151
|
Dragojević J, Mihaljević I, Popović M, Zaja R, Smital T. In vitro characterization of zebrafish (Danio rerio) organic anion transporters Oat2a-e. Toxicol In Vitro 2017; 46:246-256. [PMID: 29030288 DOI: 10.1016/j.tiv.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/16/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
OATS/Oats are transmembrane proteins that transport a variety of drugs, environmental toxins and endogenous metabolites into the cell. Zebrafish (Danio rerio) has seven OAT orthologs: Oat1, Oat2a-e and Oat3. In this study we specifically address Oat2 (Slc22a7) family. Conserved synteny analysis showed localization of zebrafish oat2 genes on two chromosomes, 11 and 17. All five zebrafish Oats were localized by live cell imaging in membranes of transiently transfected HEK293-T cells, and Oat2a, b, d, and e were confirmed using western blot analysis. Functional studies using the HEK293T cells overexpressing zebrafish Oats revealed two model fluorescent substrates of three Oats: Lucifer yellow for Oat2a and Oat2d (Km 122, and 49.7μM), and 6-carboxyfluorescein for Oat2b and Oat2d (Km 199.7, and 266.9μM). The initial screening of a series of diverse endo- and xenobiotics showed interaction with a number of compounds, including cGMP and diclofenac (IC50 27.74, and 19.14μM) with Oat2a; estrone-3-sulfate and diclofenac (IC50 30.96, and 12.6μM) with Oat2b; and fumarate and indomethacin (IC50 68.24, and 20.41μM) with Oat2d. This study provides the first comprehensive data set on Oat2 in zebrafish and offers an important basis for more detailed molecular and (eco)toxicological characterizations of these transporters.
Collapse
Affiliation(s)
- Jelena Dragojević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Roko Zaja
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
152
|
Wu T, Chen J, Dong S, Li H, Cao Y, Tian Y, Fu W, Zhou P, Xi B, Pang J. Identification and characterization of a potent and selective inhibitor of human urate transporter 1. Pharmacol Rep 2017; 69:1103-1112. [DOI: 10.1016/j.pharep.2017.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
153
|
Sayyed K, Le Vee M, Abdel-Razzak Z, Fardel O. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicol In Vitro 2017. [DOI: 10.1016/j.tiv.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
154
|
Burckhardt BC, Henjakovic M, Hagos Y, Burckhardt G. Differential Interaction of Dantrolene, Glafenine, Nalidixic Acid, and Prazosin with Human Organic Anion Transporters 1 and 3. J Pharmacol Exp Ther 2017; 362:450-458. [PMID: 28630284 DOI: 10.1124/jpet.117.241406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022] Open
Abstract
In renal proximal tubule cells, the organic anion transporters 1 and 3 (OAT1 and OAT3) in the basolateral membrane and the multidrug resistance-associated protein 4 (MRP4) in the apical membrane share substrates and co-operate in renal drug secretion. We hypothesized that recently identified MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin also interact with human OAT1 and/or OAT3 stably transfected in human embryonic kidney 293 cells. These four drugs were tested as possible inhibitors of p-[3H]aminohippurate (PAH) and [14C]glutarate uptake by OAT1, and of [3H]estrone-3-sulfate (ES) uptake by OAT3. In addition, we explored whether these drugs decrease the equilibrium distribution of radiolabeled PAH, glutarate, or ES, an approach intended to indirectly suggest drug/substrate exchange through OAT1 and OAT3. With OAT3, a dose-dependent inhibition of [3H]ES uptake and a downward shift in [3H]ES equilibrium were observed, indicating that all four drugs bind to OAT3 and may possibly be translocated. In contrast, the interaction with OAT1 was more complex. With [14C]glutarate as substrate, all four drugs inhibited uptake but only glafenine and nalidixic acid shifted glutarate equilibrium. Using [3H]PAH as a substrate of OAT1, nalidixic acid inhibited but dantrolene, glafenine, and prazosin stimulated uptake. Nalidixic acid decreased equilibrium content of [3H]PAH, suggesting that it may possibly be exchanged by OAT1. Taken together, OAT1 and OAT3 interact with the MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin, indicating overlapping specificities. At OAT1, more than one binding site must be assumed to explain substrate and drug-dependent stimulation and inhibition of transport activity.
Collapse
Affiliation(s)
- Birgitta C Burckhardt
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| | - Maja Henjakovic
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| | - Yohannes Hagos
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| | - Gerhard Burckhardt
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| |
Collapse
|
155
|
Chu X, Chan GH, Evers R. Identification of Endogenous Biomarkers to Predict the Propensity of Drug Candidates to Cause Hepatic or Renal Transporter-Mediated Drug-Drug Interactions. J Pharm Sci 2017; 106:2357-2367. [DOI: 10.1016/j.xphs.2017.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
|
156
|
Posada MM, Cannady EA, Payne CD, Zhang X, Bacon JA, Pak YA, Higgins JW, Shahri N, Hall SD, Hillgren KM. Prediction of Transporter-Mediated Drug-Drug Interactions for Baricitinib. Clin Transl Sci 2017; 10:509-519. [PMID: 28749581 PMCID: PMC6402191 DOI: 10.1111/cts.12486] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/30/2017] [Indexed: 01/05/2023] Open
Abstract
Baricitinib, an oral selective Janus kinase 1 and 2 inhibitor, undergoes active renal tubular secretion. Baricitinib was not predicted to inhibit hepatic and renal uptake and efflux drug transporters, based on the ratio of the unbound maximum eliminating-organ inlet concentration and the in vitro half-maximal inhibitory concentrations (IC50 ). In vitro, baricitinib was a substrate for organic anion transporter (OAT)3, multidrug and toxin extrusion protein (MATE)2-K, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). Probenecid, a strong OAT3 inhibitor, increased the area under the concentration-time curve from time zero to infinity (AUC[0-∞] ) of baricitinib by twofold and decreased renal clearance to 69% of control in healthy subjects. Physiologically based pharmacokinetic (PBPK) modeling reproduced the renal clearance of baricitinib and the inhibitory effect of probenecid using the in vitro IC50 value of 4.4 μM. Using ibuprofen and diclofenac in vitro IC50 values of 4.4 and 3.8 μM toward OAT3, 1.2 and 1.0 AUC(0-∞) ratios of baricitinib were predicted. These predictions suggest clinically relevant drug-drug interactions (DDIs) with ibuprofen and diclofenac are unlikely.
Collapse
Affiliation(s)
| | | | | | - Xin Zhang
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Y Anne Pak
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - J William Higgins
- Eli Lilly and Company, Indianapolis, Indiana, USA.,Current address: Organovo Inc., San Diego, California, USA
| | | | | | | |
Collapse
|
157
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
158
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
159
|
Lu H, Lu Z, Li X, Li G, Qiao Y, Borris RP, Zhang Y. Interactions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): a study on herb-drug interactions. PeerJ 2017; 5:e3333. [PMID: 28560096 PMCID: PMC5446775 DOI: 10.7717/peerj.3333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Background Herb-drug interactions (HDIs) resulting from concomitant use of herbal products with clinical drugs may cause adverse reactions. Organic anion transporter 1 (OAT1) and 3 (OAT3) are highly expressed in the kidney and play a key role in the renal elimination of substrate drugs. So far, little is known about the herbal extracts that could modulate OAT1 and OAT3 activities. Methods HEK293 cells stably expressing human OAT1 (HEK-OAT1) and OAT3 (HEK-OAT3) were established and characterized. One hundred seventy-two extracts from 37 medicinal and economic plants were prepared. An initial concentration of 5 µg/ml for each extract was used to evaluate their effects on 6-carboxylfluorescein (6-CF) uptake in HEK-OAT1 and HEK-OAT3 cells. Concentration-dependent inhibition studies were conducted for those extracts with more than 50% inhibition to OAT1 and OAT3. The extract of Juncus effusus, a well-known traditional Chinese medicine, was assessed for its effect on the in vivo pharmacokinetic parameters of furosemide, a diuretic drug which is a known substrate of both OAT1 and OAT3. Results More than 30% of the plant extracts at the concentration of 5 µg/ml showed strong inhibitory effect on the 6-CF uptake mediated by OAT1 (61 extracts) and OAT3 (55 extracts). Among them, three extracts for OAT1 and fourteen extracts for OAT3 were identified as strong inhibitors with IC50 values being <5 µg/ml. Juncus effusus showed a strong inhibition to OAT3 in vitro, and markedly altered the in vivo pharmacokinetic parameters of furosemide in rats. Conclusion The present study identified the potential interactions of medicinal and economic plants with human OAT1 and OAT3, which is helpful to predict and to avoid potential OAT1- and OAT3-mediated HDIs.
