151
|
Camino T, Lago-Baameiro N, Martis-Sueiro A, Couto I, Santos F, Baltar J, Pardo M. Deciphering Adipose Tissue Extracellular Vesicles Protein Cargo and Its Role in Obesity. Int J Mol Sci 2020; 21:E9366. [PMID: 33316953 PMCID: PMC7764772 DOI: 10.3390/ijms21249366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
The extracellular vesicles (EVs) have emerged as key players in metabolic disorders rising as an alternative way of paracrine/endocrine communication. In particular, in relation to adipose tissue (AT) secreted EVs, the current knowledge about its composition and function is still very limited. Nevertheless, those vesicles have been lately suggested as key players in AT communication at local level, and also with other metabolic peripheral and central organs participating in physiological homoeostasis, and also contributing to the metabolic deregulation related to obesity, diabetes, and associated comorbidities. The aim of this review is to summarize the most relevant data around the EVs secreted by adipose tissue, and especially in the context of obesity, focusing in its protein cargo. The description of the most frequent proteins identified in EVs shed by AT and its components, including their changes under pathological status, will give the reader a whole picture about the membrane/antigens, and intracellular proteins known so far, in an attempt to elucidate functional roles, and also suggesting biomarkers and new paths of therapeutic action.
Collapse
Affiliation(s)
- Tamara Camino
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (N.L.-B.)
| | - Nerea Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (N.L.-B.)
| | - Aurelio Martis-Sueiro
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain;
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Iván Couto
- Servicio de Cirugía Plástica y Reparadora, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain;
| | - Francisco Santos
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (F.S.); (J.B.)
| | - Javier Baltar
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (F.S.); (J.B.)
| | - María Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (N.L.-B.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| |
Collapse
|
152
|
Gorji-Bahri G, Moghimi HR, Hashemi A. RAB5A is associated with genes involved in exosome secretion: Integration of bioinformatics analysis and experimental validation. J Cell Biochem 2020; 122:425-441. [PMID: 33225526 DOI: 10.1002/jcb.29871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Exosomes, as cell-cell communicators with an endosomal origin, are involved in the progression of various diseases. RAB5A, a member of the small Rab GTPases family, which is well known as a key regulator of cellular endocytosis, is expected to be involved in exosome secretion. Here, we found the impact of RAB5A on exosome secretion from human hepatocellular carcinoma cell line using a rapid yet reliable bioinformatics approach followed by experimental analysis. Initially, RAB5A and exosome secretion-related genes were gathered from bioinformatics tools, namely, CTD, COREMINE, and GeneMANIA; and published papers. Protein-protein interaction (PPI) was then constructed by the Search Tool for Retrieval of Interacting Genes (STRING) database. Among them, several genes with different combined scores were validated by the real-time quantitative polymerase chain reaction (RT-qPCR) in stable RAB5A knockdown cells. Thereafter, to validate the bioinformatics results functionally, the impact of RAB5A knockdown on exosome secretion was evaluated. Bioinformatics analysis showed that RAB5A interacts with 37 genes involved in exosome secretion regulatory pathways. Validation by RT-qPCR confirmed the association of RAB5A with candidate interacted genes and interestingly showed that even medium to low combined scores of the STRING database could be experimentally valid. Moreover, the functional analysis demonstrated that the stable silencing of RAB5A could experimentally decrease exosome secretion. In conclusion, we suggest RAB5A as a regulator of exosome secretion based on our bioinformatics approach and experimental analysis. Also, we propose the usage of PPI-derived from the STRING database regardless of their combined scores in advanced bioinformatics analysis.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
153
|
Yin Z, Zhao Y, Du H, Nie X, Li H, Fan J, He M, Dai B, Zhang X, Yuan S, Wen Z, Chen C, Wang DW. A Key GWAS-Identified Genetic Variant Contributes to Hyperlipidemia by Upregulating miR-320a. iScience 2020; 23:101788. [PMID: 33294796 PMCID: PMC7689551 DOI: 10.1016/j.isci.2020.101788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
