151
|
Yang Q, Huang DD, Li DG, Chen B, Zhang LM, Yuan CL, Huang HH. Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3β signaling pathway. Cell Mol Biol Lett 2019; 24:17. [PMID: 30858867 PMCID: PMC6390582 DOI: 10.1186/s11658-019-0141-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Objective We investigated the protective effect of tetramethylpyrazine (TMP) on injury related to acute myocardial ischemia (AMI) induced by isoproterenol (ISO). Materials and methods Rats were randomly assigned to five groups: control, ISO, ISO + propranolol (10 mg/kg), ISO + TMP (10 mg/kg) and ISO + TMP (20 mg/kg). The rats in the three ISO + groups were pretreated with propranolol or TMP, while the rats in the control and ISO groups were pretreated with an equal volume of saline. Afterwards, the rats in the four administration groups were subcutaneously injected with ISO for two consecutive days. The levels of creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β in the serum were measured using ELISA. The expressions of B-cell lymphoma-associated X-2 (Bax-2), B-cell lymphoma-2 (Bcl-2), phosphoinositide-3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase 3β (GSK-3β), MDA5 and SOD1 were determined using western blotting assay. The phosphorylation of PI3K, Akt and GSK-3β were also determined using western blotting assay. The left ventricles of the rats were extracted and stained using hematoxylin and eosin (H&E). The ST segment was recorded using electrocardiograms (ECGs). Results Administration of TMP (10, 20 mg/kg) reduced the levels of MDA and CK and the activities of SOD and LDH in the serum. Pretreatment with TMP significantly reduced the levels of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α. Treatment with TMP also improved the histopathological alteration and decreased the ST elevation. Furthermore, TMP ameliorated the expressions of Cu, SOD1, MDA5, Bax-2, Bcl-2, p-PI3K, p-Akt and p-GSK-3β in ISO-induced rats. Conclusions Tetramethylpyrazine protected against injury due to AMI by regulating the PI3K/Akt /GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Qing Yang
- 1Blood Transfusion Department, First Hospital of Jilin University, Changchun, Jilin China
| | - Dan Dan Huang
- 2Preclinical School of North Sichuan Medical College, Nanchong, Sichuan China
| | - Da Guang Li
- 1Blood Transfusion Department, First Hospital of Jilin University, Changchun, Jilin China
| | - Bo Chen
- 1Blood Transfusion Department, First Hospital of Jilin University, Changchun, Jilin China
| | - Ling Min Zhang
- 1Blood Transfusion Department, First Hospital of Jilin University, Changchun, Jilin China
| | - Cui Ling Yuan
- 1Blood Transfusion Department, First Hospital of Jilin University, Changchun, Jilin China
| | - Hong Hong Huang
- 3Faculty of Chinese Medical Science, Guangxi University of Chinese Medicine, No. 13 Wuhe Road, Qingxiu District, Nanning, 530222 Guangxi China
| |
Collapse
|
152
|
Xie L, Hu D, Qin H, Zhang W, Zhang S, Feng Y, Yao H, Xiao Y, Yao K, Huang X. In vivo gum arabic-coated tetrahydrobiopterin protects against myocardial ischemia reperfusion injury by preserving eNOS coupling. Life Sci 2019; 219:294-302. [PMID: 30668954 DOI: 10.1016/j.lfs.2019.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
AIMS Exogenous tetrahydrobiopterin (BH4), an indispensable cofactor of endothelial nitric oxide synthase (eNOS), supplementation has been proved to be of advantage to improve cardiovascular function. Nevertheless, due to its highly redox-sensitive and easy to be oxidized, there is an urgent need to develop an appropriate BH4 formulation for clinical therapy. Gum Arabic (GA) has been considered as an alternative biopolymer for the stabilization and coating of drugs. The effects of GA on protecting BH4 from being oxidized were investigated in a rat model of myocardial ischemia-reperfusion (I/R). MAIN METHODS Rats were subjected to 60-min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic GA-coated BH4 supplementation (10 mg/kg, oral). Myocardial infarction, fibrotic area and left ventricle ejection fraction were correlated with cardiac BH4 content, eNOS protein, NOS enzyme activity, and ROS/NO generation. KEY FINDINGS Pretreatment of rats with GA-coated 6R-BH4, 24 h before myocardial ischemia, resulted in smaller myocardial infarction, improved left ventricular function and inhibited fibrosis, correlated with maintained high levels of cardiac BH4 content, preserved eNOS activation and dimerization, and decreased ROS generation. However in uncoated group, 6R-BH4 treatment did not reduce acute and chronic myocardial I/R injury compared with control I/R rats, which was closely related with the marked loss of myocardial BH4 levels during I/R. SIGNIFICANCE These findings provide evidence that in vivo pre-ischemic oral GA-coated BH4 administration preserves eNOS function secondary to maintaining cardiac BH4 content, and confers cardioprotection after I/R.
Collapse
Affiliation(s)
- Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, China
| | - Huan Qin
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Wenliang Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Shiyao Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Yuan Feng
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Haozhe Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Ying Xiao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Kai Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China.
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| |
Collapse
|
153
|
Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel) 2019; 11:cancers11010112. [PMID: 30669417 PMCID: PMC6357097 DOI: 10.3390/cancers11010112] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a mainstay treatment for many types of cancer and kills cancer cells via generation of reactive oxygen species (ROS). Incorporating radiation with pharmacological ROS inducers, therefore, has been widely investigated as an approach to enhance aerobic radiosensitization. However, this strategy was overlooked in hypoxic counterpart, one of the most important causes of radiotherapy failure, due to the notion that hypoxic cells are immune to ROS insults because of the shortage of ROS substrate oxygen. Paradoxically, evidence reveals that ROS are produced more in hypoxic than normoxic cells and serve as signaling molecules that render cells adaptive to hypoxia. As a result, hypoxic tumor cells heavily rely on antioxidant systems to sustain the ROS homeostasis. Thereby, they become sensitive to insults that impair the ROS detoxification network, which has been verified in diverse models with or without radiation. Of note, hypoxic radioresistance has been overviewed in different contexts. To the best of our knowledge, this review is the first to systemically summarize the interplay among radiation, hypoxia, and ROS, and to discuss whether perturbation of ROS homeostasis could provide a new avenue to tackle hypoxic radioresistance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Melissa Van De Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
154
|
Autophagy in Chronic Kidney Diseases. Cells 2019; 8:cells8010061. [PMID: 30654583 PMCID: PMC6357204 DOI: 10.3390/cells8010061] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular recycling process involving self-degradation and reconstruction of damaged organelles and proteins. Current evidence suggests that autophagy is critical in kidney physiology and homeostasis. In clinical studies, autophagy activations and inhibitions are linked to acute kidney injuries, chronic kidney diseases, diabetic nephropathies, and polycystic kidney diseases. Oxidative stress, inflammation, and mitochondrial dysfunction, which are implicated as important mechanisms underlying many kidney diseases, modulate the autophagy activation and inhibition and lead to cellular recycling dysfunction. Abnormal autophagy function can induce loss of podocytes, damage proximal tubular cells, and glomerulosclerosis. After acute kidney injuries, activated autophagy protects tubular cells from apoptosis and enhances cellular regeneration. Patients with chronic kidney diseases have impaired autophagy that cannot be reversed by hemodialysis. Multiple nephrotoxic medications also alter the autophagy signaling, by which the mechanistic insights of the drugs are revealed, thus providing the unique opportunity to manage the nephrotoxicity of these drugs. In this review, we summarize the current concepts of autophagy and its molecular aspects in different kidney cells pathophysiology. We also discuss the current evidence of autophagy in acute kidney injury, chronic kidney disease, toxic effects of drugs, and aging kidneys. In addition, we examine therapeutic possibilities targeting the autophagy system in kidney diseases.
Collapse
|
155
|
Romo AIB, Dibo VS, Abreu DS, Carepo MSP, Neira AC, Castillo I, Lemus L, Nascimento OR, Bernhardt PV, Sousa EHS, Diógenes ICN. Ascorbyl and hydroxyl radical generation mediated by a copper complex adsorbed on gold. Dalton Trans 2019; 48:14128-14137. [DOI: 10.1039/c9dt01726g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemistry, nuclease assays, and EPR were used to detect ascorbyl and hydroxyl radical generation by a copper complex adsorbed on gold.
Collapse
|
156
|
Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephrol 2019; 34:1167-1174. [PMID: 29860579 PMCID: PMC6366561 DOI: 10.1007/s00467-018-3984-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR) injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently under exploration and may have potential in ameliorating AKI in children in the future.
