151
|
Vadlakonda L, Pasupuleti M, Pallu R. Role of PI3K-AKT-mTOR and Wnt Signaling Pathways in Transition of G1-S Phase of Cell Cycle in Cancer Cells. Front Oncol 2013; 3:85. [PMID: 23596569 PMCID: PMC3624606 DOI: 10.3389/fonc.2013.00085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/31/2013] [Indexed: 01/09/2023] Open
Abstract
The PI3K-Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR; also known as the mammalian target of rapamycin) is a highly deregulated pathway in cancers. mTOR exists in two complexes, mTORC1 and mTORC2. Akt phosphorylated at T308 inhibits TSC1/2 complex to activate mTORC1; mTORC2 is recognized as the kinase phosphorylating Akt at S473. Inhibition of autophagy by mTORC1 was shown to rescue disheveled (Dvl) leading to activation of Wnt pathway. Cyclin D1 and the c-Myc are activated by the Wnt signaling. Cyclin D1 is a key player in initiation of cell cycle. c-Myc triggers metabolic reprograming in G1 phase of cell cycle, which also activates the transcription factors like FoxO and p53 that play key roles in promoting the progression of cell cycle. While the role of p53 in cancer cell metabolism in arresting glycolysis and inhibition of pentose phosphate pathway has come to be recognized, there are confusions in the literature on the role of FoxO and that of rictor. FoxO was shown to be the transcription factor of rictor, in addition to the cell cycle inhibitors like p21. Rictor has dual roles; inhibition of c-Myc and constitution of mTORC2, both of which are key factors in the exit of G1-S phase and entry into G2 phase of cell cycle. A model is presented in this article, which suggests that the PI3K-Akt-mTOR and Wnt pathways converge and regulate the progression of cell cycle through G0-G1-S-phases and reprogram the metabolism in cancer cells. This model is different from the conventional method of looking at individual pathways triggering the cell cycle.
Collapse
|
152
|
Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013; 33:2285-301. [PMID: 23547259 DOI: 10.1128/mcb.01517-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stress granules (SG) are cytoplasmic multimeric RNA bodies that form under stress conditions known to inhibit cap-dependent translation. SG contain translation initiation factors, RNA binding proteins, and signaling molecules. SG are known to inhibit apoptotic pathways, thus contributing to chemo- and radioresistance in tumor cells. However, whether stress granule formation involves oncogenic signaling pathways is currently unknown. Here, we report a novel role of the mTORC1-eukaryotic translation initiation factor 4E (eIF4E) pathway, a key regulator of cap-dependent translation initiation of oncogenic factors, in SG formation. mTORC1 specifically drives the eIF4E-mediated formation of SG through the phosphorylation of 4E-BP1, a key factor known to inhibit formation of the mTORC1-dependent eIF4E-eIF4GI interactions. Disrupting formation of SG by inactivation of mTOR with its specific inhibitor pp242 or by depletion of eIF4E or eIF4GI blocks the SG-associated antiapoptotic p21 pathway. Finally, pp242 sensitizes cancer cells to death in vitro and inhibits the growth of chemoresistant tumors in vivo. This work therefore highlights a novel role of the oncogenic mTORC1-eIF4E pathway, namely, the promotion of formation of antiapoptotic SG.
Collapse
|
153
|
mTORC1 regulates CD8+ T-cell glucose metabolism and function independently of PI3K and PKB. Biochem Soc Trans 2013; 41:681-6. [DOI: 10.1042/bst20120359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Given that inflammatory T-cells have a highly glycolytic metabolism, whereas regulatory T-cells rely more on oxidative glucose metabolism, there is growing interest in understanding how T-cell metabolism relates to T-cell function. The mTORC1 (mammalian target of rapamycin complex 1) has a crucial role to determine the balance between effector and regulatory T-cell differentiation, but is also described as a key regulator of metabolism in non-immune cell systems. The present review explores the relationship between these diverse functions of mTORC1 with regard to T-cell function. In many cell systems, mTORC1 couples PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B), also known as Akt, with the control of glucose uptake and glycolysis. However, this is not the case in activated CD8+ CTLs (cytotoxic T-lymphocytes) where PI3K/PKB signalling is dispensable for the elevated levels of glycolysis that is characteristic of activated T-cells. Nevertheless, mTORC1 is still essential for glycolytic metabolism in CD8+ T-cells, and this reflects the fact that mTORC1 does not lie downstream of PI3K/PKB signalling in CD8+ T-cells, as is the case in many other cell systems. mTORC1 regulates glucose metabolism in CTLs through regulating the expression of the transcription factor HIF1α (hypoxia-inducible factor 1α). Strikingly, HIF1α functions to couple mTORC1 with a diverse transcriptional programme that extends beyond the control of glucose metabolism to the regulation of multiple key T-cell functions. The present review discusses the idea that mTORC1/HIF1α signalling integrates the control of T-cell metabolism and T-cell function.
Collapse
|
154
|
Monteserin-Garcia J, Al-Massadi O, Seoane LM, Alvarez CV, Shan B, Stalla J, Paez-Pereda M, Casanueva FF, Stalla GK, Theodoropoulou M. Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB J 2013; 27:1561-71. [PMID: 23292070 DOI: 10.1096/fj.12-220129] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth hormone (GH) is a major anabolic hormone and the primary regulator of organism growth. Its transcription is triggered by GH-releasing hormone (GHRH) through the transcription factor cAMP response element-binding protein (CREB) and by caloric intake. In contrast, the deacetylase Sirt1 is activated by caloric restriction. Therefore, the present study investigates how Sirt1 affects CREB function and GH synthesis. Sirt1 pharmacological activation with resveratrol (IC₅₀=87 μM) suppressed GHRH-induced GH secretion from rat anterior pituitary cells in vivo and in vitro, while vehicle controls showed no effect. Resveratrol's effects were abolished after knocking down Sirt1 with RNA interference, but not in control scrambled siRNA-transfected rat somatotrophs, confirming the Sirt1 specificity. Sirt1 activation and overexpression suppressed forskolin-induced CREB-Ser(133) phosphorylation, but no effect was seen with vehicle and empty plasmid controls. The deacetylase-dead mutant Sirt1 retained CREB-Ser(133) phosphorylation by keeping protein phosphatase protein phosphatase 1 activity low. Sirt1 activation suppressed glycogen synthase kinase 3 β acetylation, and a mutation on the GSK3β-Lys(205) residue mimicking a hypoacetylated form revealed increased activity. In summary, this is a novel mechanism through which Sirt1 intercepts the cAMP pathway by suppressing CREB transcriptional activation, resulting in decreased GH synthesis.