It has been unclear whether the elevated levels of the circulating miR-320a in patients with coronary artery disease is due to environmental influence or genetic basis. By recombinant adeno-associated virus (rAAV)-mediated loss- and gain-of-function studies in the mouse liver, we revealed that elevated miR-320a is sufficient to aggravate diet-induced hyperlipidemia and hepatic steatosis. Then, we analyzed the data from published genome-wide association studies and identified the rs12541335 associated with hyperlipidemia. We demonstrated that the rs13282783 T allele indeed obligated the silencer activity by preventing the repressor ZFP161 and co-repressor HDAC2 from binding to DNA that led to miR-320a upregulation. We further confirmed this genetic connection on an independent population and through direct genome editing in liver cells. Besides environmental (diet) influence, we established a genetic component in the regulation of miR-320a expression, which suggest a potential therapeutic avenue to treat coronary artery disease by blocking miR-320a in patient liver. Hepatic miR-320a overexpression led to hyperlipidemia, not vice versa A hyperlipidemia-associated SNP rs13282783 distally regulated miR-320a expression miR-320a promoted TG accumulation and repressed LDL-C uptake in hepatocytes
Collapse
Affiliation(s)
- Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengzhi Du
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xudong Zhang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
154
|
The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3232869. [PMID: 33193999 PMCID: PMC7641266 DOI: 10.1155/2020/3232869] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases including Alzheimer's disease and Parkinson's disease are aging-associated diseases with irreversible damage of brain tissue. Oxidative stress is commonly detected in neurodegenerative diseases and related to neuronal injury and pathological progress. Exosome, one of the extracellular vesicles, is demonstrated to carry microRNAs (miRNAs) and build up a cell-cell communication in neurons. Recent research has found that exosomal miRNAs regulate the activity of multiple physiological pathways, including the oxidative stress response, in neurodegenerative diseases. Here, we review the role of exosomal miRNAs and oxidative stress in neurodegenerative diseases. Firstly, we explore the relationship between oxidative stress and neurodegenerative diseases. Secondly, we introduce the characteristics of exosomes and roles of exosome-related miRNAs. Thirdly, we summarized the crosstalk between exosomal miRNAs and oxidative stress in neurodegenerative diseases. Fourthly, we discuss the potential of exosomes to be a biomarker in neurodegenerative diseases. Finally, we summarize the advantages of exosome-based delivery and present situation of research on exosome-based delivery of therapeutic miRNA. Our work is aimed at probing and reinforcing the recognition of the pathomechanism of neurodegenerative diseases and providing the basis for novel strategies of clinical diagnosis and treatment.
Collapse
|
155
|
Estébanez B, Jiménez-Pavón D, Huang CJ, Cuevas MJ, González-Gallego J. Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J Cell Physiol 2020; 236:3336-3353. [PMID: 33037627 DOI: 10.1002/jcp.30094] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
Exercise-released exosomes have been identified as novel players to mediate cell-to-cell communication in promoting systemic beneficial effects. This review aimed to systematically investigate the effects of exercise on exosome release and cargo, as well as provide an overview of their physiological implications. Among the 436 articles obtained in the database search (WOS, Scopus, and PubMed), 19 articles were included based on eligibility criteria. Results indicate that exercise promotes the release of exosomes without modification of its vesicle size. The literature has primarily shown an exercise-driven increase in exosome markers (Alix, CD63, CD81, and Flot-1), along with other exosome-carried proteins, into circulation. However, exosome isolation, characterization, and phenotyping methodology, as well as timing of sample recovery following exercise can influence the analysis and interpretation of findings. Moreover, a large number of exosome-carried microRNAs (miRNAs), including miR-1, miR-133a, miR-133b, miR-206, and miR-486, in response to exercise are involved in the modulation of proliferation and differentiation of skeletal muscle tissue, although antigen-presenting cells, leukocytes, endothelial cells, and platelets are the main sources of exosome release into the circulation. Collectively, with the physiological implications as evidenced by the ex vivo trials, the release of exercise-promoted exosomes and their cargo could provide the potential therapeutic applications via the role of intercellular communication.
