151
|
Wang YS, Shen CY, Jiang JG. Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery. Pharmacol Res 2019; 150:104520. [DOI: 10.1016/j.phrs.2019.104520] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
|
152
|
Rapid characterization of compounds in fupo ganmao granules by high-performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2019; 176:112819. [DOI: 10.1016/j.jpba.2019.112819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
|
153
|
Wu Q, Wei D, Dong L, Liu Y, Ren C, Liu Q, Chen C, Chen J, Pei J. Variation in the microbial community contributes to the improvement of the main active compounds of Magnolia officinalis Rehd. et Wils in the process of sweating. Chin Med 2019; 14:45. [PMID: 31660061 PMCID: PMC6806532 DOI: 10.1186/s13020-019-0267-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Background Magnolia officinalis Rehd. et Wils, commonly called Houpo, has been used for thousands of years in China as a traditional herbal medicine. The primary processing of Houpo requires sweating treatment, which is a special drying process and is considered to be an essential embodiment of high quality and genuine medicinal materials. The sweating of Houpo leads to peculiar changes in the microbial community structure and the content of main active substances (magnolol, honokiol, syringin and magnoflorine). Variation in the microbial community was considered the cause of the change in content of active substances of Houpo, although the microbial taxa responsible for the improvement of content remain unidentified. Methods In this study, we used MiSeq high-throughput sequencing methods for partial bacterial 16S rRNA and 18S rRNA gene sequences to compare the bacterial and fungal community structures at different timepoints in the process of sweating. The content of the main active substances (magnolol, honokiol, syringin and magnoflorine) were determined by high-performance liquid chromatography analysis to evaluate the effects of sweating. UPLC-Q-Extractive Orbitrap mass spectrometry (UPLC-QE Orbitrap MS) was used to detection of differential metabolites of unsweated Houpo before and after co-culture with core bacterial solutions. Results In this study, the total contents of magnolol (MG) and honokiol (HK) were significantly increased at 4 dp (dp for day PM sample), up to 3.75%, and the contents of syringin (SG) and magnoflorine (MF) were as high as 0.12% and 0.06%, respectively. Bacterial abundance and diversity were higher in the early stage (0 day-2 da; da for day AM sample) than in the later stage (4-5 dp), while fungal abundance was more obvious in the later stage than in the early stage. Positive correlation coefficients revealed that the relative abundance of Enterobacter (P < 0.05), Klebsiella (P < 0.05), Weissella (P < 0.05), Bacillus (P < 0.05) and Candida (P < 0.05) would be conducive to improving the quality of Houpo. Negative correlation coefficients revealed that the relative abundance of Actinomycetospora, Singulisphaera, Mucilaginibacter, Deinococcus, Gemmatirosa, Methylobacterium, Sphingomonas, Hymenobacter, Halomonas and Capnobotryella could be a potential antagonist for the decrease in the quality of Houpo. After co-culture of single core strain and unsweated Houpo, there was no significant difference in the four main active components, but there were other metabolites with significant difference. Conclusions Our findings reveal that sweating increased the content of the main active compounds, promoted the relative abundance of potentially beneficial microbes, decreased the abundance of potentially harmful microbes, the core functional genera group together, forming a core microbiome, these genera are dominant across the different stages of the sweating process and contribute to the quality development of the characteristics of Houpo. Meanwhile, this study presented a clear scope for potential beneficial microbes that improve the quality of Houpo.
Collapse
Affiliation(s)
- Qinahua Wu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Dan Wei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Linlin Dong
- 3Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yuping Liu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Chaoxiang Ren
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Qianqian Liu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Cuiping Chen
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Jiang Chen
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| | - Jin Pei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137 Sichuan China.,2Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan China
| |
Collapse
|
154
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
155
|
Chei S, Oh HJ, Song JH, Seo YJ, Lee K, Lee BY. Magnolol Suppresses TGF-β-Induced Epithelial-to-Mesenchymal Transition in Human Colorectal Cancer Cells. Front Oncol 2019; 9:752. [PMID: 31632899 PMCID: PMC6779771 DOI: 10.3389/fonc.2019.00752] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Tumor metastasis is the end state of a multistep process that includes dissemination of tumor cells to distant organs and requires tumor cells to adapt to different tissue microenvironments. During metastasis, tumor cells undergo a morphological change known as transdifferentiation or the epithelial-to-mesenchymal transition (EMT). In normal embryonic development, the EMT occurs in the context of morphogenesis in a variety of tissues. Over the course of this process, epithelial cells lose their cell-cell adhesion and polarity properties. In this study, we investigated whether magnolol could suppress the EMT in human colorectal cancer cells. To this end, we examined the epithelial markers E-cadherin, ZO-1, and claudin and the mesenchymal markers N-cadherin, TWIST1, Slug, and Snail. Magnolol effectively inhibited EMT in human colon cancer cell lines by upregulating epithelial markers and downregulating mesenchymal markers. The EMT is induced by the TGF-β signaling pathway. To determine whether magnolol disrupts TGF-β signaling, we examined several mediators of this pathway, and found that magnolol decreased the levels of phosphorylated (i.e., active) ERK, GSK3β, and Smad. We conclude that magnolol blocks migration in HCT116 cells by suppressing TGF-β signaling.
Collapse
Affiliation(s)
- Sungwoo Chei
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Ji-Hyeon Song
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Young-Jin Seo
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Kippeum Lee
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
156
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
157
|
Kim J, Ahn H, Han BC, Shin H, Kim JC, Jung EM, Kim J, Yang H, Lee J, Kang SG, Lee SH, Lee GS. Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153019. [PMID: 31302317 DOI: 10.1016/j.phymed.2019.153019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obovatol, a biphenolic chemical originating from Magnolia obovata, has been utilized as a traditional medicine for the treatment of inflammatory diseases. Inflammasome induces maturation of inflammatory cytokines in response to intracellular danger signals, and its dysregulation induces inflammatory diseases. PURPOSE The effect of obovatol on inflammasome activation has not been reported, although its anti-inflammatory properties have been studied. STUDY DESIGN/METHODS Obovatol was treated to macrophages with inflammasome triggers, and secretions of interleukin (IL)-1β, IL-18, and caspase-1 were measured as readouts of inflammasome activation. In addition, Asc pyroptosome formation, caspase-1 activity, and mitochondrial reactive oxygen species (ROS) production were analyzed in mechanical studies. Anti-inflammasome properties of obovatol were confirmed in an animal model. RESULTS Obovatol inhibited NLRP3, AIM2, and non-canonical inflammasomes through inhibition of Asc pyroptosome formation and mitochondrial ROS generation. In addition, obovatol disrupted the priming step of inflammasome activation and inhibited transcription of inflammatory cytokines. In mice, obovatol attenuated serum IL-1β elevation in response to monosodium urate crystals. CONCLUSION Obovatol is suggested as an inhibitor of NLRP3, AIM2, and non-canonical inflammasomes.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Hyunjung Shin
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Juyeol Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jeonghyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
158
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
159
|
Neuraminidase 1 regulates proliferation, apoptosis and the expression of Cadherins in mammary carcinoma cells. Mol Cell Biochem 2019; 462:207-215. [DOI: 10.1007/s11010-019-03623-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
|
160
|
Oufensou S, Scherm B, Pani G, Balmas V, Fabbri D, Dettori MA, Carta P, Malbrán I, Migheli Q, Delogu G. Honokiol, magnolol and its monoacetyl derivative show strong anti-fungal effect on Fusarium isolates of clinical relevance. PLoS One 2019; 14:e0221249. [PMID: 31483823 PMCID: PMC6726233 DOI: 10.1371/journal.pone.0221249] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
The antifungal activity of magnolol and honokiol, two naturally occurring hydroxylated biphenyls, and of their synthetic derivatives was evaluated on a collection of representative isolates of Fusarium oxysporum, F. solani and F. verticillioides of clinical and ecological concern. The tested compounds were proposed as a ‘natural’ alternative to conventional fungicides, even though a larger range of concentrations (5–400 μg/ml) was applied. The activity of magnolol and honokiol was compared with that of terbinafine (0.1–10 μg/ml), and fluconazole (1–50 μg/ml), two fungicides widely used in treating fungal infections on humans. Magnolol showed similar fungicidal activity compared to fluconazole, whereas honokiol was more effective in inhibiting mycelium growth compared to this fungicide on all tested clinical Fusarium spp. isolates. Compared to terbinafine, honokiol showed similar antifungal activity when tested on clinical F. solani isolates, whereas magnolol was less effective at all selected concentrations (5–400 μg/ml). The different position of the phenol-OH group, as well as its protection, explain different in vitro activities between magnolol, honokiol, and their derivatives. Furthermore, magnolol showed mycelium dry weight reduction at a concentration of 0.5 mM when tested on a set of agricultural isolates of Fusaria, leading to complete inhibition of some of them. Magnolol and honokiol are proposed as efficient and safe candidates for treating clinically relevant Fusaria.
