151
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
152
|
Millin R, Kolodny T, Flevaris AV, Kale AM, Schallmo MP, Gerdts J, Bernier RA, Murray S. Reduced auditory cortical adaptation in autism spectrum disorder. eLife 2018; 7:36493. [PMID: 30362457 PMCID: PMC6203433 DOI: 10.7554/elife.36493] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Adaptation is a fundamental property of cortical neurons and has been suggested to be altered in individuals with autism spectrum disorder (ASD). We used fMRI to measure adaptation induced by repeated audio-visual stimulation in early sensory cortical areas in individuals with ASD and neurotypical (NT) controls. The initial transient responses were equivalent between groups in both visual and auditory cortices and when stimulation occurred with fixed-interval and randomized-interval timing. However, in auditory but not visual cortex, the post-transient sustained response was greater in individuals with ASD than NT controls in the fixed-interval timing condition, reflecting reduced adaptation. Further, individual differences in the sustained response in auditory cortex correlated with ASD symptom severity. These findings are consistent with hypotheses that ASD is associated with increased neural responsiveness but that responsiveness differences only manifest after repeated stimulation, are specific to the temporal pattern of stimulation, and are confined to specific cortical regions.
Collapse
Affiliation(s)
- Rachel Millin
- Department of Psychology, University of Washington, Seattle, United States
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, United States
| | | | - Alexander M Kale
- Department of Psychology, University of Washington, Seattle, United States
| | | | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
| | - Scott Murray
- Department of Psychology, University of Washington, Seattle, United States
| |
Collapse
|
153
|
Deficiency of AMPAR-Palmitoylation Aggravates Seizure Susceptibility. J Neurosci 2018; 38:10220-10235. [PMID: 30355633 DOI: 10.1523/jneurosci.1590-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures.SIGNIFICANCE STATEMENT AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.
Collapse
|
154
|
Gelfman S, Wang Q, Lu YF, Hall D, Bostick CD, Dhindsa R, Halvorsen M, McSweeney KM, Cotterill E, Edinburgh T, Beaumont MA, Frankel WN, Petrovski S, Allen AS, Boland MJ, Goldstein DB, Eglen SJ. meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays. PLoS Comput Biol 2018; 14:e1006506. [PMID: 30273353 PMCID: PMC6181426 DOI: 10.1371/journal.pcbi.1006506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Here we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/.
Collapse
Affiliation(s)
- Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- Department of Biology, Westmont College, Santa Barbara, CA, United States of America
| | - Diana Hall
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Christopher D. Bostick
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Ryan Dhindsa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Matt Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - K. Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Ellese Cotterill
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tom Edinburgh
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael A. Beaumont
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Axion BioSystems, Inc., Atlanta, GA, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Andrew S. Allen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Stephen J. Eglen
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
155
|
Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci U S A 2018; 115:9002-9007. [PMID: 30127003 DOI: 10.1073/pnas.1801802115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive destruction and dysfunction of central neurons. AD patients commonly have unprovoked seizures compared with age-matched controls. Amyloid peptide-related inflammation is thought to be an important aspect of AD pathogenesis. We previously reported that NLRP3 inflammasome KO mice, when bred into APPswe/PS1ΔE9 (APP/PS1) mice, are completely protected from amyloid-induced AD-like disease, presumably because they cannot produce mature IL1β or IL18. To test the role of IL18, we bred IL18KO mice with APP/PS1 mice. Surprisingly, IL18KO/APP/PS1 mice developed a lethal seizure disorder that was completely reversed by the anticonvulsant levetiracetam. IL18-deficient AD mice showed a lower threshold in chemically induced seizures and a selective increase in gene expression related to increased neuronal activity. IL18-deficient AD mice exhibited increased excitatory synaptic proteins, spine density, and basal excitatory synaptic transmission that contributed to seizure activity. This study identifies a role for IL18 in suppressing aberrant neuronal transmission in AD.
Collapse
|
156
|
Abstract
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Collapse
Affiliation(s)
- Kellen D. Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
157
|
Qin Y, Han C, Che Y, Zhao J. Vibrational resonance in a randomly connected neural network. Cogn Neurodyn 2018; 12:509-518. [PMID: 30250629 DOI: 10.1007/s11571-018-9492-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/24/2018] [Accepted: 06/14/2018] [Indexed: 01/17/2023] Open
Abstract
A randomly connected network is constructed with similar characteristics (e.g., the ratio of excitatory and inhibitory neurons, the connection probability between neurons, and the axonal conduction delays) as that in the mammalian neocortex and the effects of high-frequency electrical field on the response of the network to a subthreshold low-frequency electrical field are studied in detail. It is found that both the amplitude and frequency of the high-frequency electrical field can modulate the response of the network to the low-frequency electric field. Moreover, vibrational resonance (VR) phenomenon induced by the two types of electrical fields can also be influenced by the network parameters, such as the neuron population, the connection probability between neurons and the synaptic strength. It is interesting that VR is found to be related with the ratio of excitatory neurons that are under high-frequency electrical stimuli. In summary, it is suggested that the interaction of excitatory and inhibitory currents is also an important factor that can influence the performance of VR in neural networks.
Collapse
Affiliation(s)
- Yingmei Qin
- 1Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Chunxiao Han
- 1Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Yanqiu Che
- 1Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Jia Zhao
- 2Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| |
Collapse
|
158
|
Kramer DJ, Risso D, Kosillo P, Ngai J, Bateup HS. Combinatorial Expression of Grp and Neurod6 Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability. eNeuro 2018; 5:ENEURO.0152-18.2018. [PMID: 30135866 PMCID: PMC6104179 DOI: 10.1523/eneuro.0152-18.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Midbrain dopamine neurons project to numerous targets throughout the brain to modulate various behaviors and brain states. Within this small population of neurons exists significant heterogeneity based on physiology, circuitry, and disease susceptibility. Recent studies have shown that dopamine neurons can be subdivided based on gene expression; however, the extent to which genetic markers represent functionally relevant dopaminergic subpopulations has not been fully explored. Here we performed single-cell RNA-sequencing of mouse dopamine neurons and validated studies showing that Neurod6 and Grp are selective markers for dopaminergic subpopulations. Using a combination of multiplex fluorescent in situ hybridization, retrograde labeling, and electrophysiology in mice of both sexes, we defined the anatomy, projection targets, physiological properties, and disease vulnerability of dopamine neurons based on Grp and/or Neurod6 expression. We found that the combinatorial expression of Grp and Neurod6 defines dopaminergic subpopulations with unique features. Grp+/Neurod6+ dopamine neurons reside in the ventromedial VTA, send projections to the medial shell of the nucleus accumbens, and have noncanonical physiological properties. Grp+/Neurod6- dopamine neurons are found in the VTA as well as in the ventromedial portion of the SNc, where they project selectively to the dorsomedial striatum. Grp-/Neurod6+ dopamine neurons represent a smaller VTA subpopulation, which is preferentially spared in a 6-OHDA model of Parkinson's disease. Together, our work provides detailed characterization of Neurod6 and Grp expression in the midbrain and generates new insights into how these markers define functionally relevant dopaminergic subpopulations.