Collapse
Affiliation(s)
- Hang Lu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiqiang Lu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xue Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yilin Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Robert P Borris
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
160
|
Favretto G, Souza LM, Gregório PC, Cunha RS, Maciel RAP, Sassaki GL, Toledo MG, Pecoits-Filho R, Souza WM, Stinghen AEM. Role of Organic Anion Transporters in the Uptake of Protein-Bound Uremic Toxins by Human Endothelial Cells and Monocyte Chemoattractant Protein-1 Expression. J Vasc Res 2017; 54:170-179. [PMID: 28472795 DOI: 10.1159/000468542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/05/2017] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporters (OATs) are involved in the uptake of uremic toxins such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS), which play a role in endothelial dysfunction in patients with chronic kidney diseases (CKD). In this study, we investigated the role of OAT1 and OAT3 in the uptake of PCS and IS into human endothelial cells. PCS was synthesized via p-cresol sulfation and characterized using analytical methods. The cells were treated with PCS and IS in the absence and presence of probenecid (Pb), an OAT inhibitor. Cell viability was assessed using the MTT assay. The absorbed toxins were analyzed using chromatography, OAT expression using immunocytochemistry and western blot, and monocyte chemoattractant protein-1 (MCP-1) expression using enzyme-linked immunosorbent assay. Cell viability decreased after toxin treatment in a dose-dependent manner. PCS and IS showed significant internalization after 60 min treatment, while no internalization was observed in the presence of Pb, suggesting that OATs are involved in the transport of both toxins. Immunocytochemistry and western blot demonstrated OAT1 and OAT3 expression in endothelial cells. MCP-1 expression increased after toxins treatment but decreased after Pb treatment. PCS and IS uptake were mediated by OATs, and OAT blockage could serve as a therapeutic strategy to inhibit MCP-1 expression.
Collapse
Affiliation(s)
- Giane Favretto
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, Sweet DH, Löscher W. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology 2017; 117:182-194. [DOI: 10.1016/j.neuropharm.2017.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
|
162
|
Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression. Int J Mol Sci 2017; 18:ijms18040764. [PMID: 28375174 PMCID: PMC5412348 DOI: 10.3390/ijms18040764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.
Collapse
|
163
|
Noguchi S, Nishimura T, Mukaida S, Benet LZ, Nakashima E, Tomi M. Cellular Uptake of Levocetirizine by Organic Anion Transporter 4. J Pharm Sci 2017; 106:2895-2898. [PMID: 28385546 DOI: 10.1016/j.xphs.2017.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/28/2023]
Abstract
The pharmacokinetics of cetirizine, a nonsedating antihistamine, is profoundly affected by transporter-mediated membrane transport in the kidney. In this study, we aimed to investigate the transport mechanism of levocetirizine, the pharmacologically active enantiomer of cetirizine, via human organic anion transporter 4 (OAT4) expressed in the apical membrane of renal proximal tubules and the basal plasma membrane of placental syncytiotrophoblasts. In cells expressing human OAT4 under the control of tetracycline, levocetirizine uptake was increased by tetracycline treatment. On the other hand, OAT4 expression did not facilitate efflux of preloaded levocetirizine from the cells, either in the presence or absence of extracellular Cl-. The OAT4-mediated levocetirizine uptake was concentration-dependent with a Km of 38 μM. The uptake rate of levocetirizine via OAT4 was approximately twice that of racemic cetirizine, indicating stereoselective uptake of levocetirizine. On the other hand, OAT4-mediated [3H]dehydroepiandrosterone sulfate uptake was inhibited by dextrocetirizine and levocetirizine. Overall, our findings indicate that OAT4 mediates levocetirizine uptake but is unlikely to mediate the efflux.
Collapse
Affiliation(s)
- Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | | | - Saya Mukaida
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | - Leslie Z Benet
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan; Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143-0912
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan.
| |
Collapse
|
164
|
Sun H, Wang N, Chen C, Nie X, Han B, Li Q, Zhu C, Chen Y, Xia F, Chen Y, Zhai H, Jiang B, Hu B, Lu Y. Cadmium exposure and its association with serum uric acid and hyperuricemia. Sci Rep 2017; 7:550. [PMID: 28373703 PMCID: PMC5428845 DOI: 10.1038/s41598-017-00661-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Few studies have investigated the association between serum uric acid (UA) and cadmium exposure. Our previous study revealed a significantly higher blood cadmium (CdB) level in the Chinese population compared to populations in other countries. To determine whether CdB in Chinese adults is associated with serum UA and hyperuricemia, 2996 participants from the cross-sectional SPECT-China study were recruited. CdB was measured by atomic absorption spectrometry. Hyperuricemia was defined as a serum UA concentration ≥416.4 μmol/L for men and ≥356.9 μmol/L for women. Regression analyses were used to analyze the association of CdB with serum UA and hyperuricemia. We found that the median CdB level was higher in men with hyperuricemia (2.40 μg/L) than in men without hyperuricemia (1.98 μg/L, P < 0.05). A positive relationship between serum UA and CdB was found in Chinese men after adjusting for the estimated glomerular filtration rate (eGFR), current smoking status, diabetes, dyslipidemia, hypertension and body mass index and in participants with eGFR > 60 mL/min per 1.73 m2. Further, the odds ratio of hyperuricemia increased with increasing CdB quartiles (P for trend < 0.05) in men. In conclusion, CdB was positively related to the serum UA level and to hyperuricemia in Chinese men but not in Chinese women.
Collapse
Affiliation(s)
- Honglin Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaomin Nie
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingchao Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hualing Zhai
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Hu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
165
|
Shen H, Lai Y, Rodrigues AD. Organic Anion Transporter 2: An Enigmatic Human Solute Carrier. Drug Metab Dispos 2017; 45:228-236. [PMID: 27872146 DOI: 10.1124/dmd.116.072264] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
As a member of the solute carrier 22A (SLC22A) family, organic anion transporter 2 (OAT2; SLC22A7) is emerging as an important drug transporter because of its expression in both the liver and kidney, two major eliminating organs, and its ability to transport not only a wide variety of xenobiotics but also numerous physiologically important endogenous compounds, like creatinine and cGMP. However, OAT2 has received relatively little attention compared with other OATs and solute carriers (SLCs), like organic cation transporters, sodium-dependent taurocholate cotransporting polypeptide, multidrug and toxin extrusion proteins, and organic anion-transporting polypeptides. Overall, the literature describing OAT2 is rapidly evolving, with numerous publications contradicting each other regarding the transport mechanism, tissue distribution, and transport of creatinine and cGMP, two important endogenous OAT2 substrates. Despite its status as a liver and kidney SLC, tools for assessing its activity and inhibition are lacking, and its role in drug disposition and elimination remains to be defined. The current review focuses on the available and emerging literature describing OAT2. We envision that OAT2 will gain more prominence as its expression, substrate, and inhibitor profile is investigated further and compared with other SLCs.
Collapse
Affiliation(s)
- Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| | - Yurong Lai
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| | - A David Rodrigues
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| |
Collapse
|
166
|
Shams T, Lu X, Zhu L, Zhou F. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters. Xenobiotica 2017; 48:197-205. [DOI: 10.1080/00498254.2017.1282647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tahiatul Shams
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| | - Xiaoxi Lu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| |
Collapse
|
167
|
Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res Ther 2016; 18:214. [PMID: 27716403 PMCID: PMC5048659 DOI: 10.1186/s13075-016-1107-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
Background Excess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug–drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout. Methods sUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity. Results After 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting. Conclusion The pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1107-x) contains supplementary material, which is available to authorized users.