Collapse
Affiliation(s)
- Safa Oufensou
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia, Sassari, Italy
| | - Barbara Scherm
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia, Sassari, Italy
| | - Giovanna Pani
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia, Sassari, Italy
| | - Virgilio Balmas
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia, Sassari, Italy
- * E-mail: (VB);,(GD)
| | - Davide Fabbri
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca, Sassari, Italy
| | | | - Paola Carta
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca, Sassari, Italy
| | - Ismael Malbrán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Centro de Investigaciones de Fitopatología (CIDEFI-CIC-UNLP), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata–Buenos Aires, Argentina
| | - Quirico Migheli
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia, Sassari, Italy
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca, Sassari, Italy
- * E-mail: (VB);,(GD)
| |
Collapse
|
161
|
Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P, Pongcharoen S. Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol 2019; 25:3941-3955. [PMID: 31413529 PMCID: PMC6689815 DOI: 10.3748/wjg.v25.i29.3941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such anti-tumor activity can be increased using cell lysates derived from an honokiol-treated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.
Collapse
Affiliation(s)
- Arunya Jiraviriyakul
- Biomedical Science Graduate School, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Worawat Songjang
- Biomedical Science Graduate School, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pongsathorn Kaewthet
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Phachsita Tanawatkitichai
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Punyapat Bayan
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutatip Pongcharoen
- Biomedical Science Graduate School, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
- Research Centre of Academic Excellence in Petroleum, Petrochemical, and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
162
|
Zheng Z, Ma T, Guo H, Kim KS, Kim KT, Bi L, Zhang Z, Cai L. 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement. J Cell Mol Med 2019; 23:5771-5781. [PMID: 31199069 PMCID: PMC6653553 DOI: 10.1111/jcmm.14493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by increased left ventricular mass and wall thickness, decreased systolic function, reduced ejection fraction (EF) and ultimately heart failure. The 4-O-methylhonokiol (MH) has been isolated mainly from the bark of the root and stem of Magnolia species. In this study, we aimed to elucidate whether MH can effectively prevent DCM in type 2 diabetic (T2D) mice and, if so, whether the protective response of MH is associated with its activation of AMPK-mediated inhibition of lipid accumulation and inflammation. A total number of 40 mice were divided into four groups: Ctrl, Ctrl + MH, T2D, T2D + MH. Five mice from each group were sacrificed after 3-month MH treatment. The remaining animals in each group were kept for additional 3 months without further MH treatment. In T2D mice, the typical DCM symptoms were induced as expected, reflected by decreased ejection fraction and lipotoxic effects inducing lipid accumulation, oxidative stress, inflammatory reactions, and final fibrosis. However, these typical DCM changes were significantly prevented by the MH treatment immediately or 3 months after the 3-month MH treatment, suggesting MH-induced cardiac protection from T2D had a memory effect. Mechanistically, MH cardiac protection from DCM may be associated with its lipid metabolism improvement by the activation of AMPK/CPT1-mediated fatty acid oxidation. In addition, the MH treatment of DCM mice significantly improved their insulin resistance levels by activation of GSK-3β. These results indicate that the treatment of T2D with MH effectively prevents DCM probably via AMPK-dependent improvement of the lipid metabolism.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Cardiomyopathies/complications
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Fibrosis
- Inflammation/blood
- Inflammation/pathology
- Inflammation/physiopathology
- Lignans/pharmacology
- Lignans/therapeutic use
- Lipid Metabolism
- Male
- Mice, Inbred C57BL
- Models, Biological
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Zongyu Zheng
- Departments of Urology and CardiologyThe First Hospital of Jilin UniversityChangchunChina
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
| | - Tianjiao Ma
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
- Department of Rheumatology and ImmunologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Hua Guo
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
- Department of Immunology, Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| | | | | | - Liqi Bi
- Department of Rheumatology and ImmunologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Zhiguo Zhang
- Departments of Urology and CardiologyThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
- Department of Radiation Oncology, Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentucky
| |
Collapse
|
163
|
Cui Y, Deng Y, Zheng K, Hu X, Zhu M, Deng X, Xi R. An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers. Sci Rep 2019; 9:9634. [PMID: 31270420 PMCID: PMC6610120 DOI: 10.1038/s41598-019-46050-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Magnolia sirindhorniae Noot. & Chalermglin is an endangered species with high ornamental and commercial value that needs to be urgently protected and judiciously commercialized. In this study, a protocol for efficient regeneration of this species is standardized. The lateral buds of the M. sirindhorniae plant were used as an explant. Half-strength Murashige and Skoog (MS) medium supplemented with 2.0 mg/L 6-benzyladenine (BA), 0.1 mg/L α-naphthaleneacetic acid (NAA), and 2.0 mg/L gibberellic acid (GA3) was found to be the optimal medium for shoot induction. The maximum shoot multiplication rate (310%) was obtained on Douglas-fir cotyledon revised medium (DCR) fortified with 0.2 mg/L BA, 0.01 mg/L NAA, and additives. The half-strength DCR medium supplemented with 0.5 mg/L NAA and 0.5 mg/L indole-3-butyric acid (IBA) supported the maximum rate (85.0%) of in vitro root induction. After a simple acclimatization process, the survival rate of plantlets in a substrate mixture of sterile perlite and peat soil (1:3; v/v) was 90.2%. DNA markers were used for assessment of genetic uniformity, confirming the genetic uniformity and stability of regenerated plants of M. sirindhorniae. Thus, the described protocol can safely be applied for large scale propagation of this imperative plant.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanwen Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Keyuan Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaomin Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mulan Zhu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 200000, China
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China. .,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ruchun Xi
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China. .,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
164
|
Chen YH, Lu MH, Guo DS, Zhai YY, Miao D, Yue JY, Yuan CH, Zhao MM, An DR. Antifungal Effect of Magnolol and Honokiol from Magnolia officinalis on Alternaria alternata Causing Tobacco Brown Spot. Molecules 2019; 24:E2140. [PMID: 31174300 PMCID: PMC6600672 DOI: 10.3390/molecules24112140] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, two phenol compounds, magnolol and honokiol, were extracted from Magnolia officinalis and identified by LC-MS, 1H- and 13C-NMR. The magnolol and honokiol were shown to be effective against seven pathogenic fungi, including Alternaria alternata (Fr.) Keissl, Penicillium expansum (Link) Thom, Alternaria dauci f.sp. solani, Fusarium moniliforme J. Sheld, Fusarium oxysporum Schltdl., Valsa mali Miyabe & G. Yamada, and Rhizoctonia solani J.G. Kühn, with growth inhibition of more than 57%. We also investigated the mechanisms underlying the potential antifungal activity of magnolol and honokiol. The results showed that they inhibited the growth of A. alternata in a dose-dependent manner. Moreover, magnolol and honokiol treatment resulted in distorted mycelia and increased the cell membrane permeability of A. alternata, as determined by conductivity measurements. These results suggest that magnolol and honokiol are potential antifungal agents for application against plant fungal diseases.