Collapse
Affiliation(s)
- Jack L Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Timothy E Beach
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
157
|
Yang GZ, Xue FS, Liu YY, Li HX, Liu Q, Liao X. Feasibility Analysis of Oxygen-Glucose Deprivation-Nutrition Resumption on H9c2 Cells In vitro Models of Myocardial Ischemia-Reperfusion Injury. Chin Med J (Engl) 2018; 131:2277-2286. [PMID: 30246713 PMCID: PMC6166467 DOI: 10.4103/0366-6999.241809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Oxygen-glucose deprivation-nutrition resumption (OGD-NR) models on H9c2 cells are commonly used in vitro models of simulated myocardial ischemia-reperfusion injury (MIRI), but no study has assessed whether these methods for establishing in vitro models can effectively imitate the characteristics of MIRI in vivo. This experiment was designed to analyze the feasibility of six OGD-NR models of MIRI. Methods: By searching the PubMed database using the keywords “myocardial reperfusion injury H9c2 cells,” we obtained six commonly used OGD-NR in vitro models of MIRI performed on H9c2 cells from more than 400 published papers before January 30, 2017. For each model, control (C), simulated ischemia (SI), and simulated ischemia-reperfusion (SIR) groups were assigned, and cell morphology, lactate dehydrogenase (LDH) release, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and inflammatory cytokines were examined to evaluate the characteristics of cell injury. Subsequently, a coculture system of cardiomyocyte-endothelial-macrophage was constructed. The coculture system was dealt with SI and SIR treatments to test the effect on cardiomyocytes survival. Results: For models 1, 2, 3, 4, 5, and 6, SI treatment caused morphological damage to cells, and subsequent SIR treatment did not cause further morphological damage. In the models 1, 2, 3, 4, 5 and 6, LDH release was significantly higher in the SI groups than that in the C group (P < 0.05), and was significantly lower in the SIR groups than that in the SI groups (P < 0.05), except for no significant differences in the LDH release between C, SI and SIR groups in model 6 receiving a 3-h SI treatment. In models 1, 2, 3, 4, 5, and 6, compared with the C group, ATP levels of the SI groups significantly decreased (P < 0.05), ROS levels increased (P < 0.05), and MMP levels decreased (P < 0.05). Compared with the SI group, ATP level of the SIR groups was significantly increased (P < 0.05), and there was no significant ROS production, MMP collapse, and over inflammatory response in the SIR groups. In a coculture system of H9c2 cells-endothelial cells-macrophages, the proportion of viable H9c2 cells in the SIR groups was not reduced compared with the SI groups. Conclusion: All the six OGD-NR models on H9c2 cells in this experiment can not imitate the characteristics of MIRI in vivo and are not suitable for MIRI-related study.
Collapse
Affiliation(s)
- Gui-Zhen Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Fu-Shan Xue
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Ya-Yang Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Hui-Xian Li
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Qing Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Xu Liao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| |
Collapse
|
158
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
159
|
Lei F, Wang W, Fu Y, Wang J, Zheng Y. Oxidative stress and mitochondrial dysfunction in parafacial respiratory group induced by maternal cigarette smoke exposure in rat offspring. Free Radic Biol Med 2018; 129:169-176. [PMID: 30193892 DOI: 10.1016/j.freeradbiomed.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 01/06/2023]
Abstract
Cigarette smoke (CS) exposure negatively affects neurodevelopment. We established a CS exposure rat model to determine how maternal CS exposure induces oxidative stress and mitochondrial dysfunction in parafacial respiratory group (pFRG) essential to central chemoreceptive regulation of normal breathing. Pregnant rats were exposed to CS during gestational days 1-20, and the offspring were studied on postnatal day 2. Our data showed that maternal CS exposure resulted in elevated accumulation of ROS, which left a footprint on DNA and lipid with increases in 8-hydroxy-2'-deoxyguanosine and malondialdehyde contents. Furthermore, maternal CS exposure induced decreases in manganese superoxide dismutase, catalase and glutathione reductase activities as well as reduction in glutathione content in pFRG in the offspring. Moreover, maternal exposure to CS led to mitochondrial ultrastructure changes, mitochondrial swelling, reduction in ATP generation, loss of mitochondrial membrane potential and increase in mitochondrial DNA copy number. These findings suggest that maternal exposure to CS alters normal development of pFRG that is critical for normal respiratory control.
Collapse
Affiliation(s)
- Fang Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yating Fu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Ji Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
160
|
Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol 2018; 234:10726-10740. [PMID: 30565678 DOI: 10.1002/jcp.27745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Ischemia-reperfusion (I/R) injury often leads to myocardial apoptosis and necrosis. Studies have demonstrated the role microRNAs (miRs) played in myocardial I/R injury. Thus, we established a myocardial I/R injury model and a thoracic epidural anesthesia (TEA) model in mice to explore whether microRNA-374 (miR-374) affects myocardial I/R injury. We collected myocardial tissues to evaluate whether TEA exerts a protection effect on myocardial tissues. In addition, the levels of miR-374, dystrobrevin alpha (DTNA), and the statue of the Notch1 axis were detected. Subsequently, cardiomyocytes extracted from TEA mice were treated to regulate their levels of miR-374 and DTNA. After that, cell viability, cell cycle distribution, and apoptosis of cardiomyocytes were assessed. This was followed by the detection of the myocardial infarction area. The mice models of myocardial I/R injury were associated with poorly expressed miR-374 and highly expressed DTNA. TEA was found to protect myocardial tissues against myocardial I/R injury by elevating miR-374 and reducing DTNA. Dual-luciferase reporter assay validated that DTNA was the target gene of miR-374. Cardiomyocytes with overexpressed miR-374 were shown to have downregulated DTNA levels and blocked Notch1 axis. Overexpressed miR-374 was also found to promote the viability and inhibit the apoptosis of cardiomyocytes, as well as to increase the number of cells arrested in the S phase. In accordance with this, the myocardial infarction area was decreased with the upregulated miR-347 and downregulated DTNA. Collectively, these results demonstrated that, by inhibiting the activity of DTNA-mediated Notch1 axis, miR-374 could protect against myocardial I/R injury in mice after TEA.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yun Zhao
- Department of Cardiology, Cangzhou People's Hospital, Cangzhou, China
| | - Li Ying-Chun
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Lei Zhao
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Zhang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jian-Guo Yang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
161
|
Sun J, Yu X, Huangpu H, Yao F. Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1. Biomed Pharmacother 2018; 109:254-261. [PMID: 30396083 DOI: 10.1016/j.biopha.2018.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the pharmacological function and underlying regulation mechanisms of Ginsenoside-Rb3 (G-Rb3) in cardioprotection. METHODS Cultured H9C2 cells were pre-treated with gradient concentrations of G-Rb3, and subsequently challenged with hypoxia/reoxygenation (H/R) treatment. The generation of intracellular reactive oxygen species (ROS) and cellular antioxidatant capacity were quantified. Cell apoptosis was measured by flow cytometry. Myocardial ischemia reperfusion injury (MIRI) rat models constructed by coronary artery ligation surgery were orally administrated with G-Rb3 for 5 consecutive days, and then infarction area, apoptosis ratio and total antioxidant capacity (T-AOC) of myocardial tissues were measured. PERK phosphorylation inhibitor GSK2656157 and Nrf2 translocation inhibitor ML385 were co-treated with G-Rb3 to further verify the signaling pathway mediated by G-Rb3. RESULTS H/R treatment induced prominent ROS deposition and elevated cell apoptosis ratio in H9C2 cells. G-Rb3 pretreatment suppressed intracellular ROS accumulation and enhanced T-AOC, partially rescuing cardiomyocytes from oxidative stress and apoptosis induced by H/R. In vivo, the cardiac infarction area of MIRI model rats was reduced by G-Rb3 treatment via improved total antioxidant levels. In the further functional and mechanistic studies, G-Rb3 was found to induce PERK phosphorylation and nuclear translocation of transcriptional factor Nrf2, promoting the expression of antioxidative genes such as HMOX1. Inhibitors GSK2656157 and ML385 reversed the effects of G-Rb3. CONCLUSION Our studies revealed a novel mechanism of G-Rb3 to attenuates oxidative stress via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1 in vivo and in vitro, which may help us to enrich the theoretical knewledge of Ginsenoside-Rb3 in cardiopretection.