Collapse
Affiliation(s)
- Daniel J. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Davide Risso
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY 10065
| | - Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
159
|
Lieberman OJ, McGuirt AF, Tang G, Sulzer D. Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol Dis 2018; 122:49-63. [PMID: 29709573 DOI: 10.1016/j.nbd.2018.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
The dendritic protrusions known as spines represent the primary postsynaptic location for excitatory synapses. Dendritic spines are critical for many synaptic functions, and their formation, modification, and turnover are thought to be important for mechanisms of learning and memory. At many excitatory synapses, dendritic spines form during the early postnatal period, and while many spines are likely being formed and removed throughout life, the net number are often gradually "pruned" during adolescence to reach a stable level in the adult. In neurodevelopmental disorders, spine pruning is disrupted, emphasizing the importance of understanding its governing processes. Autophagy, a process through which cytosolic components and organelles are degraded, has recently been shown to control spine pruning in the mouse cortex, but the mechanisms through which autophagy acts remain obscure. Here, we draw on three widely studied prototypical synaptic pruning events to focus on two governing principles of spine pruning: 1) activity-dependent synaptic competition and 2) non-neuronal contributions. We briefly review what is known about autophagy in the central nervous system and its regulation by metabolic kinases. We propose a model in which autophagy in both neurons and non-neuronal cells contributes to spine pruning, and how other processes that regulate spine pruning could intersect with autophagy. We further outline future research directions to address outstanding questions on the role of autophagy in synaptic pruning.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Avery F McGuirt
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States; Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, United States; Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, United States.
| |
Collapse
|
160
|
Liu X, Li Y, Yu L, Vickstrom CR, Liu QS. VTA mTOR Signaling Regulates Dopamine Dynamics, Cocaine-Induced Synaptic Alterations, and Reward. Neuropsychopharmacology 2018; 43:1066-1077. [PMID: 29039413 PMCID: PMC5854804 DOI: 10.1038/npp.2017.247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Mechanistic target of rapamycin (mTOR) regulates long-term synaptic plasticity, learning, and memory by controlling dendritic protein synthesis. The mTOR inhibitor rapamycin has been shown to attenuate the behavioral effects of drugs of abuse, including cocaine. Using viral vectors to selectively delete mTOR in the ventral tegmental area (VTA) in adult male mTORloxP/loxP mice, we investigated the role of mTOR in regulating neuronal morphology, basal synaptic transmission, dopamine dynamics, and cocaine-induced synaptic plasticity and rewarding effects. We find that targeted deletion of mTOR in the VTA had no significant effects on soma size and dendritic morphology of VTA neurons but significantly decreased dopamine release and reuptake in the nucleus accumbens (NAc) shell, a major target region. Western blot analysis revealed that mTOR deletion led to decreases in phosphorylated tyrosine hydroxylase (pTH-Ser40) levels in the VTA and dopamine transporter expression in the NAc. mTOR deletion had no significant effects on basal excitatory transmission in VTA dopamine neurons but caused an increase in GABAergic inhibition because of an increase in VTA GABAergic neuron firing. Furthermore, mTOR deletion attenuated conditioned place preference to cocaine and cocaine-induced potentiation of excitation and reduction of GABAergic inhibition in VTA dopamine neurons. Taken together, these results suggest that loss of mTOR in the VTA shifts the balance of excitatory and inhibitory synaptic transmission and decreases dopamine release and reuptake in the NAc. In addition, VTA mTOR signaling regulates cocaine-cue associative learning and cocaine-induced synaptic plasticity in VTA dopamine neurons.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yan Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laikang Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
161
|
Talos DM, Jacobs LM, Gourmaud S, Coto CA, Sun H, Lim KC, Lucas TH, Davis KA, Martinez-Lage M, Jensen FE. Mechanistic target of rapamycin complex 1 and 2 in human temporal lobe epilepsy. Ann Neurol 2018; 83:311-327. [PMID: 29331082 DOI: 10.1002/ana.25149] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a chronic epilepsy syndrome defined by seizures and progressive neurological disabilities, including cognitive impairments, anxiety, and depression. Here, human TLE specimens were investigated focusing on the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and complex 2 (mTORC2) activities in the brain, given that both pathways may represent unique targets for treatment. METHODS Surgically resected hippocampal and temporal lobe samples from therapy-resistant TLE patients were analyzed by western blotting to quantify the expression of established mTORC1 and mTORC2 activity markers and upstream or downstream signaling pathways involving the two complexes. Histological and immunohistochemical techniques were used to assess hippocampal and neocortical structural abnormalities and cell-specific expression of individual biomarkers. Samples from patients with focal cortical dysplasia (FCD) type II served as positive controls. RESULTS We found significantly increased expression of phospho-mTOR (Ser2448), phospho-S6 (Ser235/236), phospho-S6 (Ser240/244), and phospho-Akt (Ser473) in TLE samples compared to controls, consistent with activation of both mTORC1 and mTORC2. Our work identified the phosphoinositide 3-kinase and Ras/extracellular signal-regulated kinase signaling pathways as potential mTORC1 and mTORC2 upstream activators. In addition, we found that overactive mTORC2 signaling was accompanied by induction of two protein kinase B-dependent prosurvival pathways, as evidenced by increased inhibitory phosphorylation of forkhead box class O3a (Ser253) and glycogen synthase kinase 3 beta (Ser9). INTERPRETATION Our data demonstrate that mTOR signaling is significantly dysregulated in human TLE, offering new targets for pharmacological interventions. Specifically, clinically available drugs that suppress mTORC1 without compromising mTOR2 signaling, such as rapamycin and its analogs, may represent a new group of antiepileptogenic agents in TLE patients. Ann Neurol 2018;83:311-327.
Collapse
Affiliation(s)
- Delia M Talos
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Leah M Jacobs
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Sarah Gourmaud
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Carlos A Coto
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Hongyu Sun
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Kuei-Cheng Lim
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Timothy H Lucas
- Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Maria Martinez-Lage
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
162
|
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer's disease. Nat Neurosci 2018; 21:463-473. [PMID: 29403035 DOI: 10.1038/s41593-018-0080-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
During recent years, the preclinical stage of Alzheimer's disease (AD) has become a major focus of research. Continued failures in clinical trials and the realization that early intervention may offer better therapeutic outcome triggered a conceptual shift from late-stage AD pathology to early-stage pathophysiology. While much effort has been directed at understanding the factors initiating AD, little is known about the principle basis underlying the disease progression at its early stages. In this Perspective, we suggest a hypothesis to explain the transition from 'silent' signatures of aberrant neural circuit activity to clinically evident memory impairments. Namely, we propose that failures in firing homeostasis and imbalance between firing stability and synaptic plasticity in cortico-hippocampal circuits represent the driving force of early disease progression. We analyze the main types of possible homeostatic failures and provide the essential conceptual framework for examining the causal link between dysregulation of firing homeostasis, aberrant neural circuit activity and memory-related plasticity impairments associated with early AD.
