151
|
Dohare P, Kidwai A, Kaur J, Singla P, Krishna S, Klebe D, Zhang X, Hevner R, Ballabh P. GSK3β Inhibition Restores Impaired Neurogenesis in Preterm Neonates With Intraventricular Hemorrhage. Cereb Cortex 2020; 29:3482-3495. [PMID: 30192926 DOI: 10.1093/cercor/bhy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Indexed: 01/25/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3β, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3β. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3β inhibitors may enhance neurodevelopment in premature infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience
| | | | | | | | | | | | | | - Robert Hevner
- Department of Pathology, 9500 Gilman Dr, UCSD, La Jolla, CA, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience.,Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
152
|
Najas S, Pijuan I, Esteve-Codina A, Usieto S, Martinez JD, Zwijsen A, Arbonés ML, Martí E, Le Dréau G. A SMAD1/5-YAP signalling module drives radial glia self-amplification and growth of the developing cerebral cortex. Development 2020; 147:dev.187005. [PMID: 32541003 DOI: 10.1242/dev.187005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
The growth and evolutionary expansion of the cerebral cortex are defined by the spatial-temporal production of neurons, which itself depends on the decision of radial glial cells (RGCs) to self-amplify or to switch to neurogenic divisions. The mechanisms regulating these RGC fate decisions are still incompletely understood. Here, we describe a novel and evolutionarily conserved role of the canonical BMP transcription factors SMAD1/5 in controlling neurogenesis and growth during corticogenesis. Reducing the expression of both SMAD1 and SMAD5 in neural progenitors at early mouse cortical development caused microcephaly and an increased production of early-born cortical neurons at the expense of late-born ones, which correlated with the premature differentiation and depletion of the pool of cortical progenitors. Gain- and loss-of-function experiments performed during early cortical neurogenesis in the chick revealed that SMAD1/5 activity supports self-amplifying RGC divisions and restrains the neurogenic ones. Furthermore, we demonstrate that SMAD1/5 stimulate RGC self-amplification through the positive post-transcriptional regulation of the Hippo signalling effector YAP. We anticipate this SMAD1/5-YAP signalling module to be fundamental in controlling growth and evolution of the amniote cerebral cortex.
Collapse
Affiliation(s)
- Sonia Najas
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Isabel Pijuan
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| | - Juan D Martinez
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Maria L Arbonés
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| | - Gwenvael Le Dréau
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| |
Collapse
|
153
|
Mira H, Morante J. Neurogenesis From Embryo to Adult - Lessons From Flies and Mice. Front Cell Dev Biol 2020; 8:533. [PMID: 32695783 PMCID: PMC7339912 DOI: 10.3389/fcell.2020.00533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
The human brain is composed of billions of cells, including neurons and glia, with an undetermined number of subtypes. During the embryonic and early postnatal stages, the vast majority of these cells are generated from neural progenitors and stem cells located in all regions of the neural tube. A smaller number of neurons will continue to be generated throughout our lives, in localized neurogenic zones, mainly confined at least in rodents to the subependymal zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues interacting with temporal and regional intrinsic programs are thought to be critical for increasing neuronal diversity, but their underlying mechanisms need further elucidation. In this review, we discuss the recent findings in Drosophila and mammals on the types of cell division and cell interactions used by neural progenitors and stem cells to sustain neurogenesis, and how they are influenced by glia.
Collapse
Affiliation(s)
- Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
154
|
Heide M, Haffner C, Murayama A, Kurotaki Y, Shinohara H, Okano H, Sasaki E, Huttner WB. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science 2020; 369:546-550. [PMID: 32554627 DOI: 10.1126/science.abb2401] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
The neocortex has expanded during mammalian evolution. Overexpression studies in developing mouse and ferret neocortex have implicated the human-specific gene ARHGAP11B in neocortical expansion, but the relevance for primate evolution has been unclear. Here, we provide functional evidence that ARHGAP11B causes expansion of the primate neocortex. ARHGAP11B expressed in fetal neocortex of the common marmoset under control of the gene's own (human) promoter increased the numbers of basal radial glia progenitors in the marmoset outer subventricular zone, increased the numbers of upper-layer neurons, enlarged the neocortex, and induced its folding. Thus, the human-specific ARHGAP11B drives changes in development in the nonhuman primate marmoset that reflect the changes in evolution that characterize human neocortical development.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ayako Murayama
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yoko Kurotaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Haruka Shinohara
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
155
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H, Jiang Y. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer 2020; 19:101. [PMID: 32493389 PMCID: PMC7268724 DOI: 10.1186/s12943-020-01221-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lung cancer has high morbidity and mortality worldwide with non-small cell lung cancer (NSCLC) accounting for 85% of the cases. Therapies for lung cancer have relatively poor outcomes and further improvements are required. Circular RNAs have been reported to participate in the occurrence and progression of cancer. Information on the functions and mechanism of circRNAs in lung cancer is limited and needs more exploration. METHODS We detected expression of genes and proteins by qPCR and western blot. Function of circSATB2 was investigated using RNA interference and overexpression assays. Location of circSATB2 was assessed by fluorescence in situ hybridization (FISH). Interaction of circSATB2, miR-326 and FSCN1 was confirmed by dual-luciferase reporter assay. RESULTS Data from the investigation showed that circSATB2 was highly expressed in NSCLC cells and tissues. circSATB2 positively regulated fascin homolog 1, actin-bundling protein 1 (FSCN1) expression via miR-326 in lung cancer cells. Furthermore, circSATB2 can be transferred by exosomes and promote the proliferation, migration and invasion of NSCLC cells, as well as induce abnormal proliferation in normal human bronchial epithelial cells. Also, circSATB2 was highly expressed in serumal exosomes from lung cancer patients with high sensitivity and specificity for clinical detection and was related to lung cancer metastasis. CONCLUSIONS circSATB2 participated in the progression of NSCLC and was differentially expressed in lung cancer tissue and serumal exosomes. circSATB2 may be potential biomarker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Aruo Nan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Lijian Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Xin Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Xin Dai
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| |
Collapse
|
156
|
Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 2020; 18:e3000705. [PMID: 32401820 PMCID: PMC7250475 DOI: 10.1371/journal.pbio.3000705] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/26/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Modeling the processes of neuronal progenitor proliferation and differentiation to produce mature cortical neuron subtypes is essential for the study of human brain development and the search for potential cell therapies. We demonstrated a novel paradigm for the generation of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a vascular structure for over 200 days as a vascularized and functional brain organoid model. The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated the presence of chemical and electrical synapses in vOrganoids. More importantly, single-cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the construction of functional human-mouse blood vessels in the grafts that promoted cell survival in the grafts. This vOrganoid culture method could not only serve as a model to study human cortical development and explore brain disease pathology but also provide potential prospects for new cell therapies for nervous system disorders and injury. This study establishes a method to generate vascularized cortical organoids. This shows that in addition to reducing hypoxia and cell death, the vascular system promotes neural development in organoids. When transplanting these organoids into host mice, a graft-host vascular system could be reconstructed.