Collapse
|
168
|
Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V, Mordasini D, Henry H, Koesters R, Maillard M, Bonny O, Tokonami N, Firsov D. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition. J Am Soc Nephrol 2016; 27:2997-3004. [PMID: 27056296 PMCID: PMC5042670 DOI: 10.1681/asn.2015091055] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/10/2016] [Indexed: 12/11/2022] Open
Abstract
The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- Department of Pharmacology and Toxicology and Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | | | | | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - David Mordasini
- Department of Pharmacology and Toxicology and Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Robert Koesters
- Department of Nephrology, Tenon Hospital, Université Pierre et Marie Curie, Paris, France; and
| | - Marc Maillard
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology and Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Natsuko Tokonami
- Department of Pharmacology and Toxicology and Labeled Research Team (ERL) 8228-U1138 équipe 3, Centre de Recherche des Cordeliers, Paris, France
| | | |
Collapse
|
169
|
Stieger B, Mahdi ZM, Jäger W. Intestinal and Hepatocellular Transporters: Therapeutic Effects and Drug Interactions of Herbal Supplements. Annu Rev Pharmacol Toxicol 2016; 57:399-416. [PMID: 27648763 DOI: 10.1146/annurev-pharmtox-010716-105010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herbal supplements are generally considered safe; however, drug disposition is influenced by the interactions of herbal supplements and food constituents with transport and metabolic processes. Although the interference of herbal supplements with drug metabolism has been studied extensively, knowledge of how they interact with the drug transport processes is less advanced. Therefore, we describe here specific examples of experimental and human interaction studies of herbal supplement components with drug transporters addressing, for example, organic anion transporting polypeptides or P-glycoprotein, as such interactions may lead to severe side effects and altered drug efficacy. Hence, it is clearly necessary to increase the awareness of the clinical relevance of the interference of herbal supplements with the drug transport processes.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Zainab M Mahdi
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Walter Jäger
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
170
|
Chu X, Bleasby K, Chan GH, Nunes I, Evers R. The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist? Drug Metab Dispos 2016; 44:1498-509. [PMID: 26825641 DOI: 10.1124/dmd.115.067694] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022] Open
Abstract
In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (X.C., K.B., G.H.C., R.E.), and Global Regulatory Affairs, Oncology, Immunology, Biologics & Devices (I.N.), Merck Sharp & Dohme Corporation, Kenilworth, New Jersey
| | - Kelly Bleasby
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (X.C., K.B., G.H.C., R.E.), and Global Regulatory Affairs, Oncology, Immunology, Biologics & Devices (I.N.), Merck Sharp & Dohme Corporation, Kenilworth, New Jersey
| | - Grace Hoyee Chan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (X.C., K.B., G.H.C., R.E.), and Global Regulatory Affairs, Oncology, Immunology, Biologics & Devices (I.N.), Merck Sharp & Dohme Corporation, Kenilworth, New Jersey
| | - Irene Nunes
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (X.C., K.B., G.H.C., R.E.), and Global Regulatory Affairs, Oncology, Immunology, Biologics & Devices (I.N.), Merck Sharp & Dohme Corporation, Kenilworth, New Jersey
| | - Raymond Evers
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (X.C., K.B., G.H.C., R.E.), and Global Regulatory Affairs, Oncology, Immunology, Biologics & Devices (I.N.), Merck Sharp & Dohme Corporation, Kenilworth, New Jersey
| |
Collapse
|
171
|
Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6:363-373. [PMID: 27709005 PMCID: PMC5045553 DOI: 10.1016/j.apsb.2016.07.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.
Collapse
Key Words
- ABC, ATP-binding cassette
- ATP, adenosine triphosphate
- AUC, area under the plasma concentration curve
- BBB, blood–brain barrier
- CHO, Chinese hamster ovary
- CL, plasma clearance
- CLR, renal clearance
- Cmax, maximum plasma concentration
- DDIs, drug–drug interactions
- Drug–drug interactions
- FDA, U.S. Food and Drug Administration
- GSH, glutathione
- HEK, human embryonic kidney
- IC50, half maximal inhibitory concentration
- ITC, International Transporter Consortium
- Ki, inhibitory constant
- MATE, multidrug and toxin extrusion protein
- MPP+, 1-methyl-4-phenylpyridimium
- MRP, multidrug resistance-associated protein
- MSD, membrane-spanning domain
- MW, molecular weight
- NBD, nucleotide-binding domain
- NME, new molecular entity
- NSAID, non-steroidal anti-inflammatory drugs
- Nephrotoxicity
- OA, organic anion
- OAT or Oat, organic anion transporters
- OATP or Oatp, organic anion-transporting peptide
- OC, organic cation
- OCT or Oct, organic cation transporter
- OCTN, Organic zwitterions/cation transporters
- Organic anions
- Organic cations
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- Renal drug transporters
- SLC, solute carrier
- SNP, single-nucleotide polymorphism
- TEA, tetraethylammonium
- TMD, transmembrane domain
- URAT, urate transporter
- fe, fraction of the absorbed dose excreted unchanged in urine
Collapse
|
172
|
Takeshita K, Okazaki S, Hirose Y. Pharmacokinetics of lipophilically different 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals frequently used as redox probes in in vivo magnetic resonance studies. Free Radic Biol Med 2016; 97:263-273. [PMID: 27302159 DOI: 10.1016/j.freeradbiomed.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
3-Carboxy-, 3-carbamoyl-, 3-hydroxymethyl, and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals (CxP, CmP, HMP, and MCP, respectively) have been widely used as redox probes in in vivo magnetic resonance studies. Knowledge of the pharmacokinetics of these probes is essential for redox analyses. The apparent partition coefficient (Kp) of these probes at neutral pH was in the order of MCP>HMP>CmP>CxP. After these probes had been injected intravenously, their blood levels decayed in a bi-phasic manner, namely, fast decay followed by slow decay. The order of the area under the curve (AUC) was CxP»HMP>MCP≥CmP, which roughly coincided with that of Kp in the opposite direction, except for CmP. Decay in the slow phase largely affected the AUC of these probes. The reduction of these probes contributed to their decay in the slow phase. A two-compartment model analysis of blood levels, cyclic voltammetry, and magnetic resonance imaging provided the following pharmacokinetic information. The distribution of the probes between the central and peripheral compartments rapidly reached an equilibrium. In addition to lipophilicity, reduction potential may also be involved in the rate of in vivo reduction of the probes. Hydrophilic probes, such as CxP and CmP, were predominantly excreted in the urine. MCP was distributed to the peripheral tissues and then rapidly reduced. HMP was unique due to its moderate lipophilicity and slower reduction. Among the probes examined, the liver and kidney appear to be included in the central compartment in the two-compartment model analysis. MCP and HMP were rapidly distributed to the brain.
Collapse
Affiliation(s)
- Keizo Takeshita
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.
| | - Shoko Okazaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuriko Hirose
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
173
|
Polymorphisms associated with renal adverse effects of antiretroviral therapy in a Southern Brazilian HIV cohort. Pharmacogenet Genomics 2016; 25:541-7. [PMID: 26287941 DOI: 10.1097/fpc.0000000000000169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study evaluated the impact of seven single nucleotide polymorphisms in five candidate genes (ABCB1, ABCC2, ABCC4, SLC22A6, and SLC22A11) in relation to nephrotoxicity associated with highly active antiretroviral therapy (HAART) in HIV-infected individuals. METHODS The following single nucleotide polymorphisms were genotyped by real-time PCR: ABCB1 rs1045642, ABCC2 rs717620 and rs2273697, ABCC4 rs1751034 and rs3742106, SLC22A6 rs11568626, and SLC22A11 rs11231809 in 507 HIV-infected patients from the city of Porto Alegre, Southern Brazil, receiving HAART for, at least, 1 year. RESULTS From the 507 HIV-infected patients recruited, 19.1% presented a reduction in estimated glomerular filtration rate (eGFR). A total of 16 (3.2%) patients fulfilled the criteria for chronic kidney disease (defined as eGFR<60 ml/min/1.73 m). Individuals carrying at least one T allele of ABCC2 -24 C>T (rs717620) presented lower eGFR than C/C homozygotes (104 ± 22 vs. 108 ± 22 ml/min/1.73 m, independent-samples t-test, P=0.040). In multivariate analysis, the predictors associated with decreased eGFR were time of treatment, tenofovir use, atazanavir/ritonavir use, and carrying one T allele of ABCC2 -24 C>T. CONCLUSION Our data support the importance of genetic factors in the etiology of nephrotoxicity in patients treated with HAART. Studies to verify treatment implications of genotyping before HAART initiation may be advisable to guide the selection of an appropriate antiretroviral therapy regimen.