Collapse
Affiliation(s)
- Jing Sun
- Second Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiangfang District, Harbin 150040, Heilongjiang Province, PR China
| | - Xiaohong Yu
- Second Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiangfang District, Harbin 150040, Heilongjiang Province, PR China
| | - Haiquan Huangpu
- Second Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiangfang District, Harbin 150040, Heilongjiang Province, PR China
| | - Fengzhen Yao
- Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, Heilongjiang Province, PR China.
| |
Collapse
|
162
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
163
|
Mihanfar A, Nejabati HR, Fattahi A, Latifi Z, Pezeshkian M, Afrasiabi A, Safaie N, Jodati AR, Nouri M. The role of sphingosine 1 phosphate in coronary artery disease and ischemia reperfusion injury. J Cell Physiol 2018; 234:2083-2094. [PMID: 30341893 DOI: 10.1002/jcp.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) is a common cause of morbidity and mortality worldwide. Atherosclerotic plaques, as a hallmark of CAD, cause chronic narrowing of coronary arteries over time and could also result in acute myocardial infarction (AMI). The standard treatments for ameliorating AMI are reperfusion strategies, which paradoxically result in ischemic reperfusion (I/R) injury. Sphingosine 1 phosphate (S1P), as a potent lysophospholipid, plays an important role in various organs, including immune and cardiovascular systems. In addition, high-density lipoprotein, as a negative predictor of atherosclerosis and CAD, is a major carrier of S1P in blood circulation. S1P mediates its effects through binding to specific G protein-coupled receptors, and its signaling contributes to a variety of responses, including cardiac inflammation, dysfunction, and I/R injury protection. In this review, we will focus on the role of S1P in CAD and I/R injury as a potential therapeutic target.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Reza Nejabati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
164
|
Inhibition of TRAF3 expression alleviates cardiac ischemia reperfusion (IR) injury: A mechanism involving in apoptosis, inflammation and oxidative stress. Biochem Biophys Res Commun 2018; 506:298-305. [PMID: 30348527 DOI: 10.1016/j.bbrc.2018.10.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
Ischemia reperfusion (IR) injury is known as a major issue in cardiac transplantation and various pathogenesis are involved in myocardial IR injury. Here, we show that tumor necrosis factor receptor-associated factor 3 (TRAF3) was increased in hearts of mice with cardiac IR injury and in cardiomyocytes incubated with lipopolysaccharide (LPS) and H2O2. Reducing TRAF3 expression in vivo markedly reduced the infacrted area, attenuated the histological changes, improved cardiac dysfunction and injury in mice subjected to IR injury. Functional study further indicated that TRAF3 knockdown inhibited apoptosis in murine hearts of mice with cardiac IR injury and in LPS and H2O2-cotreated cardiomyocytes, as evidenced by the decreased expression of cleaved Caspase-3 and poly (ADP-ribose) polymerases (PARP). In addition, inflammatory response and oxidative stress observed in hearts of mice with IR operation were significantly alleviated by TRAF3 knockdown through inhibiting nuclear factor-κB (NF-κB) and xanthine oxidase (XO) signaling pathways, and similar results were detected in LPS and H2O2-cotreated cardiomyocytes in vitro. Moreover, the loss of TRAF3 also restrained the phosphorylated c-Jun N-terminal protein kinase (JNK) activation following cardiac IR injury. Importantly, blocking JNK activation, as TRAF3 knockdown, greatly reduced apoptosis, inflammation and reactive oxygen species (ROS) production in LPS and H2O2-cotreated cardiomyocytes. In contrast, TRAF3 knockdown-reduced apoptosis, inflammatory response and oxidative stress were significantly rescued by promoting JNK activity in LPS and H2O2-cotreated cardiomyocytes. In summary, the results of our study indicated that repressing TRAF3 expression could be served as essential therapeutic target for protection against cardiac IR injury through restraining JNK-meditated apoptosis, inflammation and the production of ROS.
Collapse
|
165
|
Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q, Liu Z, Xu Y. Involvement of JNK1/2-NF-κBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed Pharmacother 2018; 106:1063-1071. [DOI: 10.1016/j.biopha.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/20/2022] Open
|
166
|
Li L, Zhang M, Chen W, Wang R, Ye Z, Wang Y, Li X, Cai C. LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125. Acta Biochim Biophys Sin (Shanghai) 2018; 50:996-1006. [PMID: 30239560 DOI: 10.1093/abbs/gmy102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the major causes of morbidity and mortality in the world. Ischemia/reperfusion (I/R) injury-induced cardiomyocytes death is the main obstacle that limits the heart function recovery of the AMI patients. Reactive oxygen species (ROS) generated by mitochondria is the main pathological stimulus of cardiomyocytes death during heart I/R injury process. Hence, to understand the underlying mechanism of cardioymocytes proliferation and apoptosis under oxidative stress is crucial for effective AMI therapy. In this study, we found that the expression of long non-coding RNA HOTAIR was significantly downregulated in H9c2 cells in response to oxidative stimuli. HOTAIR knockdown further attenuated H9c2 cells proliferation and accelerated H9c2 cells apoptosis in oxidative stress, while HOTAIR overexpression can protect H9c2 cells from oxidative stress-induced injury. Additionally, HOTAIR acted as a sponge for miR-125. MiR-125 inhibitors restored the H9c2 cells proliferation and migration potential after HOTAIR knockdown in oxidative stress. Meanwhile, MMP2 was identified as a target of miR-125. MMP2 knockdown blocked miR-125 inhibitors' protect effect on H9c2 cells in oxidative stress. Further study demonstrated that HOTAIR inhibition can aggravate oxidative stress-induced H9c2 cells injury through HOTAIR/miR-125/MMP2 axis. Our finding revealed a novel regulatory mechanism for cardiomyocytes proliferation and apoptosis under oxidative stress conditions, which provided a therapeutic approach for myocardium repair after AMI injury.
Collapse
Affiliation(s)
- Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Mengna Zhang
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Weizhen Chen
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Ruirui Wang
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Zi Ye
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanyan Wang
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiao Li
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Cheguo Cai
- Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
167
|
Yamamoto K, Kurata Y, Inoue Y, Adachi M, Tsuneto M, Miake J, Ogino K, Ninomiya H, Yoshida A, Shirayoshi Y, Suyama Y, Yagi S, Nishimura M, Yamamoto K, Hisatome I. Pretreatment with an angiotensin II receptor blocker abolished ameliorating actions of adipose-derived stem cell sheets on cardiac dysfunction and remodeling after myocardial infarction. Regen Ther 2018; 9:79-88. [PMID: 30525078 PMCID: PMC6223028 DOI: 10.1016/j.reth.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction Cell sheets using myoblasts have been developed for the treatment of heart failure after myocardial infarction (MI) bridging to heart transplantation. Stem cells are supposed to be better than myoblasts as a source of cells, since they possess a potential to proliferate and differentiate into cardiomyocytes, and also have capacity to secrete angiogenic factors. Adipose-derived stem cells (ASCs) obtained from fat tissues are expected to be a new cell source for ASC sheet therapies. Administration of angiotensin II receptor blockers (ARBs) is a standard therapy for heart failure after MI. However, it is not known whether ARBs affect the cell sheet therapy. This study aimed to examine ameliorating effects of ASC sheets on heart failure and remodeling after MI, and how pretreatment with ARBs prior to the creation of MI and ASC sheet transplantation modifies the effects of ASC sheets. Methods ASCs were isolated from fat tissues of wild-type rats, and ASC sheets were engineered on temperature-responsive dishes. In in vitro studies using cultured cells, mRNA levels of vascular endothelial growth factor (VEGF) in ASCs were determined by RT-PCR in the presence of angiotensin II and/or an ARB, irbesartan, under normoxia and hypoxia; mRNA and protein levels of angiotensin II receptor type 1a (AT1aR), type 1b (AT1bR) and type 2 (AT2R) were also determined by RT-PCR and western blotting. In in vivo studies using a rat MI model, effects of transplanted ASC sheets and/or irbesartan on cardiac functions and remodeling after MI were evaluated by echocardiography, histological analysis and molecular biological techniques. Results In the in vitro studies, ASCs expressed higher levels of VEGF mRNA under hypoxia. They also expressed mRNA and protein of AT1aR but not AT1bR or AT2R. Under normoxia, angiotensin II increased the level of VEGF mRNA in ASCs, which was abolished by irbesartan. Under hypoxia, irbesartan reduced the level of VEGF mRNA in ASCs regardless of whether angiotensin II was present or not. In the in vivo studies, ASC sheets improved cardiac functions after MI, leading to decreased interstitial fibrosis and increased capillary density in border zones. These effects of ASC sheets were abolished by oral administration of irbesartan before MI and their transplantation. Conclusions ASC sheets ameliorated cardiac dysfunctions and remodeling after MI via increasing VEGF expression, which was abolished by pretreatment with irbesartan before the creation of MI and transplantation.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ARB, angiotensin receptor blocker
- ASC, adipose-derived stem cell
- AT1(2)R, angiotensin II receptor type 1(2)
- Adipose-derived stem cell sheet
- Angiotensin II
- CRT, cardiac resynchronization therapy
- EF, ejection fraction
- FGF, fibroblast growth factor
- FS, fractional shortening
- HGF, hepatocyte growth factor
- Irbesartan
- LVEDD, left ventricular end-diastolic diameter
- LVESD, left ventricular end-systolic diameter
- MI, myocardial infarction
- MSC, mesenchymal stem cell
- Myocardial infarction
- RAS, renin–angiotensin system
- VEGF
- VEGF, vascular endothelial growth factor
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Kenshiro Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University Faculty of Medicine, 1-1 Daigaku, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yumiko Inoue
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Maya Adachi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Junichiro Miake
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuhide Ogino
- Department of Cardiology, Tottori Red Cross Hospital, Tottori, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University, Yonago, Japan
| | - Akio Yoshida
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yoshiko Suyama
- Department of Plastic and Reconstructive Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shunjiro Yagi
- Department of Plastic and Reconstructive Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Motonobu Nishimura
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
168
|
Mechanisms of Bone Morphogenetic Protein-7 Protective Effects Against Cold Ischemia-Induced Renal Injury in Rats. Transplant Proc 2018; 50:3822-3830. [PMID: 30577274 DOI: 10.1016/j.transproceed.2018.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Deceased donor kidneys are exposed to cold ischemic insult which makes them particularly susceptible to the effects of cold ischemic injury during hypothermic preservation resulting in high rates of delayed graft function. Bone morphogenetic protein-7 (BMP-7) is a valuable reagent in the field of tissue regeneration and preservation under ischemic conditions. Following these insights, we investigated the effect of recombinant human BMP-7 (rhBMP-7) on graft preservation during cold ischemia. The study was conducted on an experimental model of kidney cold ischemia in rats. Kidneys were perfused with University of Wisconsin (UW) saline solution, rhBMP-7, or rhBMP-7 + UW, and exposed to cold ischemia for 6, 12, and 24 hours. In tubular epithelial cells of kidneys perfused with rhBMP-7 and rhBMP-7+UW solution, the expression of BMP-7 and E-cadherin was observed after 24 hours of cold ischemia. In kidneys not perfused with rhBMP-7, high expression of transforming growth factor-β and α-smooth muscle actin was found. Also, in kidneys perfused with rhBMP-7 solution, statistically higher levels of Smad1, Smad5, and Smad8 messenger RNA expressions were proven. BMP-7 maintains the morphology of kidney tissue better than UW solution during 24 hours of cold ischemia. BMP-7 prevents epithelial to mesenchymal transformation and consequently maintains epithelial phenotype of tubular cells.