Collapse
Affiliation(s)
- Ya-Han Chen
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
- College of agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China.
| | - Mei-Huan Lu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
- Microbial Resources of Research Center, Microbiology Institute of Shaanxi, Xian 710043, China.
| | - Dong-Sheng Guo
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Ying-Yan Zhai
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Dan Miao
- College of agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China.
| | - Jian-Ying Yue
- College of agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China.
| | - Chen-Hong Yuan
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Ming-Min Zhao
- College of agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China.
| | - De-Rong An
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
165
|
Ha CT, Thai TH, Hien NT, Anh HT, Diep LN, Thuy DT, Nhat DD, Setzer WN. Chemical Composition and Antimicrobial Activity of the Leaf and Twig Essential Oils of Magnolia hypolampra Growing in Na Hang Nature Reserve, Tuyen Quang Province of Vietnam. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19860370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The leaf and twig essential oils of Magnolia hypolampra, growing wild in Na Hang Nature Reserve, Tuyen Quang province of Vietnam, were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The oil yield calculated on a dry weight basis from leaves of M. hypolampra was very high (1.62%, v/w), while that from twigs was much lower (0.07%, v/w). The essential oils were dominated by monoterpenoids (74.3% and 84.8%) and sesquiterpenoids (24.4% and 13.3%) with β-pinene (36.5% and 41.3%), α-pinene (23.7% and 24.4%), and germacrene D (14.6% and 5.8%) as respective major components. Antibiotic activity of the essential oil samples was tested against Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Escherichia coli, and yeast Candida albicans using an agar disk diffusion method. Both the leaf and twig oils showed strong inhibition against all 3 tested microorganism strains with inhibition zones from 18.5 to 30.5 mm and from 45.5 to 46 mm, respectively. Minimum inhibitory concentration of the essential oils was determined using microdilution broth susceptibility assay against 7 test microorganism strains including Bacillus subtilis, Lactobacillus fermentum, Salmonella enterica, Pseudomonas aeruginosa, and 3 abovementioned strains. Minimum inhibitory concentration values of the essential oil from the twigs were from 2.0 to 8.2 mg/mL, while those from the leaves were from 4.1 to 16.4 mg/mL.
Collapse
Affiliation(s)
- Chu T.T. Ha
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Tran H. Thai
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Nguyen T. Hien
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Ha T.V. Anh
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Le N. Diep
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Dinh T.T. Thuy
- Institute of Natural Product Chemistry, VAST, Ha Noi, Vietnam
| | - Do D. Nhat
- Faculty of Chemical Engineering and Food Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
166
|
Li H, Zhang Q, Li W, Li H, Bao J, Yang C, Wang A, Wei J, Chen S, Jin H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicol Appl Pharmacol 2019; 373:48-61. [DOI: 10.1016/j.taap.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
|
167
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
168
|
Hu ZC, Luo ZC, Jiang BJ, Fu X, Xuan JW, Li XB, Bian YJ, Ni WF, Xue JX. The Protective Effect of Magnolol in Osteoarthritis: In vitro and in vivo Studies. Front Pharmacol 2019; 10:393. [PMID: 31040782 PMCID: PMC6476971 DOI: 10.3389/fphar.2019.00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA), defined as a long-term progressive joint disease, is characterized by cartilage impairment and erosion. In recent decades, magnolol, as a type of lignin extracted from Magnolia officinalis, has been proved to play a potent anti-inflammatory role in various diseases. The current research sought to examine the latent mechanism of magnolol and its protective role in alleviating the progress of OA in vivo as well as in vitro experimentations. In vitro, the over-production of Nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), induced by interleukin-1 beta (IL-1β), were all inhibited notably by magnolol in a concentration-dependent manner. Moreover, magnolol could also downregulate the expression of metalloproteinase 13 (MMP13) and thrombospondin motifs 5 (ADAMTS5). All these changes ultimately led to the deterioration of the extracellular matrix (ECM) induced by IL-1β. Mechanistically, magnolol suppressed the activation of PI3K/Akt/NF-κB pathway. Furthermore, a powerful binding capacity between magnolol and PI3K was also revealed in our molecular docking research. In addition, magnolol-induced protective effects in OA development were also detected in a mouse model. In summary, this research suggested that magnolol possessed a new therapeutic potential for the development of OA.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Zu-Cheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Bing-Jie Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Jiang-Wei Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Xiao-Bin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Yu-Jie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Wen-Fei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Ji-Xin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| |
Collapse
|
169
|
Vega-García A, Santana-Gómez CE, Rocha L, Magdaleno-Madrigal VM, Morales-Otal A, Buzoianu-Anguiano V, Feria-Romero I, Orozco-Suárez S. Magnolia officinalis reduces the long-term effects of the status epilepticus induced by kainic acid in immature rats. Brain Res Bull 2019; 149:156-167. [PMID: 30978383 DOI: 10.1016/j.brainresbull.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
During critical periods of neurodevelopment, the immature brain is susceptible to neuronal hyperexcitability, alterations such as hyperthermia, hypoxia, brain trauma or a preexisting neuroinflammatory condition can trigger, promote and prolong epileptiform activity and facilitate the development of epilepsy. The goal of the present study was to evaluate the long-term neuroprotective effects Magnolia officinalis extract, on a model of recurrent status epilepticus (SE) in immature rats. Sprague-Dawley rats were treated with kainic acid (KA) (3 mg/kg, dissolved in saline solution) beginning at day 10 P N every 24 h for five days (10 P N-14PN). Two experimental groups (KA) received two treatments for 10 days (14-24 P N): one group was treated with 300 mg/kg Magnolia Officinalis (MO) (KA-MO), and another was treated with 20 mg/kg of celecoxib (Clbx) (KA-Clbx) as a control drug. A SHAM control group at day 90 P N was established. Seizure susceptibility was analyzed through an after-discharge threshold (ADT) evaluation, and electroencephalographic activity was recorded. The results obtained from the ADT evaluation and the analysis of the electroencephalographic activity under basal conditions showed that the MO and Clbx treatments protected against epileptiform activity, and decreases long-term excitability. All rats in the KA-MO and KA-Clbx groups presented a phase I seizure on the Racine scale, corresponding to the shaking of a wet dog. In contrast, the KA group showed phase V convulsive activity on the Racine scale. Similarly, MO and Clbx exerted neuroprotective effects on hippocampal neurons and reduced gliosis in the same areas. Based on these results, early intervention with MO and Clbx treatments to prevent the inflammatory activity derived from SE in early phases of neurodevelopment exerts neuroprotective effects on epileptogenesis in adult stages.
Collapse
Affiliation(s)
- A Vega-García
- Programa de Doctorado del Departamento de Ciencias Biológicas y de la Salud, UAM-I, Universidad Autónoma Metropolitana Campus Iztapalapa, Ciudad de México, Mexico; Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - C E Santana-Gómez
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados, Tlalpan, Ciudad de México, Mexico
| | - L Rocha
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados, Tlalpan, Ciudad de México, Mexico
| | - V M Magdaleno-Madrigal
- División de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñis", Ciudad de México, Mexico
| | - A Morales-Otal
- Área de Neurociencias. Departamento de Neurohistología y Conducta. Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - V Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - I Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - S Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico.
| |
Collapse
|
170
|
Dreier D, Resetar M, Temml V, Rycek L, Kratena N, Schnürch M, Schuster D, Dirsch VM, Mihovilovic MD. Magnolol dimer-derived fragments as PPARγ-selective probes. Org Biomol Chem 2019; 16:7019-7028. [PMID: 30232493 PMCID: PMC6180429 DOI: 10.1039/c8ob01745j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sesqui magnolol A & B have been found to be selective partial PPARγ agonists while truncated magnolol dimer acts as an antagonist.
Partial agonists of the transcription factor PPARγ (peroxisome proliferator-activated receptor γ) have shown potential for the treatment of metabolic and inflammatory conditions and novel activators serve as valuable tool and lead compounds. Based on the natural product magnolol (I) and recent structural information of the ligand–target interaction we have previously developed magnolol dimer (II) which has been shown to have enhanced affinity towards PPARγ and improved selectivity over RXRα (retinoid X receptor α), PPARγ's heterodimerization partner. In this contribution we report the synthesis and evaluation of three fragments of the dimeric lead compound by structural simplifications. Sesqui magnolol A and B (III and IV) were found to exhibit comparable activities to magnolol dimer (II) and selectivity over RXRα persisted. Computational studies suggest a common pharmacophore of the distinctive biphenyl motifs. Truncated magnolol dimer (V) on the other hand does not share this feature and was found to act as an antagonist.