Collapse
|
155
|
Maixner DW, Weng HR. The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain. ACTA ACUST UNITED AC 2013; 1:001. [PMID: 25309941 DOI: 10.13188/2327-204x.1000001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation is a crucial mechanism related to many neurological diseases. Extensive studies in recent years have indicated that dysregulation of Glycogen Synthase Kinase 3 Beta (GSK3β) contributes to the development and progression of these disorders through regulating the neuroinflammation processes. Inhibitors of GSK3β have been shown to be beneficial in many neuroinflammatory disease models including Alzheimer's disease, multiple sclerosis and AIDS dem entia complex. Glial activation and elevated pro-inflammation cytokines (signs of neuroinflammation) in the spinal cord have been widely recognized as a pivotal mechanism underlying the development and maintenance of many types of pathological pain. The role of GSK3β in the pathogenesis of pain has recently emerged. In this review, we will first review the GSK3β structure, regulation, and mechanisms by which GSK3βregulates inflammation. We will then describe neuroinflammationin general and in specific types of neurological diseases and the potential beneficial effects induced by inhibiting GSK3β. Finally, we will provide new evidence linking aberrant levels of GSK3β in the development of pathological pain.
Collapse
Affiliation(s)
- Dylan Warren Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, 30606, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, 30606, USA
| |
Collapse
|
156
|
Malik AR, Urbanska M, Macias M, Skalecka A, Jaworski J. Beyond control of protein translation: what we have learned about the non-canonical regulation and function of mammalian target of rapamycin (mTOR). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1434-48. [PMID: 23277194 DOI: 10.1016/j.bbapap.2012.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in almost every aspect of mammalian cell function. This kinase was initially believed to control protein translation in response to amino acids and trophic factors, and this function has become a canonical role for mTOR. However, mTOR can form two separate protein complexes (mTORCs). Recent advances clearly demonstrate that both mTORCs can respond to various stimuli and change myriad cellular processes. Therefore, our current view of the cellular roles of TORCs has rapidly expanded and cannot be fully explained without appreciating recent findings about the new modes of mTOR regulation and identification of non-canonical effectors of mTOR that contribute to transcription, cytoskeleton dynamics, and membrane trafficking. This review discusses the molecular details of these newly discovered non-canonical functions that allow mTORCs to control the cellular environment at multiple levels. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
157
|
Abstract
The PI3K/Akt/mTOR pathway has emerged as a critical regulator of dendritic cell (DC) development and function. The kinase mTOR is found in 2 distinct complexes, mTORC1 and mTORC2. In this study, we show that mTORC1 but not mTORC2 is required for epidermal Langerhans cell (LC) homeostasis. Although the initial seeding of the epidermis with LCs is not affected, the lack of mTORC1 activity in DCs by conditional deletion of Raptor leads to a progressive loss of LCs in the skin of mice. Ablation of mTORC2 function by deletion of Rictor results in a modest reduction of LCs in skin draining lymph nodes. In young mice Raptor-deficient LCs show an increased tendency to leave the skin, leading to a higher frequency of migratory DCs in skin draining lymph nodes, indicating that the loss of LCs results from enhanced migration. LCs lacking Raptor are smaller and display reduced expression of Langerin, E-cadherin, β-catenin, and CCR7 but unchanged levels of MHC-II, ruling out enhanced spontaneous maturation. Ki-67 and annexin V stainings revealed a faster turnover rate and increased apoptosis of Raptor-deficient LCs, which might additionally affect the preservation of the LC network. Taken together our results show that the homeostasis of LCs strictly depends on mTORC1.
Collapse
|
158
|
Abstract
The circadian pattern of seizures in people with epilepsy (PWE) was first described two millennia ago. However, these phenomena have not received enough scientific attention, possibly due to the lack of promising hypotheses to address the interaction between seizure generation and a physiological clock. To propose testable hypotheses at the molecular level, interactions between circadian rhythm, especially transcription factors governing clock genes expression, and the mTOR (mammalian target of rapamycin) signaling pathway, the major signaling pathway in epilepsy, will be reviewed. Then, two closely related hypotheses will be proposed: (1) Rhythmic activity of hyperactivated mTOR signaling molecules results in rhythmic increases in neuronal excitability. These rhythmic increases in excitability periodically exceed the seizure threshold, displaying the behavioral seizures. (2) Oscillation of neuronal excitability in SCN modulates the rhythmic excitability in the hippocampus through subiculum via long-range projections. Findings from published results, their implications, and proposals for new experiments will be discussed. These attempts may ignite further discussion on what we still need to learn about the rhythmicity of spontaneous seizures.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Epilepsy Research Laboratory, Department of Pediatrics, Children's Hospital of Philadelphia Philadelphia, PA, USA
| |
Collapse
|
159
|
Jinesh GG, Choi W, Shah JB, Lee EK, Willis DL, Kamat AM. Blebbishields, the emergency program for cancer stem cells: sphere formation and tumorigenesis after apoptosis. Cell Death Differ 2012; 20:382-95. [PMID: 23175184 DOI: 10.1038/cdd.2012.140] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Caspases mediate apoptosis and have also been implicated in stem-cell biology. How caspases are linked to stem-cell biology is not known. Here, we show that the apoptotic blebs of cancer cells fuse together to form novel structures called 'blebbishields'. Blebbishields form spheres by fusion. Both blebbishield formation and sphere formation involve active caspases and N-linked glycosylation. Sphere formation is enhanced by acidic pH and is counteracted by inhibitors of proton pump, caspases, and cholesterol. The blebbishields from VEGFR2(High) cells are capable of enhanced sphere formation. Blebbishields express transiently downregulated stem-cell markers and the sphere-forming blebbishield-derived cells are tumorigenic. Our study demonstrates that the cancer stem cells can survive after apoptosis by blebbishield formation and subsequent sphere formation.
Collapse
Affiliation(s)
- G G Jinesh
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
160
|
Finlay DK. Regulation of glucose metabolism in T cells: new insight into the role of Phosphoinositide 3-kinases. Front Immunol 2012; 3:247. [PMID: 22891069 PMCID: PMC3413010 DOI: 10.3389/fimmu.2012.00247] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
Naïve T cells are relatively quiescent cells that only require energy to prevent atrophy and for survival and migration. However, in response to developmental or extrinsic cues T cells can engage in rapid growth and robust proliferation, produce of a range of effector molecules and migrate through peripheral tissues. To meet the significantly increased metabolic demands of these activities, T cells switch from primarily metabolizing glucose to carbon dioxide through oxidative phosphorylation to utilizing glycolysis to convert glucose to lactate (termed aerobic glycolysis). This metabolic switch allows glucose to be used as a source of carbon to generate biosynthetic precursors for the production of protein, DNA, and phospholipids, and is crucial for T cells to meet metabolic demands. Phosphoinositide 3-kinases (PI3K) are a family of inositol lipid kinases linked with a broad range of cellular functions in T lymphocytes that include cell growth, proliferation, metabolism, differentiation, survival, and migration. Initial research described a critical role for PI3K signaling through Akt (also called protein kinase B) for the increased glucose uptake and glycolysis that accompanies T cell activation. This review article relates this original research with more recent data and discusses the evidence for and against a role for PI3K in regulating the metabolic switch to aerobic glycolysis in T cells.