Collapse
|
169
|
Chen T, Vunjak-Novakovic G. In vitro Models of Ischemia-Reperfusion Injury. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:142-153. [PMID: 30393757 PMCID: PMC6208331 DOI: 10.1007/s40883-018-0056-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/25/2018] [Indexed: 01/23/2023]
Abstract
Timely reperfusion after a myocardial infarction is necessary to salvage the ischemic region; however, reperfusion itself is also a major contributor to the final tissue damage. Currently, there is no clinically relevant therapy available to reduce ischemia-reperfusion injury (IRI). While many drugs have shown promise in reducing IRI in preclinical studies, none of these drugs have demonstrated benefit in large clinical trials. Part of this failure to translate therapies can be attributed to the reliance on small animal models for preclinical studies. While animal models encapsulate the complexity of the systemic in vivo environment, they do not fully recapitulate human cardiac physiology. Furthermore, it is difficult to uncouple the various interacting pathways in vivo. In contrast, in vitro models using isolated cardiomyocytes allow studies of the direct effect of therapeutics on cardiomyocytes. External factors can be controlled in simulated ischemia-reperfusion to allow for better understanding of the mechanisms that drive IRI. In addition, the availability of cardiomyocytes derived from human induced pluripotent stem cells (hIPS-CMs) offers the opportunity to recapitulate human physiology in vitro. Unfortunately, hIPS-CMs are relatively fetal in phenotype, and are more resistant to hypoxia than the mature cells. Tissue engineering platforms can promote cardiomyocyte maturation for a more predictive physiologic response. These platforms can further be improved upon to account for the heterogenous patient populations seen in the clinical settings and facilitate the translation of therapies. Thereby, the current preclinical studies can be further developed using currently available tools to achieve better predictive drug testing and understanding of IRI. In this article, we discuss the state of the art of in vitro modeling of IRI, propose the roles for tissue engineering in studying IRI and testing the new therapeutic modalities, and how the human tissue models can facilitate translation into the clinic.
Collapse
Affiliation(s)
- Timothy Chen
- Department of Biomedical Engineering, University in the City of New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, University in the City of New York
- Department of Medicine Columbia University in the City of New York
| |
Collapse
|
170
|
Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018; 315:H1553-H1568. [PMID: 30168729 DOI: 10.1152/ajpheart.00158.2018] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia-reperfusion injury induces a sterile inflammatory response, leading to further injury that contributes to the final infarct size. Locally released danger-associated molecular patterns lead to priming and triggering of the NOD-like receptor protein 3 inflammasome and amplification of the inflammatory response and cell death by activation of caspase-1. We review strategies inhibiting priming, triggering, or caspase-1 activity or blockade of the inflammasome-related cytokines interleukin-1β and interleukin-18, focusing on the beneficial effects in experimental models of acute myocardial infarction in animals and the initial results of clinical translational research trials.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia.,Division of Cardiothoracic Surgery, Virginia Commonwealth University , Richmond, Virginia
| | - Adolfo G Mauro
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia
| | - Zachary Cutter
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia
| | - Antonio Abbate
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia
| |
Collapse
|
171
|
Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9494052. [PMID: 30046381 PMCID: PMC6036837 DOI: 10.1155/2018/9494052] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 01/03/2023]
Abstract
Patients with diabetes are more vulnerable to myocardial ischemia/reperfusion (MI/R) injury, which is associated with excessive reactive oxygen species (ROS) generation and decreased antioxidant defense. Histone deacetylase 6 (HDAC6), a regulator of the antioxidant protein peroxiredoxin 1 (Prdx1), is associated with several pathological conditions in the cardiovascular system. This study investigated whether tubastatin A (TubA), a highly selective HDAC6 inhibitor, could confer a protective effect by modulating Prdx1 acetylation in a rat model of MI/R and an in vitro model of hypoxia/reoxygenation (H/R). Here, we found that diabetic hearts with excessive HDAC6 activity and decreased acetylated-Prdx1 levels were more vulnerable to MI/R injury. TubA treatment robustly improved cardiac function, reduced cardiac infarction, attenuated ROS generation, and increased acetylated-Prdx1 levels in diabetic MI/R rats. These results were further confirmed by an in vitro study using H9c2 cells. Furthermore, a study using Prdx1 acetyl-silencing mutants (K197R) showed that TubA only slightly attenuated H/R-induced cell death and ROS generation in K197R-transfected H9c2 cells exposed to high glucose (HG), but these differences were not statistically significant. Taken together, these findings suggest that HDAC6 inhibition reduces ROS generation and confers a protective effect against MI/R or H/R injury by modulating Prdx1 acetylation at K197.
Collapse
|
172
|
Chen X, Li X, Zhang W, He J, Xu B, Lei B, Wang Z, Cates C, Rousselle T, Li J. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism 2018; 83. [PMID: 29526538 PMCID: PMC5960613 DOI: 10.1016/j.metabol.2018.03.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AMP-activated Protein Kinase (AMPK) is a stress-activated kinase that protects against cardiomyocyte injury during ischemia and reperfusion. c-Jun N-terminal kinase (JNK), a mitogen activated protein kinase, is activated by ischemia and reperfusion. NF-κB is an important transcription factor involved in ischemia and reperfusion injury. METHODS AND RESULTS The intrinsic activation of AMPK attenuates the inflammation which occurred during ischemia/reperfusion through the modulation of the JNK mediated NF-κB signaling pathway. Rat cardiac myoblast H9c2 cells were subjected to hypoxia and/or reoxygenation to investigate the signal transduction that occurred during myocardial ischemia/reperfusion. Mitochondrial function was measured by the Seahorse XF24 V7 PS system. Hypoxia treatment triggered AMPK activation in H9c2 cells in a time dependent manner. The inhibition of hypoxic AMPK activation through a pharmacological approach (Compound C) or siRNA knockdown of AMPK α catalytic subunits caused dramatic augmentation in JNK activation, inflammatory NF-κB phosphorylation, and apoptosis during hypoxia and reoxygenation. Inhibition of AMPK activation significantly impaired mitochondrial function and increased the generation of reactive oxygen species (ROS) during hypoxia and reoxygenation. In contrast, pharmacological activation of AMPK by metformin significantly inhibited mitochondrial permeability transition pore (mPTP) opening and ROS generation. Moreover, AMPK activation significantly attenuated the JNK-NF-κB signaling cascade and inhibited mRNA and protein levels of pro-inflammatory cytokines, such as TNF-α and IL-6, during hyopoxia/reoxygenation in H9c2 cells. Intriguingly, both pharmacologic inhibition of JNK by JNK-IN-8 and siRNA knockdown of JNK signaling pathway attenuated NF-κB phosphorylation and apoptosis but did not affect AMPK activation in response to hypoxia and reoxygenation. CONCLUSIONS AMPK activation modulates JNK-NF-κB signaling cascade during hypoxia and reoxygenation stress conditions. Cardiac AMPK activation plays a critical role in maintaining mitochondrial function and inhibiting the inflammatory response caused by ischemic insults.