Collapse
Affiliation(s)
- Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Colin M, Delporte C, Janky R, Lechon AS, Renard G, Van Antwerpen P, Maltese WA, Mathieu V. Dysregulation of Macropinocytosis Processes in Glioblastomas May Be Exploited to Increase Intracellular Anti-Cancer Drug Levels: The Example of Temozolomide. Cancers (Basel) 2019; 11:cancers11030411. [PMID: 30909495 PMCID: PMC6468498 DOI: 10.3390/cancers11030411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Macropinocytosis is a clathrin-independent endocytosis of extracellular fluid that may contribute to cancer aggressiveness through nutrient supply, recycling of plasma membrane and receptors, and exosome internalization. Macropinocytosis may be notably triggered by epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR), two well-known markers for glioblastoma aggressiveness. Therefore, we studied whether the expression of key actors of macropinocytosis is modified in human glioma datasets. Strong deregulation has been evidenced at the mRNA level according to the grade of the tumor, and 38 macropinocytosis-related gene signatures allowed discrimination of the glioblastoma (GBM) samples. Honokiol-induced vacuolization was then compared to vacquinol-1 and MOMIPP, two known macropinocytosis inducers. Despite high phase-contrast morphological similarities, honokiol-induced vacuoles appeared to originate from both endocytosis and ER. Also, acridine orange staining suggested differences in the macropinosomes’ fate: their fusion with lysosomes appeared very limited in 3-(5-methoxy -2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP)-treated cells. Nevertheless, each of the compounds markedly increased temozolomide uptake by glioma cells, as evidenced by LC-MS. In conclusion, the observed deregulation of macropinocytosis in GBM makes them prone to respond to various compounds affecting their formation and/or intracellular fate. Considering that sustained macropinocytosis may also trigger cell death of both sensitive and resistant GBM cells, we propose to envisage macropinocytosis inducers in combination approaches to obtain dual benefits: increased drug uptake and additive/synergistic effects.
Collapse
Affiliation(s)
- Margaux Colin
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | | | - Anne-Sophie Lechon
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Gwendoline Renard
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
- ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium.
| |
Collapse
|
172
|
Hsiao CH, Yao CJ, Lai GM, Lee LM, Whang-Peng J, Shih PH. Honokiol induces apoptotic cell death by oxidative burst and mitochondrial hyperpolarization of bladder cancer cells. Exp Ther Med 2019; 17:4213-4222. [PMID: 30988795 DOI: 10.3892/etm.2019.7419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer is one of the most common types of malignant tumor worldwide. Current treatments, including chemo-/radiotherapy, only have limited efficacy on bladder cancer progression. Honokiol is an active component of Magnolia officinalis with multiple biological effects that may provide promising health benefits. In the present study, the anti-cancer properties of honokiol against bladder cancer cells were investigated by flow cytometric analysis. The results revealed that honokiol exhibited significant anti-proliferative effects on bladder cancer cell lines, particularly on BFTC-905 human transitional cell carcinoma cells. Furthermore, honokiol at low doses (≤25 µM) induced cell cycle arrest in G0/G1 phase, while it induced significant apoptotic cell death at high doses (≥50 µM; P<0.05). Furthermore, a significant accumulation of reactive oxygen species was identified in honokiol-treated cells. In addition, honokiol induced hyperpolarization of the mitochondrial membrane, which may lead to mitochondrial dysfunction. Finally, caspase-3/7 activation was identified in high-dose honokiol-treated bladder cancer cells. These results suggest that honokiol induces apoptosis via the mitochondrial pathway and honokiol-containing traditional herbal remedies may have a potential clinical application in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Department of Urology, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Department of Urology, School of Medicine, College of Medicine, Taipei 11031, Taiwan R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei 11031, Taiwan R.O.C
| | - Chih-Jung Yao
- Cancer Center, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Department of Urology, School of Medicine, College of Medicine, Taipei 11031, Taiwan R.O.C
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Ping-Hsiao Shih
- Center for Cell Therapy, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan R.O.C
| |
Collapse
|
173
|
Magnolol exhibits anti-inflammatory and neuroprotective effects in a rat model of intracerebral haemorrhage. Brain Behav Immun 2019; 77:161-167. [PMID: 30597199 DOI: 10.1016/j.bbi.2018.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/09/2018] [Accepted: 12/27/2018] [Indexed: 01/14/2023] Open
Abstract
Intracerebral haemorrhage (ICH) induces inflammation, which can cause severe secondary injury. Recent evidence has suggested that magnolol (MG) has a protective effect against ischaemic stroke through the inhibition of inflammation. However, the anti-inflammatory effect of MG in intracerebral haemorrhage (ICH) remains unclear. Here, we report that the protective effect of MG in a rat model of ICH can be achieved by anti-inflammatory processes. We found that MG administration significantly reduced the brain water content, restored the blood-brain barrier (BBB) and subsequently attenuated neurological deficits via decreasing the activation of glial cells, decreasing the infiltration of neutrophils and reducing the production of pro-inflammation factors (IL-1β, TNF-α and MMP-9) in a rat model of ICH. These results suggest that MG reduced inflammatory injury and improved neurological outcomes in ICH model.
Collapse
|
174
|
Wang X, Zhang C, Zheng M, Gao F, Zhang J, Liu F. Metabolomics Analysis of L-Arginine Induced Gastrointestinal Motility Disorder in Rats Using UPLC-MS After Magnolol Treatment. Front Pharmacol 2019; 10:183. [PMID: 30881305 PMCID: PMC6405429 DOI: 10.3389/fphar.2019.00183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Magnolol, as the main active ingredient of Traditional Chinese Medicine, can significantly improve gastrointestinal motility disorders (GMD). In the present study, metabolomics was used to investigate the mechanism of magnolol improving L-arginine induced GMD in rats. Experimental Approach: SD rats were randomly divided into control group, model group and magnolol treated group. L-arginine was injected intraperitoneally in model and magnolol groups to induce GMD model. All intervention regimens were administered by oral gavage, once a day for five consecutive days. Relative gastric emptying rate and propulsive intestinal rate were measured. Metabolites in serum were analyzed based on UPLC-MS metabolomics technique. Results: Magnolol significantly promoted gastric emptying and small intestinal propulsion. Compared with the model group, the level of serotonin and L-tryptophan significantly reversed (P < 0.05) and 22 metabolites reversed in the magnolol group. According to MetPA database analysis, magnolol has mainly affected 10 major metabolic pathways which were related to each other, Tryptophan metabolism is the most critical metabolic pathway associated with gastrointestinal tract. Conclusion: These findings suggest that magnolol has a significantly promoting effect on L-arginine induced gastrointestinal motility disorder in rats, the mechanism is to reduce the production of nitric oxide to weaken the function of nitric oxide relaxing the gastrointestinal smooth muscle and increase the content of serotonin to promote gastrointestinal peristalsis and motility, secretion, absorption of nutrients.
Collapse
Affiliation(s)
- Xiao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyue Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
175
|
Cassiano C, Esposito R, Tosco A, Casapullo A, Mozzicafreddo M, Tringali C, Riccio R, Monti MC. Chemical Proteomics-Guided Identification of a Novel Biological Target of the Bioactive Neolignan Magnolol. Front Chem 2019; 7:53. [PMID: 30800648 PMCID: PMC6375844 DOI: 10.3389/fchem.2019.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/21/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the recognition process between bioactive natural products and their specific cellular receptors is of key importance in the drug discovery process. In this outline, some potential targets of Magnolol, a natural bioactive compound, have been identified by proteomic approaches. Among them, Importin-β1 has been considered as the most relevant one. A direct binding between Magnolol and this nuclear chaperone has been confirmed by DARTS and molecular docking, while its influence on Importin-β1 translocation has been evaluated by in vitro assays.
Collapse
Affiliation(s)
- Chiara Cassiano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Roberta Esposito
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Alessandra Tosco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Agostino Casapullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Matteo Mozzicafreddo
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Raffaele Riccio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Maria Chiara Monti
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
176
|
Martín-Beltrán C, Sánchez-Peris M, Conesa-Milián L, Falomir E, Murga J, Carda M, Marco JA. Arylpyridines, arylpyrimidines and related compounds as potential modulator agents of the VEGF, hTERT and c-Myc oncogenes. Bioorg Med Chem 2019; 27:880-887. [PMID: 30733086 DOI: 10.1016/j.bmc.2019.01.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Twenty-four derivatives structurally related to honokiol have been synthesized and biologically evaluated. IC50 values were determined towards the HT-29, MCF-7 and HEK-293 cell lines. Some of these derivatives exhibited comparable or lower IC50 values than honokiol towards the HT-29 and MCF-7 cell lines or else higher selectivity indexes than the natural product. Twelve selected derivatives were evaluated for their ability to inhibit the expression of the VEGFA, hTERT and c-Myc genes and also to inhibit the production of total c-Myc protein and the secretion of the VEGF protein. One of the most promising compounds, 3-(2,4-dimethoxyphenyl)pyridine, may be a good candidate for further studies as an anticancer agent as it is able to improve the effect shown by honokiol in downregulating all gene expression and protein production at a safe concentration for non-tumor cells.