Collapse
Affiliation(s)
- Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
163
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
164
|
Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018; 7:23. [PMID: 29375819 PMCID: PMC5760969 DOI: 10.12688/f1000research.12155.1] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
165
|
A Unique Homeostatic Signaling Pathway Links Synaptic Inactivity to Postsynaptic mTORC1. J Neurosci 2018; 38:2207-2225. [PMID: 29311141 DOI: 10.1523/jneurosci.1843-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/23/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
mTORC1-dependent translational control plays a key role in several enduring forms of synaptic plasticity such as long term potentiation (LTP) and mGluR-dependent long term depression. Recent evidence demonstrates an additional role in regulating synaptic homeostasis in response to inactivity, where dendritic mTORC1 serves to modulate presynaptic function via retrograde signaling. Presently, it is unclear whether LTP and homeostatic plasticity use a common route to mTORC1-dependent signaling or whether each engage mTORC1 through distinct pathways. Here, we report a unique signaling pathway that specifically couples homeostatic signaling to postsynaptic mTORC1 after loss of excitatory synaptic input. We find that AMPAR blockade, but not LTP-inducing stimulation, induces phospholipase D (PLD)-dependent synthesis of the lipid second messenger phosphatidic acid (PA) in rat cultured hippocampal neurons of either sex. Pharmacological blockade of PLD1/2 or pharmacogenetic disruption of PA interactions with mTOR eliminates mTORC1 signaling and presynaptic compensation driven by AMPAR blockade, but does not alter mTORC1 activation or functional changes during chemical LTP (cLTP). Overexpression of PLD1, but not PLD2, recapitulates both functional synaptic changes as well as signature cellular adaptations associated with homeostatic plasticity. Finally, transient application of exogenous PA is sufficient to drive rapid presynaptic compensation requiring mTORC1-dependent translation of BDNF in the postsynaptic compartment. These results thus define a unique homeostatic signaling pathway coupling mTORC1 activation to changes in excitatory synaptic drive. Our results further imply that more than one canonical mTORC1 activation pathway may be relevant for the design of novel therapeutic approaches against neurodevelopmental disorders associated with mTORC1 dysregulation.SIGNIFICANCE STATEMENT Homeostatic and Hebbian forms of synaptic plasticity are thought to play complementary roles in regulating neural circuit function, but we know little about how these forms of plasticity are distinguished at the single neuron level. Here, we define a signaling pathway that uniquely links mTORC1 with homeostatic signaling in neurons.
Collapse
|
166
|
ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations. Proc Natl Acad Sci U S A 2017; 115:E292-E301. [PMID: 29279380 DOI: 10.1073/pnas.1716892115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1+) vesicles, while ATR associates only with inhibitory (VGAT+) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.
Collapse
|
167
|
Lu HC, Mills AA, Tian D. Altered synaptic transmission and maturation of hippocampal CA1 neurons in a mouse model of human chr16p11.2 microdeletion. J Neurophysiol 2017; 119:1005-1018. [PMID: 29212915 DOI: 10.1152/jn.00306.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathophysiology of neurodevelopmental disorders is often observed early in infancy and toddlerhood. Mouse models of syndromic disorders have provided insight regarding mechanisms of action, but most studies have focused on characterization in juveniles and adults. Insight into developmental trajectories, particularly those related to circuit and synaptic function, will likely yield important information regarding disorder pathogenesis that leads to symptom progression. Chromosome 16p11.2 microdeletion is one of the most common copy number variations associated with a spectrum of neurodevelopmental disorders. Yet, how haploinsufficiency of chr16p11.2 affects early synaptic maturation and function is unknown. To address this knowledge gap, the present study focused on three key components of circuit formation and function, basal synaptic transmission, local circuit function, and maturation of glutamatergic synapses, in developing hippocampal CA1 neurons in a chr16p11.2 microdeletion mouse model. The data demonstrate increased excitability, imbalance in excitation and inhibition, and accelerated maturation of glutamatergic synapses in heterozygous deletion mutant CA1 neurons. Given the critical role of early synaptic development in shaping neuronal connectivity and circuitry formation, these newly identified synaptic abnormalities in chr16p11.2 microdeletion mice may contribute to altered developmental trajectory and function of the developing brain. NEW & NOTEWORTHY The synaptic pathophysiology underlying neurodevelopmental disorders often emerges during infancy and toddlerhood. Therefore, identifying initial changes in synaptic function is crucial for gaining a mechanistic understanding of the pathophysiology, which ultimately will facilitate the design of early interventions. Here, we investigated synaptic and local circuit properties of hippocampal CA1 neurons in a human chr16p11.2 microdeletion mouse model during early postnatal development (preweaning). The data demonstrate increased neuronal excitability, excitatory/inhibitory imbalance, and accelerated maturation of glutamatergic synapses. These perturbations in early hippocampal circuit function may underlie the early pathogenesis of the heterozygous chr16p11.2 microdeletion, which is often associated with epilepsy and intellectual disability.
Collapse
Affiliation(s)
- Hung-Chi Lu
- Department of Pathology and Laboratory Medicine The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, California.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, California.,Neuroscience Graduate Program, University of Southern California , Los Angeles, California
| | - Alea A Mills
- Cold Spring Harbor Laboratory , Cold Spring Harbor, New York
| | - Di Tian
- Department of Pathology and Laboratory Medicine The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, California.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, California.,Neuroscience Graduate Program, University of Southern California , Los Angeles, California
| |
Collapse
|
168
|
Furukawa M, Tsukahara T, Tomita K, Iwai H, Sonomura T, Miyawaki S, Sato T. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression. Biochem Biophys Res Commun 2017; 493:1243-1249. [PMID: 28962859 DOI: 10.1016/j.bbrc.2017.09.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022]
Abstract
The excitatory-to-inhibitory functional switch of γ-aminobutyric acid (GABA; GABA switch), which normally occurs in the first to the second postnatal week in the hippocampus, is necessary for the development of appropriate central nervous system function. A deficit in GABAergic inhibitory function could cause excitatory/inhibitory (E/I) neuron imbalance that is found in many neurodegenerative disorders. In the present study, we examined whether neonatal stress can affect the timing of the GABA functional switch and cause disorders during adolescence. Neonatal stress was induced in C57BL/6J male mouse pups by maternal separation (MS) on postnatal days (PND) 1-21. Histological quantification of K+-Cl- co-transporter (KCC2) and Ca2+ imaging were performed to examine the timing of the GABA switch during the MS period. To evaluate the influence of neonatal MS on adolescent hippocampal function, we quantified KCC2 expression and evaluated hippocampal-related behavioral tasks at PND35-38. We showed that MS delayed the timing of the GABA switch in the hippocampus and inhibited the increase in membrane KCC2 expression, with KCC2 expression inhibition persisting until adolescence. Behavioral tests showed impaired cognition, declined attention, hyperlocomotion, and aggressive character in maternally separated mice. Taken together, our results show that neonatal stress delayed the timing of the GABA switch, which could change the E/I balance and cause neurodegenerative disorders in later life.