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rui Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijie Guo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ai Fang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Woo-Ping Ge
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- * E-mail: (QW); (XW)
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- * E-mail: (QW); (XW)
| |
Collapse
|
157
|
Paolino A, Fenlon LR, Kozulin P, Haines E, Lim JWC, Richards LJ, Suárez R. Differential timing of a conserved transcriptional network underlies divergent cortical projection routes across mammalian brain evolution. Proc Natl Acad Sci U S A 2020; 117:10554-10564. [PMID: 32312821 PMCID: PMC7229759 DOI: 10.1073/pnas.1922422117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unique combination of transcription factor expression and projection neuron identity demarcates each layer of the cerebral cortex. During mouse and human cortical development, the transcription factor CTIP2 specifies neurons that project subcerebrally, while SATB2 specifies neuronal projections via the corpus callosum, a large axon tract connecting the two neocortical hemispheres that emerged exclusively in eutherian mammals. Marsupials comprise the sister taxon of eutherians but do not have a corpus callosum; their intercortical commissural neurons instead project via the anterior commissure, similar to egg-laying monotreme mammals. It remains unknown whether divergent transcriptional networks underlie these cortical wiring differences. Here, we combine birth-dating analysis, retrograde tracing, gene overexpression and knockdown, and axonal quantification to compare the functions of CTIP2 and SATB2 in neocortical development, between the eutherian mouse and the marsupial fat-tailed dunnart. We demonstrate a striking degree of structural and functional homology, whereby CTIP2 or SATB2 of either species is sufficient to promote a subcerebral or commissural fate, respectively. Remarkably, we reveal a substantial delay in the onset of developmental SATB2 expression in mice as compared to the equivalent stage in dunnarts, with premature SATB2 overexpression in mice to match that of dunnarts resulting in a marsupial-like projection fate via the anterior commissure. Our results suggest that small alterations in the timing of regulatory gene expression may underlie interspecies differences in neuronal projection fate specification.
Collapse
Affiliation(s)
- Annalisa Paolino
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura R Fenlon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth Haines
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
158
|
Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming GL. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell 2020; 26:766-781.e9. [PMID: 32142682 PMCID: PMC7366517 DOI: 10.1016/j.stem.2020.02.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/18/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023]
Abstract
Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.
Collapse
Affiliation(s)
- Xuyu Qian
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Adam
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sarshan R Pather
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kenong Su
- Department of Computer Science, Emory University College of Arts and Sciences, Atlanta, GA 30322, USA
| | - Shiying Li
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Lu Lu
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Phuong T T Nguyen
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sooyoung Huh
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmet Hoke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhexing Wen
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - R Christopher Pierce
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - H Isaac Chen
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John A Wolf
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
159
|
Zhang L, Song NN, Zhang Q, Mei WY, He CH, Ma P, Huang Y, Chen JY, Mao B, Lang B, Ding YQ. Satb2 is required for the regionalization of retrosplenial cortex. Cell Death Differ 2020; 27:1604-1617. [PMID: 31666685 PMCID: PMC7206047 DOI: 10.1038/s41418-019-0443-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023] Open
Abstract
The retrosplenial cortex (Rsp) is a transitional cortex located between the neocortex and archicortex, but the molecular mechanism specifying Rsp from the archicortex remains elusive. We here report that the transcription factor Satb2 is required for specifying Rsp identity during its morphogenesis. In Satb2 CKO mice, the boundary between the Rsp and archicortex [i.e., subiculum (SubC)] disappears as early as E17.5, and Rsp efferent projection is aberrant. Rsp-specific genes are lost, whereas SubC-specific genes are ectopically expressed in Rsp of Satb2 CKO mice. Furthermore, cell-autonomous role of Satb2 in maintaining Rsp neuron identity is revealed by inactivation of Satb2 in Rsp neurons. Finally, Satb2 represses the transcription of Nr4a2. The misexpression of Nr4a2 together with Ctip2 induces expression of SubC-specific genes in wild-type Rsp, and simultaneous knockdown of these two genes in Rsp Satb2-mutant cells prevents their fate transition to SubC identity. Thus, Satb2 serves as a determinant gene in the Rsp regionalization by repressing Nr4a2 and Ctip2 during cortical development.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
160
|
Hattori Y, Naito Y, Tsugawa Y, Nonaka S, Wake H, Nagasawa T, Kawaguchi A, Miyata T. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat Commun 2020; 11:1631. [PMID: 32242005 PMCID: PMC7118101 DOI: 10.1038/s41467-020-15409-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the developing cortex, postmigratory neurons accumulate in the cortical plate (CP) to properly differentiate consolidating subtype identities. Microglia, despite their extensive surveying activity, temporarily disappear from the midembryonic CP. However, the mechanism and significance of this absence are unknown. Here, we show that microglia bidirectionally migrate via attraction by CXCL12 released from the meninges and subventricular zone and thereby exit the midembryonic CP. Upon nonphysiological excessive exposure to microglia in vivo or in vitro, young postmigratory and in vitro-grown CP neurons showed abnormal differentiation with disturbed expression of the subtype-associated transcription factors and genes implicated in functional neuronal maturation. Notably, this effect is primarily attributed to interleukin 6 and type I interferon secreted by microglia. These results suggest that “sanctuarization” from microglia in the midembryonic CP is required for neurons to appropriately fine-tune the expression of molecules needed for proper differentiation, thus securing the establishment of functional cortical circuit. Microglia temporarily disappear from the cortical plate in the midembryonic stage. This study demonstrated that microglial transient absence from the cortical plate is required for postmigratory neurons to appropriately fine-tune the expression of molecules needed for their proper differentiation.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan. .,Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yu Naito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoji Tsugawa
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Japan.,Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Drug Discovery Research, iBody Inc., Nagoya, Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems, Okazaki, Japan.,Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroaki Wake
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Okazaki, Japan.,Division of System Neuroscience, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
161
|
Güven A, Kalebic N, Long KR, Florio M, Vaid S, Brandl H, Stenzel D, Huttner WB. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. eLife 2020; 9:49808. [PMID: 32191207 PMCID: PMC7105383 DOI: 10.7554/elife.49808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Neocortex expansion is largely based on the proliferative capacity of basal progenitors (BPs), which is increased by extracellular matrix (ECM) components via integrin signaling. Here we show that the transcription factor Sox9 drives expression of ECM components and that laminin 211 increases BP proliferation in embryonic mouse neocortex. We show that Sox9 is expressed in human and ferret BPs and is required for BP proliferation in embryonic ferret neocortex. Conditional Sox9 expression in the mouse BP lineage, where it normally is not expressed, increases BP proliferation, reduces Tbr2 levels and induces Olig2 expression, indicative of premature gliogenesis. Conditional Sox9 expression also results in cell-non-autonomous stimulation of BP proliferation followed by increased upper-layer neuron production. Our findings demonstrate that Sox9 exerts concerted effects on transcription, BP proliferation, neuron production, and neurogenic vs. gliogenic BP cell fate, suggesting that Sox9 may have contributed to promote neocortical expansion.