Collapse
Affiliation(s)
- Celia Martín-Beltrán
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - María Sánchez-Peris
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Laura Conesa-Milián
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Eva Falomir
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Juan Murga
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain.
| | - Miguel Carda
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - J Alberto Marco
- Dept. de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
177
|
Elansary HO, Szopa A, Kubica P, A Al-Mana F, Mahmoud EA, Zin El-Abedin TKA, A Mattar M, Ekiert H. Phenolic Compounds of Catalpa speciosa, Taxus cuspidate, and Magnolia acuminata have Antioxidant and Anticancer Activity. Molecules 2019; 24:E412. [PMID: 30678123 PMCID: PMC6384650 DOI: 10.3390/molecules24030412] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Tree bark represents an important source of medicinal compounds that may be useful for cancer therapy. In the current study, high-performance liquid chromatography with diode-array detection (HPLC-DAD) was used to determine the profile of the phenolic compounds of Catalpa speciosa, Taxus cuspidata, and Magnolia acuminata bark extracts. The antioxidant and anticancer bioactivities against different cancer cell lines were investigated. M. acuminata exerted significantly higher antioxidant activities in the diphenyl picrylhydrazine and β-carotene-linoleic acid assays than the other species. In C. speciosa, novel profiles of phenolic acids (ferulic acid was the predominant compound) and catechin were detected. In T. cuspidata, six phenolic acids were detected; the predominant compounds were hydroxycaffeic acid and protocatechuic acid. In M. acuminata, two phenolic acids and three catechins were detected; catechin was the predominant compound. The three species exerted clear anticancer activity against MCF-7, HeLa, Jurkat, T24, and HT-29 cells, with the strongest activity found in the extracts from M. acuminata. No antiproliferative activity against normal cells was found. Flow cytometry revealed greater accumulation of necrotic and early/late apoptotic cells in various treated cancer cells than in untreated control cells, and protocatechuic acid induced a similar accumulation of necrotic cells to that of the bark extracts. Caspase-3 and -7 activity was increased in cancer cells treated with different bark extracts; the highest activity was found in the M. acuminata treatment. Our results suggested that the treatment of cancer cells with bark extracts of M. acuminata, C. speciosa, and T. cuspidata, and protocatechuic acid induced apoptosis, suggesting an association between anticancer activities and individual phenolic compounds.
Collapse
Affiliation(s)
- Hosam O Elansary
- Plant production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture, Alexandria University, Alexandria 00203, Egypt.
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus (APK) Campus, Johannesburg 2006, South Africa.
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Paweł Kubica
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Fahed A Al-Mana
- Plant production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Eman A Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt.
| | - Tarek K Ali Zin El-Abedin
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
178
|
Chang H, Chang CY, Lee HJ, Chou CY, Chou TC. Magnolol ameliorates pneumonectomy and monocrotaline-induced pulmonary arterial hypertension in rats through inhibition of angiotensin II and endothelin-1 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:205-213. [PMID: 30466619 DOI: 10.1016/j.phymed.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Magnolol, a major bioactive component extracted from Magnolia officinalis, exerts several beneficial effects, such as anti-inflammatory and anti-hypertensive activities. PURPOSE In this study, we investigated whether magnolol has a protective effect on pneumonectomy and monocrotaline-induced pulmonary arterial hypertension (PAH) in rats. DESIGN/METHODS The alterations of right ventricular (RV) hypertrophy, pulmonary vascular remodeling, histopathological parameters, and related gene expression and signaling pathways in lungs by magnolol treatment were studied in the PAH rats. RESULTS Administration of magnolol greatly ameliorated the characteristic features of PAH, including increased pulmonary arterial pressure, RV hypertrophy, and pulmonary vascular remodeling. Moreover, magnolol inhibited angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II type 1 receptor (AT-1R) cascade, whereas upregulates ACE2 in the lungs of PAH rats. The overexpression of endothelin-1 (ET-1) and ETA receptor occurred in the PAH rats was significantly attenuated by magnolol through inhibition of Akt/ERK1/2/GSK3β/β-catenin pathway. Compared with that of untreated PAH rats, higher expression of endothelial nitric oxide synthase, and lower expression of inducible nitric oxide synthase and O2- production in lungs were observed in magnolol-treated PAH rats. CONCLUSION We demonstrated that treatment with magnolol reduces the development of PAH induced by pneumonectomy and monocrotaline in rats, and suppressing Ang II and ET-1-mediated processes may contribute to its protective effects. These findings suggest that magnolol may be a potential agent for PAH therapy.
Collapse
Affiliation(s)
- Hung Chang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yi Chang
- Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Yu Chou
- Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Tz-Chong Chou
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
179
|
Liu S, Zhou Y, Niu X, Wang T, Li J, Liu Z, Wang J, Tang S, Wang Y, Deng X. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discov 2018; 4:28. [PMID: 29531825 PMCID: PMC5841300 DOI: 10.1038/s41420-018-0029-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023] Open
Abstract
The emergence of plasmid-mediated New Delhi metallo-β-lactamase-1 (NDM-1) in carbapenem-resistant Gram-negative pathogens is an increasing clinical threat. Here we report the discovery of an NDM-1 inhibitor, magnolol, through enzyme inhibition screening. We showed that magnolol significantly inhibited NDM enzyme activity (IC50 = 6.47 µg/mL), and it restored the activity of meropenem against Escherichia coli ZC-YN3, an NDM-1-producing E. coli isolate, in in vitro antibacterial activity assays. Magnolol lacked direct antibacterial activity, but compared with meropenem alone, it reduced the MICs of meropenem against E. coli ZC-YN3 by 4-fold and killed almost all the bacteria within 3 h. Molecular modeling and a mutational analysis demonstrated that magnolol binds directly to the catalytic pocket (residues 110 to 200) of NDM-1, thereby blocking the binding of the substrate to NDM-1 and leading to its inactivation. Our results demonstrate that the combination of magnolol and meropenem may have the potential to treat infections caused by NDM-1-positive, carbapenem-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Shui Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Department of Food Quality and Safety, Jilin University, Changchun, China
| | - Tingting Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyun Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhongjie Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
180
|
Yuan Y, Subedi L, Lim D, Jung JK, Kim SY, Seo SY. Synthesis and anti-neuroinflammatory activity of N-heterocyclic analogs based on natural biphenyl-neolignan honokiol. Bioorg Med Chem Lett 2018; 29:329-333. [PMID: 30472026 DOI: 10.1016/j.bmcl.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Novel isoxazole and pyrazole analogs based on natural biphenyl-neolignan honokiol were synthesized and evaluated for their inhibitory activities against nitric oxide production in lipopolysaccharide-activated BV-2 microglial cells. The isoxazole skeleton was constructed via nitrile oxide cycloaddition from oxime 3 and pyrazole was generated by condensation of 4-chromone and alkylhydrazine. Among the analogs, 13b and 14a showed stronger inhibitory activities with IC50 values of 8.9 and 1.2 µM, respectively, than honokiol.