Collapse
Affiliation(s)
- David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
161
|
BRAFV600E negatively regulates the AKT pathway in melanoma cell lines. PLoS One 2012; 7:e42598. [PMID: 22880048 PMCID: PMC3411810 DOI: 10.1371/journal.pone.0042598] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/10/2012] [Indexed: 12/19/2022] Open
Abstract
Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.
Collapse
|
162
|
Shin S, Wolgamott L, Yoon SO. Regulation of endothelial cell morphogenesis by the protein kinase D (PKD)/glycogen synthase kinase 3 (GSK3)β pathway. Am J Physiol Cell Physiol 2012; 303:C743-56. [PMID: 22855295 DOI: 10.1152/ajpcell.00442.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular morphogenesis is a key process for development, reproduction, and pathogenesis. Thus understanding the mechanisms of this process is of pathophysiological importance. Despite the fact that collagen I is the most abundant and potent promorphogenic molecule known, the molecular mechanisms by which this protein regulates endothelial cell tube morphogenesis are still unclear. Here we provide strong evidence that collagen I induces tube morphogenesis by inhibiting glycogen synthase kinase 3β (GSK3β). Further mechanistic studies revealed that GSK3β activity is regulated by protein kinase D (PKD). PKD inhibited GSK3β activity, which was required for collagen I-induced endothelial tube morphogenesis. We also found that GSK3β regulated trafficking of integrin α(2)β(1) in a Rab11-dependent manner. Taken together, our studies highlight the important role of PKD in the regulation of collagen I-induced vascular morphogenesis and show that it is mediated by the modulation of GSK3β activity and integrin α(2)β(1) trafficking.
Collapse
Affiliation(s)
- Sejeong Shin
- Dept. of Cancer and Cell Biology, Univ. of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
163
|
Speed control: cogs and gears that drive the circadian clock. Trends Neurosci 2012; 35:574-85. [PMID: 22748426 DOI: 10.1016/j.tins.2012.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 01/29/2023]
Abstract
In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator.
Collapse
|
164
|
GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012; 2012:930710. [PMID: 22675363 PMCID: PMC3364548 DOI: 10.1155/2012/930710] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023] Open
Abstract
Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.
Collapse
|
165
|
Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC. GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy. Science 2012; 336:477-81. [DOI: 10.1126/science.1217032] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
166
|
Lee J, Moir RD, McIntosh KB, Willis IM. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol Cell 2012; 45:836-43. [PMID: 22364741 DOI: 10.1016/j.molcel.2012.01.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 01/09/2012] [Indexed: 01/13/2023]
Abstract
Target of rapamycin (TOR)-dependent signaling and the control of cell growth is deregulated in many cancers. However, the signaling molecules downstream of TOR that coordinately regulate the synthesis of ribosomes and tRNAs are not well defined. Here, we show in yeast that conserved kinases of the LAMMER/Cdc-like and GSK-3 families function downstream of TOR complex 1 to repress ribosome and tRNA synthesis in response to nutrient limitation and other types of cellular stress. As a part of this response, we found that the LAMMER kinase Kns1 is differentially expressed and hyperphosphorylated and accumulates in the nucleus after rapamycin treatment, whereupon it primes the phosphorylation of the RNA polymerase III subunit Rpc53 by a specific GSK-3 family member, Mck1. In cooperation with another polymerase subunit, Rpc11, this phosphorylation of Rpc53 modifies the function of the enzyme and together with dephosphorylation of the Maf1 repressor inhibits the growth-promoting activity of RNA polymerase III transcription.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
167
|
Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 2012; 441:1-21. [PMID: 22168436 DOI: 10.1042/bj20110892] [Citation(s) in RCA: 772] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ribosomal protein S6K (S6 kinase) represents an extensively studied effector of the TORC1 [TOR (target of rapamycin) complex 1], which possesses important yet incompletely defined roles in cellular and organismal physiology. TORC1 functions as an environmental sensor by integrating signals derived from diverse environmental cues to promote anabolic and inhibit catabolic cellular functions. mTORC1 (mammalian TORC1) phosphorylates and activates S6K1 and S6K2, whose first identified substrate was rpS6 (ribosomal protein S6), a component of the 40S ribosome. Studies over the past decade have uncovered a number of additional S6K1 substrates, revealing multiple levels at which the mTORC1-S6K1 axis regulates cell physiology. The results thus far indicate that the mTORC1-S6K1 axis controls fundamental cellular processes, including transcription, translation, protein and lipid synthesis, cell growth/size and cell metabolism. In the present review we summarize the regulation of S6Ks, their cellular substrates and functions, and their integration within rapidly expanding mTOR (mammalian TOR) signalling networks. Although our understanding of the role of mTORC1-S6K1 signalling in physiology remains in its infancy, evidence indicates that this signalling axis controls, at least in part, glucose homoeostasis, insulin sensitivity, adipocyte metabolism, body mass and energy balance, tissue and organ size, learning, memory and aging. As dysregulation of this signalling axis contributes to diverse disease states, improved understanding of S6K regulation and function within mTOR signalling networks may enable the development of novel therapeutics.
Collapse
|
168
|
Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, Kaang BK, Cho K, Wang YT, Collingridge GL. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci 2012; 5:13. [PMID: 22363262 PMCID: PMC3279748 DOI: 10.3389/fnmol.2012.00013] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarize its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.
Collapse
|
169
|
Yuan S, Li J, Diener DR, Choma MA, Rosenbaum JL, Sun Z. Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc Natl Acad Sci U S A 2012; 109:2021-6. [PMID: 22308353 PMCID: PMC3277533 DOI: 10.1073/pnas.1112834109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cilium serves as a cellular antenna by coordinating upstream environmental cues with numerous downstream signaling processes that are indispensable for the function of the cell. This role is supported by the revelation that defects of the cilium underlie an emerging class of human disorders, termed "ciliopathies." Although mounting interest in the cilium has demonstrated the essential role that the organelle plays in vertebrate development, homeostasis, and disease pathogenesis, the mechanisms regulating cilia morphology and function remain unclear. Here, we show that the target-of-rapamycin (TOR) growth pathway modulates cilia size and function during zebrafish development. Knockdown of tuberous sclerosis complex 1a (tsc1a), which encodes an upstream inhibitor of TOR complex 1 (Torc1), increases cilia length. In contrast, treatment of embryos with rapamycin, an inhibitor of Torc1, shortens cilia length. Overexpression of ribosomal protein S6 kinase 1 (S6k1), which encodes a downstream substrate of Torc1, lengthens cilia. Furthermore, we provide evidence that TOR-mediated cilia assembly is evolutionarily conserved and that protein synthesis is essential for this regulation. Finally, we demonstrate that TOR signaling and cilia length are pivotal for a variety of downstream ciliary functions, such as cilia motility, fluid flow generation, and the establishment of left-right body asymmetry. Our findings reveal a unique role for the TOR pathway in regulating cilia size through protein synthesis and suggest that appropriate and defined lengths are necessary for proper function of the cilium.