Collapse
|
174
|
Tran HX, Herrington JD. Effect of ceftriaxone and cefepime on high-dose methotrexate clearance. J Oncol Pharm Pract 2016; 22:801-805. [DOI: 10.1177/1078155215608524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous drug interactions with methotrexate have been identified, which can lead to serious life-threatening effects. Up to 90% of methotrexate is excreted unchanged in the urine with primary excretion dependent on organic anion transport in the renal proximal tubule. The two pathways responsible for methotrexate secretion are organic anion transport 1 and primarily organic anion transport 3. Penicillins undergo tubular secretion via organic anion transport, and cephalosporins are believed to also possess a similar risk when administered with methotrexate; however, there are no human studies observing this interaction with cephalosporins and methotrexate. Ceftriaxone undergoes biliary clearance and has low affinity for the same organic anion transports as methotrexate; therefore, ceftriaxone has a low potential to interact with methotrexate. Cefepime is primarily secreted by organic cation transport N2, and also has a low potential to interact with methotrexate. This case report describes the pharmacokinetic effect of concomitant beta-lactam therapy in a patient receiving high-dose methotrexate.
Collapse
Affiliation(s)
- Hieu X Tran
- Department of Pharmacy, Baylor University Medical Center, Baylor Scott & White Health, Dallas, Texas, USA
| | - Jon D Herrington
- Department of Pharmacy, Scott & White Memorial Hospital, Baylor Scott & White Health, Temple, Texas, USA
- Department of Medicine, Health Science Center, Texas A&M University, Temple, Texas, USA
| |
Collapse
|
175
|
Heussner A, Paget T. Evaluation of renal in vitro models used in ochratoxin research. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) induces renal carcinomas in rodents with a specific localisation in the S3 segment of proximal tubules and distinct early severe tissue alterations, which have been observed also in other species. Pronounced species- and sex-specific differences in toxicity occur and similar effects cannot be excluded in humans, however precise mechanism(s) remain elusive until today. In such cases, the use of in vitro models for mechanistic investigations can be very useful; in particular if a non-genotoxic mechanism of cancer formation is assumed which include cytotoxic effects. However, potential genotoxic mechanisms can also be investigated in vitro. A crucial issue of in vitro research is the choice of the appropriate cell model. Apparently, the cellular target of OTA is the renal proximal tubular cell; therefore cells from this tissue area are the most reasonable model. Furthermore, cells from affected species should be used and can be compared to cells of human origin. Another important parameter is whether to use primary cultures or to choose a cell line from the huge variety of cell lines available. In any case, important characteristics and quality controls need to be verified beforehand. Therefore, this review discusses the renal in vitro models that have been used for the investigation of renal ochratoxin toxicity. In particular, we discuss the choice of the models and the essential parameters making them suitable models for ochratoxin research together with exemplary results from this research. Furthermore, new promising models such as hTERT-immortalised cells and 3D-cultures are briefly discussed.
Collapse
Affiliation(s)
- A.H. Heussner
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| | - T. Paget
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| |
Collapse
|
176
|
Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters. Antimicrob Agents Chemother 2016; 60:3497-508. [PMID: 27021329 DOI: 10.1128/aac.03049-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/17/2016] [Indexed: 12/23/2022] Open
Abstract
Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters.
Collapse
|
177
|
Iegre J, Hayes MA, Thompson RA, Weidolf L, Isin EM. Database Extraction of Metabolite Information of Drug Candidates: Analysis of 27 AstraZeneca Compounds with Human Absorption, Distribution, Metabolism, and Excretion Data. Drug Metab Dispos 2016; 44:732-40. [PMID: 26868617 DOI: 10.1124/dmd.115.067850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/10/2016] [Indexed: 02/13/2025] Open
Abstract
As part of the drug discovery and development process, it is important to understand the human metabolism of a candidate drug prior to clinical studies. Preclinical in vitro and in vivo experiments across species are conducted to build knowledge concerning human circulating metabolites in preparation for clinical studies; therefore, the quality of these experiments is critical. Within AstraZeneca, all metabolite identification (Met-ID) information is stored in a global database using ACDLabs software. In this study, the Met-ID information derived from in vitro and in vivo studies for 27 AstraZeneca drug candidates that underwent human absorption, distribution, metabolism, and excretion studies was extracted from the database. The retrospective analysis showed that 81% of human circulating metabolites were previously observed in preclinical in vitro and/or in vivo experiments. A detailed analysis was carried out to understand which human circulating metabolites were not captured in the preclinical experiments. Metabolites observed in human hepatocytes and rat plasma but not seen in circulation in humans (extraneous metabolites) were also investigated. The majority of human specific circulating metabolites derive from multistep biotransformation reactions that may not be observed in in vitro studies within the limited time frame in which cryopreserved hepatocytes are active. Factors leading to the formation of extraneous metabolites in preclinical studies seemed to be related to species differences with respect to transporter activity, secondary metabolism, and enzyme kinetics. This retrospective analysis assesses the predictive value of Met-ID experiments and improves our ability to discriminate between metabolites expected to circulate in humans and irrelevant metabolites seen in preclinical studies.
Collapse
Affiliation(s)
- Jessica Iegre
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (J.I., M.A.H., L.W., E.M.I.) and Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit (R.A.T.), AstraZeneca, Mölndal, Sweden
| | - Martin A Hayes
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (J.I., M.A.H., L.W., E.M.I.) and Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit (R.A.T.), AstraZeneca, Mölndal, Sweden
| | - Richard A Thompson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (J.I., M.A.H., L.W., E.M.I.) and Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit (R.A.T.), AstraZeneca, Mölndal, Sweden
| | - Lars Weidolf
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (J.I., M.A.H., L.W., E.M.I.) and Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit (R.A.T.), AstraZeneca, Mölndal, Sweden
| | - Emre M Isin
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (J.I., M.A.H., L.W., E.M.I.) and Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit (R.A.T.), AstraZeneca, Mölndal, Sweden
| |
Collapse
|
178
|
Lietzow J, Golchert J, Homuth G, Völker U, Jonas W, Köhrle J. 3,5-T2 alters murine genes relevant for xenobiotic, steroid, and thyroid hormone metabolism. J Mol Endocrinol 2016; 56:311-23. [PMID: 26903510 DOI: 10.1530/jme-15-0159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
The endogenous thyroid hormone (TH) metabolite 3,5-diiodo-l-thyronine (3,5-T2) acts as a metabolically active substance affecting whole-body energy metabolism and hepatic lipid handling in a desirable manner. Considering possible adverse effects regarding thyromimetic action of 3,5-T2 treatment in rodents, the current literature remains largely controversial. To obtain further insights into molecular mechanisms and to identify novel target genes of 3,5-T2 in liver, we performed a microarray-based liver tissue transcriptome analysis of male lean and diet-induced obese euthyroid mice treated for 4 weeks with a dose of 2.5 µg/g bw 3,5-T2 Our results revealed that 3,5-T2 modulates the expression of genes encoding Phase I and Phase II enzymes as well as Phase III transporters, which play central roles in metabolism and detoxification of xenobiotics. Additionally, 3,5-T2 changes the expression of TH responsive genes, suggesting a thyromimetic action of 3,5-T2 in mouse liver. Interestingly, 3,5-T2 in obese but not in lean mice influences the expression of genes relevant for cholesterol and steroid biosynthesis, suggesting a novel role of 3,5-T2 in steroid metabolism of obese mice. We concluded that treatment with 3,5-T2 in lean and diet-induced obese male mice alters the expression of genes encoding hepatic xenobiotic-metabolizing enzymes that play a substantial role in catabolism and inactivation of xenobiotics and TH and are also involved in hepatic steroid and lipid metabolism. The administration of this high dose of 3,5-T2 might exert adverse hepatic effects. Accordingly, the conceivable use of 3,5-T2 as pharmacological hypolipidemic agent should be considered with caution.
