151
|
Chesik D, De Keyser J. Progesterone and dexamethasone differentially regulate the IGF-system in glial cells. Neurosci Lett 2009; 468:178-82. [PMID: 19853640 DOI: 10.1016/j.neulet.2009.10.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/01/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
IGF-1 is an important factor for myelin synthesis and hence possesses therapeutic potential in treating demyelinating disease such as multiple sclerosis. However, IGF-1 poorly crosses the blood-brain barrier. In this study, we investigated the effects of the sex steroid progesterone and the glucocorticoid dexamethasone on regulation of the IGF-system in glial cells. By means of quantitative PCR analysis, we demonstrate that progesterone upregulates IGF-1, the type 1 IGF receptor and IGFBP-2 in primary rat astrocytes and both IGF-1 and IGFBP-6 in OLN-93 oligodendroglial progenitor cells. In contrast, dexamethasone showed a negative effect on expression of IGF-1, the type 1 IGF receptor and the respective IGF binding proteins in both cell types. In oligodendrocytes, the differentiation marker CNPase was positively regulated by progesterone and negatively regulated by dexamethasone. Further, oligodendroglial cell migration was enhanced approximately 4-fold by progesterone. This study implicates progesterone as a positive regulator of IGF-system in glial cells and demonstrates a further biological function of progesterone in oligodendrocyte biology, namely stimulation of progenitor cell migration. Dexamethasone, on the other hand, is a negative regulator of the IGF-system in glial cells.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | |
Collapse
|
152
|
MacNevin CJ, Atif F, Sayeed I, Stein DG, Liotta DC. Development and Screening of Water-Soluble Analogues of Progesterone and Allopregnanolone in Models of Brain Injury. J Med Chem 2009; 52:6012-23. [DOI: 10.1021/jm900712n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. MacNevin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Emerson Building Room 403, Atlanta, Georgia 30322
| | - Fahim Atif
- Department of Emergency Medicine Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Atlanta, Georgia 30322
| | - Iqbal Sayeed
- Department of Emergency Medicine Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Atlanta, Georgia 30322
| | - Donald G. Stein
- Department of Emergency Medicine Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Atlanta, Georgia 30322
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Emerson Building Room 403, Atlanta, Georgia 30322
| |
Collapse
|
153
|
Jahagirdar V, Wagner CK. Ontogeny of progesterone receptor expression in the subplate of fetal and neonatal rat cortex. Cereb Cortex 2009; 20:1046-52. [PMID: 19684244 DOI: 10.1093/cercor/bhp165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The progesterone receptor (PR) is transiently expressed in the rat cortex during development and its expression is initiated in the developmentally critical layer, the subplate. As subplate neurons pioneer thalamocortical and corticofugal connectivity, the expression of PR in this layer suggests an important function for PR in cortical development. Using immunocytochemistry for PR, the present study determined the precise ontogeny of PR expression in subplate neurons. The number of cells containing PR immunoreactivity (PRir) within the subplate was quantified from embryonic day (E) 17 through postnatal day (P) 14. The subplate was positively identified by the marker calretinin and by BrDU birthdating. The results demonstrate that PRir is undetectable in fetal cortex on E17, but is first observed in the subplate on E18. The number of PRir cells peaks on P2 and then steadily declines, until PRir is once again not detectable in subplate by P14. This developmental window of PR expression within the subplate coincides with establishment of early cortical circuitry and the gradual demise of subplate cells, suggesting that PR may play a critical role in mediating these fundamental developmental processes.
Collapse
Affiliation(s)
- Vaishali Jahagirdar
- Department of Psychology and Center for Neuroscience Research, University at Albany-State University of New York, Albany, NY 12222, USA
| | | |
Collapse
|
154
|
Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys 2009; 55:55-79. [PMID: 19672563 DOI: 10.1007/s12013-009-9059-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/30/2009] [Indexed: 12/18/2022]
Abstract
Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.
Collapse
Affiliation(s)
- Mahin Khatami
- The National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
155
|
Mannella P, Sanchez AM, Giretti MS, Genazzani AR, Simoncini T. Oestrogen and progestins differently prevent glutamate toxicity in cortical neurons depending on prior hormonal exposure via the induction of neural nitric oxide synthase. Steroids 2009; 74:650-6. [PMID: 19463685 DOI: 10.1016/j.steroids.2009.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022]
Abstract
Sex steroids are important for brain function and protection. However, growing evidence suggests that these actions might depend on the timing of exposure to steroids. We have studied the effects of steroid administration on the survival of neural cells and we have partially characterized the possible mechanisms. The effect of a 24h pre-treatment with 17beta-estradiol or 17beta-estradiol plus progesterone or medroxyprogesterone acetate on the toxic action of l-glutamate was used to test the experimental hypothesis. Pre-exposure to either steroid combinations turned in enhanced cell survival. Instead, addition of sex steroids together with l-glutamate, in the absence of a pre-exposure had no protective effect. Pre-treatment with the steroid combinations resulted in increased neural NOS expression and activity and blockade of NOS abolished the cytoprotective effects of steroids. These results suggest that NOS induction might be involved in sex steroid-induced neuroprotection. Furthermore, these data supports the hypothesis that prolonged and continued exposure to oestrogen and progesterone, leading to changes in gene expression, is necessary to obtain neuroprotection induced by sex steroids.