Collapse
Affiliation(s)
| | - David Jiménez-Pavón
- Department of Physical Education, Faculty of Education Sciences, MOVE-IT Research Group, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Chun-Jung Huang
- Department of Exercise Science and Health Promotion, Exercise Biochemistry Laboratory, Florida Atlantic University, Boca Raton, Florida, USA
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | |
Collapse
|
156
|
Gupta A, Kashte S, Gupta M, Rodriguez HC, Gautam SS, Kadam S. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Hum Cell 2020; 33:907-918. [PMID: 32780299 PMCID: PMC7418088 DOI: 10.1007/s13577-020-00407-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the main cause for the COVID-19 infection-related morbidity and mortality. Recent clinical evidences suggest increased level of cytokines and chemokines targeting lung tissue as a prominent etiological factor. The immunomodulatory effect of mesenchymal stem cells (MSCs) as the alternative therapy for the treatment of inflammatory and autoimmune diseases is well known. Several studies have also revealed that similar therapeutic impacts of parent MSCs are also exhibited by MSCs-derived extracellular vesicles (EVs) including exosomes. In this review, we explored the therapeutic potential of both MSCs and exosomes in mitigating the COVID-19 induced cytokine storm as well as promoting the regeneration of alveolar tissue, attributed to the intrinsic cytokines and growth factor present in the secretome. The preliminary studies have demonstrated the safety and efficacy of MSCs and exosomes in mitigating symptoms associated with COVID-19. Thus, they can be used on compassionate basis, owing to their ability to endogenously repair and decrease the inflammatory reactions involved in the morbidity and mortality of COVID-19. However, more preclinical and clinical studies are warranted to understand their mechanism of action and further establish their safety and efficacy.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA USA
- BioIntegrate, Lawrenceville, GA USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- Veterans in Pain, Los Angeles, CA USA
| | - Shivaji Kashte
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed To Be University), Kolhapur, 416006 India
| | | | - Hugo C. Rodriguez
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX USA
| | | | - Sachin Kadam
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed To Be University), Kolhapur, 416006 India
- Advancells Group, Noida, A-102, Sector 5, Noida, Uttar Pradesh 201301 India
| |
Collapse
|
157
|
Al Suraih MS, Trussoni CE, Splinter PL, LaRusso NF, O’Hara SP. Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. Liver Int 2020; 40:2455-2468. [PMID: 32558183 PMCID: PMC7669612 DOI: 10.1111/liv.14569] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by peribiliary inflammation and fibrosis. Cholangiocyte senescence is a prominent feature of PSC. Here, we hypothesize that extracellular vesicles (EVs) from senescent cholangiocytes influence the phenotype of target cells. METHODS EVs were isolated from normal human cholangiocytes (NHCs), cholangiocytes from PSC patients and NHCs experimentally induced to senescence. NHCs, malignant human cholangiocytes (MHCs) and monocytes were exposed to 108 EVs from each donor cell population and assessed for proliferation, MAPK activation and migration. Additionally, we isolated EVs from plasma of wild-type and Mdr2-/- mice (a murine model of PSC), and assessed mouse monocyte activation. RESULTS EVs exhibited the size and protein markers of exosomes. The number of EVs released from senescent human cholangiocytes was increased; similarly, the EVs in plasma from Mdr2-/- mice were increased. Additionally, EVs from senescent cholangiocytes were enriched in multiple growth factors, including EGF. NHCs exposed to EVs from senescent cholangiocytes showed increased NRAS and ERK1/2 activation. Moreover, EVs from senescent cholangiocytes promoted proliferation of NHCs and MHCs, findings that were blocked by erlotinib, an EGF receptor inhibitor. Furthermore, EVs from senescent cholangiocytes induced EGF-dependent Interleukin 1-beta and Tumour necrosis factor expression and migration of human monocytes; similarly, Mdr2-/- mouse plasma EVs induced activation of mouse monocytes. CONCLUSIONS The data continue to support the importance of cholangiocyte senescence in PSC pathogenesis, directly implicate EVs in cholangiocyte proliferation, malignant progression and immune cell activation and migration, and identify novel therapeutic approaches for PSC.
