151
|
Kuang YL, Munoz A, Nalula G, Santostefano KE, Sanghez V, Sanchez G, Terada N, Mattis AN, Iacovino M, Iribarren C, Krauss RM, Medina MW. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res 2019; 37:101434. [PMID: 30999275 PMCID: PMC6570500 DOI: 10.1016/j.scr.2019.101434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) have become a promising resource for exploring genetics of complex diseases, discovering new drugs, and advancing regenerative medicine. Increasingly, laboratories are creating their own banks of iPSCs derived from diverse donors. However, there are not yet standardized guidelines for qualifying these cell lines, i.e., distinguishing between bona fide human iPSCs, somatic cells, and imperfectly reprogrammed cells. Here, we report the establishment of a panel of 30 iPSCs from CD34+ peripheral blood mononuclear cells, of which 10 were further differentiated in vitro into all three germ layers. We characterized these different cell types with commonly used pluripotent and lineage specific markers, and showed that NES, TUBB3, and OTX2 cannot be reliably used as ectoderm differentiation markers. Our work highlights the importance of marker selection in iPSC authentication, and the need for the field to establish definitive standard assays.
Collapse
Affiliation(s)
- Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Antonio Munoz
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Gilbert Nalula
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Katherine E Santostefano
- University of Florida College of Medicine, 1395 Center Drive Box 100275, Gainesville, FL 32610, USA
| | - Valentina Sanghez
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1123 W Carson Street, Torrance, CA 90502, USA
| | - Gabriela Sanchez
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Naohiro Terada
- University of Florida College of Medicine, 1395 Center Drive Box 100275, Gainesville, FL 32610, USA
| | - Aras N Mattis
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Michelina Iacovino
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1123 W Carson Street, Torrance, CA 90502, USA
| | - Carlos Iribarren
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| |
Collapse
|
152
|
Marton RM, Ioannidis JPA. A Comprehensive Analysis of Protocols for Deriving Dopaminergic Neurons from Human Pluripotent Stem Cells. Stem Cells Transl Med 2019; 8:366-374. [PMID: 30537442 PMCID: PMC6431689 DOI: 10.1002/sctm.18-0088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
The potential applications of human embryonic and induced pluripotent stem cells has led to immense interest in developing new protocols to differentiate specific cell types or modifying existing protocols. To investigate to what extent and why new protocols for the same cell types are developed and adopted, we systematically evaluated 158 publications (2004-2017) that differentiated human stem cells into dopaminergic neurons. We categorized each article by degree of novelty and recorded motivations for protocol development. 74 novel or modified protocols were developed. Most (65%) were not used again in subsequent studies. Diverse motivations were recorded and performance of new methods was assessed with substantially different approaches across studies. There was improvement over time in yield of neuron production, but not in yield of dopaminergic neurons or time required for getting neurons. Standardized reporting of performance metrics may help rational choice of the best methods. Stem Cells Translational Medicine 2019;8:366-374.
Collapse
Affiliation(s)
- Rebecca M. Marton
- Institute for Stem Cell Biology and Regenerative MedicineStanford University Medical SchoolStanfordCaliforniaUSA
- Meta‐Research Innovation Center at Stanford (METRICS)Stanford UniversityStanfordCaliforniaUSA
| | - John P. A. Ioannidis
- Meta‐Research Innovation Center at Stanford (METRICS)Stanford UniversityStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
- Department of Health Research and PolicyStanford University School of MedicineStanfordCaliforniaUSA
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCaliforniaUSA
- Department of StatisticsStanford University School of Humanities and SciencesStanfordCaliforniaUSA
| |
Collapse
|
153
|
Devito L, Klontzas ME, Cvoro A, Galleu A, Simon M, Hobbs C, Dazzi F, Mantalaris A, Khalaf Y, Ilic D. Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Cell Death Dis 2019; 10:277. [PMID: 30894508 PMCID: PMC6426992 DOI: 10.1038/s41419-019-1498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Variability among donors, non-standardized methods for isolation, and characterization contribute to mesenchymal stem/stromal cell (MSC) heterogeneity. Induced pluripotent stem cell (iPSCs)-derived MSCs would circumvent many of current issues and enable large-scale production of standardized cellular therapy. To explore differences between native MSCs (nMSCs) and iPSC-derived MSCs (iMSCs), we developed isogeneic lines from Wharton’s jelly (WJ) from the umbilical cords of two donors (#12 and #13) under xeno-free conditions. Next, we reprogrammed them into iPSCs (iPSC12 and iPSC13) and subsequently differentiated them back into iMSCs (iMSC12 and iMSC13) using two different protocols, which we named ARG and TEX. We assessed their differentiation capability, transcriptome, immunomodulatory potential, and interferon-γ (IFNG)-induced changes in metabolome. Our data demonstrated that although both differentiation protocols yield iMSCs similar to their parental nMSCs, there are substantial differences. The ARG protocol resulted in iMSCs with a strong immunomodulatory potential and lower plasticity and proliferation rate, whereas the TEX protocol raised iMSCs with a higher proliferation rate, better differentiation potential, though weak immunomodulatory response. Our data suggest that, following a careful selection and screening of donors, nMSCs from umbilical’s cord WJ can be easily reprogrammed into iPSCs, providing an unlimited source of material for differentiation into iMSCs. However, the differentiation protocol should be chosen depending on their clinical use.
Collapse
Affiliation(s)
- Liani Devito
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | | | - Aleksandra Cvoro
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Antonio Galleu
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Marisa Simon
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Athanasios Mantalaris
- Department of Chemical Engineering, Imperial College London, London, UK.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Engineering Biosciences Building, Rm 3016, Atlanta, GA, 30332, USA
| | - Yacoub Khalaf
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
154
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
155
|
Vigilante A, Laddach A, Moens N, Meleckyte R, Leha A, Ghahramani A, Culley OJ, Kathuria A, Hurling C, Vickers A, Wiseman E, Tewary M, Zandstra PW, Durbin R, Fraternali F, Stegle O, Birney E, Luscombe NM, Danovi D, Watt FM. Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Rep 2019; 26:2078-2087.e3. [PMID: 30784590 PMCID: PMC6381787 DOI: 10.1016/j.celrep.2019.01.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior.