Collapse
Affiliation(s)
- Yue Yuan
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Lalita Subedi
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Daesung Lim
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| | - Seung-Yong Seo
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
181
|
Gao X, Patel MG, Bakshi P, Sharma D, Banga AK. Enhancement in the Transdermal and Localized Delivery of Honokiol Through Breast Tissue. AAPS PharmSciTech 2018; 19:3501-3511. [PMID: 30259402 DOI: 10.1208/s12249-018-1158-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/18/2018] [Indexed: 11/30/2022] Open
Abstract
Honokiol is a natural phenolic anti-cancer compound isolated from an extract of seed cones from Magnolia grandiflora. This study investigated the transdermal delivery of honokiol using various enhancement methods and to explore the potential of honokiol to treat breast cancer directly via delivery through mammary papilla. Poration of dermatomed human skin with microneedles significantly increased the delivery of honokiol by nearly 3-fold (97.81 ± 18.96 μg/cm2) compared with passive delivery (32.56 ± 5.67 μg/cm2). Oleic acid was found to be the best chemical penetration enhancer, increasing the delivery almost 27-fold (868.06 ± 100.91 μg/cm2). Addition of oleic acid also resulted in better retention of drug in the porcine mammary papilla (965.41 ± 80.26 μg/cm2) compared with breast skin (294.16 ± 8.49 μg/cm2). Anti-cancer effect of honokiol was demonstrated with the decrease in the release of cytokine IL-6 and further suppression of Ki-67 proliferative protein. In addition, the topical honokiol formulation investigated was found to be safe and non-irritant. In summary, both microneedles and chemical enhancers can improve the absorption of honokiol through skin. Directly applying honokiol on mammary papilla is a potential administration route which can increase localized delivery into breast tissue.
Collapse
|
182
|
Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, Mabkhot YN, Al-Showiman SS, Ahmad N, Elsharkawy E. Honokiol: An anticancer lignan. Biomed Pharmacother 2018; 107:555-562. [DOI: 10.1016/j.biopha.2018.08.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023] Open
|
183
|
Wu W, Wang L, Wang L, Zu Y, Wang S, Liu P, Zhao X. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int J Nanomedicine 2018; 13:5469-5483. [PMID: 30271141 PMCID: PMC6149943 DOI: 10.2147/ijn.s178416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Honokiol is a bioactive lignanoid and has been utilized in traditional Chinese medicine for a long time. It exhibits several pharmacological properties, such as anticancer effects, anti-inflammatory effects, and antianxiety effects. However, the poor aqueous solubility of honokiol has impeded clinical applications. Materials and methods In the present study, we adopted the liquid antisolvent precipitation (LAP) technique to prepare nanoparticles of honokiol for enhancement of solubility and bioavailability. Moreover, the honokiol nanoparticles obtained were investigated and evaluated in terms of morphology, physicochemical properties, saturation solubility, dissolution in vitro, bioavailability in vivo, toxicity, and the inhibitory effect on growth of HepG2 cells. Results The obtained honokiol nanoparticles existed nearly in spherical shape and could be turned into amorphous structure by the LAP method. Moreover, the solubility of the honokiol nanoparticles was extremely higher than that of free honokiol, and the nanoparticle dissolution rate was also higher than that of free honokiol, which was about 20.41 times and 26.2 times than that of free honokiol in artificial gastric juice and in artificial intestinal juice. The area under the curve [AUC(0–t)] value of honokiol nanoparticles was about 6.52 times greater than that of free honokiol; therefore, the honokiol nanoparticles had a higher bioavailability than free honokiol but were innoxious to the organs of rats. Additionally, the honokiol nanoparticles exhibited a higher inhibition of HepG2 cells due to their lower IC50 compared to free honokiol. Conclusion Honokiol nanoparticles have high solubility and bioavailability, and can become a new oral drug formulation and produce a better response for its clinical applications.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Northeast Forestry University, Harbin, China
| | - Li Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Lingling Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Siying Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Peiyan Liu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| |
Collapse
|
184
|
Wacker KT, Weems AC, Lim SM, Khan S, Felder SE, Dove AP, Wooley KL. Harnessing the Chemical Diversity of the Natural Product Magnolol for the Synthesis of Renewable, Degradable Neolignan Thermosets with Tunable Thermomechanical Characteristics and Antioxidant Activity. Biomacromolecules 2018; 20:109-117. [DOI: 10.1021/acs.biomac.8b00771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin T. Wacker
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Andrew C. Weems
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Soon-Mi Lim
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Sarosh Khan
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Simcha E. Felder
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Andrew P. Dove
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|
185
|
Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int J Mol Sci 2018; 19:ijms19082362. [PMID: 30103472 PMCID: PMC6121321 DOI: 10.3390/ijms19082362] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.
Collapse
|
186
|
Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Honokiol and Magnolol Inhibit CXCL10 and CXCL11 Production in IL-27-Stimulated Human Oral Epithelial Cells. Inflammation 2018; 41:2110-2115. [DOI: 10.1007/s10753-018-0854-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
187
|
Bai Y, Song L, Dai G, Xu M, Zhu L, Zhang W, Jing W, Ju W. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids 2018; 135:73-78. [PMID: 29555480 DOI: 10.1016/j.steroids.2018.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023]
Abstract
Evidence showed that the stress hormone corticosterone (CORT) injection resulted in dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis implicated in major depressive disorder. Magnolol, main constituent identified in the barks of Magnolia officinalis, exerted antidepressant effects in a rat model of depression induced by chronic unpredictable mild stress in previous studies. However, its antidepressant-like effects and mechanisms have never been studied in depression model induced by CORT administration in rodents. This study aimed to investigate the antidepressant-like effects and possible mechanisms of magnolol in CORT-treated mice by utilizing a combination of behavioral and biochemical analysis. The depressive model was developed by subcutaneous injection of CORT for 21 days at a dose of 20 mg/kg. CORT administration formed depressive-like behaviors in mice, as indicated by increased immobility time in the forced swim test (FST) and tail suspension test (TST), as well as decreased sucrose intake in sucrose preference test (SPT). Moreover, we also found that CORT levels in serum were significantly increased, along with the decrease of brain-derived neurotrophic factor (BDNF) mRNA, BDNF protein, 5-hydroxytryptamine (5-HT) and norepinephrine (NE) levels in the hippocampus. Treatment with magnolol alleviated depressive-like behaviors, reduced the levels of CORT, and improved the levels of BDNF protein, 5-HT, and NE compared with those in CORT-treated mice. These findings indicated that magnolol possessed antidepressant effects in mice exposed to CORT, which might be partially related to modulate HPA axis, up-regulate BDNF expression and increase neurotransmitters levels in the hippocampus.
Collapse
Affiliation(s)
- Yongtao Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lihua Song
- The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Meijuan Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lijing Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Weidong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wen Jing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
188
|
Park CH, Park SY, Lee SY, Kim JK, Park SU. Analysis of Metabolites in White Flowers of Magnolia Denudata Desr. and Violet Flowers of Magnolia Liliiflora Desr. Molecules 2018; 23:E1558. [PMID: 29954130 PMCID: PMC6100211 DOI: 10.3390/molecules23071558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
A total of seven phenolics and 44 metabolites was profiled in white flowers of Magnolia denudata and violet flowers of Magnolia liliiflora using high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). Seven phenylpropanoid compounds were identified in white flowers by liquid chromatography mass spectrometry (LC-MS). An HPLC analysis showed that phenylpropanoid accumulation in violet flowers was 1.48 times higher than that in white flowers. Furthermore, superoxide dismutase (SOD)-like activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were determined to investigate the antioxidant properties of secondary metabolites in different flowers. Violet flowers showed higher SOD-like and DPPH activity than white flowers. In addition, anti-inflammatory activity measured using a nitric oxide assay was higher in violet flowers than in white flowers. Our results provide valuable information on the relationship between primary and secondary metabolites, and synergistic antioxidant and anti-inflammatory properties derived from phenolic compounds in different colored flowers.