Collapse
Affiliation(s)
| | | | - Dennis R. Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Michael A. Choma
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Joel L. Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | | |
Collapse
|
170
|
Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ 2012; 19:310-20. [PMID: 21779001 PMCID: PMC3263505 DOI: 10.1038/cdd.2011.98] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has a key role in the regulation of an array of cellular function. We found that rapamycin, an inhibitor of mTOR complex 1 (mTORC1), attenuated endoplasmic reticulum (ER) stress-induced apoptosis. Among three major branches of the unfolded protein response, rapamycin selectively suppressed the IRE1-JNK signaling without affecting PERK and ATF6 pathways. ER stress rapidly induced activation of mTORC1, which was responsible for induction of the IRE1-JNK pathway and apoptosis. Activation of mTORC1 reduced Akt phosphorylation, which was an event upstream of IRE-JNK signaling and consequent apoptosis. In vivo, administration with rapamycin significantly suppressed renal tubular injury and apoptosis in tunicamycin-treated mice. It was associated with enhanced phosphorylation of Akt and suppression of JNK activity in the kidney. These results disclosed that, under ER stress conditions, mTORC1 causes apoptosis through suppression of Akt and consequent induction of the IRE1-JNK pathway.
Collapse
Affiliation(s)
- H Kato
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - S Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Y Saito
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - S Takahashi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - R Katoh
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - M Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
171
|
Checkley LA, Rho O, Moore T, Hursting S, DiGiovanni J. Rapamycin is a potent inhibitor of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Prev Res (Phila) 2011; 4:1011-20. [PMID: 21733825 DOI: 10.1158/1940-6207.capr-10-0375] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant activation of phosphoinositide-3-kinase (PI3K)/Akt signaling has been implicated in the development and progression of multiple human cancers. During the process of skin tumor promotion induced by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), activation of epidermal Akt occurs as well as several downstream effectors of Akt, including the activation of mTORC1. Rapamycin, an established mTORC1 inhibitor, was used to further explore the role of mTORC1 signaling in epithelial carcinogenesis, specifically during the tumor promotion stage. Rapamycin blocked TPA-induced activation of mTORC1 as well as several downstream targets. In addition, TPA-induced epidermal hyperproliferation and hyperplasia were inhibited in a dose-dependent manner with topical rapamycin treatments. Immunohistochemical analyses of the skin from mice in this multiple treatment experiment revealed that rapamycin also significantly decreased the number of infiltrating macrophages, T cells, neutrophils, and mast cells seen in the dermis following TPA treatment. Using a two-stage skin carcinogenesis protocol with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as the promoter, rapamycin (5-200 nmol per mouse given topically 30 minutes prior to TPA) exerted a powerful antipromoting effect, reducing both tumor incidence and tumor multiplicity. Moreover, topical application of rapamycin to existing papillomas induced regression and/or inhibited further growth. Overall, the data indicate that rapamycin is a potent inhibitor of skin tumor promotion and suggest that signaling through mTORC1 contributes significantly to the process of skin tumor promotion. The data also suggest that blocking this pathway either alone or in combination with other agents targeting additional pathways may be an effective strategy for prevention of epithelial carcinogenesis.
Collapse
Affiliation(s)
- L Allyson Checkley
- Division of Pharmacology and Toxicology, The University of Texas at Austin, TX 78723, USA
| | | | | | | | | |
Collapse
|
172
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
173
|
Chen S, Cao W, Yue P, Hao C, Khuri FR, Sun SY. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3. Cancer Res 2011; 71:6270-6281. [PMID: 21868755 PMCID: PMC3185138 DOI: 10.1158/0008-5472.can-11-0838] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Celecoxib is a COX-2 inhibitor that reduces the risk of colon cancer. However, the basis for its cancer chemopreventive activity is not fully understood. In this study, we defined a mechanism of celecoxib action based on degradation of cellular FLICE-inhibitory protein (c-FLIP), a major regulator of the death receptor pathway of apoptosis. c-FLIP protein levels are regulated by ubiquitination and proteasome-mediated degradation. We found that celecoxib controlled c-FLIP ubiquitination through Akt-independent inhibition of glycogen synthase kinase-3 (GSK3), itself a candidate therapeutic target of interest in colon cancer. Celecoxib increased the levels of phosphorylated GSK3, including the α and β forms, even in cell lines, where phosphorylated Akt levels were not increased. Phosphoinositide 3-kinase inhibitors abrogated Akt phosphorylation as expected but had no effect on celecoxib-induced GSK3 phosphorylation. In contrast, protein kinase C (PKC) inhibitors abolished celecoxib-induced GSK3 phosphorylation, implying that celecoxib influenced GSK3 phosphorylation through a mechanism that relied upon PKC and not Akt. GSK3 blockade either by siRNA or kinase inhibitors was sufficient to attenuate c-FLIP levels. Combining celecoxib with GSK3 inhibition enhanced attenuation of c-FLIP and increased apoptosis. Proteasome inhibitor MG132 reversed the effects of GSK3 inhibition and increased c-FLIP ubiquitination, confirming that c-FLIP attenuation was mediated by proteasomal turnover as expected. Our findings reveal a novel mechanism through which the regulatory effects of c-FLIP on death receptor signaling are controlled by GSK3, which celecoxib acts at an upstream level to control independently of Akt.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Cao
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Fadlo R. Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|
174
|
Parisi F, Riccardo S, Daniel M, Saqcena M, Kundu N, Pession A, Grifoni D, Stocker H, Tabak E, Bellosta P. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo. BMC Biol 2011; 9:65. [PMID: 21951762 PMCID: PMC3235970 DOI: 10.1186/1741-7007-9-65] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/27/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. RESULTS Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. CONCLUSIONS Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.