Collapse
Affiliation(s)
- Ayse Güven
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Human Technopole, Milan, Italy
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denise Stenzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
162
|
Chao MW, Kuo HC, Tong SY, Yang YS, Chuang YC, Tseng CY. In Vitro and In Vivo Analysis of the Effects of 3,5-DMA and Its Metabolites in Neural Oxidative Stress and Neurodevelopmental Toxicity. Toxicol Sci 2020; 168:405-419. [PMID: 30590852 DOI: 10.1093/toxsci/kfy306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
3,5-Dimethylaniline (3,5-DMA), a monocyclic aromatic amine, is widely present in a spectrum of sources including tobacco, dyes, combustion products, and suspended particulates. 3,5-DMA and its metabolites form superoxides, resulting in apoptosis or oncogenesis. Data of a direct effect of 3,5-DMA on the nervous system, especially the developing brain, are lacking. Therefore, we investigated the effects of 3,5-DMA and its metabolites on fetal neurite growth and brain development using in vitro cell cultures of primary cortical neurons to observe whether these compounds caused neuronal cytotoxicity and affected neurite structural development. With increasing concentrations of 3,5-DMA (10, 50, 100, 500, 1000 μM) and its major metabolite 5-dimethylaminophenol (3,5-DMAP) (10, 50, 100, 500, 1000 μM), reactive oxygen species (ROS), cytotoxicity, and DNA damage increased significantly in the cells and dendritic arborization decreased. The addition of 5 mM N-acetylcysteine, an ROS scavenger, reduced ROS in the cells and alleviated the neuronal damage. In vivo studies in Sprague Dawley pregnant rats suggested that exposure to 3,5-DMA (10, 30, 60, 100 mg/kg/day) subcutaneously from GD15 to GD17 led to fetal cerebral cortex thinning. BrdU labeling showed that 3,5-DMA reduced the number and generation of cortical cells. To detect the laminar position of newly generated neurons, cortex layer markers such as Satb2, Ctip2, and Tbr1 were used. 3,5-DMA perturbed the cortical layer distribution in developing fetal rats. In summary, this is the first study to provide evidence for 3,5-DMA and its metabolites causing anomalies of the fetal central nervous system development through ROS production.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan.,Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Hui-Chuan Kuo
- Department of Pharmacy, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Sih-Yu Tong
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yu-Shiu Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chia-Yi Tseng
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan.,Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
163
|
Sharma Y, Saha S, Joseph A, Krishnan H, Raghu P. In vitro human stem cell derived cultures to monitor calcium signaling in neuronal development and function. Wellcome Open Res 2020; 5:16. [PMID: 32195361 PMCID: PMC7076282 DOI: 10.12688/wellcomeopenres.15626.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/24/2022] Open
Abstract
The development of the human brain involves multiple cellular processes including cell division, migration, and dendritic growth. These processes are triggered by developmental cues and lead to interactions of neurons and glial cells to derive the final complex organization of the brain. Developmental cues are transduced into cellular processes through the action of multiple intracellular second messengers including calcium. Calcium signals in cells are shaped by large number of proteins and mutations in several of these have been reported in human patients with brain disorders. However, the manner in which such mutations impact human brain development in vivo remains poorly understood. A key limitation in this regard is the need for a model system in which calcium signaling can be studied in neurons of patients with specific brain disorders. Here we describe a protocol to differentiate human neural stem cells into cortical neuronal networks that can be maintained as live cultures up to 120 days in a dish. Our protocol generates a 2D in vitro culture that exhibits molecular features of several layers of the human cerebral cortex. Using fluorescence imaging of intracellular calcium levels, we describe the development of neuronal activity as measured by intracellular calcium transients during development in vitro. These transients were dependent on the activity of voltage gated calcium channels and were abolished by blocking sodium channel activity. Using transcriptome analysis, we describe the full molecular composition of such cultures following differentiation in vitro thus offering an insight into the molecular basis of activity. Our approach will facilitate the understanding of calcium signaling defects during cortical neuron development in patients with specific brain disorders and a mechanistic analysis of these defects using genetic manipulations coupled with cell biological and physiological analysis.
Collapse
Affiliation(s)
- Yojet Sharma
- Cellular Organization and Signalling, National Centre for Biological Sciences - TIFR, Bangalore, Karnataka, 560065, India
| | - Sankhanil Saha
- Cellular Organization and Signalling, National Centre for Biological Sciences - TIFR, Bangalore, Karnataka, 560065, India
| | - Annu Joseph
- Cellular Organization and Signalling, National Centre for Biological Sciences - TIFR, Bangalore, Karnataka, 560065, India
| | - Harini Krishnan
- Cellular Organization and Signalling, National Centre for Biological Sciences - TIFR, Bangalore, Karnataka, 560065, India
| | - Padinjat Raghu
- Cellular Organization and Signalling, National Centre for Biological Sciences - TIFR, Bangalore, Karnataka, 560065, India
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka, 560065, India
| |
Collapse
|
164
|
Hartenstein V, Omoto JJ, Lovick JK. The role of cell lineage in the development of neuronal circuitry and function. Dev Biol 2020; 475:165-180. [PMID: 32017903 DOI: 10.1016/j.ydbio.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
165
|
Zahid K, Shakoor S, Sajid HA, Afzal S, Ali L, Amin I, Shahid M, Idrees M. Advancements in developing an effective and preventive dengue vaccine. Future Virol 2020. [DOI: 10.2217/fvl-2019-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every year millions of people in various tropical and subtropical regions encounter infection with dengue virus. Within the last few decades, its prevalence has increased up to 30-fold globally and presently these viruses have been transmitted in more than 100 countries. Scientists contributed to the development of tetravalent dengue vaccine by adopting numerous approaches including live vaccine, recombinant protein vaccine, DNA vaccine and virus-vectored vaccines. A vaccine should be genetically stable, equally effective against all serotypes, must be in-expensive and commercially available. Chimeric yellow fever virus-tetravalent dengue vaccine (CYD-TDV) is the first licensed vaccine developed by Sanofi Pasteur in December 2015, but this vaccine is not fully effective against different dengue virus serotypes (Sanofi Pasteur, Lyon, France). This review explores the advancements and challenges involved in the development of dengue vaccine.