Collapse
Affiliation(s)
- Alessandra Vigilante
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anna Laddach
- Randall Division, King's College London, New Hunts House, Great Maze Pond, London SE1 9RT, UK
| | - Nathalie Moens
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Ruta Meleckyte
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Andreas Leha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Arsham Ghahramani
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver J Culley
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Annie Kathuria
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Chloe Hurling
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Erika Wiseman
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Richard Durbin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Franca Fraternali
- Randall Division, King's College London, New Hunts House, Great Maze Pond, London SE1 9RT, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
156
|
Mishra S, Kacin E, Stamatiadis P, Franck S, Van der Jeught M, Mertes H, Pennings G, De Sutter P, Sermon K, Heindryckx B, Geens M. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells. Mol Hum Reprod 2019; 24:173-184. [PMID: 29471503 DOI: 10.1093/molehr/gay007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/10/2018] [Indexed: 12/16/2022] Open
Abstract
The derivation of gametes from patient-specific pluripotent stem cells may provide new perspectives for genetic parenthood for patients currently facing sterility. We use current data to assess the gamete differentiation potential of patient-specific pluripotent stem cells and to determine which reprogramming strategy holds the greatest promise for future clinical applications. First, we compare the two best established somatic cell reprogramming strategies: the production of induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer followed by embryonic stem cell derivation (SCNT-ESC). Recent reports have indicated that these stem cells, though displaying a similar pluripotency potential, show important differences at the epigenomic level, which may have repercussions on their applicability. By comparing data on the genetic and epigenetic stability of these cell types during derivation and in-vitro culture, we assess the reprogramming efficiency of both technologies and possible effects on the subsequent differentiation potential of these cells. Moreover, we discuss possible implications of mitochondrial heteroplasmy. We also address the ethical aspects of both cell types, as well as the safety considerations associated with clinical applications using these cells, e.g. the known genomic instability of human PSCs during long-term culture. Secondly, we discuss the role of the stem cell pluripotency state in germ cell differentiation. In mice, success in germ cell development from pluripotent stem cells could only be achieved when starting from a naive state of pluripotency. It remains to be investigated if the naive state is also crucial for germ cell differentiation in human cells and to what extent human naive pluripotency resembles the naive state in mouse.
Collapse
Affiliation(s)
- S Mishra
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - E Kacin
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - P Stamatiadis
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - S Franck
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - M Van der Jeught
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - H Mertes
- Bioethics Institute Ghent, Department of Philosophy and Moral Sciences, Blandijnberg 2, 9000 Ghent, Belgium
| | - G Pennings
- Bioethics Institute Ghent, Department of Philosophy and Moral Sciences, Blandijnberg 2, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - K Sermon
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - M Geens
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| |
Collapse
|
157
|
Ryall S, Arnoldo A, Sheth J, Singh SK, Hawkins C. Detecting Stem Cell Marker Expression Using the NanoString nCounter System. Methods Mol Biol 2019; 1869:57-67. [PMID: 30324513 DOI: 10.1007/978-1-4939-8805-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) has become commonplace in the study of neuronal development, physiology, disease modelling, and therapy development. Due to the transient nature of working with these cells, it is important to regularly confirm the cell status as a naive stem cell versus a more defined neural progenitor cell (NPC). Classically, this has been done using a panel of specific antibodies to test for the expression of transcription factors known to be observed in ESCs, but not NPCs. However, this method is both time consuming and expensive. Here, we describe the use of the NanoString nCounter system for determining the levels of expression of key transcription factors that will effectively aid in determining the state of your stem cell cultures.
Collapse
Affiliation(s)
- Scott Ryall
- Division of Cell Biology, Hospital for Sick Children Research Center, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anthony Arnoldo
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Javal Sheth
- Division of Cell Biology, Hospital for Sick Children Research Center, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Cynthia Hawkins
- Division of Cell Biology, Hospital for Sick Children Research Center, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
158
|
Hoffman GE, Schrode N, Flaherty E, Brennand KJ. New considerations for hiPSC-based models of neuropsychiatric disorders. Mol Psychiatry 2019; 24:49-66. [PMID: 29483625 PMCID: PMC6109625 DOI: 10.1038/s41380-018-0029-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
The development of human-induced pluripotent stem cells (hiPSCs) has made possible patient-specific modeling across the spectrum of human disease. Here, we discuss recent advances in psychiatric genomics and post-mortem studies that provide critical insights concerning cell-type composition and sample size that should be considered when designing hiPSC-based studies of complex genetic disease. We review recent hiPSC-based models of SZ, in light of our new understanding of critical power limitations in the design of hiPSC-based studies of complex genetic disorders. Three possible solutions are a movement towards genetically stratified cohorts of rare variant patients, application of CRISPR technologies to engineer isogenic neural cells to study the impact of common variants, and integration of advanced genetics and hiPSC-based datasets in future studies. Overall, we emphasize that to advance the reproducibility and relevance of hiPSC-based studies, stem cell biologists must contemplate statistical and biological considerations that are already well accepted in the field of genetics. We conclude with a discussion of the hypothesis of biological convergence of disease-through molecular, cellular, circuit, and patient level phenotypes-and how this might emerge through hiPSC-based studies.
Collapse
Affiliation(s)
- Gabriel E Hoffman
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadine Schrode
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erin Flaherty
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristen J Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
159
|
Lo Sardo V, Chubukov P, Ferguson W, Kumar A, Teng EL, Duran M, Zhang L, Cost G, Engler AJ, Urnov F, Topol EJ, Torkamani A, Baldwin KK. Unveiling the Role of the Most Impactful Cardiovascular Risk Locus through Haplotype Editing. Cell 2018; 175:1796-1810.e20. [PMID: 30528432 DOI: 10.1016/j.cell.2018.11.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
The 9p21.3 cardiovascular disease locus is the most influential common genetic risk factor for coronary artery disease (CAD), accounting for ∼10%-15% of disease in non-African populations. The ∼60 kb risk haplotype is human-specific and lacks coding genes, hindering efforts to decipher its function. Here, we produce induced pluripotent stem cells (iPSCs) from risk and non-risk individuals, delete each haplotype using genome editing, and generate vascular smooth muscle cells (VSMCs). Risk VSMCs exhibit globally altered transcriptional networks that intersect with previously identified CAD risk genes and pathways, concomitant with aberrant adhesion, contraction, and proliferation. Unexpectedly, deleting the risk haplotype rescues VSMC stability, while expressing the 9p21.3-associated long non-coding RNA ANRIL induces risk phenotypes in non-risk VSMCs. This study shows that the risk haplotype selectively predisposes VSMCs to adopt a cell state associated with CAD phenotypes, defines new VSMC-based networks of CAD risk genes, and establishes haplotype-edited iPSCs as powerful tools for functionally annotating the human genome.