Collapse
Affiliation(s)
- Xu Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Wenyan Zhang
- Center for Mitochondrial and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Jie He
- Center for Mitochondrial and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Bo Xu
- Center for Mitochondrial and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Bin Lei
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhenhua Wang
- Center for Mitochondrial and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Courtney Cates
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Ji Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
173
|
Jeremic N, Zivkovic V, Srejovic I, Jeremic J, Petkovic A, Bradic J, Jakovljevic V. Effects of Ischemic and Proton Pump Inhibitors Preconditioning on Oxidative Stress of Isolated Rat Heart. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Aim of present study was to determine the participation of various biomarkers of oxidative damage: nitrite (NO2
−), superoxide anion radicals (O2
−), index of lipid peroxidation (TBARS) and hydrogen peroxide (H2O2) in coronary circulation after application of the different models of preconditioning such as ischemic and preconditioning with proton pump inhibitors.
Examining a biochemical markers of oxidative damage we did not notice any increased production values of any parameter, according to that we can hypothesize that possible occurrence of reperfusion injury after ischemia and PPIs preconditioning is not mediated by this mechanism.
Due to the very difficult and controversial application of ischemic preconditioning in clinical practice, the results of this study suggest that in the future proton pump inhibitors can contribute to the prevention of myocardial damage following ischemia
Collapse
Affiliation(s)
- Nevena Jeremic
- Department of Pharmaceutical chemistry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Anica Petkovic
- Department of Pharmacy, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
- Department of Human Pathology , 1st Moscow State Medical University IM Sechenov , Moscow , Russia
| |
Collapse
|
174
|
Prompunt E, Nernpermpisooth N, Sanit J, Kumphune S. Overexpression and pre-treatment of recombinant human Secretory Leukocyte Protease Inhibitor (rhSLPI) reduces an in vitro ischemia/reperfusion injury in rat cardiac myoblast (H9c2) cell. Biomol Concepts 2018; 9:17-32. [PMID: 29729136 DOI: 10.1515/bmc-2018-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/05/2018] [Indexed: 11/15/2022] Open
Abstract
One of the major causes of cardiac cell death during myocardial ischemia is the oversecretion of protease enzymes surrounding the ischemic tissue. Therefore, inhibition of the protease activity could be an alternative strategy for preventing the expansion of the injured area. In the present study, we investigated the effects of Secretory Leukocyte Protease Inhibitor (SLPI), by means of overexpression and treatment of recombinant human SLPI (rhSLPI) in an in vitro model. Rat cardiac myoblast (H9c2) cells overexpressing rhSLPI were generated by gene delivery using pCMV2-SLPI-HA plasmid. The rhSLPI-H9c2 cells, mock transfected cells, and wild-type (WT) control were subjected to simulated ischemia/reperfusion (sI/R). Moreover, the treatment of rhSLPI in H9c2 cells was also performed under sI/R conditions. The results showed that overexpression of rhSLPI in H9c2 cells significantly reduced sI/R-induced cell death and injury, intracellular ROS level, and increased Akt phosphorylation, when compared to WT and mock transfection (p <0.05). Treatment of rhSLPI prior to sI/R reduced cardiac cell death and injury, and intra-cellular ROS level. In addition, 400 ng/ml rhSLPI treatment, prior to sI, significantly inhibited p38 MAPK phosphorylation and rhSLPI at 400-1000 ng/ml could increase Akt phosphorylation.
Collapse
Affiliation(s)
- Eakkapote Prompunt
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nitirut Nernpermpisooth
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jantira Sanit
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sarawut Kumphune
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
175
|
Rodrigo GC, Herbert KE. Regulation of vascular function and blood pressure by circadian variation in redox signalling. Free Radic Biol Med 2018; 119:115-120. [PMID: 29106991 DOI: 10.1016/j.freeradbiomed.2017.10.381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
There is accumulating evidence that makes the link between the circadian variation in blood pressure and circadian variations in vascular contraction. The importance of vascular endothelium-derived redox-active and redox-derived species in the signalling pathways involved in controlling vascular smooth muscle contraction are well known, and when linked to the circadian variations in the processes involved in generating these species, suggests a cellular mechanism for the circadian variations in blood pressure that links directly to the peripheral circadian clock. Relaxation of vascular smooth muscle cells involves endothelial-derived relaxing factor (EDRF) which is nitric oxide (NO) produced by endothelial NO synthase (eNOS), and endothelial-derived hyperpolarising factor (EDHF) which includes hydrogen peroxide (H2O2) produced by NADPH oxidase (Nox). Both of these enzymes appear to be under the direct control of the circadian clock mechanism in the endothelial cells, and disruption to the clock results in endothelial and vascular dysfunction. In this review, we focus on EDRF and EDHF and summarise the recent findings on the influence of the peripheral circadian clock mechanism on processes involved in generating the redox species involved and how this influences vascular contractility, which may account for some of the circadian variations in blood pressure and peripheral resistance. Moreover, the direct link between the peripheral circadian clock and redox-signalling pathways in the vasculature, has a bearing on vascular endothelial dysfunction in disease and aging, which are both known to lead to dysfunction of the circadian clock.
Collapse
Affiliation(s)
- Glenn C Rodrigo
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom.
| | - Karl E Herbert
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| |
Collapse
|
176
|
Mubarak HA, Mahmoud MM, Shoukry HS, Merzeban DH, Sayed SS, Rashed LA. Protective effects of melatonin and glucagon-like peptide-1 receptor agonist (liraglutide) on gastric ischaemia-reperfusion injury in high-fat/sucrose-fed rats. Clin Exp Pharmacol Physiol 2018; 45:934-942. [PMID: 29697857 DOI: 10.1111/1440-1681.12956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 01/13/2023]
Abstract
Ischaemia-reperfusion (I-R) injury is a serious pathology that is often encountered with thrombotic events, during surgery when blood vessels are cross-clamped, and in organs for transplantation. Increased oxidative stress is the main pathology in I-R injury, as assessed in studies on the heart, kidney, and brain with little data available on gastric I-R (GI-R). Liraglutide is a GLP-1 receptor agonist that has insulinotropic and weight reducing actions, and melatonin that has been much studied as a chronotropic hormone; have also studied as being anti-oxidative stress agents. Herein, we aimed to explore the effects of liraglutide and melatonin on GI-R injury with high-fat/sucrose diet. Rats were divided into six groups; two diet-control, two melatonin- and two liraglutide-pretreated groups. All rats were subjected to 30 minutes of gastric ischaemia followed by 1 hour of reperfusion. Gastric tissues were assessed for the percentage of DNA fragmentation, myeloperoxidase activity, total oxidant status, total antioxidant capacity, oxidative stress index, BMI and histopathological examination. We showed that high-fat feeding for four weeks prior to GI-R significantly increased BMI, oxidative stress indices and decreased total antioxidant capacity, with a neutral effect on apoptosis compared to controls. Pretreatment with either melatonin (10 mg/kg per day orally) or liraglutide (25 μg/kg per day ip) reverses these effects. Furthermore, both drugs reduced weight only in HFS-fed rats. Both liraglutide and melatonin have nearly similar protective effects on gastric I-R injury through decreasing the oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hanan A Mubarak
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal M Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba S Shoukry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina H Merzeban
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Safinaz S Sayed
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
177
|
Prompunt E, Sanit J, Barrère-Lemaire S, Nargeot J, Noordali H, Madhani M, Kumphune S. The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury. Exp Ther Med 2018; 15:5231-5242. [PMID: 29904407 PMCID: PMC5996700 DOI: 10.3892/etm.2018.6097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
Protease enzymes generated from injured cells and leukocytes are the primary cause of myocardial cell damage following ischemia/reperfusion (I/R). The inhibition of protease enzyme activity via the administration of particular drugs may reduce injury and potentially save patients' lives. The aim of the current study was to investigate the cardioprotective effects of treatment with recombinant human secretory leukocyte protease inhibitor (rhSLPI) on in vitro and ex vivo models of myocardial I/R injury. rhSLPI was applied to isolated adult rat ventricular myocytes (ARVMs) subjected to simulated I/R and to ex vivo murine hearts prior to I/R injury. Cellular injury, cell viability, reactive oxygen species (ROS) levels, and levels of associated proteins were assessed. The results demonstrated that administration of rhSLPI prior to or during sI/R significantly reduced the death and injury of ARVMs and significantly reduced intracellular ROS levels in ARVMs during H2O2 stimulation. In addition, treatment of ARVMs with rhSLPI significantly attenuated p38 mitogen-activated protein kinase (MAPK) activation and increased the activation of Akt. Furthermore, pretreatment of ex vivo murine hearts with rhSLPI prior to I/R significantly decreased infarct size, attenuated p38 MAPK activation and increased Akt phosphorylation. The results of the current study demonstrated that treatment with rhSLPI induced a cardioprotective effect and reduced ARVM injury and death, intracellular ROS levels and infarct size. rhSLPI also attenuated p38 MAPK phosphorylation and activated Akt phosphorylation. These results suggest that rhSLPI may be developed as a novel therapeutic strategy of treating ischemic heart disease.