Collapse
Affiliation(s)
- Mohammed S. Al Suraih
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota. 55905.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota. 55905
| | - Christy E. Trussoni
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Patrick L. Splinter
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| |
Collapse
|
158
|
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2020; 21:371-394. [PMID: 32945228 DOI: 10.1080/14712598.2021.1825677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are cell-created delivery systems of proteins, lipids, or nucleic acids, and means of extracellular communication. Though sEVs were initially considered to be the waste disposal mechanism, today they are at the forefront of research with different biological and pathological functions. Such EVs play a key role in the immunoregulation, CNS development, nervous system physiology, mammary gland development, induction of immunosuppression in pregnancy, the developmental signaling pathways, regeneration of different tissues, inflammation, angiogenesis, coagulation, apoptosis, stem cell differentiation, and extracellular matrix turnover. AREAS COVERED SEVs contribute to the pathogenesis of different cancers and the progression of various neurodegenerative diseases, infections, as well as metabolic and cardiovascular diseases. Expert Opinion: There is no exact classification for EVs; however, according to size, density, morphological features, content, and biogenesis, they can be categorized into three major classes: microvesicles (ectosomes or microparticles), apoptotic bodies, and sEVs. SEVs, as an important class of EVs, have a crucial role in distinct biological functions. Moreover, shedding light on different structural and molecular aspects of sEV has led to their application in various therapeutic, diagnostic, and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of EVs, especially sEVs.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
159
|
Ma S, Shao S, Yang C, Yao Z, Gao L, Chen W. A preliminary study: proteomic analysis of exosomes derived from thyroid-stimulating hormone-stimulated HepG2 cells. J Endocrinol Invest 2020; 43:1229-1238. [PMID: 32166700 DOI: 10.1007/s40618-020-01210-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thyroid-stimulating hormone (TSH) plays an important role in the regulation of lipid metabolism. However, little is known about the role that exosomes play in the process of TSH-induced lipotoxicity in non-alcoholic fatty liver disease (NAFLD). As a preliminary step, the present study set out to investigate alterations in protein expression in exosomes derived from TSH-stimulated HepG2 cells. METHODS HepG2 cells were treated with TSH, exosomes were collected, and proteins were identified by mass spectrometry (MS). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis were performed to analyze the identified proteins. RESULTS TSH treatment significantly increased exosomal production and changed the exosomal proteomic profile in HepG2 cells. Among the 1728 proteins, 140 identified proteins were upregulated and seven proteins were downregulated. GO analysis and KEGG analysis revealed that these proteins were involved in multiple processes including metabolism, apoptosis, and inflammation. CONCLUSION Our preliminary study demonstrated that exosomes derived from TSH-stimulated hepatocytes were increased and showed a specific altered spectrum of proteins, many of which were involved in metabolism, signal transduction, apoptosis, and inflammation. This study offers new insights into the pathogenesis of TSH-induced lipotoxicity in NAFLD.
Collapse
Affiliation(s)
- S Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - S Shao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - C Yang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - Z Yao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - L Gao
- Scientific Center, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jing 5 Road, Jinan, 250021, Shandong, China.
- Scientific Center, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China.
| | - W Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jing 5 Road, Jinan, 250021, Shandong, China.
- Scientific Center, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China.
| |
Collapse
|
160
|
Fan S, Kroeger B, Marie PP, Bridges EM, Mason JD, McCormick K, Zois CE, Sheldon H, Khalid Alham N, Johnson E, Ellis M, Stefana MI, Mendes CC, Wainwright SM, Cunningham C, Hamdy FC, Morris JF, Harris AL, Wilson C, Goberdhan DCI. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J 2020; 39:e103009. [PMID: 32720716 PMCID: PMC7429491 DOI: 10.15252/embj.2019103009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.
Collapse
Affiliation(s)
- Shih‐Jung Fan
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Pauline P Marie
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Esther M Bridges
- Department of OncologyWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - John D Mason
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kristie McCormick
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Christos E Zois
- Department of OncologyWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Helen Sheldon
- Department of OncologyWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Nasullah Khalid Alham
- Institute of Biomedical EngineeringDepartment of Engineering ScienceUniversity of OxfordOxfordUK
- Nuffield Department of Surgical SciencesOxford NIHR Biomedical Research Centre (BRC)John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Errin Johnson
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Matthew Ellis
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | | - Cláudia C Mendes
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | | - Christopher Cunningham
- Nuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Freddie C Hamdy
- Nuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - John F Morris
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adrian L Harris
- Department of OncologyWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Clive Wilson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
161
|
Orme JJ, Enninga EAL, Lucien-Matteoni F, Dale H, Burgstaler E, Harrington SM, Ball MK, Mansfield AS, Park SS, Block MS, Markovic SN, Yan Y, Dong H, Dronca RS, Winters JL. Therapeutic plasma exchange clears circulating soluble PD-L1 and PD-L1-positive extracellular vesicles. J Immunother Cancer 2020; 8:jitc-2020-001113. [PMID: 32817395 PMCID: PMC7437945 DOI: 10.1136/jitc-2020-001113] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background Trans-acting programmed death-ligand 1 (PD-L1) derives from malignant cells in three known forms. High levels of secreted splice variant PD-L1 (sPD-L1), ADAM10/ADAM17-shed sPD-L1, and PD-L1-positive extracellular vesicles (evPD-L1) each predict poor prognosis and limited response to PD-(L)1 checkpoint inhibitors in cancer. To our knowledge, no clinical intervention has reduced any of these circulating forms of extracellular PD-L1. Here, we explore therapeutic plasma exchange (TPE) as a treatment to reduce circulating extracellular PD-L1. Results In patients with melanoma, sPD-L1 levels above 0.277 ng/mL predicted inferior overall survival. In patients undergoing TPE for non-malignant indications, each TPE session removed a mean 70.8% sPD-L1 and 73.1% evPD-L1 detectable in plasma. TPE also reduced total and ADAM10-positive extracellular vesicles. Conclusion Here, we report the first known clinical intervention to remove either sPD-L1 or evPD-L1 from plasma in vivo. TPE reduces plasma sPD-L1 and evPD-L1 in vivo and may have a role in treatment with immunotherapy. TPE may also prove useful in patients with other extracellular vesicle-related conditions.