Collapse
Affiliation(s)
- Minami Furukawa
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan; Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takao Tsukahara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takahiro Sonomura
- Department of Oral Anatomy, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0226, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
169
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
170
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 571] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
171
|
Borrie SC, Brems H, Legius E, Bagni C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 2017; 18:115-142. [DOI: 10.1146/annurev-genom-091416-035332] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Borrie
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| |
Collapse
|
172
|
Wu D, Klaw MC, Connors T, Kholodilov N, Burke RE, Côté MP, Tom VJ. Combining Constitutively Active Rheb Expression and Chondroitinase Promotes Functional Axonal Regeneration after Cervical Spinal Cord Injury. Mol Ther 2017; 25:2715-2726. [PMID: 28967557 DOI: 10.1016/j.ymthe.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
After spinal cord injury (SCI), severed axons in the adult mammalian CNS are unable to mount a robust regenerative response. In addition, the glial scar at the lesion site further restricts the regenerative potential of axons. We hypothesized that a combinatorial approach coincidentally targeting these obstacles would promote axonal regeneration. We combined (1) transplantation of a growth-permissive peripheral nerve graft (PNG) into an incomplete, cervical lesion cavity; (2) transduction of neurons rostral to the SCI site to express constitutively active Rheb (caRheb; a Ras homolog enriched in brain), a GTPase that directly activates the growth-promoting pathway mammalian target of rapamycin (mTOR) via AAV-caRheb injection; and (3) digestion of growth-inhibitory chondroitin sulfate proteoglycans within the glial scar at the distal PNG interface using the bacterial enzyme chondroitinase ABC (ChABC). We found that expressing caRheb in neurons post-SCI results in modestly yet significantly more axons regenerating across a ChABC-treated distal graft interface into caudal spinal cord than either treatment alone. Excitingly, we found that caRheb+ChABC treatment significantly potentiates the formation of synapses in the host spinal cord and improves the animals' ability to use the affected forelimb. Thus, this combination strategy enhances functional axonal regeneration following a cervical SCI.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michelle C Klaw
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | - Robert E Burke
- Department of Neurology, Columbia University, New York, NY, 10032 USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
173
|
Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice. J Neurosci 2017; 37:7420-7437. [PMID: 28674172 DOI: 10.1523/jneurosci.0539-17.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a neurodevelopmental disorder characterized by epileptic seizures, severe intellectual disability, and autistic features. Mice lacking CDKL5 display multiple behavioral abnormalities reminiscent of the disorder, but the cellular origins of these phenotypes remain unclear. Here, we find that ablating CDKL5 expression specifically from forebrain glutamatergic neurons impairs hippocampal-dependent memory in male conditional knock-out mice. Hippocampal pyramidal neurons lacking CDKL5 show decreased dendritic complexity but a trend toward increased spine density. This morphological change is accompanied by an increase in the frequency of spontaneous miniature EPSCs and interestingly, miniature IPSCs. Using voltage-sensitive dye imaging to interrogate the evoked response of the CA1 microcircuit, we find that CA1 pyramidal neurons lacking CDKL5 show hyperexcitability in their dendritic domain that is constrained by elevated inhibition in a spatially and temporally distinct manner. These results suggest a novel role for CDKL5 in the regulation of synaptic function and uncover an intriguing microcircuit mechanism underlying impaired learning and memory.SIGNIFICANCE STATEMENT Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a severe neurodevelopmental disorder caused by mutations in the CDKL5 gene. Although Cdkl5 constitutive knock-out mice have recapitulated key aspects of human symptomatology, the cellular origins of CDKL5 deficiency-related phenotypes are unknown. Here, using conditional knock-out mice, we show that hippocampal-dependent learning and memory deficits in CDKL5 deficiency have origins in glutamatergic neurons of the forebrain and that loss of CDKL5 results in the enhancement of synaptic transmission and disruptions in neural circuit dynamics in a spatially and temporally specific manner. Our findings demonstrate that CDKL5 is an important regulator of synaptic function in glutamatergic neurons and serves a critical role in learning and memory.
Collapse
|
174
|
Niere F, Raab-Graham KF. mTORC1 Is a Local, Postsynaptic Voltage Sensor Regulated by Positive and Negative Feedback Pathways. Front Cell Neurosci 2017; 11:152. [PMID: 28611595 PMCID: PMC5447718 DOI: 10.3389/fncel.2017.00152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) serves as a regulator of mRNA translation. Recent studies suggest that mTORC1 may also serve as a local, voltage sensor in the postsynaptic region of neurons. Considering biochemical, bioinformatics and imaging data, we hypothesize that the activity state of mTORC1 dynamically regulates local membrane potential by promoting and repressing protein synthesis of select mRNAs. Our hypothesis suggests that mTORC1 uses positive and negative feedback pathways, in a branch-specific manner, to maintain neuronal excitability within an optimal range. In some dendritic branches, mTORC1 activity oscillates between the "On" and "Off" states. We define this as negative feedback. In contrast, positive feedback is defined as the pathway that leads to a prolonged depolarized or hyperpolarized resting membrane potential, whereby mTORC1 activity is constitutively on or off, respectively. We propose that inactivation of mTORC1 increases the expression of voltage-gated potassium alpha (Kv1.1 and 1.2) and beta (Kvβ2) subunits, ensuring that the membrane resets to its resting membrane potential after experiencing increased synaptic activity. In turn, reduced mTORC1 activity increases the protein expression of syntaxin-1A and promotes the surface expression of the ionotropic glutamate receptor N-methyl-D-aspartate (NMDA)-type subunit 1 (GluN1) that facilitates increased calcium entry to turn mTORC1 back on. Under conditions such as learning and memory, mTORC1 activity is required to be high for longer periods of time. Thus, the arm of the pathway that promotes syntaxin-1A and Kv1 protein synthesis will be repressed. Moreover, dendritic branches that have low mTORC1 activity with increased Kv expression would balance dendrites with constitutively high mTORC1 activity, allowing for the neuron to maintain its overall activity level within an ideal operating range. Finally, such a model suggests that recruitment of more positive feedback dendritic branches within a neuron is likely to lead to neurodegenerative disorders.
Collapse
Affiliation(s)
- Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| |
Collapse
|
175
|
Abstract
Autism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, placing emphasis on derangements occurring at the level of intra- and intercellular signaling during corticogenesis. At present, there is an ever-growing list of mutations in putative susceptibility genes in affected individuals, preventing effective transformation of knowledge gathered from basic science research to the clinic. In response, the focus of ASD biology has shifted toward the identification of cellular signaling pathways that are common to various ASD-related mutations in hopes that these shared pathways may serve as more promising treatment targets than targeting individual genes or proteins. To this end, the endogenous cannabinoid (endocannabinoid, eCB) system has recently emerged as a promising therapeutic target in the field of ASD research. The eCB system is altered in several neurological disorders, but the role of these bioactive lipids in ASD etiology remains poorly understood. In this perspective, we review current evidence linking eCB signaling to ASDs and put forth the notion that continued focus on eCBs in autism research may provide valuable insight into pathophysiology and treatment strategies. In addition to its role in modulating transmitter release at mature synapses, the eCB signaling system plays important roles in many aspects of cortical development, and disruption of these effects of eCBs may also be related to ASD pathophysiology.
Collapse
Affiliation(s)
- Mason L Yeh
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
176
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
177
|
Stafstrom CE, Staedtke V, Comi AM. Epilepsy Mechanisms in Neurocutaneous Disorders: Tuberous Sclerosis Complex, Neurofibromatosis Type 1, and Sturge-Weber Syndrome. Front Neurol 2017; 8:87. [PMID: 28367137 PMCID: PMC5355446 DOI: 10.3389/fneur.2017.00087] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 01/27/2023] Open
Abstract
Neurocutaneous disorders are multisystem diseases affecting skin, brain, and other organs. Epilepsy is very common in the neurocutaneous disorders, affecting up to 90% of patients with tuberous sclerosis complex (TSC) and Sturge–Weber syndrome (SWS), for example. The mechanisms underlying the increased predisposition to brain hyperexcitability differ between disorders, yet some molecular pathways overlap. For instance, the mechanistic target of rapamycin (mTOR) signaling cascade plays a central role in seizures and epileptogenesis in numerous acquired and genetic disorders, including several neurocutaneous disorders. Potential routes for target-specific treatments are emerging as the genetic and molecular pathways involved in neurocutaneous disorders become increasingly understood. This review explores the clinical features and mechanisms of epilepsy in three common neurocutaneous disorders—TSC, neurofibromatosis type 1, and SWS.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Verena Staedtke
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Anne M Comi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
178
|
Kulkarni RU, Kramer DJ, Pourmandi N, Karbasi K, Bateup HS, Miller EW. Voltage-sensitive rhodol with enhanced two-photon brightness. Proc Natl Acad Sci U S A 2017; 114:2813-2818. [PMID: 28242676 PMCID: PMC5358379 DOI: 10.1073/pnas.1610791114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.