Collapse
Affiliation(s)
- Paolo Mannella
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Reproductive Medicine and Child Development, Division of Obstetrics and Gynecology, University of Pisa, Pisa, 56100, Italy.
| | | | | | | | | |
Collapse
|
156
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Labombarda F, González SL, Lima A, Roig P, Guennoun R, Schumacher M, de Nicola AF. Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 2009; 57:884-97. [PMID: 19053058 DOI: 10.1002/glia.20814] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progesterone is emerging as a myelinizing factor for central nervous system injury. Successful remyelination requires proliferation and differentiation of oligodendrocyte precursor cells (OPC) into myelinating oligodendrocytes, but this process is incomplete following injury. To study progesterone actions on remyelination, we administered progesterone (16 mg/kg/day) to rats with complete spinal cord injury. Rats were euthanized 3 or 21 days after steroid treatment. Short progesterone treatment (a) increased the number of OPC without effect on the injury-induced reduction of mature oligodendrocytes, (b) increased mRNA and protein expression for the myelin basic protein (MBP) without effects on proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG), and (c) increased the mRNA for Olig2 and Nkx2.2 transcription factors involved in specification and differentiation of the oligodendrocyte lineage. Furthermore, long progesterone treatment (a) reduced OPC with a concomitant increase of oligodendrocytes; (b) promoted differentiation of cells that incorporated bromodeoxyuridine, early after injury, into mature oligodendrocytes; (c) increased mRNA and protein expression of PLP without effects on MBP or MOG; and (d) increased mRNA for the Olig1 transcription factor involved in myelin repair. These results suggest that early progesterone treatment enhanced the density of OPC and induced their differentiation into mature oligodendrocytes by increasing the expression of Olig2 and Nkx2.2. Twenty-one days after injury, progesterone favors remyelination by increasing Olig1 (involved in repair of demyelinated lesions), PLP expression, and enhancing oligodendrocytes maturation. Thus, progesterone effects on oligodendrogenesis and myelin proteins may constitute fundamental steps for repairing traumatic injury inflicted to the spinal cord.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
158
|
Yawno T, Hirst JJ, Castillo-Melendez M, Walker DW. Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience 2009; 163:838-47. [PMID: 19591903 DOI: 10.1016/j.neuroscience.2009.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/01/2009] [Accepted: 07/05/2009] [Indexed: 10/20/2022]
Abstract
The neurosteroid allopregnanolone (AP) is a GABAergic agonist that suppresses central nervous system (CNS) activity in the adult brain, and by reducing excitotoxicity is considered to be neuroprotective. A role for neurosteroids in the developing brain, particularly in late gestation, is still debated. The aim of this study was to investigate effects on proliferation and cell death in the brain of late gestation fetal sheep after inhibition of AP synthesis using finasteride, a 5alpha-reductase type 2 (5alpha-R2) inhibitor. Catheters were implanted in fetal sheep at approximately 125 days of gestation. At 3-4 days postsurgery, fetuses received infusions of either finasteride (20 mg/kg/h; n=5), the AP analogue alfaxalone (5 mg/kg/h; n=5), or finasteride and alfaxalone together (n=5). Brains were obtained at 24 h after infusion to determine cell death (apoptotic or necrotic) and cell proliferation in the hippocampus and cerebellum, areas known to be susceptible to excitotoxic damage. Finasteride treatment significantly increased apoptosis (activated caspase-3 expression) in hippocampal CA3 and CA1, and cerebellar molecular and granular layers, an effect abolished by co-infusion of alfaxalone and finasteride. Double-label immunohistochemistry showed that both neurons and astrocytes were caspase-3 positive. Finasteride treatment also increased the number of dead (pyknotic) cells in the hippocampus and cerebellum (Purkinje cells), but not when finasteride+alfaxalone was infused. Cell proliferation (Ki-67-immunoreactivity) increased after finasteride treatment; double-labeling showed the majority of Ki-67-positive cells were astrocytes. Thus, steroids such as AP appear to influence the constitutive rate of apoptosis and proliferation in the hippocampus and cerebellum of the fetal brain, and suggest an important role for neurosteroids in the development of the brain.