Collapse
Affiliation(s)
- Valentina Lo Sardo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pavel Chubukov
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William Ferguson
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
| | - Evan L Teng
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
| | - Michael Duran
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lei Zhang
- Sangamo BioSciences, Inc., Richmond, CA 94804-3517, USA
| | - Gregory Cost
- Sangamo BioSciences, Inc., Richmond, CA 94804-3517, USA
| | - Adam J Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Fyodor Urnov
- Sangamo BioSciences, Inc., Richmond, CA 94804-3517, USA
| | - Eric J Topol
- Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, CA
| | - Ali Torkamani
- Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristin K Baldwin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
160
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
161
|
Hoffmann A, Ziller M, Spengler D. Childhood-Onset Schizophrenia: Insights from Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:E3829. [PMID: 30513688 PMCID: PMC6321410 DOI: 10.3390/ijms19123829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Childhood-onset schizophrenia (COS) is a rare psychiatric disorder characterized by earlier onset, more severe course, and poorer outcome relative to adult-onset schizophrenia (AOS). Even though, clinical, neuroimaging, and genetic studies support that COS is continuous to AOS. Early neurodevelopmental deviations in COS are thought to be significantly mediated through poorly understood genetic risk factors that may also predispose to long-term outcome. In this review, we discuss findings from induced pluripotent stem cells (iPSCs) that allow the generation of disease-relevant cell types from early brain development. Because iPSCs capture each donor's genotype, case/control studies can uncover molecular and cellular underpinnings of COS. Indeed, recent studies identified alterations in neural progenitor and neuronal cell function, comprising dendrites, synapses, electrical activity, glutamate signaling, and miRNA expression. Interestingly, transcriptional signatures of iPSC-derived cells from patients with COS showed concordance with postmortem brain samples from SCZ, indicating that changes in vitro may recapitulate changes from the diseased brain. Considering this progress, we discuss also current caveats from the field of iPSC-based disease modeling and how to proceed from basic studies to improved diagnosis and treatment of COS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
162
|
Popp B, Krumbiegel M, Grosch J, Sommer A, Uebe S, Kohl Z, Plötz S, Farrell M, Trautmann U, Kraus C, Ekici AB, Asadollahi R, Regensburger M, Günther K, Rauch A, Edenhofer F, Winkler J, Winner B, Reis A. Need for high-resolution Genetic Analysis in iPSC: Results and Lessons from the ForIPS Consortium. Sci Rep 2018; 8:17201. [PMID: 30464253 PMCID: PMC6249203 DOI: 10.1038/s41598-018-35506-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic integrity of induced pluripotent stem cells (iPSCs) is essential for their validity as disease models and for potential therapeutic use. We describe the comprehensive analysis in the ForIPS consortium: an iPSC collection from donors with neurological diseases and healthy controls. Characterization included pluripotency confirmation, fingerprinting, conventional and molecular karyotyping in all lines. In the majority, somatic copy number variants (CNVs) were identified. A subset with available matched donor DNA was selected for comparative exome sequencing. We identified single nucleotide variants (SNVs) at different allelic frequencies in each clone with high variability in mutational load. Low frequencies of variants in parental fibroblasts highlight the importance of germline samples. Somatic variant number was independent from reprogramming, cell type and passage. Comparison with disease genes and prediction scores suggest biological relevance for some variants. We show that high-throughput sequencing has value beyond SNV detection and the requirement to individually evaluate each clone.
Collapse
Affiliation(s)
- Bernt Popp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Janina Grosch
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Annika Sommer
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Sonja Plötz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - Udo Trautmann
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - Katharina Günther
- Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Frank Edenhofer
- Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany.
| |
Collapse
|
163
|
Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ SCHIZOPHRENIA 2018; 4:23. [PMID: 30451850 PMCID: PMC6242875 DOI: 10.1038/s41537-018-0066-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Postmortem studies in patients with schizophrenia (SCZ) have revealed deficits in myelination, abnormalities in myelin gene expression and altered numbers of oligodendrocytes in the brain. However, gaining mechanistic insight into oligodendrocyte (OL) dysfunction and its contribution to SCZ has been challenging because of technical hurdles. The advent of individual patient-derived human-induced pluripotent stem cells (hiPSCs), combined with the generation of in principle any neuronal and glial cell type, including OLs and oligodendrocyte precursor cells (OPCs), holds great potential for understanding the molecular basis of the aetiopathogenesis of genetically complex psychiatric diseases such as SCZ and could pave the way towards personalized medicine. The development of neuronal and glial co-culture systems now appears to enable the in vitro study of SCZ-relevant neurobiological endophenotypes, including OL dysfunction and myelination, with unprecedented construct validity. Nonetheless, the meaningful stratification of patients before the subsequent functional analyses of patient-derived cell systems still represents an important bottleneck. Here, to improve the predictive power of ex vivo disease modelling we propose using hiPSC technology to focus on representatives of patient subgroups stratified for genomic and/or phenomic features and neurobiological cell systems. Therefore, this review will outline the evidence for the involvement of OPCs/OLs in SCZ in the context of their proposed functions, including myelination and axon support, the implications for hiPSC-based cellular disease modelling and potential strategies for patient selection.
Collapse
|
164
|
Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) provide a renewable supply of patient-specific and tissue-specific cells for cellular and molecular studies of disease mechanisms. Combined with advances in various omics technologies, iPSC models can be used to profile the expression of genes, transcripts, proteins, and metabolites in relevant tissues. In the past 2 years, large panels of iPSC lines have been derived from hundreds of genetically heterogeneous individuals, further enabling genome-wide mapping to identify coexpression networks and elucidate gene regulatory networks. Here, we review recent developments in omics profiling of various molecular phenotypes and the emergence of human iPSCs as a systems biology model of human diseases.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - David T Paik
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - Joseph C Wu
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA; .,Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
165
|
Grandy R, Tomaz RA, Vallier L. Modeling Disease with Human Inducible Pluripotent Stem Cells. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:449-468. [PMID: 30355153 DOI: 10.1146/annurev-pathol-020117-043634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the physiopathology of disease remains an essential step in developing novel therapeutics. Although animal models have certainly contributed to advancing this enterprise, their limitation in modeling all the aspects of complex human disorders is one of the major challenges faced by the biomedical research field. Human induced pluripotent stem cells (hiPSCs) derived from patients represent a great opportunity to overcome this deficiency because these cells cover the genetic diversity needed to fully model human diseases. Here, we provide an overview of the history of hiPSC technology and discuss common challenges and approaches that we and others have faced when using hiPSCs to model disease. Our emphasis is on liver disease, and consequently, we review the progress made using this technology to produce functional liver cells in vitro and how these systems are being used to recapitulate a diversity of developmental, metabolic, genetic, and infectious liver disorders.