Collapse
Affiliation(s)
- Jacob J Orme
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Heather Dale
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Edwin Burgstaler
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matthew K Ball
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathew S Block
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | - Roxana S Dronca
- Department of Hematology and Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Jeffrey L Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
162
|
Shen M, Di K, He H, Xia Y, Xie H, Huang R, Liu C, Yang M, Zheng S, He N, Li Z. Progress in exosome associated tumor markers and their detection methods. MOLECULAR BIOMEDICINE 2020; 1:3. [PMID: 35006428 PMCID: PMC8603992 DOI: 10.1186/s43556-020-00002-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes are secreted by cells and are widely present in body fluids. Exosomes contain various molecular constituents of their cells of origin such as proteins, mRNA, miRNAs, DNA, lipid and glycans which are very similar as the content in tumor cells. These contents play an important role in various stages of tumor development, and make the tumor-derived exosome as a hot and emerging biomarker for various cancers diagnosis and management in non-invasive manner. The present problems of exosome isolation and detection hinder the application of exosomes. With the development of exosome isolation and detection technology, the contents of exosomes can be exploited for early cancer diagnosis. This review summarizes the recent progress on exosome-associated tumor biomarkers and some new technologies for exosome isolation and detection. Furthermore, we have also discussed the future development direction in exosome analysis methods.
Collapse
Affiliation(s)
- Mengjiao Shen
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Shanghai Health Development Research Center, Shanghai, China
| | - Kaili Di
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hongzhang He
- Captis Diagnostics Inc, Pittsburgh, PA, 15213, USA
| | - Yanyan Xia
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Xie
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Rongrong Huang
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chang Liu
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mo Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, People's Republic of China.
| | - Siyang Zheng
- Department of Biomedical Engineering and Electrical & Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4N211, Pittsburgh, PA, 15213, USA.
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
163
|
Lee JH, Shim YR, Seo W, Kim MH, Choi WM, Kim HH, Kim YE, Yang K, Ryu T, Jeong JM, Choi HG, Eun HS, Kim SH, Mun H, Yoon JH, Jeong WI. Mitochondrial Double-Stranded RNA in Exosome Promotes Interleukin-17 Production Through Toll-Like Receptor 3 in Alcohol-associated Liver Injury. Hepatology 2020; 72:609-625. [PMID: 31849082 PMCID: PMC7297661 DOI: 10.1002/hep.31041] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Mitochondrial double-stranded RNA (mtdsRNA) and its innate immune responses have been reported previously; however, mtdsRNA generation and its effects on alcohol-associated liver disease (ALD) remain unclear. Here, we report that hepatic mtdsRNA stimulates toll-like receptor 3 (TLR3) in Kupffer cells through the exosome (Exo) to enhance interleukin (IL)-17A (IL-17A) production in ALD. APPROACH AND RESULTS Following binge ethanol (EtOH) drinking, IL-17A production primarily increased in γδ T cells of wild-type (WT) mice, whereas the production of IL-17A was mainly facilitated by CD4+ T cells in acute-on-chronic EtOH consumption. These were not observed in TLR3 knockout (KO) or Kupffer cell-depleted WT mice. The expression of polynucleotide phosphorylase, an mtdsRNA-restricting enzyme, was significantly decreased in EtOH-exposed livers and hepatocytes of WT mice. Immunostaining revealed that mtdsRNA colocalized with the mitochondria in EtOH-treated hepatocytes from WT mice and healthy humans. Bioanalyzer analysis revealed that small-sized RNAs were enriched in EtOH-treated Exos (EtOH-Exos) rather than EtOH-treated microvesicles in hepatocytes of WT mice and humans. Quantitative real-time PCR and RNA sequencing analyses indicated that mRNA expression of mitochondrial genes encoded by heavy and light strands was robustly increased in EtOH-Exos from mice and humans. After direct treatment with EtOH-Exos, IL-1β expression was significantly increased in WT Kupffer cells but not in TLR3 KO Kupffer cells, augmenting IL-17A production of γδ T cells in mice and humans. CONCLUSIONS EtOH-mediated generation of mtdsRNA contributes to TLR3 activation in Kupffer cells through exosomal delivery. Consequently, increased IL-1β expression in Kupffer cells triggers IL-17A production in γδ T cells at the early stage that may accelerate IL-17A expression in CD4+ T cells in the later stage of ALD. Therefore, mtdsRNA and TLR3 may function as therapeutic targets in ALD.