Collapse
Affiliation(s)
- Julika Lietzow
- Institut für Experimentelle EndokrinologieCharité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Wenke Jonas
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany German Center for Diabetes Research (DZD)Helmholtz Center Munich, Neuherberg, Germany
| | - Josef Köhrle
- Institut für Experimentelle EndokrinologieCharité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
179
|
Huang Y, Hoque MT, Jenabian MA, Vyboh K, Whyte SK, Sheehan NL, Brassard P, Bélanger M, Chomont N, Fletcher CV, Routy JP, Bendayan R. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site. J Antimicrob Chemother 2016; 71:1954-65. [PMID: 27076103 DOI: 10.1093/jac/dkw046] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The testes are a potential viral sanctuary site for HIV-1 infection. Our study aims to provide insight into the expression and localization of key drug transporters and metabolic enzymes relevant to ART in this tissue compartment. METHODS We characterized gene and protein expression of 12 representative drug transporters and two metabolic enzymes in testicular tissue samples obtained from uninfected (n = 8) and virally suppressed HIV-1-infected subjects on ART (n = 5) and quantified antiretroviral drug concentrations in plasma and testicular tissues using LC/MS/MS from HIV-1-infected subjects. RESULTS Our data demonstrate that key ABC drug transporters (permeability glycoprotein, multidrug-resistance protein 1, 2 and 4, and breast cancer resistance protein), solute carrier transporters (organic anion transporting polypeptides 1B1 and 2B1, organic anion transporter 1, concentrative nucleoside transporter 1, equilibrative nucleoside transporter 2) and cytochrome P450 metabolic enzymes (CYP3A4 and CYP2D6) previously shown to interact with many commonly used antiretroviral drugs are expressed at the mRNA and protein level in the testes of both subject groups and localize primarily at the blood-testis barrier, with no significant differences between the two groups. Furthermore, we observed that PIs known to be substrates for ATP-binding cassette membrane transporters, displayed variable testicular tissue penetration, with darunavir concentrations falling below therapeutic values. In contrast, the NRTIs emtricitabine, lamivudine and tenofovir displayed favourable tissue penetration, reaching concentrations comparable to plasma levels. We also demonstrated that nuclear receptors, peroxisome proliferator-activated receptors α and γ exhibited higher gene expression in the testicular tissue compared with pregnane X receptor and constitutive androstane receptor, suggesting a potential regulatory pathway governing drug transporter and metabolic enzyme expression in this tissue compartment. CONCLUSIONS Our data suggest the testes are a complex pharmacological compartment that can restrict the distribution of certain antiretroviral drugs and potentially contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Kishanda Vyboh
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Canada
| | - Sana-Kay Whyte
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Nancy L Sheehan
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | | | - Maud Bélanger
- Metropolitan Centre of Plastic Surgery, Montréal, Canada
| | - Nicolas Chomont
- University of Montréal Hospital Research Centre, Montréal, Canada
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| |
Collapse
|
180
|
Breljak D, Ljubojević M, Hagos Y, Micek V, Balen Eror D, Vrhovac Madunić I, Brzica H, Karaica D, Radović N, Kraus O, Anzai N, Koepsell H, Burckhardt G, Burckhardt BC, Sabolić I. Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron. Am J Physiol Renal Physiol 2016; 311:F227-38. [PMID: 27053689 DOI: 10.1152/ajprenal.00113.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/30/2016] [Indexed: 01/13/2023] Open
Abstract
The initial step in renal secretion of organic anions (OAs) is mediated by transporters in the basolateral membrane (BLM). Contributors to this process are primary active Na(+)-K(+)-ATPase (EC 3.6.3.9), secondary active Na(+)-dicarboxylate cotransporter 3 (NaDC3/SLC13A3), and tertiary active OA transporters (OATs) OAT1/SLC22A6, OAT2/SLC22A7, and OAT3/SLC22A8. In human kidneys, we analyzed the localization of these transporters by immunochemical methods in tissue cryosections and isolated membranes. The specificity of antibodies was validated with human embryonic kidney-293 cells stably transfected with functional OATs. Na(+)-K(+)-ATPase was immunolocalized to the BLM along the entire human nephron. NaDC3-related immunostaining was detected in the BLM of proximal tubules and in the BLM and/or luminal membrane of principal cells in connecting segments and collecting ducts. The thin and thick ascending limbs, macula densa, and distal tubules exhibited no reactivity with the anti-NaDC3 antibody. OAT1-OAT3-related immunostaining in human kidneys was detected only in the BLM of cortical proximal tubules; all three OATs were stained more intensely in S1/S2 segments compared with S3 segment in medullary rays, whereas the S3 segment in the outer stripe remained unstained. Expression of NaDC3, OAT1, OAT2, and OAT3 proteins exhibited considerable interindividual variability in both male and female kidneys, and sex differences in their expression could not be detected. Our experiments provide a side-by-side comparison of basolateral transporters cooperating in renal OA secretion in the human kidney.
Collapse
Affiliation(s)
- Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Yohannes Hagos
- Center of Physiology and Pathophysiology, Institute of Systemic Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany
| | - Vedran Micek
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Daniela Balen Eror
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Hrvoje Brzica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikola Radović
- Department of Urology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Ognjen Kraus
- University Hospital Sisters of Mercy, Zagreb, Croatia
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan; and
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute and Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Gerhard Burckhardt
- Center of Physiology and Pathophysiology, Institute of Systemic Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany
| | - Birgitta C Burckhardt
- Center of Physiology and Pathophysiology, Institute of Systemic Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia;
| |
Collapse
|
181
|
Ahn SO, Ohtomo S, Kiyokawa J, Nakagawa T, Yamane M, Lee KJ, Kim KH, Kim BH, Tanaka J, Kawabe Y, Horiba N. Stronger Uricosuric Effects of the Novel Selective URAT1 Inhibitor UR-1102 Lowered Plasma Urate in Tufted Capuchin Monkeys to a Greater Extent than Benzbromarone. J Pharmacol Exp Ther 2016; 357:157-66. [PMID: 26907620 DOI: 10.1124/jpet.115.231647] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 01/15/2023] Open
Abstract
Urate-lowering therapy is indispensable for the treatment of gout, but available drugs do not control serum urate levels tightly enough. Although the uricosurics benzbromarone and probenecid inhibit a urate reabsorption transporter known as renal urate transporter 1 (URAT1) and thus lower serum urate levels, they also inhibit other transporters responsible for secretion of urate into urine, which suggests that inhibiting URAT1 selectively would lower serum urate more effectively. We identified a novel potent and selective URAT1 inhibitor, UR-1102, and compared its efficacy with benzbromarone in vitro and in vivo. In human embryonic kidney (HEK)293 cells overexpressing URAT1, organic anion transporter 1 (OAT1), and OAT3, benzbromarone inhibited all transporters similarly, whereas UR-1102 inhibited URAT1 comparably to benzbromarone but inhibited OAT1 and OAT3 quite modestly. UR-1102 at 3-30 mg/kg or benzbromarone at 3-100 mg/kg was administered orally once a day for 3 consecutive days to tufted capuchin monkeys, whose low uricase activity causes a high plasma urate level. When compared with the same dosage of benzbromarone, UR-1102 showed a better pharmacokinetic profile, increased the fractional excretion of urinary uric acid, and reduced plasma uric acid more effectively. Moreover, the maximum efficacy of UR-1102 was twice that of benzbromarone, suggesting that selective inhibition of URAT1 is effective. Additionally UR-1102 showed lower in vitro potential for mechanisms causing the hepatotoxicity induced by benzbromarone. These results indicate that UR-1102 achieves strong uricosuric effects by selectively inhibiting URAT1 over OAT1 and OAT3 in monkeys, and could be a novel therapeutic option for patients with gout or hyperuricemia.