Collapse
Affiliation(s)
- Federica Parisi
- Department of Biology, City College of City University of New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Tomasoni R, Negrini S, Fiordaliso S, Klajn A, Tkatch T, Mondino A, Meldolesi J, D'Alessandro R. A signaling loop of REST, TSC2 and β-catenin governs proliferation and function of PC12 neural cells. J Cell Sci 2011; 124:3174-86. [DOI: 10.1242/jcs.087551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The RE-1-specific silencing transcription factor (REST or NRSF) is a transcription repressor that orchestrates differentiation and also operates in differentiated neurons and neurosecretory cells (neural cells). Its role in proliferation has been investigated so far only in rapidly growing tumors, with conflicting results: suppression in non-neural tumors, stimulation in medulloblastomas. Working with two clones of chromaffin–neuronal PC12 cells, which express different levels of REST, and using genetic complementation and knockdown approaches, we show that REST also promotes proliferation in differentiated neural cells. Mechanistically, this occurs by a signaling pathway involving REST, the GTPase-activating protein tuberin (TSC2) and the transcription co-factor β-catenin. In PC12 cells, raised expression of REST correlates with reduced TSC2 levels, nuclear accumulation and co-transcriptional activation of β-catenin, and increased expression of its target oncogenes Myc and Ccnd1, which might account for the proliferation advantage and the distinct morphology. Rest transcription is also increased, unveiling the existence of a self-sustaining, feed-forward REST–TSC2–β-catenin signaling loop that is also operative in another neural cell model, NT2/D1 cells. Transfection of REST, knockdown of TSC2 or forced expression of active β-catenin recapitulated the biochemical, functional and morphological properties of the high-expressing REST clone in wild-type PC12 cells. Upregulation of REST promoted proliferation and phenotypic changes, thus hindering neurosecretion. The new REST–TSC2–β-catenin signaling paradigm might have an important role in various aspects of neural cell physiology and pathology, including the regulation of proliferation and neurosecretion.
Collapse
Affiliation(s)
- Romana Tomasoni
- Division of Immunology, Transplantation/Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Sara Negrini
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Stefania Fiordaliso
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Andrijana Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe Str., PO Box 23, 11010 Belgrade, Serbia
| | - Tatiana Tkatch
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation/Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jacopo Meldolesi
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Rosalba D'Alessandro
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
176
|
Moore SF, Hunter RW, Hers I. mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets [corrected]. J Biol Chem 2011; 286:24553-60. [PMID: 21592956 PMCID: PMC3137030 DOI: 10.1074/jbc.m110.202341] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 05/04/2011] [Indexed: 12/15/2022] Open
Abstract
Protein kinase B (PKB, Akt) is a Ser/Thr kinase involved in the regulation of cell survival, proliferation, and metabolism and is activated by dual phosphorylation on Thr(308) in the activation loop and Ser(473) in the hydrophobic motif. It plays a contributory role to platelet function, although little is known about its regulation. In this study, we investigated the role of the mammalian target of rapamycin complex (mTORC)-2 in Akt regulation using the recently identified small molecule ATP competitive mTOR inhibitors PP242 and Torin1. Both PP242 and Torin1 blocked thrombin and insulin-like growth factor 1-mediated Akt Ser(473) phosphorylation with an IC(50) between 1 and 5 nm, whereas the mTORC1 inhibitor rapamycin had no effect. Interestingly, PP242 and Torin1 had no effect on Akt Thr(308) phosphorylation, Akt1 activity, and phosphorylation of the Akt substrate glycogen synthase kinase 3β, indicating that Ser(473) phosphorylation is not necessary for Thr(308) phosphorylation and maximal Akt1 activity. In contrast, Akt2 activity was significantly reduced, concurrent with inhibition of PRAS40 phosphorylation, in the presence of PP242 and Torin1. Other signaling pathways, including phospholipase C/PKC and the MAPK pathway, were unaffected by PP242 and Torin1. Together, these results demonstrate that mTORC2 is the kinase that phosphorylates Akt Ser(473) in human platelets but that this phosphorylation is dispensable for Thr(308) phosphorylation and Akt1 activity.
Collapse
Affiliation(s)
- Samantha F. Moore
- From the School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Roger W. Hunter
- From the School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ingeborg Hers
- From the School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
177
|
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, Manning BD. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14:21-32. [PMID: 21723501 PMCID: PMC3652544 DOI: 10.1016/j.cmet.2011.06.002] [Citation(s) in RCA: 505] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 06/09/2011] [Indexed: 12/12/2022]
Abstract
Through unknown mechanisms, insulin activates the sterol regulatory element-binding protein (SREBP1c) transcription factor to promote hepatic lipogenesis. We find that this induction is dependent on the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). To further define the role of mTORC1 in the regulation of SREBP1c in the liver, we generated mice with liver-specific deletion of TSC1 (LTsc1KO), which results in insulin-independent activation of mTORC1. Surprisingly, the LTsc1KO mice are protected from age- and diet-induced hepatic steatosis and display hepatocyte-intrinsic defects in SREBP1c activation and de novo lipogenesis. These phenotypes result from attenuation of Akt signaling driven by mTORC1-dependent insulin resistance. Therefore, mTORC1 activation is not sufficient to stimulate hepatic SREBP1c in the absence of Akt signaling, revealing the existence of an additional downstream pathway also required for this induction. We provide evidence that this mTORC1-independent pathway involves Akt-mediated suppression of Insig2a, a liver-specific transcript encoding the SREBP1c inhibitor INSIG2.
Collapse
Affiliation(s)
- Jessica L. Yecies
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Hui H. Zhang
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Suchithra Menon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sihao Liu
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Derek Yecies
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Alex I. Lipovsky
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Cem Gorgun
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - David J. Kwiatkowski
- Hematology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Gökhan S. Hotamisligil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
178
|
Lipp P, Reither G. Protein kinase C: the "masters" of calcium and lipid. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004556. [PMID: 21628429 DOI: 10.1101/cshperspect.a004556] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The coordinated and physiological behavior of living cells in an organism critically depends on their ability to interact with surrounding cells and with the extracellular space. For this, cells have to interpret incoming stimuli, correctly process the signals, and produce meaningful responses. A major part of such signaling mechanisms is the translation of incoming stimuli into intracellularly understandable signals, usually represented by second messengers or second-messenger systems. Two key second messengers, namely the calcium ion and signaling lipids, albeit extremely different in nature, play an important and often synergistic role in such signaling cascades. In this report, we will shed some light on an entire family of protein kinases, the protein kinases C, that are perfectly designed to exactly decode these two second messengers in all of their properties and convey the signaling content to downstream processes within the cell.