Collapse
Affiliation(s)
- Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Soo-Yun Park
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeonbuk 54875, Korea.
| | - Sook Young Lee
- Regional Innovation Center for Dental Science & Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
189
|
Tang H, Zhang Y, Li D, Fu S, Tang M, Wan L, Chen K, Liu Z, Xue L, Peng A, Ye H, Chen L. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem 2018; 156:190-205. [PMID: 30006164 DOI: 10.1016/j.ejmech.2018.06.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023]
Abstract
EGFR T790 M accounts for 50% to 60% of cases of non-small-cell lung carcinoma (NSCLC) resistance to the first-generation EGFR tyrosine kinase inhibitors (TKIs). Hence, identifying novel compounds with activity against TKIs resistant is of great value. In this study, twenty honokiol and magnolol derivatives were isolated from the EtOH extract of Magnolia officinalis and the antiproliferative activity was evaluated on HCC827 (19del EGFR mutation), H1975 (L858 R/T790 M EGFR mutation), and H460 (KRAS mutation) cell lines. Among the isolated compounds, piperitylmagnolol (a 3-substituted magnolol derivative) showed the best antiproliferative activity against those three cell lines with the IC50 values of 15.85, 15.60 and 18.60 μM, respectively, which provided a direction for the structural modification of magnolol. Further structural modification led to the synthesis of thirty-one magnolol derivatives, and compounds A13, C1, and C2 exhibited significant and broad-spectrum antiproliferative activity with the IC50 values ranging from 4.81 to 13.54 μM, which were approximately 4- and 8-fold more potent than those of honokiol and magnolol, respectively. Moreover, their aqueous solubility was remarkably improved with 12-, 400- and 105 fold greater than those of honokiol and magnolol. Anti-tumor mechanism research revealed that these three compounds were able to induce cell cycle arrest at G0/G1 phase, cause efficient apoptosis in H1975 cells, and also prevent the migration of HUVECs in a dose-dependent manner through Cdk2, Cdk4, Cyclin E, and Cyclin D1 inhibition as well as up-regulation of cleaved-PARP and cleaved-caspase 3 levels. In in vivo antitumor activity, C2 (10, 30 and 100 mg/kg, po) dose-dependently inhibited the tumor growth in H1975 xenograft model with the tumor inhibition rate of 46.3%, 59.3% and 61.2% respectively, suggesting that C2 is a potential oral anticancer agent deserving further investigation.
Collapse
Affiliation(s)
- Huan Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yongguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Suhong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Wan
- School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Kai Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610041, PR China
| | - Zhuowei Liu
- Guang dong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, 523325, PR China
| | - Linlin Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Aihua Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, PR China.
| |
Collapse
|
190
|
Kim SB, Kim KS, Ryu HM, Hong SH, Kim BK, Kim DD, Park JW, Yoon IS. Modulation of Rat Hepatic CYP1A and 2C Activity by Honokiol and Magnolol: Differential Effects on Phenacetin and Diclofenac Pharmacokinetics In Vivo. Molecules 2018; 23:molecules23061470. [PMID: 29914211 PMCID: PMC6100004 DOI: 10.3390/molecules23061470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 12/25/2022] Open
Abstract
Honokiol (2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol) and magnolol (4-Allyl-2-(5-allyl-2-hydroxy-phenyl)phenol) are the major active polyphenol constituents of Magnolia officinalis (Magnoliaceae) bark, which has been widely used in traditional Chinese medicine (Houpu Tang) for the treatment of various diseases, including anxiety, stress, gastrointestinal disorders, infection, and asthma. The aim of this study was to investigate the direct effects of honokiol and magnolol on hepatic CYP1A and 2C-mediated metabolism in vitro using rat liver microsomes and in vivo using the Sprague-Dawley rat model. Honokiol and magnolol inhibited in vitro CYP1A activity (probe substrate: phenacetin) more potently than CYP2C activity (probe substrate: diclofenac): The mean IC50 values of honokiol for the metabolism of phenacetin and diclofenac were 8.59 μM and 44.7 μM, while those of magnolol were 19.0 μM and 47.3 μM, respectively. Notably, the systemic exposure (AUC and Cmax) of phenacetin, but not of diclofenac, was markedly enhanced by the concurrent administration of intravenous honokiol or magnolol. The differential effects of the two phytochemicals on phenacetin and diclofenac in vivo pharmacokinetics could at least be partly attributed to their lower IC50 values for the inhibition of phenacetin metabolism than for diclofenac metabolism. In addition, the systemic exposure, CL, and Vss of honokiol and magnolol tended to be similar between the rat groups receiving phenacetin and diclofenac. These findings improve our understanding of CYP-mediated drug interactions with M. officinalis and its active constituents.
Collapse
Affiliation(s)
- Sang-Bum Kim
- New Drug Development Center, Daegu‒Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kyu-Sang Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Heon-Min Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Seong-Ho Hong
- Biomedicine Lab, CKD Research Institute, Gyeonggi 16995, Korea.
| | - Bo-Kyoung Kim
- New Drug Development Center, Daegu‒Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
191
|
Avtanski D, Poretsky L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol Med 2018; 24:29. [PMID: 30134816 PMCID: PMC6016885 DOI: 10.1186/s10020-018-0032-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common cancer among women as metastasis is currently the main cause of mortality. Breast cancer cells undergoing metastasis acquire resistance to death signals and increase of cellular motility and invasiveness.Plants are rich in polyphenolic compounds, many of them with known medicinal effects. Various phyto-polyphenols have also been demonstrated to suppress cancer growth. Their mechanism of action is usually pleiotropic as they target multiple signaling pathways regulating key cellular processes such as proliferation, apoptosis and differentiation. Importantly, some phyto- polyphenols show low level of toxicity to untransformed cells, but selective suppressing effects on cancer cells proliferation and differentiation.In this review, we summarize the current information about the mechanism of action of some phyto-polyphenols that have demonstrated anti-carcinogenic activities in vitro and in vivo. Gained knowledge of how these natural polyphenolic compounds work can give us a clue for the development of novel anti-metastatic agents.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Gerald J. Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, 10022, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, New York, NY, 10022, USA.
| | - Leonid Poretsky
- Gerald J. Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, 10022, USA
| |
Collapse
|
192
|
Liu W, Zhu X. Simultaneous determination of Magnolol and Honokiol by amino acid ionic liquid synchronous fluorescence spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:141-147. [PMID: 29448168 DOI: 10.1016/j.saa.2018.01.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
A novel method based on amino acid ionic liquids (AAILs) as an additive synchronous fluorescence spectrometry is proposed for simultaneous determination of magnolol (MN) and honokiol (HN) in traditional Chinese medicine Houpu. The overlapping fluorescence spectrum of MN and HN could be completely separated in the AAILs medium. Experiment parameters (the type and concentration of AAILs, pH values and temperature) were discussed. The detection limits of MN and HN reached 1.46ng/mL, 0.92ng/mL and the recovery rates ranged from 98.6%-100.7%, 99.7%-100.6%, respectively. This methods was successfully employed for simultaneously determination of MN and HN in real samples. No significant differences could be found in the results of this method and the pharmacopoeia of People's Republic of China 2015 (Ch.P.2015). The experiment mechanisms were discussed by the Gaussian simulation and fluorescence quantum yield.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiashi Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
193
|
Oh S, Gadde UD, Bravo D, Lillehoj EP, Lillehoj HS. Growth-Promoting and Antioxidant Effects of Magnolia Bark Extract in Chickens Uninfected or Co-Infected with Clostridium perfringens and Eimeria maxima as an Experimental Model of Necrotic Enteritis. Curr Dev Nutr 2018; 2:nzy009. [PMID: 30019032 PMCID: PMC6041942 DOI: 10.1093/cdn/nzy009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Magnolia tree bark has been widely used in traditional Asian medicine. However, to our knowledge, no studies have been reported investigating the effects of dietary supplementation with magnolia bark extract in chickens. OBJECTIVE We tested the hypothesis that dietary supplementation of chickens with a Magnolia officinalis bark extract would increase growth performance in uninfected and Eimeria maxima/Clostridium perfringens co-infected chickens. METHODS A total of 168 chickens were fed from hatch either a standard diet or a diet supplemented with 0.33 mg or 0.56 mg M. officinalis bark extract/kg (M/H low or M/H high, respectively) from days 1 to 35. At day 14, half of the chickens were orally infected with E. maxima, followed by C. perfringens infection at day 18 to induce experimental avian necrotic enteritis. Daily feed intake, feed conversion ratio, body weight gain, and final body weight were measured as indicators of growth performance. Serum α1-acid glycoprotein (AGP) concentrations were measured as an indicator of systemic inflammation, and intestinal lesion scores were determined as a marker of disease progression. Transcript levels for catalase, heme oxygenase 1, and superoxide dismutase in the intestine, liver, spleen, and skeletal muscle were measured as indicators of antioxidant status. RESULTS Growth performance increased between days 1 and 35 in uninfected and E. maxima/C. perfringens co-infected chickens fed M/H-low or M/H-high diets compared with unsupplemented controls. Gut lesion scores were decreased, whereas AGP concentrations were unchanged, in co-infected chickens fed magnolia-supplemented diets compared with unsupplemented controls. In general, transcripts for antioxidant enzymes increased in chickens fed magnolia-supplemented diets compared with unsupplemented controls, and significant interactions between dietary supplementation and co-infection were observed for all antioxidant enzyme transcript levels. CONCLUSION Magnolia bark extract might be useful for future development of dietary strategies to improve poultry health, disease resistance, and productivity without the use of antibiotic growth promoters.