Collapse
Affiliation(s)
- Khadija Zahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sana Shakoor
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Hina Afzal Sajid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Modern Sciences, Rawalpindi, Pakistan
| | - Iram Amin
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
166
|
Hoskoppal D, Epstein JI, Gown AM, Arnold Egloff SA, Gordetsky JB, Shi CJ, Giannico GA. SATB2 protein expression by immunohistochemistry is a sensitive and specific marker of appendiceal and rectosigmoid well differentiated neuroendocrine tumours. Histopathology 2020; 76:550-559. [DOI: 10.1111/his.14012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Deepthi Hoskoppal
- Department of Pathology New York Langone Medical Center New York NYUSA
| | - Jonathan I Epstein
- Department of Pathology, Urology and Oncology Johns Hopkins Medical Institutions Baltimore MD USA
| | | | - Shanna A Arnold Egloff
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TNUSA
- Department of Pathology Veterans Affairs Medical Center, Tennessee Valley Healthcare System Nashville TN USA
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TNUSA
| | - Chanjuan J Shi
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TNUSA
| | - Giovanna A Giannico
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TNUSA
| |
Collapse
|
167
|
Lee JH, Shaker MR, Lee E, Lee B, Sun W. NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res 2020; 43:101691. [PMID: 32018208 DOI: 10.1016/j.scr.2019.101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSCs) in the embryonic neocortex have the potential to generate a well-organized laminar architecture of the cerebral cortex through precise regulation of the proliferation, differentiation, and migration of neural cells. NSCs can be isolated in vitro and expanded as cell clusters, called neurospheres, which are primarily related to the proliferation ability of NSCs. Conversely, the tissue-organizing properties of NSCs via regulated differentiation and migration of the cells are not well understood. In this study, we established a three-dimensional (3D) differentiation model of neurospheres, which produce unique neuronal clusters, termed NeuroCore (NC). NC formation was initiated by the aggregation of young neurons. Upon maturation of the neurons and the establishment of radial glia-like structures, the initial organization of the NCs transformed into a glomeruli-like arrangement of cortical neurons. These neurons expressed multiple markers of upper and deep cortical neurons. Taken together, we propose that NSCs in vitro maintain some aspects of their original in vivo tissue-organizing properties, providing an alternative opportunity to explore the fundamental components of brain histogenesis in vitro.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boram Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
168
|
Feng W, Li Y, Dao P, Aburas J, Islam P, Elbaz B, Kolarzyk A, Brown AE, Kratsios P. A terminal selector prevents a Hox transcriptional switch to safeguard motor neuron identity throughout life. eLife 2020; 9:50065. [PMID: 31902393 PMCID: PMC6944445 DOI: 10.7554/elife.50065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
To become and remain functional, individual neuron types must select during development and maintain throughout life their distinct terminal identity features, such as expression of specific neurotransmitter receptors, ion channels and neuropeptides. Here, we report a molecular mechanism that enables cholinergic motor neurons (MNs) in the C. elegans ventral nerve cord to select and maintain their unique terminal identity. This mechanism relies on the dual function of the conserved terminal selector UNC-3 (Collier/Ebf). UNC-3 synergizes with LIN-39 (Scr/Dfd/Hox4-5) to directly co-activate multiple terminal identity traits specific to cholinergic MNs, but also antagonizes LIN-39’s ability to activate terminal features of alternative neuronal identities. Loss of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alternative, not cholinergic MN-specific, terminal features become activated and locomotion defects occur. The strategy of a terminal selector preventing a transcriptional switch may constitute a general principle for safeguarding neuronal identity throughout life.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Pauline Dao
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Benayahu Elbaz
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - Anna Kolarzyk
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - André Ex Brown
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
169
|
Gomez-Giro G, Arias-Fuenzalida J, Jarazo J, Zeuschner D, Ali M, Possemis N, Bolognin S, Halder R, Jäger C, Kuper WFE, van Hasselt PM, Zaehres H, del Sol A, van der Putten H, Schöler HR, Schwamborn JC. Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun 2019; 7:222. [PMID: 31888773 PMCID: PMC6937812 DOI: 10.1186/s40478-019-0871-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
The juvenile form of neuronal ceroid Lipofuscinosis (JNCL) is the most common form within this group of rare lysosomal storage disorders, causing pediatric neurodegeneration. The genetic disorder, which is caused by recessive mutations affecting the CLN3 gene, features progressive vision loss, cognitive and motor decline and other psychiatric conditions, seizure episodes, leading to premature death. Animal models have traditionally aid the understanding of the disease mechanisms and pathology and are very relevant for biomarker research and therapeutic testing. Nevertheless, there is a need for establishing reliable and predictive human cellular models to study the disease. Since patient material, particularly from children, is scarce and difficult to obtain, we generated an engineered a CLN3-mutant isogenic human induced pluripotent stem cell (hiPSC) line carrying the c.1054C → T pathologic variant, using state of the art CRISPR/Cas9 technology. To prove the suitability of the isogenic pair to model JNCL, we screened for disease-specific phenotypes in non-neuronal two-dimensional cell culture models as well as in cerebral brain organoids. Our data demonstrates that the sole introduction of the pathogenic variant gives rise to classical hallmarks of JNCL in vitro. Additionally, we discovered an alteration of the splicing caused by this particular mutation. Next, we derived cerebral organoids and used them as a neurodevelopmental model to study the particular effects of the CLN3Q352X mutation during brain formation in the disease context. About half of the mutation -carrying cerebral organoids completely failed to develop normally. The other half, which escaped this severe defect were used for the analysis of more subtle alterations. In these escapers, whole-transcriptome analysis demonstrated early disease signatures, affecting pathways related to development, corticogenesis and synapses. Complementary metabolomics analysis confirmed decreased levels of cerebral tissue metabolites, some particularly relevant for synapse formation and neurotransmission, such as gamma-amino butyric acid (GABA). Our data suggests that a mutation in CLN3 severely affects brain development. Furthermore, before disease onset, disease -associated neurodevelopmental changes, particular concerning synapse formation and function, occur.
Collapse
|
170
|
Panagiotakos G, Haveles C, Arjun A, Petrova R, Rana A, Portmann T, Paşca SP, Palmer TD, Dolmetsch RE. Aberrant calcium channel splicing drives defects in cortical differentiation in Timothy syndrome. eLife 2019; 8:51037. [PMID: 31868578 PMCID: PMC6964969 DOI: 10.7554/elife.51037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/21/2019] [Indexed: 01/02/2023] Open
Abstract
The syndromic autism spectrum disorder (ASD) Timothy syndrome (TS) is caused by a point mutation in the alternatively spliced exon 8A of the calcium channel Cav1.2. Using mouse brain and human induced pluripotent stem cells (iPSCs), we provide evidence that the TS mutation prevents a normal developmental switch in Cav1.2 exon utilization, resulting in persistent expression of gain-of-function mutant channels during neuronal differentiation. In iPSC models, the TS mutation reduces the abundance of SATB2-expressing cortical projection neurons, leading to excess CTIP2+ neurons. We show that expression of TS-Cav1.2 channels in the embryonic mouse cortex recapitulates these differentiation defects in a calcium-dependent manner and that in utero Cav1.2 gain-and-loss of function reciprocally regulates the abundance of these neuronal populations. Our findings support the idea that disruption of developmentally regulated calcium channel splicing patterns instructively alters differentiation in the developing cortex, providing important in vivo insights into the pathophysiology of a syndromic ASD.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States.,Eli & Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Christos Haveles
- Eli & Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Arpana Arjun
- Eli & Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States.,Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, United States
| | - Ralitsa Petrova
- Eli & Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Anshul Rana
- Graduate Program in Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Thomas Portmann
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Sergiu P Paşca
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, United States
| | - Ricardo E Dolmetsch
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
171
|
Duan ZRS, Che A, Chu P, Modol L, Bollmann Y, Babij R, Fetcho RN, Otsuka T, Fuccillo MV, Liston C, Pisapia DJ, Cossart R, De Marco García NV. GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex. Neuron 2019; 105:75-92.e5. [PMID: 31780329 DOI: 10.1016/j.neuron.2019.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.