Collapse
Affiliation(s)
- Peter Lipp
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany.
| | | |
Collapse
|
179
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
180
|
Wang H, Brown J, Gu Z, Garcia CA, Liang R, Alard P, Beurel E, Jope RS, Greenway T, Martin M. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5217-26. [PMID: 21422248 PMCID: PMC3137265 DOI: 10.4049/jimmunol.1002513] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PI3K pathway and its regulation of mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3 (GSK3) play pivotal roles in controlling inflammation. In this article, we show that mTORC1 and GSK3-β converge and that the capacity of mTORC1 to affect the inflammatory response is due to the inactivation of GSK3-β. Inhibition of mTORC1 attenuated GSK3 phosphorylation and increased its kinase activity. Immunoprecipitation and in vitro kinase assays demonstrated that GSK3-β associated with a downstream target of mTORC1, p85S6K, and phosphorylated GSK3-β. Inhibition of S6K1 abrogated the phosphorylation of GSK3-β while increasing and decreasing the levels of IL-12 and IL-10, respectively, in LPS-stimulated monocytes. In contrast, the direct inhibition of GSK3 attenuated the capacity of S6K1 inhibition to influence the levels of IL-10 and IL-12 produced by LPS-stimulated cells. At the transcriptional level, mTORC1 inhibition reduced the DNA binding of CREB and this effect was reversed by GSK3 inhibition. As a result, mTORC1 inhibition increased the levels of NF-κB p65 associated with CREB-binding protein. Inhibition of NF-κB p65 attenuated rapamycin's ability to influence the levels of pro- or anti-inflammatory cytokine production in monocytes stimulated with LPS. These studies identify the molecular mechanism by which mTORC1 affects GSK3 and show that mTORC1 inhibition regulates pro- and anti-inflammatory cytokine production via its capacity to inactivate GSK3.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Brown J, Wang H, Hajishengallis G, Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 2011; 90:417-27. [PMID: 20940366 PMCID: PMC3075579 DOI: 10.1177/0022034510381264] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Toll-like receptors play a critical role in innate immunity by detecting invading pathogens. The ability of TLRs to engage different intracellular signaling molecules and cross-talk with other regulatory pathways is an important factor in shaping the type, magnitude, and duration of the inflammatory response. The present review will cover the fundamental signaling pathways utilized by TLRs and how these pathways regulate the innate immune response to pathogens. ABBREVIATIONS TLR, Toll-like receptor; PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; LPS, lipopolysaccharide; APC, antigen-presenting cell; IL, interleukin; TIR, Toll/IL-1R homology; MyD88, myeloid differentiation factor 88; IFN, interferon; TRIF, TIR-domain-containing adapter-inducing interferon-β; IRAK, IL-1R-associated kinase; TAK1, TGF-β-activated kinase; TAB1, TAK1-binding protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B-cells; MAPK, mitogen-activated protein kinase; NLR, NOD-like receptors; LRR, leucine-rich repeats; DC, dendritic cell; PI3K, phosphoinositide 3-kinases; GSK3, glycogen synthase kinase-3; mTOR, mammalian target of rapamycin; DAF, decay-accelerating factor; IKK, IκB kinase; IRF, interferon regulatory factors; TBK1, TANK-binding kinase 1; CARD, caspase activation and recruitment domain; PYD, pyrin N-terminal homology domain; ATF, activating transcription factor; and PTEN, phosphatase and tensin homolog.
Collapse
Affiliation(s)
- J. Brown
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - H. Wang
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - G.N. Hajishengallis
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
- Oral Health and Systemic Disease Research Group, University of Louisville School of Dentistry, 501 South Preston Street, Room 211A, Louisville, KY 40202, USA
| | - M. Martin
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
- Oral Health and Systemic Disease Research Group, University of Louisville School of Dentistry, 501 South Preston Street, Room 211A, Louisville, KY 40202, USA
| |
Collapse
|
182
|
Park JW, Kim WH, Shin SH, Kim JY, Yun MR, Park KJ, Park HY. Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:763-71. [PMID: 21329734 DOI: 10.1016/j.bbamcr.2011.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/24/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3β (GSK3β) by phosphorylating it at Ser-9, leading to the nuclear translocation of β-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3β phosphorylation at Ser-9 and nuclear translocation of β-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of β-catenin. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Joo-Won Park
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Nokbun-Dong, Eunpyung-Gu, Seoul 122-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
183
|
Ho H, Kapadia R, Al-Tahan S, Ahmad S, Ganesan AK. WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem 2011; 286:12509-23. [PMID: 21317285 DOI: 10.1074/jbc.m110.200543] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies implicate a role for WD repeat domain, phosphoinositide-interacting 1 (WIPI1) in the biogenesis of melanosomes, cell type-specific lysosome-related organelles. In this study, we determined that WIPI1, an ATG18 homologue that is shown to localize to both autophagosomes and early endosomes, inhibited mammalian target of rapamycin (MTOR) signaling, leading to increased transcription of melanogenic enzymes and the formation of mature melanosomes. WIPI1 suppressed the target of rapamycin complex 1 (TORC1) activity, resulting in glycogen synthase kinase 3β inhibition, β-Catenin stabilization, and increased transcription of microphthalmia transcription factor and its target genes. WIPI1-depleted cells accumulated stage I melanosomes but lacked stage III-IV melanosomes. Inhibition of TORC1 by rapamycin treatment resulted in the accumulation of stage IV melanosomes but not autophagosomes, whereas starvation resulted in the formation of autophagosomes but not melanin accumulation. Taken together, our studies define a distinct role for WIPI1 and TORC1 signaling in controlling the transcription of melanogenic enzymes and melanosome maturation, a process that is distinct from starvation-induced autophagy.
Collapse
Affiliation(s)
- Hsiang Ho
- Department of Biological Chemistry, University of California, Irvine, CA 92697-2400, USA
| | | | | | | | | |
Collapse
|
184
|
Abstract
The transcriptional and metabolic programmes that control CD8(+) T cells are regulated by a diverse network of serine/threonine kinases. The view has been that the kinases AKT and mammalian target of rapamycin (mTOR) control T cell metabolism. Here, we challenge this paradigm and discuss an alternative role for these kinases in CD8(+) T cells, namely to control cell migration. Another emerging concept is that AMP-activated protein kinase (AMPK) family members control T cell metabolism and determine the effector versus memory fate of CD8(+) T cells. We speculate that one link between metabolism and immunological memory is provided by kinases that originally evolved to control T cell metabolism and have subsequently acquired the ability to control the expression of key transcription factors that regulate CD8(+) T cell effector function and migratory capacity.