Collapse
Affiliation(s)
- Jun-Hee Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Wonhyo Seo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Mook Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ye-Eun Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jong-Min Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hei-Gwon Choi
- Department of Internal Medicine, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, Chungnam National University, College of Medicine, Daejeon 35015, Republic of Korea
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
164
|
Denham J, Spencer SJ. Emerging roles of extracellular vesicles in the intercellular communication for exercise-induced adaptations. Am J Physiol Endocrinol Metab 2020; 319:E320-E329. [PMID: 32603601 DOI: 10.1152/ajpendo.00215.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex organisms rely heavily on intercellular communication. The rapidly expanding field of extracellular vesicle biology has made it clear that the necessary intercellular communication occurs partly through their paracrine and endocrine actions. Extracellular vesicles are nanoscale lipid membranes (30-2,000 nm in diameter) that shuttle functional biological material between cells. They are released from numerous tissues and are isolated from nearly all biofluids and cell cultures. Although their biogenesis, cell targeting, and functional roles are incompletely understood, they appear to have crucial roles in physiological and disease processes. Their enormous potential to serve as sensitive biomarkers of disease and also new therapeutic interventions for diseases have gained them considerable attention in recent years. Regular physical exercise training confers systemic health benefits and consequently prevents many age-related degenerative diseases. Many of the molecular mechanisms responsible for the salubrious effects of exercise are known, yet a common underlying mechanism potentially responsible for the holistic health benefits of exercise has only recently been explored (i.e., via extracellular vesicle transport of biological material). Here, we provide an overview of extracellular vesicle biology before outlining the current evidence on the capacity for a single bout and chronic exercise to elicit changes in extracellular vesicle content and modulate their molecular cargo (e.g., small RNAs). We highlight areas for future research and emphasize their potential utility as biomarkers and therapeutic strategies of disease and its prevention.
Collapse
Affiliation(s)
- Joshua Denham
- RMIT University, School of Health and Biomedical Sciences, Melbourne, Victoria, Australia
| | - Sarah J Spencer
- RMIT University, School of Health and Biomedical Sciences, Melbourne, Victoria, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
165
|
Zhang Y, Yu M, Dong J, Wu Y, Tian W. Identification of Novel Adipokines through Proteomic Profiling of Small Extracellular Vesicles Derived from Adipose Tissue. J Proteome Res 2020; 19:3130-3142. [PMID: 32597661 DOI: 10.1021/acs.jproteome.0c00131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue is regarded as a true endocrine organ that releases adipokines to regulate distant targets. Besides the well-studied secretory adipokines, the adipokines carried by small extracellular vesicles derived from adipose tissue (sEV-AT) have not been completely characterized yet. In this study, we conducted a complementary protein profiling on sEV-AT with label-free quantitative proteomic analysis (project accession: PXD013270). A total of 2607 sEV-AT proteins were identified, among which 328 proteins had been annotated as adipokines. Three undefined adipokine candidates (NPM3, STEAP3, and DAD1) were selected for further validation. These three proteins were expressed in both white and brown adipose tissues and upregulated during adipogenic differentiation in both 3T3-L1 cells and adipose-derived stromal/stem cells (ASCs). Expressions of NPM3 and DAD1 in sEV-AT were significantly decreased in obese subjects compared with lean controls, while obesity could not alter the expression of STEAP3. Our profiling study of the sEV-AT proteins expanded the list of adipokines and highlighted the pivotal role of adipokines specifically carried by sEVs in the regulation of multiple biological processes within adipose tissue.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Dong