Collapse
Affiliation(s)
- T Yawno
- Department of Physiology, Monash University, Building 13F Wellington Road, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
159
|
Wright DW, Hoffman SW, Virmani S, Stein DG. Effects of medroxyprogesterone acetate on cerebral oedema and spatial learning performance after traumatic brain injury in rats. Brain Inj 2009; 22:107-13. [DOI: 10.1080/02699050701867399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
160
|
Bethea CL, Reddy AP, Tokuyama Y, Henderson JA, Lima FB. Protective actions of ovarian hormones in the serotonin system of macaques. Front Neuroendocrinol 2009; 30:212-38. [PMID: 19394356 PMCID: PMC2704571 DOI: 10.1016/j.yfrne.2009.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/19/2022]
Abstract
The serotonin neurons of the dorsal and medial raphe nuclei project to all areas of the forebrain and play a key role in mood disorders. Hence, any loss or degeneration of serotonin neurons could have profound ramifications. In a monkey model of surgical menopause with hormone replacement and no neural injury, E and P decreased gene expression in the dorsal raphe nucleus of c-jun n-terminal kinase (JNK1) and kynurenine mono-oxygenase (KMO) that promote cell death. In concert, E and P increased gene expression of superoxide dismutase (SOD1), VEGF, and caspase inhibitory proteins that promote cellular resilience in the dorsal raphe nucleus. Subsequently, we showed that ovarian steroids inhibit pivotal genes in the caspase-dependent and caspase-independent pathways in laser-captured serotonin neurons including apoptosis activating factor (Apaf1), apoptosis-inducing factor (AIF) and second mitochondria-derived activator of caspases (Smac/Diablo). SOD1 was also increased specifically in laser-captured serotonin neurons. Examination of protein expression in the dorsal raphe block revealed that JNK1, phosphoJNK1, AIF and the translocation of AIF from the mitochondria to the nucleus decreased with hormone therapy, whereas pivotal execution proteins in the caspase pathway were unchanged. In addition, cyclins A, B, D1 and E were inhibited, which would prevent re-entry into the cell cycle and catastrophic death. These data indicated that in the absence of gross injury to the midbrain, ovarian steroids inhibit the caspase-independent pathway and cell cycle initiation in serotonin neurons. To determine if these molecular actions prevented cellular vulnerability or death, we examined DNA fragmentation in the dorsal raphe nucleus with the TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Ovarian steroids significantly decreased the number of TUNEL-positive cells in the dorsal raphe. Moreover, TUNEL staining prominently colocalized with TPH immunostaining, a marker for serotonin neurons. In summary, ovarian steroids increase the cellular resilience of serotonin neurons and may prevent serotonin neuron death in women facing decades of life after menopause. The survival of serotonin neurons would support cognition and mental health.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Divisions of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | |
Collapse
|
161
|
Saldanha CJ, Duncan KA, Walters BJ. Neuroprotective actions of brain aromatase. Front Neuroendocrinol 2009; 30:106-18. [PMID: 19450619 PMCID: PMC2700852 DOI: 10.1016/j.yfrne.2009.04.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/02/2009] [Accepted: 04/14/2009] [Indexed: 12/16/2022]
Abstract
The steroidal regulation of vertebrate neuroanatomy and neurophysiology includes a seemingly unending list of brain areas, cellular structures and behaviors modulated by these hormones. Estrogens, in particular have emerged as potent neuromodulators, exerting a range of effects including neuroprotection and perhaps neural repair. In songbirds and mammals, the brain itself appears to be the site of injury-induced estrogen synthesis via the rapid transcription and translation of aromatase (estrogen synthase) in astroglia. This induction seems to occur regardless of the nature and location of primary brain damage. The induced expression of aromatase apparently elevates local estrogen levels enough to interfere with apoptotic pathways, thereby decreasing secondary degeneration and ultimately lessening the extent of damage. There is even evidence suggesting that aromatization may affect injury-induced cytogenesis. Thus, aromatization in the brain appears to confer neuroprotection by an array of mechanisms that involve the deceleration and acceleration of degeneration and repair, respectively. We are only beginning to understand the factors responsible for the injury-induced transcription of aromatase in astroglia. In contrast, much of the manner in which local and circulating estrogens may achieve their neuroprotective effects has been elucidated. However, gaps in our knowledge include issues about the cell-specific regulation of aromatase expression, steroidal influences of aromatization distinct from estrogen formation, and questions about the role of constitutive aromatase in neuroprotection. Here we describe the considerable consensus and some interesting differences in knowledge gained from studies conducted on diverse animal models, experimental paradigms and preparations towards understanding the neuroprotective actions of brain aromatase.
Collapse
Affiliation(s)
- Colin J Saldanha
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States.
| | | | | |
Collapse
|
162
|
Cekic M, Sayeed I, Stein DG. Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for nervous system injury and disease. Front Neuroendocrinol 2009; 30:158-72. [PMID: 19394357 PMCID: PMC3025702 DOI: 10.1016/j.yfrne.2009.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 12/22/2022]
Abstract
More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D(3) (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment.