Collapse
Affiliation(s)
- Rodrigo Grandy
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Rute A Tomaz
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| |
Collapse
|
166
|
Soldner F, Jaenisch R. Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell 2018; 175:615-632. [PMID: 30340033 PMCID: PMC6461399 DOI: 10.1016/j.cell.2018.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The derivation of human embryonic stem cells (hESCs) and the stunning discovery that somatic cells can be reprogrammed into human induced pluripotent stem cells (hiPSCs) holds the promise to revolutionize biomedical research and regenerative medicine. In this Review, we focus on disorders of the central nervous system and explore how advances in human pluripotent stem cells (hPSCs) coincide with evolutions in genome engineering and genomic technologies to provide realistic opportunities to tackle some of the most devastating complex disorders.
Collapse
Affiliation(s)
- Frank Soldner
- The Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
167
|
Bellon A, Wegener A, Lescallette AR, Valente M, Yang SK, Gardette R, Matricon J, Mouaffak F, Watts P, Vimeux L, Yun JK, Kawasawa YI, Clawson GA, Blandin E, Chaumette B, Jay TM, Krebs MO, Feuillet V, Hosmalin A. Transdifferentiation of Human Circulating Monocytes Into Neuronal-Like Cells in 20 Days and Without Reprograming. Front Mol Neurosci 2018; 11:323. [PMID: 30760979 PMCID: PMC6156467 DOI: 10.3389/fnmol.2018.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Despite progress, our understanding of psychiatric and neurological illnesses remains poor, at least in part due to the inability to access neurons directly from patients. Currently, there are in vitro models available but significant work remains, including the search for a less invasive, inexpensive and rapid method to obtain neuronal-like cells with the capacity to deliver reproducible results. Here, we present a new protocol to transdifferentiate human circulating monocytes into neuronal-like cells in 20 days and without the need for viral insertion or reprograming. We have thoroughly characterized these monocyte-derived-neuronal-like cells (MDNCs) through various approaches including immunofluorescence (IF), flow cytometry, qRT-PCR, single cell mRNA sequencing, electrophysiology and pharmacological techniques. These MDNCs resembled human neurons early in development, expressed a variety of neuroprogenitor and neuronal genes as well as several neuroprogenitor and neuronal proteins and also presented electrical activity. In addition, when these neuronal-like cells were exposed to either dopamine or colchicine, they responded similarly to neurons by retracting their neuronal arborizations. More importantly, MDNCs exhibited reproducible differentiation rates, arborizations and expression of dopamine 1 receptors (DR1) on separate sequential samples from the same individual. Differentiation efficiency measured by cell morphology was on average 11.9 ± 1.4% (mean, SEM, n = 38,819 cells from 15 donors). To provide context and help researchers decide which in vitro model of neuronal development is best suited to address their scientific question,we compared our results with those of other in vitro models currently available and exposed advantages and disadvantages of each paradigm.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry, Hershey, PA, United States.,Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, United States.,INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France
| | - Amelie Wegener
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Adam R Lescallette
- Penn State Hershey Medical Center, Department of Psychiatry, Hershey, PA, United States
| | - Michael Valente
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Seung-Kwon Yang
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Robert Gardette
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Julien Matricon
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Faycal Mouaffak
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France
| | - Paula Watts
- Sky Ridge Medical Center, Department of Internal Medicine, Lone Tree, CO, United States
| | - Lene Vimeux
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Jong K Yun
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, United States.,Penn State Hershey Medical Center, Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Hershey, PA, United States
| | - Gary A Clawson
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, Hershey, PA, United States
| | - Elisabeta Blandin
- Penn State Hershey Medical Center, Department of Psychiatry, Hershey, PA, United States.,Penn State Hershey Medical Center, Neural & Behavioral Sciences, Hershey, PA, United States
| | - Boris Chaumette
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France.,Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Therese M Jay
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Marie-Odile Krebs
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France
| | - Vincent Feuillet
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
168
|
Ahmad R, Sportelli V, Ziller M, Spengler D, Hoffmann A. Tracing Early Neurodevelopment in Schizophrenia with Induced Pluripotent Stem Cells. Cells 2018; 7:E140. [PMID: 30227641 PMCID: PMC6162757 DOI: 10.3390/cells7090140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia (SCZ) is a devastating mental disorder that is characterized by distortions in thinking, perception, emotion, language, sense of self, and behavior. Epidemiological evidence suggests that subtle perturbations in early neurodevelopment increase later susceptibility for disease, which typically manifests in adolescence to early adulthood. Early perturbations are thought to be significantly mediated through incompletely understood genetic risk factors. The advent of induced pluripotent stem cell (iPSC) technology allows for the in vitro analysis of disease-relevant neuronal cell types from the early stages of human brain development. Since iPSCs capture each donor's genotype, comparison between neuronal cells derived from healthy and diseased individuals can provide important insights into the molecular and cellular basis of SCZ. In this review, we discuss results from an increasing number of iPSC-based SCZ/control studies that highlight alterations in neuronal differentiation, maturation, and neurotransmission in addition to perturbed mitochondrial function and micro-RNA expression. In light of this remarkable progress, we consider also ongoing challenges from the field of iPSC-based disease modeling that call for further improvements on the generation and design of patient-specific iPSC studies to ultimately progress from basic studies on SCZ to tailored treatments.
Collapse
Affiliation(s)
- Ruhel Ahmad
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Vincenza Sportelli
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| | - Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
169
|
Luo Z, Zhong X, Li K, Xie B, Liu Y, Ye M, Li K, Xu C, Ge J. An Optimized System for Effective Derivation of Three-Dimensional Retinal Tissue via Wnt Signaling Regulation. Stem Cells 2018; 36:1709-1722. [DOI: 10.1002/stem.2890] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Yuchun Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Chaochao Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| |
Collapse
|
170
|
Pașca SP. The rise of three-dimensional human brain cultures. Nature 2018; 553:437-445. [PMID: 29364288 DOI: 10.1038/nature25032] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Abstract
Pluripotent stem cells show a remarkable ability to self-organize and differentiate in vitro in three-dimensional aggregates, known as organoids or organ spheroids, and to recapitulate aspects of human brain development and function. Region-specific 3D brain cultures can be derived from any individual and assembled to model complex cell-cell interactions and to generate circuits in human brain assembloids. Here I discuss how this approach can be used to understand unique features of the human brain and to gain insights into neuropsychiatric disorders. In addition, I consider the challenges faced by researchers in further improving and developing methods to probe and manipulate patient-derived 3D brain cultures.
