strongly correlated with changes in zonulin concentration at particular stages of the study. Thus, one can expect that the concentrations of markers depicting the level of muscle cell damage after an intense and long-lasting effort will significantly influence the level of the intestinal barrier.
Collapse
Affiliation(s)
- Łukasz Tota
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
- * E-mail:
| | - Anna Piotrowska
- Department of Cosmetology, Faculty of Rehabilitation, University of Physical Education in Krakow, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Małgorzata Morawska
- Department of Sports Medicine and Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Wioletta Mikuľáková
- Department of Physiotherapy, Faculty of Health Care, University of Presov, Presov, Slovakia
| | - Dariusz Mucha
- Department of Biomedical Science, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Magdalena Żmuda-Pałka
- Department of Humanities, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Wanda Pilch
- Department of Cosmetology, Faculty of Rehabilitation, University of Physical Education in Krakow, Krakow, Poland
| |
Collapse
|
200
|
Szychlinska MA, Di Rosa M, Castorina A, Mobasheri A, Musumeci G. A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon 2019; 5:e01134. [PMID: 30671561 PMCID: PMC6330556 DOI: 10.1016/j.heliyon.2019.e01134] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the articular cartilage, resulting in pain and total joint disability. Recent studies focused on the role of the metabolic syndrome in inducing or worsening joint damage suggest that chronic low-grade systemic inflammation may represent a possible linking factor. This finding supports the concept of a new phenotype of OA, a metabolic OA. The gut microbiome is fundamental for human physiology and immune system development, among the other important functions. Manipulation of the gut microbiome is considered an important topic for the individual health in different medical fields such as medical biology, nutrition, sports, preventive and rehabilitative medicine. Since intestinal microbiota dysbiosis is strongly associated with the pathogenesis of several metabolic and inflammatory diseases, it is conceivable that also the pathogenesis of OA might be related to it. However, the mechanisms and the contribution of intestinal microbiota metabolites in OA pathogenesis are still not clear. The aim of this narrative review is to review recent literature concerning the possible contribution of dysbiosis to OA onset and to discuss the importance of gut microbiome homeostasis maintenance for optimal general health preservation.
Collapse
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, Nottingham, UK
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Lithuania
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
- School of the Sport of the Italian National Olympic Committee "CONI" Sicily, Italy
- Corresponding author.
| |
Collapse
|