Collapse
Affiliation(s)
- Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Chu
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Modol
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Yannick Bollmann
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
172
|
Hatanaka Y, Kawasaki T, Abe T, Shioi G, Kohno T, Hattori M, Sakakibara A, Kawaguchi Y, Hirata T. Semaphorin 6A-Plexin A2/A4 Interactions with Radial Glia Regulate Migration Termination of Superficial Layer Cortical Neurons. iScience 2019; 21:359-374. [PMID: 31698249 PMCID: PMC6889767 DOI: 10.1016/j.isci.2019.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/01/2022] Open
Abstract
Precise regulation of neuronal migration termination is crucial for the establishment of brain cytoarchitectures. However, little is known about how neurons terminate migration. Here we focused on interactions between migrating cortical neurons and their substrates, radial glial (RG) cells, and analyzed the role of Plexin A2 and A4 (PlxnA2/A4) receptors and their repulsive ligand, Semaphorin 6A (Sema6A), for this process. In both PlxnA2/A4 double-knockout and Sema6A mutant mice, the outermost cortical plate neurons ectopically invade layer 1 at a stage when they should reach their destinations. PlxnA2/A4 proteins are abundantly expressed on their leading processes, whereas Sema6A mRNA is enriched in RG cell somata. Cell-targeted gene expression and conditional knockouts indicate critical roles for these molecules. We hypothesize that the timely appearance of repulsive signaling mediated by Sema6A-PlxnA2/A4 weakens migrating neuron-RG cell interactions, leading to migration termination.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| | - Takahiko Kawasaki
- Brain Function Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, Hyogo 650-0047, Japan
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, Hyogo 650-0047, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Akira Sakakibara
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tatsumi Hirata
- Brain Function Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
173
|
Bellizzi AM. SATB2 in neuroendocrine neoplasms: strong expression is restricted to well-differentiated tumours of lower gastrointestinal tract origin and is most frequent in Merkel cell carcinoma among poorly differentiated carcinomas. Histopathology 2019; 76:251-264. [PMID: 31233624 DOI: 10.1111/his.13943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
AIMS Special AT-rich sequence-binding protein 2 (SATB2) is a transcriptional regulator with critical roles in brain, craniofacial and skeletal development. It has emerged as a key marker of lower gastrointestinal (GI) tract columnar epithelial and osteoblastic differentiation. Transcription factor immunohistochemistry is useful in assigning site of origin in well-differentiated neuroendocrine tumours (NETs), and has had a limited role in poorly differentiated neuroendocrine carcinomas (NECs). This study sought to evaluate the role of SATB2 in assigning site of origin in neuroendocrine epithelial neoplasms. METHODS AND RESULTS Tissue microarrays were constructed from the following: 317 NETs (37 thyroid, 46 lung, 16 stomach, 12 duodenum, 70 pancreas, 106 jejunoileum, 24 appendix, and six rectosigmoid), 44 phaeochromocytomas/paragangliomas, and 79 NECs (29 Merkel cell, 30 lung, and 20 extrapulmonary visceral); nine appendiceal and 19 rectal NETs were examined in whole sections. SATB2 immunohistochemistry was scored for extent (%) and intensity (0-3+), with an H-score being calculated. SATB2 was expressed by 96% of rectosigmoid NETs, 79% of appendiceal NETs, and only 7% of other well-differentiated neoplasms (P < 0.0001). Expression in lower GI tract NETs (median H-score of 255) was stronger than in other positive tumours (median H-score of 7) (P < 0.0001). Any SATB2 expression was 86% sensitive/93% specific for lower GI tract origin. SATB2 was expressed by 79% of Merkel cell carcinomas (median H-score of 300), 33% of lung NECs (median H-score of 23), and 60% of extrapulmonary visceral NECs (median H-score of 110), with stronger expression in Merkel cell carcinoma (P < 0.001). At an H-score cutoff of ≥150, SATB2 was 69% sensitive/90% specific for Merkel cell carcinoma. CONCLUSIONS SATB2 is frequently and strongly expressed by lower GI tract NETs; we have adopted it as our rectal NET marker. Relatively frequent and strong expression in Merkel cell carcinoma may have value in assigning NEC site of origin.
Collapse
Affiliation(s)
- Andrew M Bellizzi
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, IA, USA.,University of Iowa Neuroendocrine Cancer Program, University of Iowa Hospitals and Clinics and Holden Comprehensive Cancer Center, Iowa City, IA, USA
| |
Collapse
|
174
|
"Females Are Not Just 'Protected' Males": Sex-Specific Vulnerabilities in Placenta and Brain after Prenatal Immune Disruption. eNeuro 2019; 6:ENEURO.0358-19.2019. [PMID: 31611335 PMCID: PMC6838689 DOI: 10.1523/eneuro.0358-19.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Current perceptions of genetic and environmental vulnerabilities in the developing fetus are biased toward male outcomes. An argument is made that males are more vulnerable to gestational complications and neurodevelopmental disorders, the implication being that an understanding of disrupted development in males is sufficient to understand causal mechanisms that are assumed to be similar but attenuated in females. Here we examine this assumption in the context of immune-driven alterations in fetal brain development and related outcomes in female and male mice. Pregnant C57BL/6 mice were treated with low-dose lipopolysaccharide at embryonic day 12.5. Placental pathology, acute fetal brain inflammation and hypoxia, long-term changes in adult cortex cytoarchitecture, altered densities and ratio of excitatory (Satb2+) to inhibitory (parvalbumin+) neuronal subtypes, postnatal growth, and behavior outcomes were compared between male and female offspring. We find that while males experience more pronounced placental pathology, fetal brain hypoxia, depleted PV and Satb2+ densities, and social and learning-related behavioral abnormalities, females exhibit unique acute inflammatory signaling in fetal brain, postnatal growth delay, opposite alterations in cortical PV densities, changes in juvenile behavior, delayed postnatal body growth, and elevated anxiety-related behavior as adults. While males are more severely impacted by prenatal immune disruption by several measures, females exposed to the same insult exhibit a unique set of vulnerabilities and developmental consequences that is not present in males. Our results clearly outline disparate sex-specific features of prenatal vulnerability to inflammatory insults and warn against the casual extrapolation of male disease mechanisms to females.
Collapse
|
175
|
Kastriti ME, Stratigi A, Mariatos D, Theodosiou M, Savvaki M, Kavkova M, Theodorakis K, Vidaki M, Zikmund T, Kaiser J, Adameyko I, Karagogeos D. Ablation of CNTN2+ Pyramidal Neurons During Development Results in Defects in Neocortical Size and Axonal Tract Formation. Front Cell Neurosci 2019; 13:454. [PMID: 31749685 PMCID: PMC6844266 DOI: 10.3389/fncel.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Corticothalamic axons express Contactin-2 (CNTN2/TAG-1), a neuronal recognition molecule of the immunoglobulin superfamily involved in neurogenesis, neurite outgrowth, and fasciculation. TAG-1, which is expressed transiently by cortical pyramidal neurons during embryonic development, has been shown to be fundamental for axonal recognition, cellular migration, and neuronal proliferation in the developing cortex. Although Tag-1−/− mice do not exhibit any obvious defects in the corticofugal system, the role of TAG-1+ neurons during the development of the cortex remains elusive. We have generated a mouse model expressing EGFP under the Tag-1 promoter and encompassing the coding sequence of Diptheria Toxin subunit A (DTA) under quiescence with no effect on the expression of endogenous Tag-1. We show that while the line recapitulates the expression pattern of the molecule, it highlights an extended expression in the forebrain, including multiple axonal tracts and neuronal populations, both spatially and temporally. Crossing these mice to the Emx1-Cre strain, we ablated the vast majority of TAG-1+ cortical neurons. Among the observed defects were a significantly smaller cortex, a reduction of corticothalamic axons as well as callosal and commissural defects. Such defects are common in neurodevelopmental disorders, thus this mouse could serve as a useful model to study physiological and pathophysiological cortical development.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Aikaterini Stratigi
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Laboratory of Neurophysiology, Université Libre de Bruxelles, UNI, Brussels, Belgium
| | - Dimitris Mariatos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Marina Theodosiou
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Michaela Kavkova
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Kostas Theodorakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
176
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|
177
|
Alvarez-Saavedra M, Yan K, De Repentigny Y, Hashem LE, Chaudary N, Sarwar S, Yang D, Ioshikhes I, Kothary R, Hirayama T, Yagi T, Picketts DJ. Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Front Mol Neurosci 2019; 12:243. [PMID: 31680852 PMCID: PMC6811508 DOI: 10.3389/fnmol.2019.00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Alterations in the homeostasis of either cortical progenitor pool, namely the apically located radial glial (RG) cells or the basal intermediate progenitors (IPCs) can severely impair cortical neuron production. Such changes are reflected by microcephaly and are often associated with cognitive defects. Genes encoding epigenetic regulators are a frequent cause of intellectual disability and many have been shown to regulate progenitor cell growth, including our inactivation of the Smarca1 gene encoding Snf2l, which is one of two ISWI mammalian orthologs. Loss of the Snf2l protein resulted in dysregulation of Foxg1 and IPC proliferation leading to macrocephaly. Here we show that inactivation of the closely related Smarca5 gene encoding the Snf2h chromatin remodeler is necessary for embryonic IPC expansion and subsequent specification of callosal projection neurons. Telencephalon-specific Smarca5 cKO embryos have impaired cell cycle kinetics and increased cell death, resulting in fewer Tbr2+ and FoxG1+ IPCs by mid-neurogenesis. These deficits give rise to adult mice with a dramatic reduction in Satb2+ upper layer neurons, and partial agenesis of the corpus callosum. Mice survive into adulthood but molecularly display reduced expression of the clustered protocadherin genes that may further contribute to altered dendritic arborization and a hyperactive behavioral phenotype. Our studies provide novel insight into the developmental function of Snf2h-dependent chromatin remodeling processes during brain development.