Collapse
Affiliation(s)
- Sung Oh Ahn
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Shuichi Ohtomo
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Jumpei Kiyokawa
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Toshito Nakagawa
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Mizuki Yamane
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Kyoung June Lee
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Ki Hwan Kim
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Byung Ho Kim
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Jo Tanaka
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Yoshiki Kawabe
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| | - Naoshi Horiba
- Discovery Research Center, C&C Research Laboratories, Suwon, Republic of Korea (S.O.A., B.H.K.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan (S.O., J.K, T.N., M.Y., Y.K., N.H.); Drug Discovery Center, JW Pharmaceutical Corp. Seoul, Republic of Korea (K.J.L.); JW CreaGene, Seongnam, Republic of Korea (K.H.K.); Drug Safety Research Laboratory, Shin Nihon Biological Laboratories, Miyanoura, Kagoshima, Japan (J.T.)
| |
Collapse
|
182
|
Abstract
PURPOSE OF REVIEW This article answers the question of whether creatinine is the best biomarker for monitoring neonatal glomerular filtration rate (GFR) in view of recent advances in measuring neonatal renal function. RECENT FINDINGS We rely largely on serum creatinine for the estimation of GFR in the newborn, even though creatinine is freely exchanged through the placenta. During the first few days of life, the serum creatinine reflects maternal renal function or the maternal creatinine. Back filtration of creatinine in preterm newborns is also a serious limitation. This review summarizes current knowledge on the prenatal and postnatal handling of creatinine as well as that of other, more novel biomarkers of GFR, such as cystatin C (CysC) and β-trace protein (BTP). Only small amounts of CysC cross the placenta, whereas BTP does not cross the placenta at all. However, BTP measurements are not widely available. Recent studies on renal volumetry are also discussed. SUMMARY Currently, CysC may be the most suitable marker of neonatal renal function, but its availability is still limited, it is more costly, and the best method of reporting acute kidney injury and neonatal estimated GFR remains to be established.
Collapse
|
183
|
Sangkop F, Singh G, Rodrigues E, Gold E, Bahn A. Uric acid: a modulator of prostate cells and activin sensitivity. Mol Cell Biochem 2016; 414:187-99. [PMID: 26910779 DOI: 10.1007/s11010-016-2671-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
Elevated serum uric acid (SUA) or urate is associated with inflammation and gout. Recent evidence has linked urate to cancers, but little is known about urate effects in prostate cancer. Activins are inflammatory cytokines and negative growth regulators in the prostate. A hallmark of prostate cancer progression is activin insensitivity; however, mechanisms underlying this are unclear. We propose that elevated SUA is associated with prostate cancer counteracting the growth inhibitory effects of activins. The expression of activins A and B, urate transporter GLUT9 and tissue urate levels were examined in human prostate disease. Intracellular and secreted urate and GLUT9 expression were assessed in human prostate cancer cell lines. Furthermore, the effects of urate and probenecid, a known urate transport inhibitor, were determined in combination with activin A. Activin A expression was increased in low-grade prostate cancer, whereas activin B expression was reduced in high-grade prostate cancer. Intracellular urate levels decreased in all prostate pathologies, while GLUT9 expression decreased in benign prostatic hyperplasia, prostatitis and high-grade prostate cancer. Activin responsive LNCaP cells had higher intracellular and lower secreted urate levels than activin-insensitive PC3 cells. GLUT9 expression in prostate cancer cells was progressively lower than in prostate epithelial cells. Elevated extracellular urate was growth promoting in vitro, which was abolished by the gout medication probenecid, and it antagonized the growth inhibitory effects of activins. This study shows for the first time that a change in plasma or intracellular urate levels, possibly involving GLUT9 and a urate efflux transporter, has an impact on prostate cancer cell growth, and that lowering SUA levels in prostate cancer is likely to be therapeutically beneficial.
Collapse
Affiliation(s)
- Febbie Sangkop
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geeta Singh
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ely Rodrigues
- Department of Physiology, University of Otago, PO Box 913, Dunedin, 9054, New Zealand
| | - Elspeth Gold
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology, University of Otago, PO Box 913, Dunedin, 9054, New Zealand.
| |
Collapse
|
184
|
Liu Y, Pu QH, Wu MJ, Yu C. Proteomic analysis for the impact of hypercholesterolemia on expressions of hepatic drug transporters and metabolizing enzymes. Xenobiotica 2016; 46:940-7. [DOI: 10.3109/00498254.2016.1144228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yan Liu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Qiang-Hong Pu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Ming-Jun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Chao Yu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
185
|
Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, Kaira K, Kato Y, Oriuchi N, Nagamori S, Kanai Y. Transport of 3-fluoro-l-α-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [18F]FAMT positron emission tomography. J Pharmacol Sci 2016; 130:101-9. [DOI: 10.1016/j.jphs.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
|
186
|
HS-23, a standardized extract of the dried flower buds of Lonicera japonica, has no major impact on drug transporters and on the pharmacokinetics of ceftriaxone and levofloxacin in rats. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-015-0208-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
187
|
Wu X, Liu J, Zhang J, Liu H, Yan M, Liang B, Xie H, Zhang S, Sun B, Zhou H. Folic acid reverses uric acid crystal-induced surface OAT1 internalization by inhibiting RhoA activity in uric acid nephropathy. Mol Med Rep 2016; 13:2385-92. [PMID: 26846716 PMCID: PMC4768998 DOI: 10.3892/mmr.2016.4837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022] Open
Abstract
To investigate how organic anion transporter (OAT)-1 is involved in uric acid nephropathy (UAN), a rat model for UAN was established and the serum uric acid, blood urea nitrogen and serum creatinine levels were all measured, and observed to be increased. It was additionally identified that in UAN rats the surface OAT1 expression levels were reduced. By treating HEK cells with monosodium urate (MSU) crystals, it was observed that the cells exhibited a reduction in OAT1 levels. Furthermore, MSU crystals were observed to recruit Ras homolog family member A (RhoA), a small guanosine triphosphatase, to the membrane and activate it. Following RhoA activation, the OAT1 internalization rate was identified to be increased. The dominant‑negative RhoA N19 mutation was able to block MSU‑induced OAT1 internalization, indicating that the process was RhoA‑dependent. Finally, the results indicated that folic acid, a daily nutritional supplement, was capable of rescuing MSU‑induced nephropathy and OAT1 internalization. These observations indicated that uric acid crystals were able to reduce the OAT1 membrane distribution through activating RhoA, and that folic acid was capable of preventing MSU-induced OAT1 relocation by inhibiting the RhoA signaling pathway.
Collapse
Affiliation(s)
- Xinlin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianxiang Liu
- Key Laboratory of Medicinal Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jianqing Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Heng Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Miansheng Yan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Birong Liang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongbo Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Baoguo Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Houming Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
188
|
Zheng J, Chan T, Zhu L, Yan X, Cao Z, Wang Y, Zhou F. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). Xenobiotica 2016; 46:831-40. [DOI: 10.3109/00498254.2015.1129080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zheng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, P.R. China,
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia,
| | - Ting Chan
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia,
| | - Ling Zhu
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia, and
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, P.R. China,
| | - Zhisong Cao
- The CHRISTUS Stehlin Foundation for Cancer Research, Houston, TX, USA
| | - Yang Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, P.R. China,
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia,
| |
Collapse
|
189
|
Feng Y, Wang C, Liu Q, Meng Q, Huo X, Liu Z, Sun P, Yang X, Sun H, Qin J, Liu K. Bezafibrate–mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. Eur J Pharm Sci 2016; 81:119-28. [DOI: 10.1016/j.ejps.2015.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/19/2015] [Accepted: 10/10/2015] [Indexed: 01/11/2023]
|
190
|
Estudante M, Soveral G, Morais JG, Benet LZ. Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00188b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SLCs transport many endogenous and exogenous compounds including drugs; SLCs dysfunction has implications in pharmacokinetics, drug toxicity or lack of efficacy.