Collapse
Affiliation(s)
- David Finlay
- Division of Cell Biology and Immunology, University of Dundee, Dundee, UK
| | | |
Collapse
|
185
|
Piazza F, Manni S, Tubi LQ, Montini B, Pavan L, Colpo A, Gnoato M, Cabrelle A, Adami F, Zambello R, Trentin L, Gurrieri C, Semenzato G. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer 2010; 10:526. [PMID: 20920357 PMCID: PMC2958942 DOI: 10.1186/1471-2407-10-526] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 10/04/2010] [Indexed: 12/21/2022] Open
Abstract
Background Glycogen Synthase Kinase-3 (GSK-3) α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM). Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB) and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i) play distinct roles in cell survival and ii) modulate the sensitivity to proteasome inhibitors.
Collapse
Affiliation(s)
- Francesco Piazza
- Department of Clinical and Experimental Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Via Giustiniani 2 -35128-Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
187
|
Abstract
Recent evidence suggests that glycogen synthase kinase 3 (GSK3) proteins and their upstream and downstream regulators have key roles in many fundamental processes during neurodevelopment. Disruption of GSK3 signalling adversely affects brain development and is associated with several neurodevelopmental disorders. Here, we discuss the mechanisms by which GSK3 activity is regulated in the nervous system and provide an overview of the recent advances in the understanding of how GSK3 signalling controls neurogenesis, neuronal polarization and axon growth during brain development. These recent advances suggest that GSK3 is a crucial node that mediates various cellular processes that are controlled by multiple signalling molecules--for example, disrupted in schizophrenia 1 (DISC1), partitioning defective homologue 3 (PAR3), PAR6 and Wnt proteins--that regulate neurodevelopment.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
188
|
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Heiden MGV, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-83. [PMID: 20670887 PMCID: PMC2946786 DOI: 10.1016/j.molcel.2010.06.022] [Citation(s) in RCA: 1570] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/07/2010] [Accepted: 05/14/2010] [Indexed: 12/18/2022]
Abstract
Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.
Collapse
Affiliation(s)
- Katrin Düvel
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Jessica L. Yecies
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Suchithra Menon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Pichai Raman
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Alex I. Lipovsky
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Amanda L. Souza
- Metabolite Profiling Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Ellen Triantafellow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Qicheng Ma
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Regina Gorski
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Stephen Cleaver
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | | | - Jeffrey P. MacKeigan
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Peter M. Finan
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Clary B. Clish
- Metabolite Profiling Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Leon O. Murphy
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
189
|
Zheng X, Sehgal A. AKT and TOR signaling set the pace of the circadian pacemaker. Curr Biol 2010; 20:1203-8. [PMID: 20619819 PMCID: PMC3165196 DOI: 10.1016/j.cub.2010.05.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/19/2010] [Accepted: 05/04/2010] [Indexed: 01/02/2023]
Abstract
The circadian clock coordinates cellular and organismal energy metabolism. The importance of this circadian timing system is underscored by findings that defects in the clock cause deregulation of metabolic physiology and result in metabolic disorders. On the other hand, metabolism also influences the circadian clock, such that circadian gene expression in peripheral tissues is affected in mammalian models of obesity and diabetes. However, to date there is little to no information on the effect of metabolic genes on the central brain pacemaker which drives behavioral rhythms. We have found that the AKT and TOR-S6K pathways, which are major regulators of nutrient metabolism, cell growth, and senescence, impact the brain circadian clock that drives behavioral rhythms in Drosophila. Elevated AKT or TOR activity lengthens circadian period, whereas reduced AKT signaling shortens it. Effects of TOR-S6K appear to be mediated by SGG/GSK3beta, a known kinase involved in clock regulation. Like SGG, TOR signaling affects the timing of nuclear accumulation of the circadian clock protein TIMELESS. Given that activities of AKT and TOR pathways are affected by nutrient/energy levels and endocrine signaling, these data suggest that metabolic disorders caused by nutrient and energy imbalance are associated with altered rest:activity behavior.
Collapse
Affiliation(s)
- Xiangzhong Zheng
- Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
190
|
Hamamdzic D, Fenning RS, Patel D, Mohler ER, Orlova KA, Wright AC, Llano R, Keane MG, Shannon RP, Birnbaum MJ, Wilensky RL. Akt pathway is hypoactivated by synergistic actions of diabetes mellitus and hypercholesterolemia resulting in advanced coronary artery disease. Am J Physiol Heart Circ Physiol 2010; 299:H699-706. [PMID: 20601459 DOI: 10.1152/ajpheart.00071.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is an inflammatory process leading to enhanced cellular proliferation, apoptosis, and vasa vasorum (VV) neovascularization. While both diabetes mellitus (DM) and hypercholesterolemia (HC) predispose to atherosclerosis, the precise interaction of these risk factors is unclear. Akt is a central node in signaling pathways important for inflammation, and we hypothesized that DM/HC would lead to aberrant Akt signaling and advanced, complex atherosclerosis. DM was induced in pigs by streptozotocin and HC by a high-fat diet. Animals were randomized to control (non-DM, non-HC), DM only, HC only, and DM/HC groups. Coronary artery homogenates were analyzed by immunoblotting for proteins involved in the Akt pathway, including phosphorylated (p)-Akt (Ser473), p-GSK-3beta (Ser9), activated NF-kappaB p65, and VEGF. Immunohistochemical staining for Ki67 (cell proliferation), terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) (apoptosis), and von Willebrand factor (vWF) (neovascularization) was performed. Neovascularization was visualized with micro-computerized tomography (CT). Only DM/HC animals developed advanced atherosclerosis and showed decreased p-Akt (Ser473) and p-GSK-3beta (Ser9) levels (P < 0.01 and P < 0.05, respectively). DM/HC arteries demonstrated increased cellular proliferation (P < 0.001), apoptosis (P < 0.01), and activation of NF-kappaB p65 (P < 0.05). Induction of DM/HC also resulted in significant VV neovascularization by enhanced VEGF expression (P < 0.05), increased vWF staining (P < 0.01), and increased density by micro-CT. In conclusion, DM and HC synergistically resulted in complex atherosclerosis associated with attenuated p-Akt (Ser473) levels. Aberrant Akt signaling correlated with increased inflammation, cellular proliferation, apoptosis, and VV neovascularization. Our results revealed a synergistic effect of DM and HC in triggering abnormal Akt signaling, resulting in advanced atherosclerosis.
Collapse
Affiliation(s)
- Damir Hamamdzic
- Cardiovascular Division, Hospital of University of Pennsylvania and Cardiovascular Institute, University of Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ramírez-Valle F, Badura ML, Braunstein S, Narasimhan M, Schneider RJ. Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol Cell Biol 2010; 30:3151-64. [PMID: 20439490 PMCID: PMC2897579 DOI: 10.1128/mcb.00322-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/21/2009] [Accepted: 04/26/2010] [Indexed: 01/17/2023] Open
Abstract
The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.