Collapse
Affiliation(s)
| | - Daniel J Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Narges Pourmandi
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kaveh Karbasi
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
179
|
Niu B, Liu P, Shen M, Liu C, Wang L, Wang F, Ma L. GRK5 Regulates Social Behavior Via Suppression of mTORC1 Signaling in Medial Prefrontal Cortex. Cereb Cortex 2017; 28:421-432. [DOI: 10.1093/cercor/bhw364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 01/28/2023] Open
|
180
|
Schmunk G, Nguyen RL, Ferguson DL, Kumar K, Parker I, Gargus JJ. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. Sci Rep 2017; 7:40740. [PMID: 28145469 PMCID: PMC5286408 DOI: 10.1038/srep40740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/09/2016] [Indexed: 11/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders without any defined uniting pathophysiology. Ca2+ signaling is emerging as a potential node in the genetic architecture of the disorder. We previously reported decreased inositol trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum in several rare monogenic syndromes highly comorbid with autism – fragile X and tuberous sclerosis types 1 and 2 syndromes. We now extend those findings to a cohort of subjects with sporadic ASD without any known mutations. We developed and applied a high throughput Fluorometric Imaging Plate Reader (FLIPR) assay to monitor agonist-evoked Ca2+ signals in human primary skin fibroblasts. Our results indicate that IP3 -mediated Ca2+ release from the endoplasmic reticulum in response to activation of purinergic receptors is significantly depressed in subjects with sporadic as well as rare syndromic forms of ASD. We propose that deficits in IP3-mediated Ca2+ signaling represent a convergent hub function shared across the spectrum of autistic disorders – whether caused by rare highly penetrant mutations or sporadic forms – and holds promise as a biomarker for diagnosis and novel drug discovery.
Collapse
Affiliation(s)
- Galina Schmunk
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Rachel L Nguyen
- Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - David L Ferguson
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Kenny Kumar
- Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Ian Parker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA.,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, California, USA
| | - J Jay Gargus
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA.,Division of Human Genetics &Genomics, Department of Pediatrics, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
181
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
182
|
Kumar D, Thakur MK. Anxiety like behavior due to perinatal exposure to Bisphenol-A is associated with decrease in excitatory to inhibitory synaptic density of male mouse brain. Toxicology 2017; 378:107-113. [PMID: 28089772 DOI: 10.1016/j.tox.2017.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Bisphenol-A (BPA) is a synthetic endocrine disruptor which causes anxiety like behavior in rodents, though the underlying mechanism is not clearly understood. As excitatory-inhibitory synaptic proteins are the key regulators of anxiety, we have examined the effect of perinatal exposure to BPA on this behavior and the expression of excitatory (PSD95), inhibitory (gephyrin) and presynaptic density marker (synaptophysin) proteins in cerebral cortex and hippocampus of 3 and 8 weeks postnatal male mice. In open field (OF) test, BPA exposure reduced the time spent, number of entries and distance travelled in the central zone as compared to control in 8 weeks mice. On the other hand, elevated plus maze (EPM) results showed decrease in time spent and number of entries to the open arms. Immunoblotting and immunofluorescence analysis showed significant downregulation of PSD95 and synaptophysin, but upregulation of gephyrin, leading to reduction in excitatory to inhibitory protein ratio and synaptic density in postnatal 3 and 8 weeks mice. Thus, our findings show that the anxiety like behavior due to perinatal exposure to BPA is associated with decrease in excitatory to inhibitory synaptic density in postnatal male mice.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
183
|
Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol 2017; 21:23-48. [PMID: 27567276 DOI: 10.1016/j.ejpn.2016.07.007] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroplasticity refers to the inherently dynamic biological capacity of the central nervous system (CNS) to undergo maturation, change structurally and functionally in response to experience and to adapt following injury. This malleability is achieved by modulating subsets of genetic, molecular and cellular mechanisms that influence the dynamics of synaptic connections and neural circuitry formation culminating in gain or loss of behavior or function. Neuroplasticity in the healthy developing brain exhibits a heterochronus cortex-specific developmental profile and is heightened during "critical and sensitive periods" of pre and postnatal brain development that enable the construction and consolidation of experience-dependent structural and functional brain connections. PURPOSE In this review, our primary goal is to highlight the essential role of neuroplasticity in brain development, and to draw attention to the complex relationship between different levels of the developing nervous system that are subjected to plasticity in health and disease. Another goal of this review is to explore the relationship between plasticity responses of the developing brain and how they are influenced by critical and sensitive periods of brain development. Finally, we aim to motivate researchers in the pediatric neuromodulation field to build on the current knowledge of normal and abnormal neuroplasticity, especially synaptic plasticity, and their dependence on "critical or sensitive periods" of neural development to inform the design, timing and sequencing of neuromodulatory interventions in order to enhance and optimize their translational applications in childhood disorders of the brain. METHODS literature review. RESULTS We discuss in details five patterns of neuroplasticity expressed by the developing brain: 1) developmental plasticity which is further classified into normal and impaired developmental plasticity as seen in syndromic autism spectrum disorders, 2) adaptive (experience-dependent) plasticity following intense motor skill training, 3) reactive plasticity to pre and post natal CNS injury or sensory deprivation, 4) excessive plasticity (loss of homeostatic regulation) as seen in dystonia and refractory epilepsy, 6) and finally, plasticity as the brain's "Achilles tendon" which induces brain vulnerability under certain conditions such as hypoxic ischemic encephalopathy and epileptic encephalopathy syndromes. We then explore the unique feature of "time-sensitive heightened plasticity responses" in the developing brain in the in the context of neuromodulation. CONCLUSION The different patterns of neuroplasticity and the unique feature of heightened plasticity during critical and sensitive periods are important concepts for researchers and clinicians in the field of pediatric neurology and neurodevelopmental disabilities. These concepts need to be examined systematically in the context of pediatric neuromodulation. We propose that critical and sensitive periods of brain development in health and disease can create "windows of opportunity" for neuromodulatory interventions that are not commonly seen in adult brain and probably augment plasticity responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Yousif Ismail
- Department of neurology and developmental medicine, The Kennedy Krieger Institute, Johns Hopkins Medical Institutions, MD, USA; Department of pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al- Ain, UAE.
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| | - Michael V Johnston
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| |
Collapse
|
184
|
Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism. Neuron 2016; 92:1204-1212. [PMID: 27916456 DOI: 10.1016/j.neuron.2016.10.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023]
Abstract
While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits.