Collapse
Affiliation(s)
- Sergiu P Pașca
- 1Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
171
|
Chakravorty S, Hegde M. Inferring the effect of genomic variation in the new era of genomics. Hum Mutat 2018; 39:756-773. [PMID: 29633501 DOI: 10.1002/humu.23427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Accurate and detailed understanding of the effects of variants in the coding and noncoding regions of the genome is the next big challenge in the new genomic era of personalized medicine, especially to tackle newer findings of genetic and phenotypic heterogeneity of diseases. This is necessary to resolve the gene-variant-disease relationship, the pathogenic variant spectrum of genes, pathogenic variants with variable clinical consequences, and multiloci diseases. In turn, this will facilitate patient recruitment for relevant clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics aiming to (a) overcome molecular diagnostic challenges and increase the clinical utility of next-generation sequencing (NGS) platforms, (b) elucidate variants associated with disease, (c) determine overall genomic complexity including epistasis, complex inheritance patterns such as "synergistic heterozygosity," digenic/multigenic inheritance, modifier effect, and rare variant load. We describe the newly emerging field of integrated functional genomics, in vivo or in vitro large-scale functional approaches, statistical bioinformatics algorithms that support NGS genomics data to interpret variants for timely clinical diagnostics and disease management. Thus, facilitating the discovery of new therapeutic or biomarker options, and their roles in the future of personalized medicine.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia
| |
Collapse
|
172
|
Wanjare M, Hou L, Nakayama KH, Kim JJ, Mezak NP, Abilez OJ, Tzatzalos E, Wu JC, Huang NF. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci 2018; 5:1567-1578. [PMID: 28715029 DOI: 10.1039/c7bm00323d] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Luqia Hou
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Karina H Nakayama
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joseph J Kim
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA and Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
173
|
Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong WK, Rozen S, Kasim NHA, Sugii S. Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming. Stem Cell Res Ther 2018; 9:68. [PMID: 29559008 PMCID: PMC5859503 DOI: 10.1186/s13287-018-0796-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming. METHODS Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days). RESULTS The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation. CONCLUSION In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.
Collapse
Affiliation(s)
| | - Sandhya Sriram
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore
| | - Subha Subramanian
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore
| | - Shanshan Cheng
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Wee Kiat Ong
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore
- School of Pharmacy, University of Reading Malaysia, 79200, Johor, Malaysia
| | - Steve Rozen
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore.
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
174
|
Abstract
Bipolar disease (BD) is one of the major public health burdens worldwide and more people are affected every year. Comprehensive genetic studies have associated thousands of single nucleotide polymorphisms (SNPs) with BD risk; yet, very little is known about their functional roles. Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype in disease-relevant tissues and cell types. Neural cells generated from BD-specific iPSCs are thought to capture associated genetic risk factors, known and unknown, and to allow the analysis of their effects on cellular and molecular phenotypes. Interestingly, an increasing number of studies on BD-derived iPSCs report distinct alterations in neural patterning, postmitotic calcium signaling, and neuronal excitability. Importantly, these alterations are partly normalized by lithium, a first line treatment in BD. In light of these exciting findings, we discuss current challenges to the field of iPSC-based disease modelling and future steps to be taken in order to fully exploit the potential of this approach for the investigation of BD and the development of new therapies.
Collapse
|
175
|
Affiliation(s)
- Jennie Lin
- From the Division of Nephrology and Hypertension, Department of Medicine (J.L.) and Feinberg Cardiovascular Research Institute (J.L.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (K.M.)
| | - Kiran Musunuru
- From the Division of Nephrology and Hypertension, Department of Medicine (J.L.) and Feinberg Cardiovascular Research Institute (J.L.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (K.M.)
| |
Collapse
|
176
|
Lin J, Musunuru K. From Genotype to Phenotype: A Primer on the Functional Follow-up of Genome-Wide Association Studies in Cardiovascular Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001946. [PMID: 29915816 PMCID: PMC6003539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genome-wide association studies (GWASs) have implicated many human genomic loci in the development of complex traits. The loci identified by these studies are potentially involved in novel pathways that contribute to disease pathophysiology. However, eventual therapeutic targeting of these pathways relies on bridging the gap between genetic association and function, a task that first requires validation of causal genetic variants, casual genes, and directionality of effect. Executing this task requires basic knowledge of interpreting GWAS results and prioritizing candidates for further study, in addition to understanding the experimental methods available for evaluating candidate variants. Here we review the basic genetic principles of genome-wide association studies, the computational and experimental tools used for identifying causal variants and genes, and salient illustrative examples of how cardiovascular loci have undergone functional investigation.
Collapse
Affiliation(s)
- Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kiran Musunuru
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
177
|
Taming Human Genetic Variability: Transcriptomic Meta-Analysis Guides the Experimental Design and Interpretation of iPSC-Based Disease Modeling. Stem Cell Reports 2018; 8:1784-1796. [PMID: 28591656 PMCID: PMC5470233 DOI: 10.1016/j.stemcr.2017.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
Both the promises and pitfalls of the cell reprogramming research platform rest on human genetic variation, making the measurement of its impact one of the most urgent issues in the field. Harnessing large transcriptomics datasets of induced pluripotent stem cells (iPSC), we investigate the implications of this variability for iPSC-based disease modeling. In particular, we show that the widespread use of more than one clone per individual in combination with current analytical practices is detrimental to the robustness of the findings. We then proceed to identify methods to address this challenge and leverage multiple clones per individual. Finally, we evaluate the specificity and sensitivity of different sample sizes and experimental designs, presenting computational tools for power analysis. These findings and tools reframe the nature of replicates used in disease modeling and provide important resources for the design, analysis, and interpretation of iPSC-based studies.