Collapse
Affiliation(s)
- Eakkapote Prompunt
- Biomedical Research Unit in Cardiovascular Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.,Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Jantira Sanit
- Biomedical Research Unit in Cardiovascular Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.,Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Stephanie Barrère-Lemaire
- Department of Physiology, Institute of Functional Genomics, National Centre for Scientific Research, French National Institute of Health and Medical Research, University of Montpellier, 34090 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, University of Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Joel Nargeot
- Department of Physiology, Institute of Functional Genomics, National Centre for Scientific Research, French National Institute of Health and Medical Research, University of Montpellier, 34090 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, University of Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Hannah Noordali
- Institute of Cardiovascular Sciences, School of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, School of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Sarawut Kumphune
- Biomedical Research Unit in Cardiovascular Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
178
|
Mahalakshmi A, Kurian GA. Evaluating the impact of diabetes and diabetic cardiomyopathy rat heart on the outcome of ischemia-reperfusion associated oxidative stress. Free Radic Biol Med 2018; 118:35-43. [PMID: 29462717 DOI: 10.1016/j.freeradbiomed.2018.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
Earlier literature underlines that oxidative stress plays a major role in the pathology of myocardial ischemia-reperfusion (I/R) injury, diabetic cardiomyopathy (DCM), diabetes mellitus (DM), fibrosis and hypertrophy which could adversely affect the normal cardiac function. However, the contributory role of oxidative stress in I/R pathology of heart with pre-existing abnormalities or diseases like DM and DCM remains to be explored. I/R injury was induced in normal (normal diet), DM (normal diet + streptozotocin: multiple low dose of 30 mg/kg) and DCM (high fat diet (40% fat) + streptozotocin: multiple low dose of 30 mg/kg) rat hearts using Langendorff isolated heart perfusion apparatus. Cardiac physiological recovery after I/R was assessed by hemodynamic parameters like LVDP, and LVSP, whereas cardiac injury was measured by tissue infarct size, and apoptosis, LDH, and CK release in coronary effluent. The oxidative stress was evaluated in myocardial homogenate, mitochondrial subpopulation, and microsomes. Reperfusing the ischemic DCM heart significantly deteriorated cardiac physiological recovery and elevated the cardiac injury (infarct size: 60%), compared to the control. But in DM heart, physiological recovery was prominent in the initial phase of reperfusion but deteriorated towards the end of reperfusion, supported by less infarct size. In addition, elevated lipid peroxidation (70% in DCM-I/R vs Sham) and impaired antioxidant enzymes (% decline vs Sham: GSH - 56% (DM), 63% (DCM); Catalase - 58% (DM), 35% (DCM); GPx - 19% (DM), 27% (DCM) and GR - 28% (DCM)) was observed in myocardial tissue from both DM and DCM. Interestingly, upon reperfusion, only normal heart showed significant deterioration in the antioxidant defense system. Collectively these results demonstrated that I/R induced oxidative stress is minimal in DM and DCM rat heart, despite high infarct size and low cardiac performance. This may be due to the prior adaptive modification in the antioxidant system associated with disease pathology.
Collapse
Affiliation(s)
- A Mahalakshmi
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
179
|
Ranjbar K, Zarrinkalam E, Salehi I, Komaki A, Fayazi B. Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion–induced oxidative stress in diabetic rats. Biomed Pharmacother 2018; 100:455-460. [DOI: 10.1016/j.biopha.2018.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
|
180
|
Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3 β Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9173436. [PMID: 29636855 PMCID: PMC5845518 DOI: 10.1155/2018/9173436] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β), which was confirmed by a biochemical assay and molecular docking studies.
Collapse
|
181
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
182
|
Huynh DN, Bessi VL, Ménard L, Piquereau J, Proulx C, Febbraio M, Lubell WD, Carpentier AC, Burelle Y, Ong H, Marleau S. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice. FASEB J 2018; 32:807-818. [PMID: 29018142 DOI: 10.1096/fj.201700505r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD36 is a multiligand receptor involved in lipid metabolism. We investigated the mechanisms underlying the cardioprotective effect of CP-3(iv), an azapeptide belonging to a new class of selective CD36 ligands. The role of CP-3(iv) in mediating cardioprotection was investigated because CD36 signaling leads to activation of peroxisome proliferator-activated receptor-γ, a transcriptional regulator of adiponectin. CP-3(iv) pretreatment reduced infarct size by 54% and preserved hemodynamics in C57BL/6 mice subjected to 30 min coronary ligation and reperfusion but had no effect in CD36-deficient mice. The effects of CP-3(iv) were associated with an increase in circulating adiponectin levels, epididymal fat adiponectin gene expression, and adiponectin transcriptional regulators ( Pparg, Cebpb, Sirt1) after 6 h of reperfusion. Reduced myocardial oxidative stress and apoptosis were observed along with an increase in expression of myocardial adiponectin target proteins, including cyclooxygenase-2, phospho-AMPK, and phospho-Akt. Moreover, CP-3(iv) increased myocardial performance in isolated hearts, whereas blockade of adiponectin with an anti-adiponectin antibody abrogated it. CP-3(iv) exerts cardioprotection against myocardial ischemia and reperfusion (MI/R) injury and dysfunction, at least in part, by increasing circulating and myocardial adiponectin levels. Hence, both paracrine and endocrine effects of adiponectin may contribute to reduced reactive oxygen species generation and apoptosis after MI/R, in a CD36-dependent manner.-Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., Lubell, W. D., Carpentier, A. C., Burelle, Y., Ong, H., Marleau, S. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.
Collapse
Affiliation(s)
- David N Huynh
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie L Bessi
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Liliane Ménard
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Jérôme Piquereau
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Proulx
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada
| | - Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
183
|
Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. Pathological Roles of Iron in Cardiovascular Disease. Curr Drug Targets 2018; 19:1068-1076. [PMID: 29874997 PMCID: PMC6469984 DOI: 10.2174/1389450119666180605112235] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral required for a variety of vital biological functions. Despite being vital for life, iron also has potentially toxic aspects. Iron has been investigated as a risk factor for coronary artery disease (CAD), however, iron's toxicity in CAD patients still remains controversial. One possible mechanism behind the toxicity of iron is "ferroptosis", a newly described form of irondependent cell death. Ferroptosis is an iron-dependent form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in ischemiareperfusion (I/R) injury and several other diseases. Recently, we reported that ferroptosis is a significant form of cell death in cardiomyocytes. Moreover, myocardial hemorrhage, a major event in the pathogenesis of heart failure, could trigger the release of free iron into cardiac muscle and is an independent predictor of adverse left ventricular remodeling after myocardial infarction. Iron deposition in the heart can now be detected with advanced imaging methods, such as T2 star (T2*) cardiac magnetic resonance imaging, which can non-invasively predict iron levels in the myocardium and detect myocardial hemorrhage, thus existing technology could be used to assess myocardial iron. We will discuss the role of iron in cardiovascular diseases and especially with regard to myocardial I/R injury.