Collapse
Affiliation(s)
- Milos Cekic
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
163
|
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110:1-11. [DOI: 10.1111/j.1471-4159.2009.06133.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
164
|
Liu L, Wang J, Zhao L, Nilsen J, McClure K, Wong K, Brinton RD. Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology 2009; 150:3186-96. [PMID: 19359388 PMCID: PMC2703530 DOI: 10.1210/en.2008-1447] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone receptor (PR) expression and regulation of neural progenitor cell (NPC) proliferation was investigated using NPC derived from adult rat brain. RT-PCR revealed that PRA mRNA was not detected in rat NPCs, whereas membrane-associated PRs, PR membrane components (PGRMCs) 1 and 2, mRNA were expressed. Progesterone-induced increase in 5-bromo-2-deoxyuridine incorporation was confirmed by fluorescent-activated cell sorting analysis, which indicated that progesterone promoted rat NPC exit of G(0)/G(1) phase at 5 h, followed by an increase in S-phase at 6 h and M-phase at 8 h, respectively. Microarray analysis of cell-cycle genes, real-time PCR, and Western blot validation revealed that progesterone increased expression of genes that promote mitosis and decreased expression of genes that repress cell proliferation. Progesterone-induced proliferation was not dependent on conversion to metabolites and was antagonized by the ERK(1/2) inhibitor UO126. Progesterone-induced proliferation was isomer and steroid specific. PGRMC1 small interfering RNA treatment, together with computational structural analysis of progesterone and its isomers, indicated that the proliferative effect of progesterone is mediated by PGRMC1/2. Progesterone mediated NPC proliferation and concomitant regulation of mitotic cell cycle genes via a PGRMC/ERK pathway mechanism is a potential novel therapeutic target for promoting neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Lifei Liu
- Program in Neuroscience, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30:173-87. [PMID: 19318112 DOI: 10.1016/j.yfrne.2009.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol 2009; 30:188-200. [PMID: 19393685 DOI: 10.1016/j.yfrne.2009.04.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 12/18/2022]
Abstract
Synthetic and natural estrogens as well as progestins modulate neuronal development and activity. Neurons and glia are endowed with high-affinity steroid receptors. Besides regulating brain physiology, both steroids conciliate neuroprotection against toxicity and neurodegeneration. The majority of data derive from in vitro studies, although more recently, animal models have proven the efficaciousness of steroids as neuroprotective factors. Indications for a safeguarding role also emerge from first clinical trials. Gender-specific prevalence of degenerative disorders might be associated with the loss of hormonal activity or steroid malfunctions. Our studies and evidence from the literature support the view that steroids attenuate neuroinflammation by reducing the pro-inflammatory property of astrocytes. This effect appears variable depending on the brain region and toxic condition. Both hormones can individually mediate protection, but they are more effective in cooperation. A second research line, using an animal model for multiple sclerosis, provides evidence that steroids achieve remyelination after demyelination. The underlying cellular mechanisms involve interactions with astroglia, insulin-like growth factor-1 responses, and the recruitment of oligodendrocytes.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
167
|
Atif F, Sayeed I, Ishrat T, Stein DG. Progesterone with vitamin D affords better neuroprotection against excitotoxicity in cultured cortical neurons than progesterone alone. Mol Med 2009; 15:328-36. [PMID: 19603099 DOI: 10.2119/molmed.2009.00016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 02/01/2023] Open
Abstract
Because the complex heterogeneity of traumatic brain injury (TBI) is believed by many to be a major reason for the failed clinical trials of monotherapies, combining two (or more) drugs with some potentially different mechanisms of action may produce better effects than administering those agents individually. In this study, we investigated whether combinatorial treatment with progesterone (PROG) and 1,25-dihydroxyvitamin D(3) hormone (VDH) would produce better neuroprotection than PROG alone following excitotoxic neuronal injury in vitro. E18 rat primary cortical neurons were pretreated with various concentrations of PROG and VDH separately or in combination for 24 h and then exposed to glutamate (0.5 micromol/L) for the next 24 h. Lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were used to measure cell death. Both PROG and VDH significantly (P < 0.001) reduced neuronal loss when tested independently. Primary cortical cultures treated with VDH exhibited a U-shaped concentration-response curve. PROG at 20 micromol/L and VDH at 100 nmol/L concentrations were the most neuroprotective. When the drugs were combined, the "best" doses of PROG (20 micromol/L) and VDH (100 nmol/L), used individually, did not show substantial efficacy; rather, the lower dose of VDH (20 nmol/L) was most effective when used in combination with PROG (P < 0.01). We also examined the effect of combinatorial treatment on mitogen-activated protein kinase (MAPK) activation as a potential neuroprotective mechanism and observed that PROG and VDH activated MAPK alone and in combination. Interestingly, the best combination dose of PROG and VDH (20 micromol/L and 20 nmol/L, respectively), as observed in cell death assays (LDH and MTT), resulted in increased MAPK activation compared with either the most neuroprotective concentration of individual PROG (20 micromol/L) and VDH (100 nmol/L) or the combination of these individual best doses. Such interactions must be considered in planning individualized combinatorial therapies. In conclusion, the findings of the present study can be taken to suggest that VDH warrants study as a potential partner for combination therapy with PROG.