Collapse
|
185
|
mTOR and MAPK: from localized translation control to epilepsy. BMC Neurosci 2016; 17:73. [PMID: 27855659 PMCID: PMC5114760 DOI: 10.1186/s12868-016-0308-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 01/03/2023] Open
Abstract
Background Epilepsy is one of the most common neurological diseases characterized by excessive hyperexcitability of neurons. Molecular mechanisms of epilepsy are diverse and not really understood. All in common is the misregulation of proteins that determine excitability such as potassium and sodium channels as well as GABA receptors; which are all known as biomarkers for epilepsy. Two recently identified key pathways involve the kinases mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinases (MAPK). Interestingly, mRNAs coding for those biomarkers are found to be localized at or near synapses indicating a local misregulation of synthesis and activity. Results Research in the last decade indicates that RNA-binding proteins (RBPs) responsible for mRNA localization, stability and translation mediate local expression control. Among others, they are affected by mTOR and MAPK to guide expression of epileptic factors. These results suggest that mTOR/MAPK act on RBPs to regulate the fate of mRNAs, indicating a misregulation of protein expression at synapses in epilepsy. Conclusion We propose that mTOR and MAPK regulate RBPs, thereby guiding the local expression of their target-mRNAs encoding for markers of epilepsy. Thus, misregulated mTOR/MAPK-RBP interplay may result in excessive local synthesis of ion channels and receptors thereby leading to hyperexcitability. Continuous stimulation of synapses further activates mTOR/MAPK pathway reinforcing their effect on RBP-mediated expression control establishing the basis for epilepsy. Here, we highlight findings showing the tight interplay between mTOR as well as MAPK with RBPs to control expression for epileptic biomarkers.
Collapse
|
186
|
Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun 2016; 7:13340. [PMID: 27827368 PMCID: PMC5105197 DOI: 10.1038/ncomms13340] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023] Open
Abstract
Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear. Here, we show that Syngap1 haploinsufficiency significantly reduces the formation of perisomatic innervations by parvalbumin-positive basket cells, a major population of GABAergic neurons, in a cell-autonomous manner. We further show that Syngap1 haploinsufficiency in GABAergic cells derived from the medial ganglionic eminence impairs their connectivity, reduces inhibitory synaptic activity and cortical gamma oscillation power, and causes cognitive deficits. Our results indicate that Syngap1 plays a critical role in GABAergic circuit function and further suggest that Syngap1 haploinsufficiency in GABAergic circuits may contribute to cognitive deficits.
Collapse
|
187
|
Duan H, Li X, Wang C, Hao P, Song W, Li M, Zhao W, Gao Y, Yang Z. Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Acta Biomater 2016; 45:182-195. [PMID: 27562609 DOI: 10.1016/j.actbio.2016.08.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
The traumatic brain injury (TBI) usually causes brain tissue defects, including neuronal death or loss, which ultimately results in dysfunction in some degree. The cell replacement therapy is now one of the most promising methods for such injury. There are currently various methods to induce the differentiation of stem cells into neurons, but all extremely complex, slow and unstable. Here we report that the sodium hyaluronate collagen scaffold loaded with bFGF (bFGF-controlled releasing system, bFGF-CRS) can induce neural stem cells (NSCs) to differentiate into multi-type and mature functional neurons at a high percentage of 82±1.528% in two weeks. The quantitative real-time (QRT) PCR results reveal that a long-term activation of bFGF receptors could up-regulate ERK/MAPK signal pathways, thus facilitating the formation of presynaptic and postsynaptic structure among the induced neuronal cells (iN cells). The functional synaptic connections established among iN cells were detected by the planar multielectrode dish system. When jointly transplanting the bFGF-CRS and NSCs into the CA1 zone of the rat TBI area, the results suggested that bFGF-CRS provided an optimal microenvironment, which promoted survival, neuronal differentiation of transplanted NSCs and functional synapse formation not only among iN cells but also between iN cells and the host brain tissue in TBI rats, consequently leading to the cognitive function recovery of TBI rats. These findings in vitro and in vivo may lay a foundation for the application of bFGF-CRS and shed light on the delivery of exogenous cells or nutrients to the CNS injury or disease area. STATEMENT OF SIGNIFICANCE A sodium hyaluronate collagen scaffold was specifically functionalized with nutrient-bFGF which can induce the differentiation of neural stem cells (NSCs) into multi-type and mature functional neurons at a high percentage in two week. When jointly transplanting the bFGF-CRS and NSCs into the CA1 zone of the traumatic brain injured area of adult rats, the bFGF-CRS could provide an optimal microenvironment, which promoted survival, migration and neuronal differentiation of transplanted NSCs and functional synapse formation among iN cells, as well as between iN cells and host brain tissue in TBI rats, consequently leading to the cognitive function recovery of TBI rats.
Collapse
Affiliation(s)
- Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China
| | - Cong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China
| | - Wei Song
- School of Rehabilitation Medicine, Captial Medical University, Beijing 100068, China; China Rehabilitation Research Center, Beijing 100068, China
| | - Manli Li
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Captial Medical University, Beijing 100069, China.
| |
Collapse
|
188
|
Cao Z, Xu J, Hulsizer S, Cui Y, Dong Y, Pessah IN. Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures. Neurotoxicology 2016; 58:11-22. [PMID: 27984050 DOI: 10.1016/j.neuro.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
The spatial and temporal patterns of spontaneous synchronous Ca2+ oscillations (SCOs) regulate physiological pathways that influence neuronal development, excitability, and health. Hippocampal neuronal cultures (HN) and neuron/glia co-cultures (HNG) produced from neonatal mice were loaded with Fluo-4/AM and SCOs recorded in real-time using a Fluorescence Imaging Plate Reader at different developmental stages in vitro. HNG showed an earlier onset of SCOs, with low amplitude and low frequency SCOs at 4days in vitro (DIV), whereas HN were quiescent at this point. SCO amplitude peaked at 9 DIV for both cultures. SCO network frequency peaked at 12 DIV in HN, whereas in HNG the frequency peaked at 6 DIV. SCO patterns were associated with the temporal development of neuronal networks and their ratio of glutamatergic to GABAergic markers of excitatory/inhibitory balance. HN and HNG exhibited differential responses to the convulsant tetramethylenedisulfotetramine (TETS) and were highly dependent on DIV. In HN, TETS triggered an acute rise of intracellular Ca2+ (Phase I response) only in 14 DIV and a sustained decrease of SCO frequency with increased amplitude (Phase II response) at all developmental stages. In HNG, TETS decreased the SCO frequency and increased the amplitude at 6 and 14 but not 9 DIV. There was no acute Ca2+ rise (Phase I response) in any age of HNG tested with TETS. These data demonstrated the importance of glia and developmental stage in modulating neuronal responses to TETS. Our results illustrate the applicability of the model for investigating how caged convulsants elicit abnormal network activity during the development of HN and HNG cultures in vitro.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| | - Jian Xu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yanjun Cui
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| |
Collapse
|
189
|
Harrington AJ, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G, Raduazzo J, Guo Y, Loerwald K, Konopka G, Huber KM, Cowan CW. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. eLife 2016; 5. [PMID: 27779093 PMCID: PMC5094851 DOI: 10.7554/elife.20059] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) – a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice. DOI:http://dx.doi.org/10.7554/eLife.20059.001 Abnormal development of the brain contributes to intellectual disability, as well as to a number of psychiatric disorders, including schizophrenia and autism. As the brain develops, neurons establish connections with one another called synapses, which are either excitatory or inhibitory. At excitatory synapses, an electrical signal in the first cell increases the likelihood that the second cell will also produce an electrical signal. At inhibitory synapses, electrical activity in the first cell reduces the chances of the second cell producing an electrical signal. An imbalance between excitatory and inhibitory activity is one of the factors thought to give rise to neurodevelopmental disorders. Many individuals with schizophrenia, autism or intellectual disability possess mutations in, or near, a gene called MEF2C. This gene, which is active in both excitatory and inhibitory neurons, encodes a protein that regulates the activity of many other genes during brain development. Harrington, Raissi et al. therefore hypothesized that alterations in MEF2C might predispose individuals to neurodevelopmental disorders by disrupting the balance of excitatory and inhibitory synapses in the developing brain. To test this idea, Harrington, Raissi et al. generated mice that lack the Mef2c gene in a large proportion of their neurons throughout development. As predicted, the animals showed an imbalance of excitatory and inhibitory synapses in the brain’s outer layer, the cortex. They also displayed changes in behavior like those seen in autism. These included a loss of interest in social interaction and a reduction in vocalizations, suggesting impaired communication. Other behavioral changes included hyperactivity, repetitive movements and severe learning impairments: all features commonly observed in human neurodevelopmental disorders. The next challenge is to understand when, where and how MEF2C acts in the cortex to shape the balance of excitatory and inhibitory connections. Once this is known, further studies can test whether disrupting these processes leads directly to behaviors characteristic of autism, schizophrenia and intellectual disability. This may lead to the development of new drugs that can reverse or improve the symptoms of these conditions in affected individuals. DOI:http://dx.doi.org/10.7554/eLife.20059.002
Collapse
Affiliation(s)
- Adam J Harrington
- Department of Neurosciences, Medical University of South Carolina, Charleston, United States.,Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Aram Raissi
- Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Kacey Rajkovich
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, Belmont, United States.,Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Gemma Molinaro
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan Raduazzo
- Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Yuhong Guo
- Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Kris Loerwald
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Genevieve Konopka
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly M Huber
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Christopher W Cowan
- Department of Neurosciences, Medical University of South Carolina, Charleston, United States.,Department of Psychiatry, Harvard Medical School, Belmont, United States
| |
Collapse
|
190
|
Constantin L. The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis. Mol Neurobiol 2016; 54:6944-6959. [PMID: 27774573 DOI: 10.1007/s12035-016-0220-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.