Collapse
Affiliation(s)
- Motoi Kobayashi
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nicholas K. Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Jason K. Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| |
Collapse
|
184
|
Jiang WB, Zhao W, Chen H, Wu YY, Wang Y, Fu GS, Yang XJ. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Clin Exp Pharmacol Physiol 2017; 45:303-311. [PMID: 29047162 DOI: 10.1111/1440-1681.12876] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
Baicalin, a flavonoid glycoside separated from Scutellaria baicalensis, has cardioprotection against ischaemia/reperfusion (I/R) injury. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is considered as an endogenous protective mechanism against I/R injury depending on its anti-oxidant and anti-apoptotic characteristics. The present study demonstrates whether ALDH2 contributes to the cardioprotection of baicalin against hypoxia/reoxygenation (H/R)-inudced H9c2 cardiomyocytes injury. Our results observed that H/R treatment resulted in a significant decrease in cells viability and obvious increases in caspase-3 activity and apoptosis rate in H9c2 cells, while these alterations were evidently reversed by baicalin pretreatment. Simultaneously, baicalin mitigated H/R-induced the decreases in the levels of ALDH2 mRNA and protein as well as the activity of ALDH2 in H9c2 cells. However, we found that daidzin, an ALDH2 antagonist, remarkably attenuated baicalin-elicited inhibitory action on H/R-induced the downregulation of cells viability and Bcl-2 protein expression, and the upregulations of caspase-3 activity, apoptosis rate, cytochrome c and Bax proteins expressions in H9c2 cells. In addition, baicalin reversed H/R-induced oxidative stress as evidenced by the downregulation of malondialdehyde (MAD) and 4-hydroxy aldehydes (4-HNE) levels, the inhibition of endogenous reactive oxygen species (ROS) generation, and the downregulation of superoxide dismutase (SOD) activity induced by H/R treatment, while these effects were also blocked by daidzin. Furthermore, we found that Alda-1, an ALDH2 agonist, also abolished H/R-induced cytotoxicity, apoptosis, and oxidative stress, indicating that ALDH2 mediated H/R-induced H9c2 cell injury. Overall, these results suggested that baicalin prevents H/R-induced apoptosis and oxidative stress through enhancing ALDH activity and expression in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Wen-Bin Jiang
- Department of Cardiology, the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.,Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Wei Zhao
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Hao Chen
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - You-Yang Wu
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang-Jun Yang
- Department of Cardiology, the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
185
|
Lozano O, Torres-Quintanilla A, García-Rivas G. Nanomedicine for the cardiac myocyte: Where are we? J Control Release 2017; 271:149-165. [PMID: 29273321 DOI: 10.1016/j.jconrel.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Biomedical achievements in the last few decades, leading to successful therapeutic interventions, have considerably improved human life expectancy. Nevertheless, the increasing load and the still suboptimal outcome for patients with cardiac dysfunction underlines the relevance of continuous research to develop novel therapeutics for these diseases. In this context, the field of nanomedicine has attracted a lot of attention due to the potential novel treatment possibilities, such as controlled and sustained release, tissue targeting, and drug protection from degradation. For cardiac myocytes, which constitute the majority of the heart by mass and are the contractile unit, new options have been explored in terms of the use of nanomaterials (NMs) for therapy, diagnosis, and tissue engineering. This review focuses on the advances of nanomedicine targeted to the cardiac myocyte: first presenting the NMs used and the principal cardiac myocyte-based afflictions, followed by an overview of key advances in the field, including NMs interactions with the cardiac myocyte, therapy delivery, diagnosis based on imaging, and tissue engineering for tissue repair and heart-on-a-chip devices.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico.
| | - Alejandro Torres-Quintanilla
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico
| |
Collapse
|
186
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
187
|
Unacylated ghrelin prevents mitochondrial dysfunction in a model of ischemia/reperfusion liver injury. Cell Death Discov 2017; 3:17077. [PMID: 29354291 PMCID: PMC5712633 DOI: 10.1038/cddiscovery.2017.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/02/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common cause of liver dysfunction during hepatectomy, liver transplantation procedures and in generalized shock. Although effort has been dedicated to rescuing tissue damage in these clinical settings, there is still an urgent need for an effective treatment to protect the liver from the burden of I/R injury. In this study, we have investigated the potential clinical impact of unacylated-ghrelin (UnAG) in a liver I/R rat model. Particular attention has been paid to mitochondria. We demonstrate that UnAG was able to reduce the lag-phase time in response to ADP administration and increase oxygen consumption in ex vivo experiments using liver mitochondria recovered from rats subjected to I/R. Moreover, we found that UnAG rescued the expression of a key regulator of mitochondrial morphology and electron transport chain function; the optic atrophy 1 (Opa1) protein. Cytochrome c oxidase (COX), ATP synthase (complex V) activity and mitochondrial permeability transition pore (mPTP) opening were also affected by UnAG administration in vivo. An in vitro, hepatic I/R model was used to validate these data. We demonstrate that UnAG upregulates the expression of Cox subunit IV (CoxIV) and increases cellular ATP content. This results in Bcl-2 upregulation and protection against apoptosis. Opa1 silencing shows that Opa1 is crucial for a UnAG-induced increase in cellular ATP content, apoptosis resistance, Bcl-2 and CoxIV expression. Finally, we show that UnAG improves Opa1's interaction with MIC60 in the I/R setting, hinting at its role in cristae shape regulation. Our results demonstrate that UnAG administration rescues the intrinsic mitochondrial pathway triggered by I/R damage. Opa1's contribution in mediating this effect is also reported. This suggests that UnAG can interfere with mitochondrial dysfunction, via Opa1, in a preclinical liver I/R model. We therefore provide the rationale for exploiting UnAG as an alternative means to rescuing mitochondrial damage and organ dysfunction.
Collapse
|
188
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
189
|
Musman J, Paradis S, Panel M, Pons S, Barau C, Caccia C, Leoni V, Ghaleh B, Morin D. A TSPO ligand prevents mitochondrial sterol accumulation and dysfunction during myocardial ischemia-reperfusion in hypercholesterolemic rats. Biochem Pharmacol 2017. [DOI: 10.1016/j.bcp.2017.06.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
190
|
Febuxostat Modulates MAPK/NF- κBp65/TNF- α Signaling in Cardiac Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8095825. [PMID: 29138678 PMCID: PMC5613710 DOI: 10.1155/2017/8095825] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/02/2017] [Indexed: 01/09/2023]
Abstract
Xanthine oxidase and xanthine dehydrogenase have been implicated in producing myocardial damage following reperfusion of an occluded coronary artery. We investigated and compared the effect of febuxostat and allopurinol in an experimental model of ischemia-reperfusion (IR) injury with a focus on the signaling pathways involved. Male Wistar rats were orally administered vehicle (CMC) once daily (sham and IR + control), febuxostat (10 mg/kg/day; FEB10 + IR), or allopurinol (100 mg/kg/day; ALL100 + IR) for 14 days. On the 15th day, the IR-control and treatment groups were subjected to one-stage left anterior descending (LAD) coronary artery ligation for 45 minutes followed by a 60-minute reperfusion. Febuxostat and allopurinol pretreatment significantly improved cardiac function and maintained morphological alterations. They also attenuated oxidative stress and apoptosis by suppressing the expression of proapoptotic proteins (Bax and caspase-3), reducing TUNEL-positive cells, and increasing the level of antiapoptotic proteins (Bcl-2). The MAPK-based molecular mechanism revealed suppression of active JNK and p38 proteins concomitant with the rise in ERK1/ERK2, a prosurvival kinase. Additionally, a reduction in the level of inflammatory markers (TNF-α, IL-6, and NF-κB) was also observed. The changes observed with febuxostat were remarkable in comparison with those observed with allopurinol. Febuxostat protects relatively better against IR injury than allopurinol by suppressing inflammation and apoptosis mediating the MAPK/NF-κBp65/TNF-α pathway.