Collapse
Affiliation(s)
- Fahim Atif
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
168
|
Pistritto G, Papacleovoulou G, Ragone G, Di Cesare S, Papaleo V, Mason JI, Barbaccia ML. Differentiation-dependent progesterone synthesis and metabolism in NT2-N human neurons. Exp Neurol 2009; 217:302-11. [DOI: 10.1016/j.expneurol.2009.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/11/2022]
|
169
|
Abstract
Biologic sex and sex steroids are important factors in clinical and experimental stroke and traumatic brain injury (TBI). Laboratory data strongly show that progesterone treatment after TBI reduces edema, improves outcomes, and restores blood-brain barrier function. Clinical studies to date agree with these data, and there are ongoing human trials for progesterone treatment after TBI. Estrogen has accumulated an impressive reputation as a neuroprotectant when evaluated at physiologically relevant doses in laboratory studies of stroke, but translation to patients remains to be shown. The role of androgens in male stroke or TBI is understudied and important to pursue given the epidemiology of stroke and trauma in men. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. This review evaluates key evidence and highlights the importance of the platform on which brain injury occurs (i.e., genetic sex and hormonal modulators).
Collapse
Affiliation(s)
- Paco S Herson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
170
|
Gibson CL, Coomber B, Rathbone J. Is progesterone a candidate neuroprotective factor for treatment following ischemic stroke? Neuroscientist 2009; 15:324-32. [PMID: 19359672 DOI: 10.1177/1073858409333069] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gender differences in stroke outcome have implicated steroid hormones as potential neuroprotective candidates. However, no clinical trials examining hormone replacement therapy on outcome following ischemic stroke have investigated the effect of progesterone-only treatment. In this review the authors examine the experimental evidence for the neuroprotective potential of progesterone and give an insight into potential mechanisms of action following ischemic stroke. To date, 17 experimental studies have investigated the neuroprotective potential of progesterone for ischemic stroke in terms of ability to both reduce cell loss and increase functional outcome. Of these 17 published studies the majority reported a beneficial effect with three studies reporting a nil effect and only one study reporting a negative effect. However, there are important issues that the authors address in this review in terms of the methodological quality of studies in relation to the STAIR recommendations. In terms of the proposed mechanisms of progesterone neuroprotection we show that progesterone is versatile and acts at multiple targets to facilitate neuronal survival and minimize cell damage and loss. A large amount of experimental evidence indicates that progesterone is a neuroprotective candidate for ischemic stroke; however, to progress to clinical trial a number of key experimental studies remain outstanding.
Collapse
Affiliation(s)
- Claire L Gibson
- School of Psychology, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|
171
|
Porcu P, O'Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, Morrow AL. Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum. Steroids 2009; 74:463-73. [PMID: 19171160 PMCID: PMC2832187 DOI: 10.1016/j.steroids.2008.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/17/2008] [Accepted: 12/29/2008] [Indexed: 11/29/2022]
Abstract
The 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Despite substantial information on the progesterone derivative (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP, allopregnanolone), the physiological significance of the other endogenous GABAergic neuroactive steroids has remained elusive. Here, we describe the validation of a method using gas chromatography-mass spectrometry to simultaneously identify serum levels of the eight 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone. The method shows specificity, sensitivity and enhanced throughput compared to other methods already available for neuroactive steroid quantification. Administration of pregnenolone to rats and progesterone to women produced selective effects on the 3alpha,5alpha- and 3alpha,5beta-reduced neuroactive steroids, indicating differential regulation of their biosynthetic pathways. Pregnenolone administration increased serum levels of 3alpha,5alpha-THP (+1488%, p<0.001), (3alpha,5alpha)-3,21-dihydroxypregnan-20-one (3alpha,5alpha-THDOC, +205%, p<0.01), (3alpha,5alpha)-3-hydroxyandrostan-17-one (3alpha,5alpha-A, +216%, p<0.001), (3alpha,5alpha,17beta)-androstane-3,17-diol (3alpha,5alpha-A-diol, +190%, p<0.01). (3alpha,5beta)-3-hydroxypregnan-20-one (3alpha,5beta-THP) and (3alpha,5beta)-3-hydroxyandrostan-17-one (3alpha,5beta-A) were not altered, while (3alpha,5beta)-3,21-dihydroxypregnan-20-one (3alpha,5beta-THDOC) and (3alpha,5beta,17beta)-androstane-3,17-diol (3alpha,5beta-A-diol) were increased from undetectable levels to 271+/-100 and 2.4+/-0.9 pg+/-SEM, respectively (5/8 rats). Progesterone administration increased serum levels of 3alpha,5alpha-THP (+1806%, p<0.0001), 3alpha,5beta-THP (+575%, p<0.001), 3alpha,5alpha-THDOC (+309%, p<0.001). 3alpha,5beta-THDOC levels were increased by 307%, although this increase was not significant because this steroid was detected only in 3/16 control subjects. Levels of 3alpha,5alpha-A, 3alpha,5beta-A and pregnenolone were not altered. This method can be used to investigate the physiological and pathological role of neuroactive steroids and to develop biomarkers and new therapeutics for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Patrizia Porcu
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
| | - Todd K. O'Buckley
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