Collapse
Affiliation(s)
- Matías Alvarez-Saavedra
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lukas E. Hashem
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Nidhi Chaudary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shihab Sarwar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Doo Yang
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ilya Ioshikhes
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
178
|
Yu W, Roy SK, Ma Y, LaVeist TA, Shankar S, Srivastava RK. Higher expression of SATB2 in hepatocellular carcinoma of African Americans determines more aggressive phenotypes than those of Caucasian Americans. J Cell Mol Med 2019; 23:7999-8009. [PMID: 31602781 PMCID: PMC6850930 DOI: 10.1111/jcmm.14652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
In the United States, Hepatocellular Carcinoma (HCC) incidence has tripled over the past two decades. The disease has disproportionately affected minority and disadvantaged populations. The purpose of this study was to examine the expression of SATB2 gene in HCC cells derived from African Americans (AA) and Caucasian Americans (CA) and assess its oncogenic potential by measuring cell viability, spheroid formation, epithelial‐mesenchymal transition (EMT), stem cell markers and pluripotency maintaining factors in cancer stem cells (CSCs). We compared the expression of SATB2 in human primary hepatocytes, HCC cells derived from AA and CA, and HCC CSCs. Hepatocellular carcinoma cells derived from AA expressed the higher level of SATB2 than those from CA. By comparison, normal human hepatocytes did not express SATB2. Higher expression of SATB2 in HCC cells from AA was associated with greater growth rate, cell viability, colony formation and EMT characteristics than those from CA. Knockout of SATB2 in CSCs by Crispr/Cas9 technique significantly inhibited the expression of SATB2 gene, stem cell markers (CD24, CD44 and CD133), pluripotency maintaining factors (c‐Myc, KLF4, SOX2 and OCT4), and EMT compared with non‐targeting control group. The expression of SATB2 was negatively correlated with miR34a. SATB2 rescued the miR‐34a‐mediated inhibition of CSC's viability. These data suggest that SATB2 is an oncogenic factor, and its higher expression may explain the disparity in HCC outcomes among AA.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Sanjit K Roy
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Yiming Ma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Thomas A LaVeist
- Department of Health Policy and Management, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, Kansas City, MO, USA.,Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, Kansas City, MO, USA.,Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA, USA
| |
Collapse
|
179
|
Barber M, Andrews WD, Memi F, Gardener P, Ciantar D, Tata M, Ruhrberg C, Parnavelas JG. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain. Cereb Cortex 2019; 28:2577-2593. [PMID: 29901792 PMCID: PMC5998991 DOI: 10.1093/cercor/bhy082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process.
Collapse
Affiliation(s)
- Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, UK
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Fani Memi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Phillip Gardener
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Daniel Ciantar
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathew Tata
- Institute of Ophthalmology, University College London, London, UK
| | | | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
180
|
Velona T, Altounian M, Roque M, Hocine M, Bellon A, Briz CG, Salin P, Nieto M, Chauvet S, Mann F. PlexinD1 and Sema3E determine laminar positioning of heterotopically projecting callosal neurons. Mol Cell Neurosci 2019; 100:103397. [DOI: 10.1016/j.mcn.2019.103397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
|
181
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
182
|
Postel M, Karam A, Pézeron G, Schneider-Maunoury S, Clément F. A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex. BMC Bioinformatics 2019; 20:470. [PMID: 31521111 PMCID: PMC6744691 DOI: 10.1186/s12859-019-3018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. Electronic supplementary material The online version of this article (10.1186/s12859-019-3018-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Postel
- Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, LJLL, Paris, France.
| | - Alice Karam
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), Paris, France
| | - Guillaume Pézeron
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), Paris, France.,Current address: Laboratoire Physiologie Moléculaire et Adaptation, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), Paris, France
| | - Frédérique Clément
- Inria, Université Paris-Saclay, Palaiseau, France.,LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
183
|
Schwarz N, Uysal B, Welzer M, Bahr JC, Layer N, Löffler H, Stanaitis K, Pa H, Weber YG, Hedrich UB, Honegger JB, Skodras A, Becker AJ, Wuttke TV, Koch H. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. eLife 2019; 8:48417. [PMID: 31498083 PMCID: PMC6733599 DOI: 10.7554/elife.48417] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient viral transduction of cultures, enabling ‘high throughput’ fluorescence-mediated 3D reconstruction of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and demonstrate feasibility of long term live cell imaging of human cells in vitro. This model system has implications toward a broad spectrum of translational studies, regarding the validation of data obtained in non-human model systems, for therapeutic screening and genetic dissection of human CNS circuitry.
Collapse
Affiliation(s)
- Niklas Schwarz
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Betül Uysal
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marc Welzer
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jacqueline C Bahr
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nikolas Layer
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Heidi Löffler
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kornelijus Stanaitis
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Harshad Pa
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Ulrike Bs Hedrich
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jürgen B Honegger
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Angelos Skodras
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University Bonn Medical Center, Bonn, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
184
|
Franz H, Villarreal A, Heidrich S, Videm P, Kilpert F, Mestres I, Calegari F, Backofen R, Manke T, Vogel T. DOT1L promotes progenitor proliferation and primes neuronal layer identity in the developing cerebral cortex. Nucleic Acids Res 2019; 47:168-183. [PMID: 30329130 PMCID: PMC6326801 DOI: 10.1093/nar/gky953] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.
Collapse
Affiliation(s)
- Henriette Franz
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Alejandro Villarreal
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Pavankumar Videm
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Fabian Kilpert
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ivan Mestres
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Center for non-coding RNA in Technology and Health, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
185
|
Sensory cortex wiring requires preselection of short- and long-range projection neurons through an Egr-Foxg1-COUP-TFI network. Nat Commun 2019; 10:3581. [PMID: 31395862 PMCID: PMC6687716 DOI: 10.1038/s41467-019-11043-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
The bimodal requisite for a genetic program and external stimuli is a key feature of sensory circuit formation. However, the contribution of cell-intrinsic codes to directing sensory-specific circuits remains unknown. Here, we identify the earliest molecular program that preselects projection neuron types in the sensory neocortex. Mechanistically, Foxg1 binds to an H3K4me1-enriched enhancer site to repress COUP-TFI, where ectopic acquisition of Foxg1 in layer 4 cells transforms local projection neurons to callosal projection neurons with pyramidal morphologies. Removal of Foxg1 in long-range projection neurons, in turn, derepresses COUP-TFI and activates a layer 4 neuron-specific program. The earliest segregation of projection subtypes is achieved through repression of Foxg1 in layer 4 precursors by early growth response genes, the major targets of the transforming growth factor-β signaling pathway. These findings describe the earliest cortex-intrinsic program that restricts neuronal connectivity in sensory circuits, a fundamental step towards the acquisition of mammalian perceptual behavior. Layer 4 spiny stellate cells project locally while pyramidal neurons have long-range projections yet the molecular program that determines their specificity is not yet known. Here, the authors demonstrate that Egr, Foxg1 and COUP-TFI transcription factors play causal role in the specification of these cell types.