Collapse
Affiliation(s)
- Margarida Estudante
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
| | - José G. Morais
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|
191
|
Schulz K, Hagos Y, Burckhardt G, Schley G, Burzlaff N, Willam C, Burckhardt BC. The Isoquinolone Derived Prolyl Hydroxylase Inhibitor ICA Is a Potent Substrate of the Organic Anion Transporters 1 and 3. Nephron Clin Pract 2015; 131:285-9. [PMID: 26640952 DOI: 10.1159/000442531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Many cellular responses to hypoxia are mediated by the transcription factor complex hypoxia-inducible factor (HIF). HIF stability is governed by a family of dioxygenases called HIF prolyl hydroxylases (PHDs). Isoquinolone-derived PHD inhibitors, like 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA), which stabilize the intracellular HIF-α have been suggested as a potentially beneficial therapeutic strategy for the treatment of disorders associated with ischemia. To stabilize HIF-α, ICA has to be taken up into proximal tubule cells (PCTs) across the basolateral membrane by one of the organic anion transporters 1, 2 or 3 (OAT1, OAT2 or OAT3). The release into the urine across the luminal membrane may be mediated by OAT4. METHOD To demonstrate interaction of ICA with human OAT1, OAT2, OAT3 and OAT4, ICA was tested on these transporters stably transfected in HEK293 cells by using p-aminohippurate (PAH), cGMP and estrone-3-sulfate (ES) as reference substrates, respectively. RESULTS Uptakes of PAH and ES in OAT1- and OAT3-transfected HEK293 cells were inhibited by ICA with half-maximal inhibition values of 0.29 ± 0.05 and 2.58 ± 0.16 µM, respectively. OAT2 was less sensitive to ICA. Efflux experiments identified ICA as an OAT1 and OAT3 substrate. Preloading OAT4-transfected HEK293 cells with ICA stimulated ES uptake by 18.3 ± 3.8%. CONCLUSION The uptake of ICA across the basolateral membrane of PCTs occurs mainly by OAT1 and the efflux into the tubular lumen by OAT4.
Collapse
|
192
|
Hotchkiss AG, Gao T, Khan U, Berrigan L, Li M, Ingraham L, Pelis RM. Organic Anion Transporter 1 Is Inhibited by Multiple Mechanisms and Shows a Transport Mode Independent of Exchange. Drug Metab Dispos 2015; 43:1847-54. [PMID: 26370539 DOI: 10.1124/dmd.115.065748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
The mechanism by which drugs inhibit organic anion transporter 1 (OAT1) was examined. OAT1 was stably expressed in Chinese hamster ovary (CHO) cells, and para-aminohippurate (PAH) and 6-carboxyfluorescein were the substrates. Most compounds (10 of 14) inhibited competitively, increasing the Michaelis constant (Km) without affecting the maximal transport rate (Jmax). Others were mixed-type (lowering Jmax and increasing Km) or noncompetitive (lowering Jmax only) inhibitors. The interaction of a noncompetitive inhibitor (telmisartan) with OAT1 was examined further. Binding of telmisartan to OAT1 was observed, but translocation was not. Telmisartan did not alter the plasma membrane expression of OAT1, indicating that it lowers Jmax by reducing the turnover number. PAH transport after telmisartan treatment and its washout recovered faster in the presence of 10% fetal bovine serum in the washout buffer, indicating that binding of telmisartan to OAT1 and its inhibitory effect are reversible. Together, these data suggest that telmisartan binds reversibly to a site distinct from substrate and stabilizes the transporter in a conformation unfavorable for translocation. In the absence of an exchangeable extracellular substrate, PAH efflux from CHO-OAT1 cells was relatively rapid. Telmisartan slowed PAH efflux, suggesting that some transporter-mediated efflux occurs independent of exchange. Although drug-drug interaction predictions at OAT1 assume competitive inhibition, these data show that OAT1 can be inhibited by other mechanisms, which could influence the accuracy of drug-drug interaction predictions at the transporter. Telmisartan was useful for examining how a noncompetitive inhibitor can alter OAT1 transport activity and for uncovering a transport mode independent of exchange.
Collapse
Affiliation(s)
- Adam G Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiandai Gao
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Usman Khan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liam Berrigan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mansong Li
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leslie Ingraham
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
193
|
Yin J, Duan H, Shirasaka Y, Prasad B, Wang J. Atenolol Renal Secretion Is Mediated by Human Organic Cation Transporter 2 and Multidrug and Toxin Extrusion Proteins. Drug Metab Dispos 2015; 43:1872-81. [PMID: 26374172 PMCID: PMC4658496 DOI: 10.1124/dmd.115.066175] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/14/2015] [Indexed: 01/11/2023] Open
Abstract
Atenolol is a β-blocker widely used in the treatment of hypertension. Atenolol is cleared predominantly by the kidney by both glomerular filtration and active secretion, but the molecular mechanisms involved in its renal secretion are unclear. Using a panel of human embryonic kidney cell lines stably expressing human organic cation transporter (hOCT) 1-3, human organic anion transporter (hOAT) 1, hOAT3, human multidrug and toxin extrusion protein (hMATE) 1, and hMATE2-K, we found that atenolol interacted with both organic cation and anion transporters. However, it is transported by hOCT1, hOCT2, hMATE1, and hMATE2-K, but not by hOCT3, hOAT1, and hOAT3. A detailed kinetic analysis coupled with absolute quantification of membrane transporter proteins by liquid chromatography-tandem mass spectrometry revealed that atenolol is an excellent substrate for the renal transporters hOCT2, hMATE1, and hMATE2-K. The Km values for hOCT2, hMATE1, and hMATE2-K are 280 ± 4, 32 ± 5, and 76 ± 14 μM, respectively, and the calculated turnover numbers are 2.76, 0.41, and 2.20 s(-1), respectively. To demonstrate unidirectional transepithelial transport of atenolol, we developed and functionally validated a hOCT2/hMATE1 double-transfected Madin-Darby canine kidney cell culture model. Transwell studies showed that atenolol transport in the basal (B)-to-apical (A) direction is 27-fold higher than in the A-to-B direction, whereas its B-to-A/A-to-B transport ratio was only 2 in the vector-transfected control cells. The overall permeability of atenolol in the B-to-A direction in hOCT2/hMATE1 cells was 44-fold higher than in control cells. Together, our data support that atenolol tubular secretion is mediated through the hOCT2/hMATEs secretion pathway and suggest a significant role of organic cation transporters in the disposition of an important antihypertensive drug.
Collapse
Affiliation(s)
- Jia Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
194
|
Henjakovic M, Hagos Y, Krick W, Burckhardt G, Burckhardt BC. Human organic anion transporter 2 is distinct from organic anion transporters 1 and 3 with respect to transport function. Am J Physiol Renal Physiol 2015; 309:F843-51. [DOI: 10.1152/ajprenal.00140.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/15/2015] [Indexed: 02/03/2023] Open
Abstract
Phylogentically, organic anion transporter (OAT)1 and OAT3 are closely related, whereas OAT2 is more distant. Experiments with human embryonic kidney-293 cells stably transfected with human OAT1, OAT2, or OAT3 were performed to compare selected transport properties. Common to OAT1, OAT2, and OAT3 is their ability to transport cGMP. OAT2 interacted with prostaglandins, and cGMP uptake was inhibited by PGE2 and PGF2α with IC50 values of 40.8 and 12.7 μM, respectively. OAT1 (IC50: 23.7 μM), OAT2 (IC50: 9.5 μM), and OAT3 (IC50: 1.6 μM) were potently inhibited by MK571, an established multidrug resistance protein inhibitor. OAT2-mediated cGMP uptake was not inhibited by short-chain monocarboxylates and, as opposed to OAT1 and OAT3, not by dicarboxylates. Consequently, OAT2 showed no cGMP/glutarate exchange. OAT1 and OAT3 exhibited a pH and a Cl− dependence with higher substrate uptake at acidic pH and lower substrate uptake in the absence of Cl−, respectively. Such pH and Cl− dependencies were not observed with OAT2. Depolarization of membrane potential by high K+ concentrations in the presence of the K+ ionophore valinomycin left cGMP uptake unaffected. In addition to cGMP, OAT2 transported urate and glutamate, but cGMP/glutamate exchange could not be demonstrated. These experiments suggest that OAT2-mediated cGMP uptake does not occur via exchange with monocarboxylates, dicarboxylates, and hydroxyl ions. The counter anion for electroneutral cGMP uptake remains to be identified.
Collapse
Affiliation(s)
- Maja Henjakovic
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Yohannes Hagos
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Krick
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerhard Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Birgitta C. Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
195
|
Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS One 2015; 10:e0140569. [PMID: 26536134 PMCID: PMC4633038 DOI: 10.1371/journal.pone.0140569] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term "Oat-related" (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.