Collapse
Affiliation(s)
- Lena Constantin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
191
|
Bart Martens M, Frega M, Classen J, Epping L, Bijvank E, Benevento M, van Bokhoven H, Tiesinga P, Schubert D, Nadif Kasri N. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Sci Rep 2016; 6:35756. [PMID: 27767173 PMCID: PMC5073331 DOI: 10.1038/srep35756] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome.
Collapse
Affiliation(s)
- Marijn Bart Martens
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Monica Frega
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Jessica Classen
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Lisa Epping
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Elske Bijvank
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Marco Benevento
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Dirk Schubert
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
192
|
Huang WH, Guenthner CJ, Xu J, Nguyen T, Schwarz LA, Wilkinson AW, Gozani O, Chang HY, Shamloo M, Luo L. Molecular and Neural Functions of Rai1, the Causal Gene for Smith-Magenis Syndrome. Neuron 2016; 92:392-406. [PMID: 27693255 DOI: 10.1016/j.neuron.2016.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/13/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Abstract
Haploinsufficiency of Retinoic Acid Induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), which is associated with diverse neurodevelopmental and behavioral symptoms as well as obesity. RAI1 encodes a nuclear protein but little is known about its molecular function or the cell types responsible for SMS symptoms. Using genetically engineered mice, we found that Rai1 preferentially occupies DNA regions near active promoters and promotes the expression of a group of genes involved in circuit assembly and neuronal communication. Behavioral analyses demonstrated that pan-neural loss of Rai1 causes deficits in motor function, learning, and food intake. These SMS-like phenotypes are produced by loss of Rai1 function in distinct neuronal types: Rai1 loss in inhibitory neurons or subcortical glutamatergic neurons causes learning deficits, while Rai1 loss in Sim1+ or SF1+ cells causes obesity. By integrating molecular and organismal analyses, our study suggests potential therapeutic avenues for a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Wei-Hsiang Huang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Jin Xu
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Tiffany Nguyen
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Lindsay A Schwarz
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Mehrdad Shamloo
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
193
|
Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2279-91. [DOI: 10.1016/j.ajpath.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
|
194
|
Wu HF, Chen PS, Chen YJ, Lee CW, Chen IT, Lin HC. Alleviation of N-Methyl-D-Aspartate Receptor-Dependent Long-Term Depression via Regulation of the Glycogen Synthase Kinase-3β Pathway in the Amygdala of a Valproic Acid-Induced Animal Model of Autism. Mol Neurobiol 2016; 54:5264-5276. [PMID: 27578017 DOI: 10.1007/s12035-016-0074-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022]
Abstract
The amygdala plays crucial roles in socio-emotional behavior and cognition, both of which are abnormal in autism spectrum disorder (ASD). Valproic acid (VPA)-exposed rat offspring have demonstrated ASD phenotypes and amygdala excitatory/inhibitory imbalance. However, the role of glutamatergic synapses in this imbalance remains unclear. In this study, we used a VPA-induced ASD-like model to assess glutamatergic synapse-dependent long-term depression (LTD) and depotentiation (DPT) in the amygdala. We first confirmed that the VPA-exposed offspring exhibited sociability deficits, anxiety, depression-like behavior, and abnormal nociception thresholds. Then, electrophysiological examination showed a significantly decreased paired-pulse ratio in the amygdala. In addition, both NMDA-dependent LTD and DPT were absent from the amygdala. Furthermore, we found that the levels of glycogen synthase kinase3β (GSK-3β) phosphorylation and β-catenin were significantly higher in the amygdala of the experimental animals than in the controls. Local infusion of phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin into the amygdala reversed the increased phosphorylation level and impaired social behavior. Taken together, the results suggested that NMDA receptor-related synaptic plasticity is dysfunctional in VPA-exposed offspring. In addition, GSK-3β in the amygdala is critical for synaptic plasticity at the glutamatergic synapses and is related to social behavior. Its role in the underlying mechanism of ASD merits further investigation.
Collapse
Affiliation(s)
- Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - I-Tuan Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
195
|
Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation. eNeuro 2016; 3:eN-NWR-0074-16. [PMID: 27595133 PMCID: PMC5002983 DOI: 10.1523/eneuro.0074-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex.