Collapse
|
186
|
Atik A, De Matteo R, Boomgardt M, Rees S, Harding R, Cheong J, Rana S, Crossley K, Tolcos M. Impact of High-Dose Caffeine on the Preterm Ovine Cerebrum and Cerebellum. Front Physiol 2019; 10:990. [PMID: 31427988 PMCID: PMC6688582 DOI: 10.3389/fphys.2019.00990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Caffeine is one of the few treatments available for infants with apnea of prematurity. As the recommended dosing regimen is not always sufficient to prevent apnea, higher doses may be prescribed. However, little is currently known about the impact of high-dose caffeine on the developing brain; thus, our aim was to investigate the consequences of a high-dose regimen on the immature ovine brain. High-dose caffeine (25 mg/kg caffeine base loading dose; 20 mg/kg daily maintenance dose; n = 9) or saline (n = 8) was administered to pregnant sheep from 105 to 118 days of gestation (DG; term = 147 days); this is broadly equivalent to 28-33 weeks of human gestation. At 119DG, the cerebral cortex, striatum, and cerebellum were assessed histologically and by immunohistochemistry. Compared with controls, caffeine-exposed fetuses showed (i) an increase in the density of Ctip2-positive layers V-VI projection neurons (p = 0.02), Tbr1-positive layers V-VI projection neurons (p < 0.0001), astrocytes (p = 0.03), and oligodendrocytes (p = 0.02) in the cerebral cortex, (ii) a decrease in the density of Cux1-positive layers II-IV projection neurons (p = 0.01) in the cerebral cortex, and (iii) a reduction in the area of Purkinje cell bodies in the cerebellum (p = 0.03). Comparing high-dose caffeine-exposed fetuses with controls, there was no difference (p > 0.05) in: (i) the volume of the cerebral cortex or striatum, (ii) the density of neurons (total and output projection neurons) in the striatum, (iii) dendritic spine density of layer V pyramidal cells, (iv) the density of cortical GABAergic interneurons, microglia, mature oligodendrocytes or proliferating cells, (v) total cerebellar area or dimensions of cerebellar layers, or (vi) the density of cerebellar white matter microglia, astrocytes, oligodendrocytes, or myelin. Daily exposure of the developing brain to high-dose caffeine affects some aspects of neuronal and glial development in the cerebral cortex and cerebellum in the short-term; the long-term structural and functional consequences of these alterations need to be investigated.
Collapse
Affiliation(s)
- Anzari Atik
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Meghan Boomgardt
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Sandra Rees
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Jeanie Cheong
- Department of Neonatal Services, Royal Women's Hospital, Victorian Infant Brain Studies, Murdoch Children's Research Institute, and Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Kelly Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
187
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
188
|
Filatova A, Rey LK, Lechler MB, Schaper J, Hempel M, Posmyk R, Szczaluba K, Santen GWE, Wieczorek D, Nuber UA. Mutations in SMARCB1 and in other Coffin-Siris syndrome genes lead to various brain midline defects. Nat Commun 2019; 10:2966. [PMID: 31273213 PMCID: PMC6609698 DOI: 10.1038/s41467-019-10849-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes encoding components of BAF (BRG1/BRM-associated factor) chromatin remodeling complexes cause neurodevelopmental disorders and tumors. The mechanisms leading to the development of these two disease entities alone or in combination remain unclear. We generated mice with a heterozygous nervous system-specific partial loss-of-function mutation in a BAF core component gene, Smarcb1. These Smarcb1 mutant mice show various brain midline abnormalities that are also found in individuals with Coffin–Siris syndrome (CSS) caused by SMARCB1, SMARCE1, and ARID1B mutations and in SMARCB1-related intellectual disability (ID) with choroid plexus hyperplasia (CPH). Analyses of the Smarcb1 mutant animals indicate that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations. Our results establish a novel role of Smarcb1 in the development of the brain midline and have important clinical implications for BAF complex-related ID/neurodevelopmental disorders. Why and how mutations in genes encoding BAF complex components lead to distinct disease entitites remains unresolved. In this study, authors establish the first Smarcb1 mutant mouse model with multiple brain abnormalities recapitulating human Coffin–Siris syndrome and show that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations.
Collapse
Affiliation(s)
- Alina Filatova
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany
| | - Linda K Rey
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Marion B Lechler
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany
| | - Jörg Schaper
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Renata Posmyk
- Podlaskie Medical Centre "GENETICS" Bialystok and Department of Perinatology and Obstetrics, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University Warsaw, Warsaw, 02-106, Poland
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Ulrike A Nuber
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany.
| |
Collapse
|
189
|
Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, Radin EA, Lubin N, Bonner ER, Popratiloff A, Rothblat LA, Maynard TM, LaMantia AS. Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron 2019; 102:1127-1142.e3. [PMID: 31079872 PMCID: PMC6668992 DOI: 10.1016/j.neuron.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alejandra Fernandez
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA; GW Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Daniel W Meechan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Beverly A Karpinski
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth M Paronett
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Corey A Bryan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Hanna L Rutz
- Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Eric A Radin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Noah Lubin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Erin R Bonner
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anastas Popratiloff
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - Lawrence A Rothblat
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Thomas M Maynard
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anthony-Samuel LaMantia
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
190
|
Common variants in SATB2 are associated with schizophrenia in Uygur Chinese population. Psychiatr Genet 2019; 29:120-126. [PMID: 31162297 DOI: 10.1097/ypg.0000000000000229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Schizophrenia is one of the most severe mental disorders and its etiology is supposed to be an interaction between genes and environmental factors. Previous genome-wide association studies of schizophrenia have reported multiple susceptibility loci including rs6704641 in the SATB2 gene. Recently, this locus was further confirmed as a genome-wide significant locus for association with schizophrenia by trans-ancestry meta-analysis of Han Chinese and Caucasian samples. However, there is no report of genetic analysis in Uygur Chinese population, which is considered to have a combined genetic background between eastern Asia and Caucasian. This study is aimed to explore whether SATB2 gene is significantly associated with schizophrenia in Uygur Chinese population, thus providing additional evidence for elucidating the role of SATB2 gene in schizophrenia. PARTICIPANTS AND METHODS In this study, we performed a case-control analysis focusing on seven tag single nucleotide polymorphisms located in SATB2 gene among 985 patients with schizophrenia and 1218 healthy controls recruited from the Xinjiang Province of China. RESULTS We found that rs6704641 was significantly associated with schizophrenia in both allelic and genotypic distributions (Pallele = 0.008, Pgenotype = 0.028 after correction). In addition, rs16831466 is significantly associated with schizophrenia in allelic distributions (corrected Pallele = 0.041). Besides, several haplotypes of single nucleotide polymorphism are significantly associated with schizophrenia too. CONCLUSION Our results suggest that SATB2 is also a susceptibility gene for schizophrenia in Uygur Chinese population, and subsequent functional experiments are necessary to reveal its role in the pathogenesis.