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, Xiangya School of Stomatology, Central South University, Changsha 410083, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
166
|
Lu KY, Primus Dass KT, Lin SZ, Harn HJ, Liu SP. The application of stem cell therapy and brown adipose tissue transplantation in metabolic disorders. Cytotherapy 2020; 22:521-528. [PMID: 32690364 DOI: 10.1016/j.jcyt.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
The discovery of brown fat in adult humans has led to increased research of the thermogenic function of this tissue in various metabolic diseases. In addition, high levels of brown fat have been correlated with lower body mass index values. Therefore, increasing brown fat mass and/or activity through methods such as the browning of white fat is considered a promising strategy to prevent and treat obesity-associated diseases. Cell-based approaches using mesenchymal stromal cells and brown adipose tissue (BAT) have been utilized to directly increase BAT mass/activity through cell and tissue implantation into animals. In addition, recent studies evaluating the transplantation of human embryonic stem cells and induced pluripotent stem (iPS) cells have shown promising results in terms of positive metabolic function. In this comprehensive review, we provide a summary of the research over the past 10 years with regard to stem cell therapy and brown fat tissue transplantation for the effective treatment of metabolic syndrome. Recent advancements in stem cell methods have allowed for the production of brown adipocytes from human iPS cells, which represent an unlimited source of cellular material with which to study adipocyte development. In addition, this process is expected to be used to further explore drug- and cell-based therapies to treat obesity-related metabolic complications.
Collapse
Affiliation(s)
- Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan.
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Center for Translational Medicine, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
167
|
Kim W, Lee EJ, Bae IH, Myoung K, Kim ST, Park PJ, Lee KH, Pham AVQ, Ko J, Oh SH, Cho EG. Lactobacillus plantarum-derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. J Extracell Vesicles 2020; 9:1793514. [PMID: 32944181 PMCID: PMC7480564 DOI: 10.1080/20013078.2020.1793514] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Probiotics offer various health benefits. Lactobacillus plantarum has been used for decades to enhance human intestinal mucosal immunity and improve skin barrier integrity. Extracellular vesicles (EVs) derived from eukaryotic or prokaryotic cells have been recognized as efficient carriers for delivery of biomolecules to recipient cells, and to efficiently regulate human pathophysiology. However, the mechanism underlying the beneficial effects of probiotic bacteria-derived EVs on human skin is unclear. Herein, we investigated how L. plantarum-derived EVs (LEVs) exert beneficial effects on human skin by examining the effect of LEVs on cutaneous immunity, particularly on macrophage polarization. LEVs promoted differentiation of human monocytic THP1 cells towards an anti-inflammatory M2 phenotype, especially M2b, by inducing biased expression of cell-surface markers and cytokines associated with M2 macrophages. Pre- or post-treatment with LEVs under inflammatory M1 macrophage-favouring conditions, induced by LPS and interferon-γ, inhibited M1-associated surface marker, HLA-DRα expression. Moreover, LEV treatment significantly induced expression of macrophage-characteristic cytokines, IL-1β, GM-CSF and the representative anti-inflammatory cytokine, IL-10, in human skin organ cultures. Hence, LEVs can trigger M2 macrophage polarization in vitro, and induce an anti-inflammatory phenomenon in the human skin, and may be a potent anti-inflammatory strategy to alleviate hyperinflammatory skin conditions.