Collapse
|
196
|
Hilinski WC, Bostrom JR, England SJ, Juárez-Morales JL, de Jager S, Armant O, Legradi J, Strähle U, Link BA, Lewis KE. Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons. Neural Dev 2016; 11:16. [PMID: 27553035 PMCID: PMC4995821 DOI: 10.1186/s13064-016-0070-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/08/2016] [Indexed: 01/27/2023] Open
Abstract
Background Alterations in neurotransmitter phenotypes of specific neurons can cause imbalances in excitation and inhibition in the central nervous system (CNS), leading to diseases. Therefore, the correct specification and maintenance of neurotransmitter phenotypes is vital. As with other neuronal properties, neurotransmitter phenotypes are often specified and maintained by particular transcription factors. However, the specific molecular mechanisms and transcription factors that regulate neurotransmitter phenotypes remain largely unknown. Methods In this paper we use single mutant, double mutant and transgenic zebrafish embryos to elucidate the functions of Lmx1ba and Lmx1bb in the regulation of spinal cord interneuron neurotransmitter phenotypes. Results We demonstrate that lmx1ba and lmx1bb are both expressed in zebrafish spinal cord and that lmx1bb is expressed by both V0v cells and dI5 cells. Our functional analyses demonstrate that these transcription factors are not required for neurotransmitter fate specification at early stages of development, but that in embryos with at least two lmx1ba and/or lmx1bb mutant alleles there is a reduced number of excitatory (glutamatergic) spinal interneurons at later stages of development. In contrast, there is no change in the numbers of V0v or dI5 cells. These data suggest that lmx1b-expressing spinal neurons still form normally, but at least a subset of them lose, or do not form, their normal excitatory fates. As the reduction in glutamatergic cells is only seen at later stages of development, Lmx1b is probably required either for the maintenance of glutamatergic fates or to specify glutamatergic phenotypes of a subset of later forming neurons. Using double labeling experiments, we also show that at least some of the cells that lose their normal glutamatergic phenotype are V0v cells. Finally, we also establish that Evx1 and Evx2, two transcription factors that are required for V0v cells to acquire their excitatory neurotransmitter phenotype, are also required for lmx1ba and lmx1bb expression in these cells, suggesting that Lmx1ba and Lmx1bb act downstream of Evx1 and Evx2 in V0v cells. Conclusions Lmx1ba and Lmx1bb function at least partially redundantly in the spinal cord and three functional lmx1b alleles are required in zebrafish for correct numbers of excitatory spinal interneurons at later developmental stages. Taken together, our data significantly enhance our understanding of how spinal cord neurotransmitter fates are regulated.
Collapse
Affiliation(s)
- William C Hilinski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY, 13210, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Samantha J England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sarah de Jager
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Jessica Legradi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
197
|
McSweeney KM, Gussow AB, Bradrick SS, Dugger SA, Gelfman S, Wang Q, Petrovski S, Frankel WN, Boland MJ, Goldstein DB. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Res 2016; 26:1411-1416. [PMID: 27516621 PMCID: PMC5052052 DOI: 10.1101/gr.199828.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 08/08/2016] [Indexed: 11/25/2022]
Abstract
Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated.
Collapse
Affiliation(s)
- K Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA
| | - Ayal B Gussow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Shelton S Bradrick
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Sarah A Dugger
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Victoria 3052, Australia
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
198
|
Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R, Kasari C, Wu JY, Sahin M, Nelson CA. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology 2016; 87:766-72. [PMID: 27440144 DOI: 10.1212/wnl.0000000000003002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/17/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the extent to which deficits associated with autism spectrum disorder (ASD) in toddlers with tuberous sclerosis complex (TSC) overlap with those in toddlers with nonsyndromic ASD (nsASD) and to examine cognitive function and epilepsy severity in toddlers with TSC and comorbid ASD. This is the endpoint analysis from a longitudinal investigation of ASD risk factors in children with TSC. METHODS Measures included the Autism Diagnostic Observation Schedule (ADOS), the Mullen Scales of Early Learning, and clinical epilepsy variables. A repeated-measures analysis of variance was performed with between-subjects factor of group (typically developing, TSC/no ASD, TSC/ASD, nsASD) and within-subjects factors of individual ADOS item scores in the social communication and repetitive behavior/restricted interest domains. Within the TSC group, comparisons of epilepsy characteristics and cognitive domains were performed using independent-samples t tests. RESULTS Children with TSC/ASD demonstrated a profile of social communication impairment that had complete convergence with nsASD. Measured social communication impairments included gestures, pointing, eye contact, responsive social smile, and shared enjoyment. This convergence was observed despite the high comorbidity between ASD and cognitive impairment in TSC. CONCLUSIONS This study supports the clinical diagnosis of ASD in young children with TSC and demonstrates remarkable convergence of autism symptoms between TSC/ASD and nsASD. Our results strongly suggest the need for early intervention in toddlers with TSC, with treatment strategies targeting social communication function as well as broader developmental domains, before the onset of autism symptoms.
Collapse
Affiliation(s)
- Shafali S Jeste
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA.
| | - Kandice J Varcin
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Gerhard S Hellemann
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Amanda C Gulsrud
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Rujuta Bhatt
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Connie Kasari
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Joyce Y Wu
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Mustafa Sahin
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| | - Charles A Nelson
- From the UCLA Semel Institute of Neuroscience and Human Behavior (S.S.J., G.S.H., A.C.G., R.B., C.K.) and Division of Pediatric Neurology, Mattel Children's Hospital UCLA (R.B., J.Y.W.), David Geffen School of Medicine, Los Angeles, CA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine (K.J.V., C.A.N.), and F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology (M.S.), Boston Children's Hospital/Harvard Medical School; and Harvard Graduate School of Education (C.A.N.), Harvard University, Cambridge, MA
| |
Collapse
|
199
|
Sahin M, Henske EP, Manning BD, Ess KC, Bissler JJ, Klann E, Kwiatkowski DJ, Roberds SL, Silva AJ, Hillaire-Clarke CS, Young LR, Zervas M, Mamounas LA. Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatr Neurol 2016; 60:1-12. [PMID: 27267556 PMCID: PMC4921275 DOI: 10.1016/j.pediatrneurol.2016.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 11/17/2022]
Abstract
On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis (http://www.ninds.nih.gov/about_ninds/plans/tscler_research_plan.htm). In addition to the National Institute of Neurological Disorders and Stroke and Tuberous Sclerosis Alliance, participants in the strategic planning effort and workshop included representatives from six other Institutes of the National Institutes of Health, the Department of Defense Tuberous Sclerosis Complex Research Program, and a broad cross-section of basic scientists and clinicians with expertise in tuberous sclerosis complex along with representatives from the pharmaceutical industry. Here we summarize the outcomes from the extensive premeeting deliberations and final workshop recommendations, including (1) progress in the field since publication of the initial 2003 research plan for tuberous sclerosis complex, (2) the key gaps, needs, and challenges that hinder progress in tuberous sclerosis complex research, and (3) a new set of research priorities along with specific recommendations for addressing the major challenges in each priority area. The new research plan is organized around both short-term and long-term goals with the expectation that progress toward specific objectives can be achieved within a five to ten year time frame.
Collapse
Affiliation(s)
- Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kevin C Ess
- Vanderbilt Kennedy Center for Research on Human Development, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - John J Bissler
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital and St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California at Los Angeles, Los Angeles, California
| | - Coryse St Hillaire-Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Lisa R Young
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee; Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mark Zervas
- Department of Neuroscience, Amgen Inc, Cambridge, Massachusetts
| | - Laura A Mamounas
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
200
|
Benevento M, Iacono G, Selten M, Ba W, Oudakker A, Frega M, Keller J, Mancini R, Lewerissa E, Kleefstra T, Stunnenberg HG, Zhou H, van Bokhoven H, Nadif Kasri N. Histone Methylation by the Kleefstra Syndrome Protein EHMT1 Mediates Homeostatic Synaptic Scaling. Neuron 2016; 91:341-55. [PMID: 27373831 DOI: 10.1016/j.neuron.2016.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
Abstract
Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra-syndrome-associated protein EHMT1 plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vitro and in vivo. Our findings suggest that H3K9me2-mediated changes in chromatin structure govern a repressive program that controls synaptic scaling.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Giovanni Iacono
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Martijn Selten
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Wei Ba
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Astrid Oudakker
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Monica Frega
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Jason Keller
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Roberta Mancini
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Elly Lewerissa
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Henk G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|