Collapse
|
191
|
Tosches MA, Laurent G. Evolution of neuronal identity in the cerebral cortex. Curr Opin Neurobiol 2019; 56:199-208. [PMID: 31103814 DOI: 10.1016/j.conb.2019.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
To understand neocortex evolution, we must define a theory for the elaboration of cell types, circuits, and architectonics from an ancestral structure that is consistent with developmental, molecular, and genetic data. To this end, cross-species comparison of cortical cell types emerges as a very informative approach. We review recent results that illustrate the contribution of molecular and transcriptomic data to the construction of plausible models of cortical cell-type evolution.
Collapse
Affiliation(s)
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
192
|
Wester JC, Mahadevan V, Rhodes CT, Calvigioni D, Venkatesh S, Maric D, Hunt S, Yuan X, Zhang Y, Petros TJ, McBain CJ. Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner. Neuron 2019; 102:960-975.e6. [PMID: 31027966 DOI: 10.1016/j.neuron.2019.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
Abstract
Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.
Collapse
Affiliation(s)
- Jason C Wester
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniela Calvigioni
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sanan Venkatesh
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Steven Hunt
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
193
|
Amberg N, Laukoter S, Hippenmeyer S. Epigenetic cues modulating the generation of cell-type diversity in the cerebral cortex. J Neurochem 2019; 149:12-26. [PMID: 30276807 PMCID: PMC6587822 DOI: 10.1111/jnc.14601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
The cerebral cortex is composed of a large variety of distinct cell-types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell-type diversity during cortical development.
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Susanne Laukoter
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | |
Collapse
|
194
|
Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol 2019; 175:77-95. [PMID: 30677429 PMCID: PMC6402587 DOI: 10.1016/j.pneurobio.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Of all brain regions, the 6-layered neocortex has undergone the most dramatic changes in size and complexity during mammalian brain evolution. These changes, occurring in the context of a conserved set of organizational features that emerge through stereotypical developmental processes, are considered responsible for the cognitive capacities and sensory specializations represented within the mammalian clade. The modern experimental era of developmental neurobiology, spanning 6 decades, has deciphered a number of mechanisms responsible for producing the diversity of cortical neuron types, their precise connectivity and the role of gene by environment interactions. Here, experiments providing insight into the development of cortical projection neuron differentiation and connectivity are reviewed. This current perspective integrates discussion of classic studies and new findings, based on recent technical advances, to highlight an improved understanding of the neuronal complexity and precise connectivity of cortical circuitry. These descriptive advances bring new opportunities for studies related to the developmental origins of cortical circuits that will, in turn, improve the prospects of identifying pathogenic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan J Kast
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
195
|
Kalebic N, Gilardi C, Stepien B, Wilsch-Bräuninger M, Long KR, Namba T, Florio M, Langen B, Lombardot B, Shevchenko A, Kilimann MW, Kawasaki H, Wimberger P, Huttner WB. Neocortical Expansion Due to Increased Proliferation of Basal Progenitors Is Linked to Changes in Their Morphology. Cell Stem Cell 2019; 24:535-550.e9. [PMID: 30905618 DOI: 10.1016/j.stem.2019.02.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/14/2018] [Accepted: 02/22/2019] [Indexed: 11/24/2022]
Abstract
The evolutionary expansion of the mammalian neocortex (Ncx) is thought to be linked to increased proliferative capacity of basal progenitors (BPs) and their neurogenic capacity. Here, by quantifying BP morphology in the developing Ncx of mouse, ferret, and human, we show that increased BP proliferative capacity is linked to an increase in BP process number. We identify human membrane-bound PALMDELPHIN (PALMD-Caax) as an underlying factor, and we show that it drives BP process growth and proliferation when expressed in developing mouse and ferret Ncx. Conversely, CRISPR/Cas9-mediated disruption of PALMD or its binding partner ADDUCIN-γ in fetal human Ncx reduces BP process numbers and proliferation. We further show that PALMD-induced processes enable BPs to receive pro-proliferative integrin-dependent signals. These findings provide a link between BP morphology and proliferation, suggesting that changes in BP morphology may have contributed to the evolutionary expansion of the Ncx.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carlotta Gilardi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Barbara Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Barbara Langen
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoit Lombardot
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
196
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
197
|
Zhang Q, Huang Y, Zhang L, Ding YQ, Song NN. Loss of Satb2 in the Cortex and Hippocampus Leads to Abnormal Behaviors in Mice. Front Mol Neurosci 2019; 12:33. [PMID: 30809123 PMCID: PMC6380165 DOI: 10.3389/fnmol.2019.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Satb2-associated syndrome (SAS) is a genetic disorder that results from the deletion or mutation of one allele within the Satb2 locus. Patients with SAS show behavioral abnormalities, including developmental delay/intellectual disability, hyperactivity, and symptoms of autism. To address the role of Satb2 in SAS-related behaviors and generate an SAS mouse model, Satb2 was deleted in the cortex and hippocampus of Emx1-Cre; Satb2flox/flox [Satb2 conditional knockout (CKO)] mice. Satb2 CKO mice showed hyperactivity, increased impulsivity, abnormal social novelty, and impaired spatial learning and memory. Furthermore, we also found that the development of neurons in cortical layer IV was defective in Satb2 CKO mice, as shown by the loss of layer-specific gene expression and abnormal thalamocortical projections. In summary, the abnormal behaviors revealed in Satb2 CKO mice may reflect the SAS symptoms associated with Satb2 mutation in human patients, possibly due to defective development of cortical neurons in multiple layers including alterations of their inputs/outputs.
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.,Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
198
|
Cera I, Whitton L, Donohoe G, Morris DW, Dechant G, Apostolova G. Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genet 2019; 15:e1007890. [PMID: 30726206 PMCID: PMC6364870 DOI: 10.1371/journal.pgen.1007890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia, whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we isolated SATB2 protein interactomes at the two ontogenetic stages and identified multiple novel SATB2 interactors. SATB2 interactomes are highly enriched for proteins that stabilize de novo chromatin loops. The comparison between the neonatal and adult SATB2 protein complexes indicates a developmental shift in SATB2 molecular function, from transcriptional repression towards organization of chromosomal superstructure. Accordingly, gene sets regulated by SATB2 in the neocortex of neonatal and adult mice show limited overlap. Genes encoding SATB2 protein interactors were grouped for gene set analysis of human GWAS data. Common variants associated with human cognitive ability are enriched within the genes encoding adult but not neonatal SATB2 interactors. Our data support a shift in the function of SATB2 in cortex over lifetime and indicate that regulation of spatial chromatin architecture by the SATB2 interactome contributes to cognitive function in the general population.
Collapse
Affiliation(s)
- Isabella Cera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Derek W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
199
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
200
|
Estruch SB, Graham SA, Quevedo M, Vino A, Dekkers DHW, Deriziotis P, Sollis E, Demmers J, Poot RA, Fisher SE. Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Hum Mol Genet 2019; 27:1212-1227. [PMID: 29365100 DOI: 10.1093/hmg/ddy035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-estabslished roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara B Estruch
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Martí Quevedo
- Department of Cell Biology, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | - Pelagia Deriziotis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Elliot Sollis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|