Collapse
|
191
|
Wu X, Zhu H, Zhu S, Hao M, Li Q. lncRNA expression character associated with ischemic reperfusion injury. Mol Med Rep 2017; 16:3745-3752. [PMID: 28731128 PMCID: PMC5646951 DOI: 10.3892/mmr.2017.7051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/30/2017] [Indexed: 12/22/2022] Open
Abstract
Ischemic reperfusion injury (IRI) contributes to morbidity and mortality worldwide and results in a poor outcome for patients suffering from myocardial infarction. Ischemic post‑conditioning (IPostC), consisting of one or several brief periods of ischemia and reperfusion, generates powerful protection against IRI. The mechanism of IPostC initiation and development has previously been investigated, however still remains to be fully elucidated. Notably, long non‑coding (lnc) RNAs have previously been demonstrated to be important in cardiovascular diseases. However, there is little information about the systematic analysis of IRI‑associated lncRNA expression signature. The present study used microarrays to analyze the lncRNA expression characters of ischemic IPostc (corresponding to IRI), and demonstrated that 2,292 lncRNAs were observed to be upregulated and 1,848 lncRNAs downregulated. Gene ontology (GO) and Pathway analysis subsequently demonstrated that dysregulated lncRNAs participated in various biological processes, which are upregulated or downregulated in IPostC tissues. Finally, the present study verified that AK144818, ENSMUST00000156637, ENSMUST00000118342, ENSMUST00000118149, uc008ane.1, ENSMUST00000164933, ENSMUST00000162347, ENSMUST00000135945, and ENSMUST00000176338, ENSMUST00000120587, ENDMUST00000155271, ENSMUST00000125121 and Uc008thl.1 were associated with the initiation and development of IPostC. The present study may aid in the understanding of the initiation and development mechanisms of IPostC and provide novel and potential biomarkers that may be used in the diagnosis or as therapeutic targets in the treatment of IRI.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongyi Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Suhua Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Maojuan Hao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qingping Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
192
|
Vaos G, Zavras N. Antioxidants in experimental ischemia-reperfusion injury of the testis: Where are we heading towards? World J Methodol 2017; 7:37-45. [PMID: 28706858 PMCID: PMC5489422 DOI: 10.5662/wjm.v7.i2.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/07/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Testicular torsion (TT) is a medical emergency that primary affects newborns and young adolescents. It causes testicular injury due to the torsion of the spermatic cord and its components, initially in the venous blood flow and finally in the arterial blood flow. Prompt diagnosis and early surgical management are necessary in managing this urgent situation. The process of the pathophysiological events in ischemia-reperfusion is multifactorial and deals with the perception of the oxidative stress responsible for the consequences of ischemia/reperfusion (I/R) stress following TT. Duration and severity of torsion also play a significant role in the oxidative stress. A detrimental result of the defense system of the testes takes place resulting finally in testicular atrophy and impaired function. Antioxidant factors have been experimentally studied in an effort to front this state. They have been classified as endogenous or exogenous antioxidants. Endogenous antioxidants comprise a structure of enzymic enzymatic and non-enzymic enzymatic particles presented within cytoplasm and numerous other subunits in the cells. Exogenous antioxidants include a variety of natural and pharmaceutical agents that may prevent or ameliorate the harmful effects of I/R injury. In this study we review those factors and their ability to enhance the oxidative status of the testis. A feature insight into where we are heading is attempted.
Collapse
|
193
|
Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Free Radic Res 2017; 51:413-427. [PMID: 28372523 DOI: 10.1080/10715762.2017.1315114] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.
Collapse
Affiliation(s)
- Aya Umeno
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| | - Vasudevanpillai Biju
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan.,b Laboratory of Molecular Photonics, Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita Ward, Sapporo , Japan
| | - Yasukazu Yoshida
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| |
Collapse
|
194
|
Boag SE, Andreano E, Spyridopoulos I. Lymphocyte Communication in Myocardial Ischemia/Reperfusion Injury. Antioxid Redox Signal 2017; 26:660-675. [PMID: 28006953 DOI: 10.1089/ars.2016.6940] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Myocardial ischemia/reperfusion (I/R) is an important complication of reperfusion therapy for myocardial infarction (MI). It is a complex process involving metabolic and immunological factors. To date, no effective treatment has been identified. Recent Advances: Previous research has focused on the role of innate immune cells in I/R injury. In recent years, increasing evidence has accumulated for an important role for adaptive immune cells, particularly T lymphocytes. Data from ST elevation MI patients have identified prognostic significance for lymphocyte counts, particularly postreperfusion lymphopenia. Dynamic changes in circulating CD4+ T cell subsets occurring early after reperfusion are associated with development of I/R injury in the form of microvascular obstruction. Transcoronary gradients in cell counts suggest sequestration of these cells into the reperfused myocardium. These findings support existing data from mouse models indicating a role for CD4+ T cells in I/R injury. It is clear, however, the effects of lymphocytes in the ischemic myocardium are time and subset specific, with some having protective effects, while others are pathogenic. CRITICAL ISSUES An understanding of the cellular events that lead to accumulation of lymphocytes in the myocardium, and their actions once there, is key to manipulating this process. Chemokines produced in response to ischemia and cellular injury have an important role, while lymphocyte-derived cytokines are critical in the balance between inflammation and healing. FUTURE DIRECTIONS Further research into the involvement of lymphocytes in myocardial I/R injury may allow development of targeted therapies, opening a new avenue of considerable therapeutic potential. Antioxid. Redox Signal. 26, 660-675.
Collapse
Affiliation(s)
- Stephen E Boag
- 1 Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Regional Department of Clinical Immunology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Emanuele Andreano
- 1 Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ioakim Spyridopoulos
- 1 Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
195
|
Hlaváčová M, Olejníčková V, Ronzhina M, Stračina T, Janoušek O, Nováková M, Babula P, Kolářová J, Provazník I, Paulová H. Tolerance of isolated rabbit hearts to short ischemic periods is affected by increased LV mass fraction. Physiol Res 2017; 66:581-589. [PMID: 28406705 DOI: 10.33549/physiolres.933333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hypertrophied hearts are known for increased risk of arrhythmias and are linked with reduced ischemic tolerance. However, still little is known about state characterized only by increased left ventricle (LV) mass fraction. Seventeen isolated rabbit hearts with various LV mass were divided into two groups according to LV weight/heart weight ratio (LVW/HW ratio), namely group H and L (with higher and lower LVW/HW ratio, respectively) and underwent three short cycles of global ischemia and reperfusion. The differences in electrogram (heart rate, QRS(max), mean number, onset and dominant form of ventricular premature beats) and in biochemical markers of myocardial injury (creatine kinase, lactate dehydrogenase - LDH) and lipid peroxidation (4-hydroxy-2-nonenal - 4-HNE) were studied. As compared to group L, hearts in group H exhibited lower tolerance to ischemia expressed as higher incidence and severity of arrhythmias in the first ischemic period as well as increase of LDH and 4-HNE after the first reperfusion. In the third cycle of ischemia-reperfusion, the preconditioning effect was observed in both electrophysiological parameters and LDH release in group H. Our results showed consistent trends when comparing changes in electrograms and biochemical markers. Moreover, 4-HNE seems to be good potential parameter of moderate membrane alteration following ischemia-reperfusion injury.
Collapse
Affiliation(s)
- M Hlaváčová
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4619720. [PMID: 28373901 PMCID: PMC5360974 DOI: 10.1155/2017/4619720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023]
Abstract
Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30 min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25 mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS: 28.63 ± 3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS: 17.4 ± 2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS: 26.2 ± 2.2%) and apoptosis (2.87 ± 0.64%) as compared to DMSO-treated mice (IS: 47.0 ± 2.3%; apoptosis: 7.39 ± 0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38.
Collapse
|
197
|
Andres AM, Tucker KC, Thomas A, Taylor DJ, Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook DG, Ballinger SW, Mentzer RM, Gottlieb RA. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight 2017; 2:e89303. [PMID: 28239650 DOI: 10.1172/jci.insight.89303] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Kyle C Tucker
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | | | | | | | | | - Reza Dabir
- Beaumont Hospital - Dearborn, Dearborn, Michigan, USA
| | | | - Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | - David G Westbrook
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | | | | |
Collapse
|
198
|
Grocott HP. Total Intravenous Anesthesia, Sevoflurane, and Outcome After Cardiac Surgery: Is Propofol the Villain or Is There a Class Benefit to Volatile Agents? J Cardiothorac Vasc Anesth 2017; 31:e89. [PMID: 28216205 DOI: 10.1053/j.jvca.2016.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hilary P Grocott
- Departments of Anesthesia & Perioperative Medicine and Surgery University of Manitoba Winnipeg Manitoba, Canada
| |
Collapse
|
199
|
Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6437467. [PMID: 28298952 PMCID: PMC5337354 DOI: 10.1155/2017/6437467] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R) injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly found free radicals scavengers, Sirt1 and CTRP9, may serve as promising pharmacological therapeutic targets. In this review, we will focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart disease (IHD).
Collapse
|
200
|
He S, Wang X, Chen A. Myocardial ischemia/reperfusion injury: the role of adaptor proteins Crk. Perfusion 2017; 32:345-349. [PMID: 28553779 DOI: 10.1177/0267659117691813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have reported that the ischemia/reperfusion (I/R) myocardium may act as an immune system where an exaggerated inflammatory reaction initiates. With activation of the immune system, damage-associated molecular patterns migrate and adhere into the I/R region and, consequently, induce myocardial injury. Emerging data have indicated that the adaptor proteins Crk are thought to play essential roles in signaling during apoptosis and cell adhesion and migration. Accumulated data highlight that Crk proteins are potential immunotherapeutic targets in immune diseases. However, very few studies have determined the roles of Crk on myocardial I/R injury. This mini review will focus on the emerging roles of Crk adaptors during myocardial I/R injury.
Collapse
Affiliation(s)
- Shangfei He
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Xianbao Wang
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Aihua Chen
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| |
Collapse
|