| | - Sarah E. Alward
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
| | - Christine E. Marx
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Department of Veterans Affairs Medical Center, Durham, NC, 27705, USA
| | - Lawrence J. Shampine
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Department of Veterans Affairs Medical Center, Durham, NC, 27705, USA
| | - Susan S. Girdler
- Departments of Psychiatry and Psychology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
| | - A. Leslie Morrow
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
| |
Collapse
|
172
|
Sameni HR, Panahi M, Sarkaki A, Saki GH, Makvandi M. The neuroprotective effects of progesterone on experimental diabetic neuropathy in rats. Pak J Biol Sci 2009; 11:1994-2000. [PMID: 19266905 DOI: 10.3923/pjbs.2008.1994.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was conducted to investigate the neuroprotective effects of progesterone (PROG) on electrophysiological and histomorphometrical alternation in STZ-induced diabetic neuropathy starting from 4 weeks after the diabetic induction. Thirty adult male Sprague-Dawley rats were randomly divided into 3 groups (with 10 rats in each), control (nondiabetic), untreated diabetic and diabetic PROG-treated. Diabetes was induced in adult male rats by a single dose injection of streptozotocin (STZ, 55 mg kg(-1), i.p.). In the PROG-treated group, 4 weeks after induce of diabetes; rats were treated with PROG (8 mg kg(-1), i.p., every two days) for 6 weeks. Diabetic rats showed a significant reduction in motor nerve conduction velocity (MNCV), mean myelinated fibers (MFs) diameter, axon diameter and myelin sheath thickness in the sciatic nerve after 6 weeks. In the untreated diabetic group endoneurial edema was observed in sciatic nerve and the numbers of MFs with infolding into the axoplasm, irregularity of fibers, myelin sheath with unclear boundaries and alteration in myelin compaction were also increased. Long-term treatment with PROG increased MNCV significantly and prevented all these abnormalities in treated diabetic rats. Our findings indicated that PROG as a therapeutic approach can protect neurophysiologic and histomorphologic alterations induced by peripheral diabetic neuropathy.
Collapse
Affiliation(s)
- H R Sameni
- Department of Anatomical Sciences, Faculty of Medical Sciences, Ahwaz Jondishapur University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
173
|
Ji BS, He L. Protective effect of CPUX1, a progesterone, on hydrogen peroxide-induced oxidative damage in PC12 cells. Drug Dev Res 2008. [DOI: 10.1002/ddr.20256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
174
|
VanLandingham JW, Cekic M, Cutler SM, Hoffman SW, Washington ER, Johnson SJ, Miller D, Stein DG. Progesterone and its metabolite allopregnanolone differentially regulate hemostatic proteins after traumatic brain injury. J Cereb Blood Flow Metab 2008; 28:1786-94. [PMID: 18628783 DOI: 10.1038/jcbfm.2008.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our laboratory has shown in numerous experiments that the neurosteroids progesterone (PROG) and allopregnanolone (ALLO) improve molecular and functional outcomes after traumatic brain injury (TBI). As coagulopathy is an important contributor to the secondary destruction of nervous tissue, we hypothesized that PROG and ALLO administration may also have a beneficial effect on coagulation protein expression after TBI. Adult male Sprague-Dawley rats were given bilateral contusions of the medial frontal cortex followed by treatments with PROG (16 mg/kg), ALLO (8 mg/kg), or vehicle (22.5% hydroxypropyl-beta-cyclodextrin). Controls received no injury or injections. Progesterone generally maintained procoagulant (thrombin, fibrinogen, and coagulation factor XIII), whereas ALLO increased anticoagulant protein expression (tissue-type plasminogen activator, tPA). In addition, PROG significantly increased the ratio of tPA bound to neuroserpin, a serine protease inhibitor that can reduce the activity of tPA. Our findings suggest that in a model of TBI, where blood loss may exacerbate injury, it may be preferable to treat patients with PROG, whereas it might be more appropriate to use ALLO as a treatment for thrombotic stroke, where a reduction in coagulation would be more beneficial.
Collapse
Affiliation(s)
- Jacob W VanLandingham
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther 2008; 121:14-9. [PMID: 18992768 DOI: 10.1016/j.pharmthera.2008.09.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/26/2022]
Abstract
Hormone signaling is important in a number of disease states, and hormone receptors are effective therapeutic targets. PGRMC1 (progesterone receptor membrane component 1) is a member of a multi-protein complex that binds to progesterone and other steroids, as well as pharmaceutical compounds. In spite of its name, PGRMC1 shares homology with cytochrome b5-related proteins rather than hormone receptors, and heme binding is the sole biochemical activity of PGRMC1. PGRMC1 and its homologues regulate cholesterol synthesis by activating the P450 protein Cyp51/lanosterol demethylase, and the cholesterol synthetic pathway is an important target in cardiovascular disease and in treating infections. PGRMC1 binding partners include multiple P450 proteins, PAIR-BP1, Insig, and an uncharacterized hormone/drug-binding protein. PGRMC1 is induced in a spectrum of cancers, where it promotes cell survival and damage resistance, and PGRMC1 is also expressed in the nervous system and tissues involved in drug metabolism, cholesterol synthesis and hormone synthesis and turnover. One of the appealing features of PGRMC1 and its associated protein complex is its affinity for steroids and drugs. Together with its biological role in promoting tumor survival, PGRMC1 is an attractive target for therapeutic intervention in cancer and related malignancies.