Collapse
|
178
|
Melguizo-Sanchis D, Xu Y, Taheem D, Yu M, Tilgner K, Barta T, Gassner K, Anyfantis G, Wan T, Elango R, Alharthi S, El-Harouni AA, Przyborski S, Adam S, Saretzki G, Samarasinghe S, Armstrong L, Lako M. iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis 2018; 9:128. [PMID: 29374141 PMCID: PMC5833558 DOI: 10.1038/s41419-017-0141-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/22/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral pancytopenia. Severe aplastic anemia (SAA) is a subset of AA defined by a more severe phenotype. Although the immunological nature of SAA pathogenesis is widely accepted, there is an increasing recognition of the role of dysfunctional hematopoietic stem cells in the disease phenotype. While pediatric SAA can be attributable to genetic causes, evidence is evolving on previously unrecognized genetic etiologies in a proportion of adults with SAA. Thus, there is an urgent need to better understand the pathophysiology of SAA, which will help to inform the course of disease progression and treatment options. We have derived induced pluripotent stem cell (iPSC) from three unaffected controls and three SAA patients and have shown that this in vitro model mimics two key features of the disease: (1) the failure to maintain telomere length during the reprogramming process and hematopoietic differentiation resulting in SAA-iPSC and iPSC-derived-hematopoietic progenitors with shorter telomeres than controls; (2) the impaired ability of SAA-iPSC-derived hematopoietic progenitors to give rise to erythroid and myeloid cells. While apoptosis and DNA damage response to replicative stress is similar between the control and SAA-iPSC-derived-hematopoietic progenitors, the latter show impaired proliferation which was not restored by eltrombopag, a drug which has been shown to restore hematopoiesis in SAA patients. Together, our data highlight the utility of patient specific iPSC in providing a disease model for SAA and predicting patient responses to various treatment modalities.
Collapse
Affiliation(s)
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Dheraj Taheem
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | | | - Tomas Barta
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Katja Gassner
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - George Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Tengfei Wan
- The Ageing Biology Centre. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf A El-Harouni
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Soheir Adam
- Hematology Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine, Duke University Medical Center, Durham, USA
| | - Gabriele Saretzki
- The Ageing Biology Centre. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Sujith Samarasinghe
- Department of Hematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK.
| |
Collapse
|
179
|
Theunissen TW, Jaenisch R. Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development 2018; 144:4496-4509. [PMID: 29254992 DOI: 10.1242/dev.157404] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells have broad utility in biomedical research and their molecular regulation has thus garnered substantial interest. While the principles that establish and regulate pluripotency have been well defined in the mouse, it has been difficult to extrapolate these insights to the human system due to species-specific differences and the distinct developmental identities of mouse versus human embryonic stem cells. In this Review, we examine genome-wide approaches to elucidate the regulatory principles of pluripotency in human embryos and stem cells, and highlight where differences exist in the regulation of pluripotency in mice and humans. We review recent insights into the nature of human pluripotent cells in vivo, obtained by the deep sequencing of pre-implantation embryos. We also present an integrated overview of the principal layers of global gene regulation in human pluripotent stem cells. Finally, we discuss the transcriptional and epigenomic remodeling events associated with cell fate transitions into and out of human pluripotency.
Collapse
Affiliation(s)
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
180
|
|
181
|
Hoffman GE, Hartley BJ, Flaherty E, Ladran I, Gochman P, Ruderfer DM, Stahl EA, Rapoport J, Sklar P, Brennand KJ. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nat Commun 2017; 8:2225. [PMID: 29263384 PMCID: PMC5738408 DOI: 10.1038/s41467-017-02330-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
The power of human induced pluripotent stem cell (hiPSC)-based studies to resolve the smaller effects of common variants within the size of cohorts that can be realistically assembled remains uncertain. We identified and accounted for a variety of technical and biological sources of variation in a large case/control schizophrenia (SZ) hiPSC-derived cohort of neural progenitor cells and neurons. Reducing the stochastic effects of the differentiation process by correcting for cell type composition boosted the SZ signal and increased the concordance with post-mortem data sets. We predict a growing convergence between hiPSC and post-mortem studies as both approaches expand to larger cohort sizes. For studies of complex genetic disorders, to maximize the power of hiPSC cohorts currently feasible, in most cases and whenever possible, we recommend expanding the number of individuals even at the expense of the number of replicate hiPSC clones.
Collapse
Affiliation(s)
- Gabriel E Hoffman
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Brigham J Hartley
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erin Flaherty
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ian Ladran
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter Gochman
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Douglas M Ruderfer
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Genetic Medicine, Departments of Medicine, Psychiatry and Biomedical Informatics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eli A Stahl
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Judith Rapoport
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pamela Sklar
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristen J Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
182
|
Humanity in a Dish: Population Genetics with iPSCs. Trends Cell Biol 2017; 28:46-57. [PMID: 29054332 DOI: 10.1016/j.tcb.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype. Recent publications have described iPSC cohort studies of common genetic variants and their effects on gene expression and cellular phenotypes. These in vitro quantitative trait locus (QTL) studies are the first experiments in a new paradigm with great potential: iPSC-based functional population genetic studies. iPSC collections from large cohorts are currently under development to facilitate the next wave of these studies, which have the potential to discover the effects of common genetic variants on cellular phenotypes and to uncover the molecular basis of common genetic diseases. Here, we describe the recent advances in this developing field, and provide a road map for future in vitro functional population genetic studies and trial-in-a-dish experiments.
Collapse
|
183
|
Zhang H, Reilly MP. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology. Arterioscler Thromb Vasc Biol 2017; 37:2000-2006. [PMID: 28982665 DOI: 10.1161/atvbaha.117.309195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases.