Collapse
Affiliation(s)
- Sungtaek Oh
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Ujvala Deepthi Gadde
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | | | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| |
Collapse
|
194
|
Fang JY, Huang TH, Hung CF, Huang YL, Aljuffali IA, Liao WC, Lin CF. Derivatization of honokiol by integrated acetylation and methylation for improved cutaneous delivery and anti-inflammatory potency. Eur J Pharm Sci 2018; 114:189-198. [PMID: 29241737 DOI: 10.1016/j.ejps.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 01/17/2023]
Abstract
A set of honokiol derivatives was synthesized to evaluate skin permeation and bioactivity. The reaction for derivatization included acetylation and methylation. The anti-inflammatory activity against neutrophils and macrophages was examined. The experimental setup for the assessment of cutaneous absorption was the in vitro Franz diffusion assembly. Honokiol and its derivatives significantly downregulated superoxide anion and elastase production in neutrophils, with honokiol showing the greatest inhibition. All derivatives could be completely hydrolyzed to the parent compounds after passing into the skin. The skin deposition of honokiol at an infinite dose (3mM) was 0.33nmol/mg 4'-O-acetylhonokiol (AH), and 2,4'-diacetylhonokiol (DAH) exhibited comparable or less absorption than honokiol. The integrated acetylation and methylation (2-O-acetyl-4'-O-methylhonokiol, AMH) led to a 10.5-fold improvement of absorption compared to honokiol. AMH was advantageous for the targeted cutaneous treatment due to the high skin deposition and minimal penetration across the skin (8.40nmol/cm2 compared to 93.49nmol/cm2 for honokiol). The predicted therapeutic index for superoxide and interleukin (IL)-6 inhibition was much higher for topically applied AMH than for the other penetrants tested. The total polarity surface and hydrogen bond acceptor number calculated by molecular modeling were the parameters used to anticipate the cutaneous absorption. Our data suggest that AMH is a potent and safe candidate for cutaneous inflammation therapy.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan
| | - Yu-Ling Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wei-Chun Liao
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chwan-Fwu Lin
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
195
|
Taheri Kal Koshvandi A, Heravi MM, Momeni T. Current Applications of Suzuki–Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An update. Appl Organomet Chem 2018. [DOI: 10.10.1002/aoc.4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Tayebeh Momeni
- Department of ChemistryAlzahra University Vanak Tehran Iran
| |
Collapse
|
196
|
The effect of magnolol on Ca 2+ homeostasis and its related physiology in human oral cancer cells. Arch Oral Biol 2018; 89:49-54. [PMID: 29471192 DOI: 10.1016/j.archoralbio.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Magnolol, a polyphenol compound from herbal medicines, was shown to alter physiology in various cell models. However, the effect of magnolol on Ca2+ homeostasis and its related physiology in oral cancer cells is unclear. This study examined whether magnolol altered Ca2+ signaling and cell viability in OC2 human oral cancer cells. METHODS Cytosolic Ca2+ concentrations ([Ca2+]i) in suspended cells were measured by using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. RESULTS Magnolol at concentrations of 20-100 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 50%. Magnolol (100 μM) induced Mn2+ influx suggesting of Ca2+ entry. Magnolol-induced Ca2+ entry was partially suppressed by protein kinase C (PKC) regulators, and inhibitors of store-operated Ca2+ channels. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished magnolol-evoked [Ca2+]i rises. Conversely, treatment with magnolol abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 partially inhibited magnolol-induced [Ca2+]i rises. Magnolol at 20-100 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). CONCLUSIONS Together, in OC2 cells, magnolol induced [Ca2+]i rises by evoking partially PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Magnolol also caused Ca2+-independent cell death. Therefore, magnolol-induced cytotoxicity may not be involved in activation mechanisms associated with intracellular Ca2+ mobilization in oral cancer cells.
Collapse
|
197
|
Baschieri A, Pulvirenti L, Muccilli V, Amorati R, Tringali C. Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds. Org Biomol Chem 2018; 15:6177-6184. [PMID: 28695220 DOI: 10.1039/c7ob01195d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (kinh) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the kinh value, being 2.4 × 105 M-1 s-1 and 3.3 × 105 M-1 s-1 for the mono and the dihydroxy derivatives respectively (kinh of magnolol is 6.1 × 104 M-1 s-1). The di-methoxylated derivative is less reactive than magnolol (kinh = 1.1 × 104 M-1 s-1), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 104 M-1 s-1). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy.
| | - Luana Pulvirenti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy.
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
198
|
Maioli M, Basoli V, Carta P, Fabbri D, Dettori MA, Cruciani S, Serra PA, Delogu G. Synthesis of magnolol and honokiol derivatives and their effect against hepatocarcinoma cells. PLoS One 2018; 13:e0192178. [PMID: 29415009 PMCID: PMC5802897 DOI: 10.1371/journal.pone.0192178] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/17/2018] [Indexed: 01/12/2023] Open
Abstract
The hepatocellular carcinoma is one of the most common malignant tumour with high level of mortality rate due to its rapid progression and high resistance to conventional chemotherapies. Thus, the search for novel therapeutic leads is of global interest. Herein, a small set of derivatives of magnolol 1 and honokiol 2, the main components of Magnolia grandiflora and Magnolia obovata, were evaluated in in vitro assay using tumoral hepatocytes. The pro-drug approach was applied as versatile strategy to the improve bioactivity of the compounds by careful transformation of the hydroxyl groups of magnolol 1 and honokiol 2 in suitable ester derivatives. Compounds 10 and 11 resulted to be more potent than the parental honokiol 2 at concentration down to 1 μM with complete viability of treated fibroblast cells up to concentrations of 80 μM. The combination of a butyrate ester and a bare phenol-OH group in the honokiol structure seemed to play a significant role in the antiproliferative activity identifying an interesting pharmacological clue against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Bologna, Italy
- Institute of Neurogenetics and Neuropharmacology, National Research Council, Monserrato, Cagliari, Italy
- Centre for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paola Carta
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Davide Fabbri
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Bologna, Italy
| | - Pier Andrea Serra
- Centre for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanna Delogu
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
- * E-mail:
| |
Collapse
|
199
|
Taheri Kal Koshvandi A, Heravi MM, Momeni T. Current Applications of Suzuki–Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An update. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4210] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Tayebeh Momeni
- Department of ChemistryAlzahra University Vanak Tehran Iran
| |
Collapse
|
200
|
Jeong YH, Hur HJ, Jeon EJ, Park SJ, Hwang JT, Lee AS, Lee KW, Sung MJ. Honokiol Improves Liver Steatosis in Ovariectomized Mice. Molecules 2018; 23:molecules23010194. [PMID: 29342107 PMCID: PMC6017725 DOI: 10.3390/molecules23010194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, and is associated with the development of metabolic syndrome. Postmenopausal women with estrogen deficiency are at a higher risk of progression to NAFLD. Estrogen has a protective effect against the progression of the disease. Currently, there are no safe and effective treatments for these liver diseases in postmenopausal women. Honokiol (Ho), a bioactive natural product derived from Magnolia spp, has anti-inflammatory, anti-angiogenic, and anti-oxidative properties. In our study, we investigated the beneficial effects of Ho on NAFLD in ovariectomized (OVX) mice. We divided the mice into four groups, as follows: SHAM, OVX, OVX+β-estradiol (0.4 mg/kg of bodyweight), and OVX+Ho (50 mg/kg of diet). Mice were fed diets with/without Ho for 12 weeks. The bodyweight, epidermal fat, and weights of liver tissue were lower in the OVX group than in the other groups. Ho improved hepatic steatosis and reduced proinflammatory cytokine levels. Moreover, Ho markedly downregulated plasma lipid levels. Our results indicate that Ho ameliorated OVX-induced fatty liver and inflammation, as well as associated lipid metabolism. These findings suggest that Ho may be hepatoprotective against NAFLD in postmenopausal women.
Collapse
Affiliation(s)
- Yeon-Hui Jeong
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Haeng Jeon Hur
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Eun-Joo Jeon
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Su-Jin Park
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Jin Taek Hwang
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Ae Sin Lee
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Kyong Won Lee
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Mi Jeong Sung
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| |
Collapse
|