Collapse
Affiliation(s)
- Hannah J Rohe
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, MS-305 UKMC, Lexington, Kentucky 40536, United States
| | | | | | | |
Collapse
|
176
|
de Souza Silva MA, Topic B, Huston JP, Mattern C. Intranasal administration of progesterone increases dopaminergic activity in amygdala and neostriatum of male rats. Neuroscience 2008; 157:196-203. [PMID: 18824215 DOI: 10.1016/j.neuroscience.2008.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/29/2022]
Abstract
We evaluated the effects of intranasal administration of progesterone (PROG) on the activity of dopaminergic neurons in the brain of anesthetized rats by means of microdialysis. Male Wistar rats were implanted with guide cannulae in the basolateral amygdala and neostriatum. Three to 5 days later, they were anesthetized with urethane, and dialysis probes were inserted. After a stabilization period of 2 h, four 30-min samples were collected. Thereafter, the treatment (0.5, 1.0 or 2.0 mg/kg of PROG dissolved in a viscous castor oil mixture, or vehicle) was applied into the nose in a volume of 10 microl (5 microl in each nostril). In other animals, an s.c. injection of PROG (1.0, 2.0 or 4.0 mg/kg) or vehicle was given. Samples of both application ways were collected at 30-min interval for 4 h after the treatment and immediately analyzed with high performance liquid chromatography and electrochemical detection. Intranasal administration of 2 mg/kg of PROG led to an immediate (within 30 min after the treatment) significant increase in the basolateral amygdala dopamine levels. In the neostriatum, the 2 mg/kg dose led to a delayed significant increase in dopamine. S.c. administration of 4 mg/kg of PROG was followed by a delayed significant increase in dopamine, both, in the basolateral amygdala and neostriatum, but smaller in magnitude in comparison to the intranasal treatment. This is the first study to demonstrate dopamine-enhancing effects of PROG, not only in the neostriatum, but also in the basolateral amygdala. Our results indicate that the intranasal route of administration of PROG is a more efficacious way for targeting the brain than the s.c. route.
Collapse
Affiliation(s)
- M A de Souza Silva
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
177
|
Carroll JC, Rosario ER, Pike CJ. Progesterone blocks estrogen neuroprotection from kainate in middle-aged female rats. Neurosci Lett 2008; 445:229-32. [PMID: 18790007 DOI: 10.1016/j.neulet.2008.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/26/2008] [Accepted: 09/04/2008] [Indexed: 01/18/2023]
Abstract
The neuroprotective effects of estrogen in young adult rodents are well established. Less well understood is how estrogen neuroprotection is affected by aging and interactions with progesterone. In this study, we investigated the effects of estrogen and continuous progesterone, both alone and in combination, on hippocampal neuron survival following kainate lesion in 14-month-old female rats entering reproductive senescence. Our results show that ovariectomy-induced hormone depletion did not significantly affect the extent of kainate-induced neuron loss. Treatment of ovariectomized rats with estrogen significantly reduced neuron loss, however this effect was blocked by co-administration of continuous progesterone. Treatment of ovariectomized rats with progesterone alone did not significantly affect kainate toxicity. These results provide new insight into factors that regulate estrogen neuroprotection, which has important implications for hormone therapy in postmenopausal women.
Collapse
Affiliation(s)
- Jenna C Carroll
- Neuroscience Graduate Program, Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
178
|
Schmidt KL, Pradhan DS, Shah AH, Charlier TD, Chin EH, Soma KK. Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen Comp Endocrinol 2008; 157:266-74. [PMID: 18486132 DOI: 10.1016/j.ygcen.2008.03.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 03/14/2008] [Accepted: 03/26/2008] [Indexed: 12/12/2022]
Abstract
Traditionally, the production and regulation of steroid hormones has been viewed as a multi-organ process involving the hypothalamic-pituitary-gonadal (HPG) axis for sex steroids and the hypothalamic-pituitary-adrenal (HPA) axis for glucocorticoids. However, active steroids can also be synthesized locally in target tissues, either from circulating inactive precursors or de novo from cholesterol. Here, we review recent work demonstrating local steroid synthesis, with an emphasis on steroids synthesized in the brain (neurosteroids) and steroids synthesized in the immune system (immunosteroids). Furthermore, recent evidence suggests that other components of the HPG axis (luteinizing hormone and gonadotropin-releasing hormone) and HPA axis (adrenocorticotropic hormone and corticotropin-releasing hormone) are expressed locally in target tissues, potentially providing a mechanism for local regulation of neurosteroid and immunosteroid synthesis. The balance between systemic and local steroid signals depends critically on life history stage, species adaptations, and the costs of systemic signals. During particular life history stages, there can be a shift from systemic to local steroid signals. We propose that the shift to local synthesis and regulation of steroids within target tissues represents a "Balkanization" of the endocrine system, whereby individual tissues and organs may become capable of autonomously synthesizing and modulating local steroid signals, perhaps independently of the HPG and HPA axes.