Collapse
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine (H.Z., M.P.R.) and Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Medical Center, New York, NY.
| | - Muredach P Reilly
- From the Division of Cardiology, Department of Medicine (H.Z., M.P.R.) and Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Medical Center, New York, NY.
| |
Collapse
|
184
|
Ortmann D, Vallier L. Variability of human pluripotent stem cell lines. Curr Opin Genet Dev 2017; 46:179-185. [DOI: 10.1016/j.gde.2017.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
|
185
|
Kim JJ, Hou L, Yang G, Mezak NP, Wanjare M, Joubert LM, Huang NF. Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cell Mol Bioeng 2017; 10:417-432. [PMID: 28936269 DOI: 10.1007/s12195-017-0502-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization. METHODS Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using transcriptional, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed. RESULTS The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning. CONCLUSION Together, these results demonstrate that 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network organization.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lydia M Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
186
|
Calatayud C, Carola G, Consiglio A, Raya A. Modeling the genetic complexity of Parkinson's disease by targeted genome edition in iPS cells. Curr Opin Genet Dev 2017; 46:123-131. [PMID: 28759872 DOI: 10.1016/j.gde.2017.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
Patient-specific iPSC are being intensively exploited as experimental disease models. Even for late-onset diseases of complex genetic influence, such as Parkinson's disease (PD), the use of iPSC-based models is beginning to provide important insights into the genetic bases of PD heritability. Here, we present an update on recently reported genetic risk factors associated with PD. We discuss how iPSC technology, combined with targeted edition of the coding or noncoding genome, can be used to address clinical observations such as incomplete penetrance, and variability in phenoconversion or age-at-onset in familial PD. Finally, we also discuss the relevance of advanced iPSC/CRISPR/Cas9 disease models to ascertain causality in genotype-to-phenotype correlation studies of sporadic PD.
Collapse
Affiliation(s)
- Carles Calatayud
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028 Barcelona, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - Giulia Carola
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028 Barcelona, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - Antonella Consiglio
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028 Barcelona, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08908 Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, 25123 Brescia, Italy.
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
187
|
Ho SM, Hartley BJ, Flaherty E, Rajarajan P, Abdelaal R, Obiorah I, Barretto N, Muhammad H, Phatnani HP, Akbarian S, Brennand KJ. Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports 2017; 9:615-628. [PMID: 28757163 PMCID: PMC5550013 DOI: 10.1016/j.stemcr.2017.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Modulation of transcription, either synthetic activation or repression, via dCas9-fusion proteins is a relatively new methodology with the potential to facilitate high-throughput up- or downregulation studies of gene function. Genetic studies of neurodevelopmental disorders have identified a growing list of risk variants, including both common single-nucleotide variants and rare copy-number variations, many of which are associated with genes having limited functional annotations. By applying a CRISPR-mediated gene-activation/repression platform to populations of human-induced pluripotent stem cell-derived neural progenitor cells, neurons, and astrocytes, we demonstrate that it is possible to manipulate endogenous expression levels of candidate neuropsychiatric risk genes across these three cell types. Although proof-of-concept studies using catalytically inactive Cas9-fusion proteins to modulate transcription have been reported, here we present a detailed survey of the reproducibility of gRNA positional effects across a variety of neurodevelopmental disorder-relevant risk genes, donors, neural cell types, and dCas9 effectors. The efficacy of CRISPR-mediated transcript modulation varies between genes gRNAs should be re-validated for each individual, cell type, and dCas9-effector
Collapse
Affiliation(s)
- Seok-Man Ho
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prashanth Rajarajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rawan Abdelaal
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ifeanyi Obiorah
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natalie Barretto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hamza Muhammad
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hemali P Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
188
|
Yamasaki AE, Panopoulos AD, Belmonte JCI. Understanding the genetics behind complex human disease with large-scale iPSC collections. Genome Biol 2017; 18:135. [PMID: 28728561 PMCID: PMC5520285 DOI: 10.1186/s13059-017-1276-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three recent studies analyzing large-scale collections of human induced pluripotent stem cell lines provide valuable insight into how genetic regulatory variation affects cellular and molecular traits.
Collapse
Affiliation(s)
- Amanda E Yamasaki
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Athanasia D Panopoulos
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | | |
Collapse
|
189
|
Carcamo-Orive I, Huang NF, Quertermous T, Knowles JW. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2017; 37:2038-2042. [PMID: 28729365 DOI: 10.1161/atvbaha.117.309291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations.
Collapse
Affiliation(s)
- Ivan Carcamo-Orive
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.).
| | - Ngan F Huang
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| | - Thomas Quertermous
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| | - Joshua W Knowles
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| |
Collapse
|
190
|
Liu Q, Jiang C, Xu J, Zhao MT, Van Bortle K, Cheng X, Wang G, Chang HY, Wu JC, Snyder MP. Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circ Res 2017; 121:376-391. [PMID: 28663367 DOI: 10.1161/circresaha.116.310456] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/13/2023]
Abstract
RATIONALE Recent advances have improved our ability to generate cardiomyocytes from human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). However, our understanding of the transcriptional regulatory networks underlying early stages (ie, from mesoderm to cardiac mesoderm) of cardiomyocyte differentiation remains limited. OBJECTIVE To characterize transcriptome and chromatin accessibility during early cardiomyocyte differentiation from hiPSCs and hESCs. METHODS AND RESULTS We profiled the temporal changes in transcriptome and chromatin accessibility at genome-wide levels during cardiomyocyte differentiation derived from 2 hiPSC lines and 2 hESC lines at 4 stages: pluripotent stem cells, mesoderm, cardiac mesoderm, and differentiated cardiomyocytes. Overall, RNA sequencing analysis revealed that transcriptomes during early cardiomyocyte differentiation were highly concordant between hiPSCs and hESCs, and clustering of 4 cell lines within each time point demonstrated that changes in genome-wide chromatin accessibility were similar across hiPSC and hESC cell lines. Weighted gene co-expression network analysis (WGCNA) identified several modules that were strongly correlated with different stages of cardiomyocyte differentiation. Several novel genes were identified with high weighted connectivity within modules and exhibited coexpression patterns with other genes, including noncoding RNA LINC01124 and uncharacterized RNA AK127400 in the module related to the mesoderm stage; E-box-binding homeobox 1 (ZEB1) in the module correlated with postcardiac mesoderm. We further demonstrated that ZEB1 is required for early cardiomyocyte differentiation. In addition, based on integrative analysis of both WGCNA and transcription factor motif enrichment analysis, we determined numerous transcription factors likely to play important roles at different stages during cardiomyocyte differentiation, such as T and eomesodermin (EOMES; mesoderm), lymphoid enhancer-binding factor 1 (LEF1) and mesoderm posterior BHLH transcription factor 1 (MESP1; from mesoderm to cardiac mesoderm), meis homeobox 1 (MEIS1) and GATA-binding protein 4 (GATA4) (postcardiac mesoderm), JUN and FOS families, and MEIS2 (cardiomyocyte). CONCLUSIONS Both hiPSCs and hESCs share similar transcriptional regulatory mechanisms underlying early cardiac differentiation, and our results have revealed transcriptional regulatory networks and new factors (eg, ZEB1) controlling early stages of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Qing Liu