Collapse
Affiliation(s)
- Francisco Ramírez-Valle
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Michelle L. Badura
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Steve Braunstein
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Manisha Narasimhan
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Robert J. Schneider
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
192
|
Mammalian target of rapamycin signaling and autophagy: roles in lymphangioleiomyomatosis therapy. Ann Am Thorac Soc 2010; 7:48-53. [PMID: 20160148 DOI: 10.1513/pats.200909-104js] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pace of progress in lymphangioleiomyomatosis (LAM) is remarkable. In the year 2000, TSC2 gene mutations were found in LAM cells; in 2001 the tuberous sclerosis complex (TSC) genes were discovered to regulate cell size in Drosophila via the kinase TOR (target of rapamycin); and in 2008 the results were published of a clinical trial of rapamycin, a specific inhibitor of TOR, in patients with TSC and LAM with renal angiomyolipomas. This interval of just 8 years between a genetic discovery for which the relevant signaling pathway was as yet unknown, to the initiation, completion, and publication of a clinical trial, is an almost unparalleled accomplishment in modern biomedical research. This robust foundation of basic, translational, and clinical research in TOR, TSC, and LAM is now poised to optimize and validate effective therapeutic strategies for LAM. An immediate challenge is to deduce the mechanisms underlying the partial response of renal angiomyolipomas to rapamycin, and thereby guide the design of combinatorial approaches. TOR complex 1 (TORC1), which is known to be active in LAM cells, is a key inhibitor of autophagy. One hypothesis, which will be explored here, is that low levels of autophagy in TSC2-null LAM cells limits their survival under conditions of bioenergetic stress. A corollary of this hypothesis is that rapamycin, by inducing autophagy, promotes the survival of LAM cells, while simultaneously arresting their growth. If this hypothesis proves to be correct, then combining TORC1 inhibition with autophagy inhibition may represent an effective clinical strategy for LAM.
Collapse
|
193
|
Abstract
Myc proteins control several cellular processes, including proliferation and growth, and they play an important role in human tumorigenesis. Several years ago, single homologs of Myc, its interaction partner Max, and its antagonist Mnt were identified in Drosophila melanogaster. Here, we review the function of this so-called Max network in fruit flies, with a particular emphasis on its most obvious biological activity: the control of cellular and organismal growth. We describe the molecular basis for this growth function, as well as the interaction of Myc with other pathways known to control growth, the insulin, TOR, and hippo pathways. In addition, Drosophila Myc also controls DNA replication and influences apoptosis, both cell-autonomously and non-autonomously, in a process known as cell competition. In the future, we expect that further functions of Myc will be uncovered and that genetic approaches will increasingly be used to characterize the evolutionarily conserved molecular mechanism of Myc action, thus also benefitting our understanding of Myc biology in vertebrates.
Collapse
Affiliation(s)
- Paola Bellosta
- City College of the City University of New York, Department of Biology, New York, NY, USA
| | | |
Collapse
|
194
|
Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney Int 2010; 77:319-28. [DOI: 10.1038/ki.2009.436] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
195
|
Abstract
In this issue of Developmental Cell, Suizu et al. (2009) describe a new mechanism for posttranslational regulation of the Akt serine/threonine protein kinase involving ubiquitination. They show that the E3 ubiquitin ligase TTC3 modifies phosphorylated and activated Akt and thereby promotes its degradation by the proteasome in the nucleus.
Collapse
Affiliation(s)
- Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
196
|
Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-Pereda M, Stalla GK, Theodoropoulou M. The Somatostatin Analogue Octreotide Confers Sensitivity to Rapamycin Treatment on Pituitary Tumor Cells. Cancer Res 2010; 70:666-74. [DOI: 10.1158/0008-5472.can-09-2951] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
197
|
|
198
|
Bai X, Jiang Y. Key factors in mTOR regulation. Cell Mol Life Sci 2010; 67:239-53. [PMID: 19823764 PMCID: PMC4780839 DOI: 10.1007/s00018-009-0163-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/12/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a protein serine/threonine kinase that controls a wide range of growth-related cellular processes. In the past several years, many factors have been identified that are involved in controlling mTOR activity. Those factors in turn are regulated by diverse signaling cascades responsive to changes in intracellular and environmental conditions. The molecular connections between mTOR and its regulators form a complex signaling network that governs cellular metabolism, growth and proliferation. In this review, we discuss some key factors in mTOR regulation and mechanisms by which these factors control mTOR activity.
Collapse
Affiliation(s)
- Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
199
|
Abstract
Myc genes play a major role in human cancer, and they are important regulators of growth and proliferation during normal development. Despite intense study over the last three decades, many aspects of Myc function remain poorly understood. The identification of a single Myc homolog in the model organism Drosophila melanogaster more than 10 years ago has opened new possibilities for addressing these issues. This review summarizes what the last decade has taught us about Myc biology in the fruit fly.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
200
|
Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, Popescu LM, Das DK. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 2009; 86:103-12. [PMID: 19959541 DOI: 10.1093/cvr/cvp384] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS On the basis of our previous reports that cardioprotection induced by ischaemic preconditioning induces autophagy and that resveratrol, a polyphenolic antioxidant present in grapes and red wine induces preconditioning-like effects, we sought to determine if resveratrol could induce autophagy. METHODS AND RESULTS Resveratrol at lower doses (0.1 and 1 microM in H9c2 cardiac myoblast cells and 2.5 mg/kg/day in rats) induced cardiac autophagy shown by enhanced formation of autophagosomes and its component LC3-II after hypoxia-reoxygenation or ischaemia-reperfusion. The autophagy was attenuated with the higher dose of resveratrol. The induction of autophagy was correlated with enhanced cell survival and decreased apoptosis. Treatment with rapamycin (100 nM), a known inducer of autophagy, did not further increase autophagy compared with resveratrol alone. Autophagic inhibitors, wortmannin (2 microM) and 3-methyladenine (10 mM), significantly attenuated the resveratrol-induced autophagy and induced cell death. The activation of mammalian target of rapamycin (mTOR) was differentially regulated by low-dose resveratrol, i.e. the phosphorylation of mTOR at serine 2448 was inhibited, whereas the phosphorylation of mTOR at serine 2481 was increased, which was attenuated with a higher dose of resveratrol. Although resveratrol attenuated the activation of mTOR complex 1, low-dose resveratrol significantly induced the expression of Rictor, a component of mTOR complex 2, and activated its downstream survival kinase Akt (Ser 473). Resveratrol-induced Rictor was found to bind with mTOR. Furthermore, treatment with Rictor siRNA attenuated the resveratrol-induced autophagy. CONCLUSION Our results indicate that at lower dose, resveratrol-mediated cell survival is, in part, mediated through the induction of autophagy involving the mTOR-Rictor survival pathway.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
| | | | | | | | | | | | | | | |
Collapse
|