Collapse
Affiliation(s)
- Kim L Schmidt
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
179
|
Dubois-Dalcq M, Williams A, Stadelmann C, Stankoff B, Zalc B, Lubetzki C. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain 2008; 131:1686-700. [PMID: 18474520 PMCID: PMC2516372 DOI: 10.1093/brain/awn076] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man.
Collapse
Affiliation(s)
- Monique Dubois-Dalcq
- National Institute of Neurological Disorders and Stroke, Porter Neuroscience Research Center, Bethesda, MD 20892-3706, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008; 29:313-39. [PMID: 18374402 PMCID: PMC2398769 DOI: 10.1016/j.yfrne.2008.02.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022]
Abstract
Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Paris JJ, Frye CA. Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks. Reproduction 2008; 136:105-15. [PMID: 18390689 DOI: 10.1530/rep-07-0512] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P(4)) and its metabolite 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), are elevated due, in part, to corpora luteal and placental secretion. During 'pseudopregnancy', the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P(4) (behavioral estrus) or low-estrogen/P(4) (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3 alpha,5 alpha-THP levels and improved object placement performance compared with multiparous rats.
Collapse
Affiliation(s)
- Jason J Paris
- The University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, USA
| | | |
Collapse
|
182
|
Zhu TS, Glaser M. Neuroprotection and enhancement of remyelination by estradiol and dexamethasone in cocultures of rat DRG neurons and Schwann cells. Brain Res 2008; 1206:20-32. [DOI: 10.1016/j.brainres.2008.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 02/07/2023]
|
183
|
Zhu TS, Glaser M. Regulatory role of cytochrome P450scc and pregnenolone in myelination by rat Schwann cells. Mol Cell Biochem 2008; 313:79-89. [PMID: 18373277 DOI: 10.1007/s11010-008-9745-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/13/2008] [Indexed: 11/26/2022]
Abstract
To investigate the production of steroid hormones by Schwann cells and to examine the regulation of steroid hormone production during myelination, cultures of rat Schwann cells were differentiated into their myelinating phenotype in the absence of neurons with dibutyryl cAMP (db-cAMP). During this process, the expression of P450scc (involved in steroid biosynthesis) was elevated at both the mRNA and protein levels as evident in RT-PCR, Western blots, and immunostaining. Labeling of the cells with [14C] acetate revealed enhanced production of pregnenolone during differentiation into the myelinating phenotype. Disruption of P450scc's activity with an inhibitor diminished the extent of differentiation into the myelinating phenotype as levels of mRNA and protein expression of myelin protein zero (P0) declined. However, the effect was reversed with the addition of pregnenolone. Furthermore, when the differentiating cultures were treated with pregnenolone, mRNA expression of P0 was upregulated, suggesting the stimulation of the differentiation process. Together, these results provide evidence for Schwann cells as a major producer of steroid hormones and pregnenolone production by P450scc as an important regulatory step during myelination.
Collapse
Affiliation(s)
- Thant S Zhu
- Department of Biochemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
184
|
Caruso D, Scurati S, Roglio I, Nobbio L, Schenone A, Melcangi RC. Neuroactive Steroid Levels in a transgenic rat model of CMT1A Neuropathy. J Mol Neurosci 2008; 34:249-53. [PMID: 18193358 DOI: 10.1007/s12031-007-9029-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 12/04/2007] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth type 1A (CMT1A) represents 80% of all the demyelinating hereditary motor and sensory neuropathies. As recently suggested, neuroactive steroids may have a role in a therapeutic strategy for peripheral neuropathies, including CMT1A. To this aim, an accurate qualitative and quantitative analysis of neuroactive steroid levels in this disease could be extremely important to define effective pharmacological strategies. We here analyzed by liquid chromatography-tandem mass spectrometry the levels of neuroactive steroids present in the sciatic nerve of male and female peripheral myelin protein 22 transgenic rats (PMP22(tg) rats; i.e., an experimental model of CMT1A) and of the corresponding wild-type littermates. We observed that, both in PMP22(tg) rats and in the wild types, the levels of neuroactive steroids, such as progesterone, tetrahydroprogesterone (THP), isopregnanolone (3beta,5alpha-THP), testosterone, dihydrotestosterone, and 5alpha-androstane-3alpha, 17beta-diol (3alpha-diol) are sexually dimorphic. It is interesting to note that the levels of 3beta,5alpha-THP and of 3alpha-diol, which are exclusively detectable in sciatic nerve of female and male rats, respectively, are strongly decreased in PMP22(tg) rats. 3beta,5alpha-THP and 3alpha-diol are modulators of gamma-amino butyric acid A receptor. Thus, the present findings may be considered an interesting background for experiments aimed to evaluate the possible therapeutic effects of modulators of this neurotransmitter receptor in male and female PMP22(tg) rats.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological Sciences and Center for Metrological Traceability in Laboratory Medicine, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|