Collapse
Affiliation(s)
- Christopher Zhu
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Kabir B. Nigam
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Rishabh C. Date
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin T. Bush
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Stevan A. Springer
- Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Departments of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Wei Wu
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (SKN); (WW)
| | - Sanjay K. Nigam
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
- Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (SKN); (WW)
| |
Collapse
|
196
|
Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. Clin J Am Soc Nephrol 2015; 10:2039-49. [PMID: 26490509 DOI: 10.2215/cjn.02440314] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/28/2014] [Indexed: 01/22/2023]
Abstract
The proximal tubule of the kidney plays a crucial role in the renal handling of drugs (e.g., diuretics), uremic toxins (e.g., indoxyl sulfate), environmental toxins (e.g., mercury, aristolochic acid), metabolites (e.g., uric acid), dietary compounds, and signaling molecules. This process is dependent on many multispecific transporters of the solute carrier (SLC) superfamily, including organic anion transporter (OAT) and organic cation transporter (OCT) subfamilies, and the ATP-binding cassette (ABC) superfamily. We review the basic physiology of these SLC and ABC transporters, many of which are often called drug transporters. With an emphasis on OAT1 (SLC22A6), the closely related OAT3 (SLC22A8), and OCT2 (SLC22A2), we explore the implications of recent in vitro, in vivo, and clinical data pertinent to the kidney. The analysis of murine knockouts has revealed a key role for these transporters in the renal handling not only of drugs and toxins but also of gut microbiome products, as well as liver-derived phase 1 and phase 2 metabolites, including putative uremic toxins (among other molecules of metabolic and clinical importance). Functional activity of these transporters (and polymorphisms affecting it) plays a key role in drug handling and nephrotoxicity. These transporters may also play a role in remote sensing and signaling, as part of a versatile small molecule communication network operative throughout the body in normal and diseased states, such as AKI and CKD.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Medicine, Department of Pediatrics, Department of Cell & Molecular Medicine,
| | | | | | - Melanie P Hoenig
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Roland C Blantz
- Division of Nephrology-Hypertension, and Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Vibha Bhatnagar
- Division of Family & Preventative Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
197
|
Modulation of ALDH5A1 and SLC22A7 by microRNA hsa-miR-29a-3p in human liver cells. Biochem Pharmacol 2015; 98:671-80. [PMID: 26428001 DOI: 10.1016/j.bcp.2015.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 01/29/2023]
Abstract
Observed variations in drug responses among patients may result from differences in heritable genetic traits or from alterations in the epigenetic regulation of drug metabolizing enzymes and transporters (DMETs). MicroRNAs (miRNAs), a group of small non-coding RNAs, provide an epigenetic mechanism for fine-tuning the expression of targeted DMET genes by regulating the efficiency of protein translation and by decreasing mRNA stability via enhanced degradation. In the current study we systematically screened 374 important genes encoding DMETs for potential response elements to hsa-miR-29a-3p, a highly abundant miRNA in human liver. RNA electrophoresis mobility shift assays displayed direct interactions between hsa-miR-29a-3p and its cognate targets within the mRNA transcripts for the ABCC6, SLC22A7 and ALDH5A1 genes. The expression of luciferase reporter genes containing the 3'-UTRs of SLC22A7 or ALDH5A1 and the expression of endogenous SLC22A7 and ALDH5A1 were each suppressed by transfection with hsa-miR-29a-3p mimics. Importantly, chemically-induced up-regulation of hsa-miR-29a-3p correlated inversely with the expression of SLC22A7 and ALDH5A1. However, our studies failed to detect suppressive effects of hsa-miR-29a-3p on ABCC6 expression, which might be explained by the notion that the interaction of hsa-miR-29a-3p and ABCC6 mRNA was unable to recruit ribonucleoproteins to form a RNA-induced silencing complex.
Collapse
|
198
|
Lykke K, Töllner K, Römermann K, Feit PW, Erker T, MacAulay N, Löscher W. Structure-activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of the human NKCC2A transporter. Br J Pharmacol 2015; 172:4469-4480. [PMID: 26101812 PMCID: PMC4562508 DOI: 10.1111/bph.13231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The N-K-Cl cotransporters (NKCCs) mediate the coupled, electroneutral movement of Na+ , K+ and Cl- ions across cell membranes. There are two isoforms of this cation co-transporter, NKCC1 and NKCC2. NKCC2 is expressed primarily in the kidney and is the target of diuretics such as bumetanide. Bumetanide was discovered by screening ∼5000 3-amino-5-sulfamoylbenzoic acid derivatives, long before NKCC2 was identified in the kidney. Therefore, structure-activity studies on effects of bumetanide derivatives on NKCC2 are not available. EXPERIMENTAL APPROACH In this study, the effect of a series of diuretically active bumetanide derivatives was investigated on human NKCC2 variant A (hNKCC2A) expressed in Xenopus laevis oocytes. KEY RESULTS Bumetanide blocked hNKCC2A transport with an IC50 of 4 μM. There was good correlation between the diuretic potency of bumetanide and its derivatives in dogs and their inhibition of hNKCC2A (r2 = 0.817; P < 0.01). Replacement of the carboxylic group of bumetanide by a non-ionic residue, for example, an anilinomethyl group, decreased inhibition of hNKCC2A, indicating that an acidic group was required for transporter inhibition. Exchange of the phenoxy group of bumetanide for a 4-chloroanilino group or the sulfamoyl group by a methylsulfonyl group resulted in compounds with higher potency to inhibit hNKCC2A than bumetanide. CONCLUSIONS AND IMPLICATIONS The X. laevis oocyte expression system used in these experiments allowed analysis of the structural requirements that determine relative potency of loop diuretics on human NKCC2 splice variants, and may lead to the discovery of novel high-ceiling diuretics.
Collapse
Affiliation(s)
- Kasper Lykke
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagen, Denmark
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| | - Peter W Feit
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
| | - Thomas Erker
- Department of Medicinal Chemistry, University of ViennaVienna, Austria
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagen, Denmark
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| |
Collapse
|
199
|
Variability in hepatic expression of organic anion transporter 7/SLC22A9, a novel pravastatin uptake transporter: impact of genetic and regulatory factors. THE PHARMACOGENOMICS JOURNAL 2015; 16:341-51. [PMID: 26239079 DOI: 10.1038/tpj.2015.55] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/26/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Human organic anion transporter 7 (OAT7, SLC22A9) is a hepatic transport protein poorly characterized so far. We therefore sought to identify novel OAT7 substrates and factors contributing to variable hepatic OAT7 expression. Using OAT7-expressing cells, pravastatin was identified as a substrate. Hepatic SLC22A9/OAT7 mRNA and protein expression varied 28-fold and 15-fold, respectively, in 126 Caucasian liver samples. Twenty-four variants in SLC22A9 were genotyped, including three rare missense variants (rs377211288, rs61742518, rs146027075), which occurred only heterozygously. No variant significantly affected hepatic SLC22A9/OAT7 expression. The three missense variants, however, showed functional consequences when expressed in vitro. Hepatic nuclear factor 4-alpha (HNF4α) emerged as a major transcriptional regulator of SLC22A9 by a series of in silico and in vitro analyses. In conclusion, pravastatin is the first identified OAT7 drug substrate. Substantial inter-individual variability in hepatic OAT7 expression, majorly driven by HNF4α, may contribute to pravastatin drug disposition and might affect response.The Pharmacogenomics Journal advance online publication, 4 August 2015; doi:10.1038/tpj.2015.55.
Collapse
|
200
|
A step forward towards accurately assessing glomerular filtration rate in newborns. Pediatr Nephrol 2015; 30:1209-12. [PMID: 25939816 DOI: 10.1007/s00467-014-3014-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 02/08/2023]
Abstract
In this edition of Pediatric Nephrology, Milena Treiber and colleagues have published a study on cystatin C (CysC) concentrations in relation to renal volumetry in 50 small-for-gestational age (SGA) and 50 appropriate-for-gestational age (AGA) neonates, deriving a new formula for estimating neonatal glomerular filtration rate (GFR). The study builds on previous work which established that renal volumetry together with CysC blood levels is a superior method for establishing GFR in term and pre-term newborns [The Journal of Pediatrics (2014) 164:1026-1031.e2]. Treiber et al. use the expected difference between SGA and AGA renal volumes to document the superiority of their new formula, which is based on total renal volume, CysC and body surface area, but does not incorporate gold-standard inulin clearance. Treiber et al.'s study adds new knowledge to the field that will hopefully improve the safety of renally excreted critical dose drugs in the newborn period. This editorial discusses the strengths and limitations of the current study.
Collapse
|