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Chao Jiang
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Jin Xu
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Ming-Tao Zhao
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Kevin Van Bortle
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Xun Cheng
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Guangwen Wang
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Howard Y Chang
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Michael P Snyder
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
191
|
Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bensaddek D, Casale FP, Culley OJ, Danecek P, Faulconbridge A, Harrison PW, Kathuria A, McCarthy D, McCarthy SA, Meleckyte R, Memari Y, Moens N, Soares F, Mann A, Streeter I, Agu CA, Alderton A, Nelson R, Harper S, Patel M, White A, Patel SR, Clarke L, Halai R, Kirton CM, Kolb-Kokocinski A, Beales P, Birney E, Danovi D, Lamond AI, Ouwehand WH, Vallier L, Watt FM, Durbin R, Stegle O, Gaffney DJ. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 2017; 546:370-375. [PMID: 28489815 PMCID: PMC5524171 DOI: 10.1038/nature22403] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
Abstract
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Collapse
Affiliation(s)
- Helena Kilpinen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Angela Goncalves
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Andreas Leha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Vackar Afzal
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Kaur Alasoo
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sofie Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sendu Bala
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Francesco Paolo Casale
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Oliver J Culley
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Petr Danecek
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Adam Faulconbridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter W Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Annie Kathuria
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Davis McCarthy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- St Vincent’s Institute of Medical Research, 41 Victoria Parade Fitzroy Victoria 3065, Australia
| | - Shane A McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Ruta Meleckyte
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nathalie Moens
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Filipa Soares
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, CB2 0SZ, United Kingdom
| | - Alice Mann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Chukwuma A Agu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alex Alderton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Rachel Nelson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sarah Harper
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Minal Patel
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alistair White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sharad R Patel
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Reena Halai
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Christopher M Kirton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Anja Kolb-Kokocinski
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Philip Beales
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Davide Danovi
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Willem H Ouwehand
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, CB2 0SZ, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Daniel J Gaffney
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
192
|
Affiliation(s)
- Yoshinori Yoshida
- From the Center for iPS Cell Research and Application, Kyoto University, Japan (Y.Y., S.Y.); and Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA (S.Y.)
| | - Shinya Yamanaka
- From the Center for iPS Cell Research and Application, Kyoto University, Japan (Y.Y., S.Y.); and Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA (S.Y.)
| |
Collapse
|
193
|
Pashos EE, Park Y, Wang X, Raghavan A, Yang W, Abbey D, Peters DT, Arbelaez J, Hernandez M, Kuperwasser N, Li W, Lian Z, Liu Y, Lv W, Lytle-Gabbin SL, Marchadier DH, Rogov P, Shi J, Slovik KJ, Stylianou IM, Wang L, Yan R, Zhang X, Kathiresan S, Duncan SA, Mikkelsen TS, Morrisey EE, Rader DJ, Brown CD, Musunuru K. Large, Diverse Population Cohorts of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at Blood Lipid-Associated Loci. Cell Stem Cell 2017; 20:558-570.e10. [PMID: 28388432 PMCID: PMC5476422 DOI: 10.1016/j.stem.2017.03.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies have struggled to identify functional genes and variants underlying complex phenotypes. We recruited a multi-ethnic cohort of healthy volunteers (n = 91) and used their tissue to generate induced pluripotent stem cells (iPSCs) and hepatocyte-like cells (HLCs) for genome-wide mapping of expression quantitative trait loci (eQTLs) and allele-specific expression (ASE). We identified many eQTL genes (eGenes) not observed in the comparably sized Genotype-Tissue Expression project's human liver cohort (n = 96). Focusing on blood lipid-associated loci, we performed massively parallel reporter assays to screen candidate functional variants and used genome-edited stem cells, CRISPR interference, and mouse modeling to establish rs2277862-CPNE1, rs10889356-DOCK7, rs10889356-ANGPTL3, and rs10872142-FRK as functional SNP-gene sets. We demonstrated HLC eGenes CPNE1, VKORC1, UBE2L3, and ANGPTL3 and HLC ASE gene ACAA2 to be lipid-functional genes in mouse models. These findings endorse an iPSC-based experimental framework to discover functional variants and genes contributing to complex human traits.
Collapse
Affiliation(s)
- Evanthia E Pashos
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - YoSon Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepti Abbey
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Juan Arbelaez
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mayda Hernandez
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaorui Lian
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Liu
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenjian Lv
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stacey L Lytle-Gabbin
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawn H Marchadier
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jianting Shi
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine J Slovik
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis M Stylianou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Wang
- Broad Institute, Cambridge, MA 02142, USA
| | - Ruilan Yan
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sekar Kathiresan
- Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Edward E Morrisey
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kiran Musunuru
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
194
|
Warren CR, Jaquish CE, Cowan CA. The NextGen Genetic Association Studies Consortium: A Foray into In Vitro Population Genetics. Cell Stem Cell 2017; 20:431-433. [DOI: 10.1016/j.stem.2017.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
195
|
Warren CR, Cowan CA. [Leukocyte count of puerperal sows]. BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT 1996; 109:330-5. [PMID: 9054332 PMCID: PMC5828525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
147 blood samples of postparturient sows of a secluded housing were taken. The samples were conserved with ACD-solution. The influence of the number and week of the lactation and the health of the sow, determined by puerperal diseases was studied. Hematological values of healthy postparturient sows are: leucocytes 12.6 +/- 2.2 G/l; basophile granulocytes 0.1 +/- 0.1 G/l, eosinophile granulocytes 0.5 +/- 0.4 G/l; banded neutrophile granulocytes 1.3 +/- 0.6 G/l, segmented neutrophile granulocytes 5.2 +/- 1.4 G/l; lymphocytes 5.5 +/- 1.4 G/l, monocytes 0.3 +/- 0.3 G/l. The leucocyte number is lower in the investigated herd compared with quotations in the literature. This is based on the good health conditions in the herd. Changes due to the number and week of the lactation have no clinical relevance. Health status, here described by puerperal diseases is the significant influencing factor of the leucocyte number. The severity of puerperal diseases is significant. Due to puerperal diseases the leucocyte number rises quickly after a short drop about 2 G/l. The number of the neutrophile granulocytes increases, but the lymphocyte number is reduced at the beginning of the illness. The application of ACD-solution for stabilizing of great amounts of blood samples under practical conditions is demonstrated. It is possible to stabilize pigs blood well.
Collapse
Affiliation(s)
- Curtis R. Warren
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Chad A. Cowan
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|