Collapse
Affiliation(s)
- Wanil Kim
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea.,Division of Cosmetic Science & Technology, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Il-Hong Bae
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Kilsun Myoung
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Sung Tae Kim
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Phil June Park
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Kyung-Ha Lee
- Division of Cosmetic Science & Technology, Daegu Haany University, Gyeongsan, Republic of Korea
| | | | - Jaeyoung Ko
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-Gyung Cho
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| |
Collapse
|
168
|
Yang C, Zhang M, Sung J, Wang L, Jung Y, Merlin D. Autologous Exosome Transfer: A New Personalised Treatment Concept to Prevent Colitis in a Murine Model. J Crohns Colitis 2020; 14:841-855. [PMID: 31710674 PMCID: PMC7346889 DOI: 10.1093/ecco-jcc/jjz184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Epigenetic information delivered by intestinal exosomes can be useful for diagnosing intestinal diseases, such as ulcerative colitis, but the therapeutic effects of intestinal exosomes have not been fully exploited. We herein developed an autologous exosome therapy that could treat intestinal disease without any risk of inducing a systemic immunological reaction. METHODS Intestinal exosomes were isolated and purified from faeces by our newly developed multi-step sucrose gradient ultracentrifugation method. Lipopolysaccharide [LPS]-activated macrophages were employed to test the in vitro anti-inflammatory ability of intestinal exosomes. To evaluate the in vivo anti-inflammatory activity of our system, we gavaged dextran sulphate sodium [DSS]-induced colitic mice with their own healing phase intestinal exosomes. RESULTS Mouse intestinal exosomes are round extracellular vesicles with a hydrodynamic diameter of ~140 [±20] nm and a surface charge of ~-12 [±3] mV. Among the exosomes obtained at four different stages of DSS-induced ulcerative colitis [1, before treatment; 2, DSS-treated; 3, healing phase; and 4, back to normal], the healing phase exosomes showed the best in vitro anti-inflammatory effects and promotion of wound healing. Moreover, oral co-administration of autologous healing phase exosomes with DSS was found to significantly reduce the risk of a second round of DSS-induced ulcerative colitis in mice. CONCLUSIONS Intestinal exosomes obtained during the healing phase that follows induced intestinal inflammation could strongly promote wound healing in the host. Oral administration of autologous exosomes from the healing phase could be a safe and effective approach for treating the ulcerative colitis of a given patient in the context of personalised medicine.
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mingzhen Zhang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Lixin Wang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Medical Center, Decatur, GA, USA
| | - Yunjin Jung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Medical Center, Decatur, GA, USA
| |
Collapse
|
169
|
Guay C, Jacovetti C, Bayazit MB, Brozzi F, Rodriguez-Trejo A, Wu K, Regazzi R. Roles of Noncoding RNAs in Islet Biology. Compr Physiol 2020; 10:893-932. [PMID: 32941685 DOI: 10.1002/cphy.c190032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and β-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between β-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Adriana Rodriguez-Trejo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
170
|
Role of Mesencephalic Astrocyte-Derived Neurotrophic Factor in Alcohol-Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9034864. [PMID: 32724497 PMCID: PMC7364207 DOI: 10.1155/2020/9034864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Consumption of alcohol in immoderate quantity induces endoplasmic reticulum (ER) stress response (alcohol-induced ER stress). Mesencephalic astrocyte-derived neurotrophic factor (MANF), an ER stress-inducible protein, works as an evolutionarily conserved regulator of systemic and liver metabolic homeostasis. In this study, the effects of MANF on alcohol-induced liver injury were explored by using hepatocyte-specific MANF-knockout mice (MANF ΔHep) in a chronic-plus-binge alcohol feeding model. We found that alcohol feeding upregulated MANF expression and MANF ΔHep mice exhibited more severe liver injury with extra activated ER stress after alcohol feeding. In addition, we found that MANF deficiency activated iNOS and p65 and increased the production of NO and anti-inflammatory cytokines, which was further enhanced after alcohol treatment. Meanwhile, MANF deletion upregulated the levels of CYP2E1, 4-HNE, and MDA and downregulated the levels of GSH and SOD. These results indicate that MANF has potential protection on alcohol-induced liver injury, and the underlying mechanisms may be associated with meliorating the overactivated ER stress triggered by inflammation and oxidative stress via inhibiting and reducing NO/NF-κB and CYP2E1/ROS, respectively. Therefore, MANF might be a negative regulator in alcohol-induced ER stress and participate in the crosstalk between the NF-κB pathway and oxidative stress in the liver. Conclusions. This study identifies a specific role of MANF in alcohol-induced liver injury, which may provide a new approach for the treatment of ALI.
Collapse
|
171
|
Sadegh‐Nejadi S, Afrisham R, Emamgholipour S, Izadi P, Eivazi N, Tahbazlahafi B, Paknejad M. Influence of plasma circulating exosomes obtained from obese women on tumorigenesis and tamoxifen resistance in
MCF
‐7 cells. IUBMB Life 2020; 72:1930-1940. [PMID: 32542981 DOI: 10.1002/iub.2305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Sahar Sadegh‐Nejadi
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical Sciences Tehran Iran
| | - Reza Afrisham
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical Sciences Tehran Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical Sciences Tehran Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Neda Eivazi
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical Sciences Tehran Iran
| | - Behnoosh Tahbazlahafi
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical Sciences Tehran Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
172
|
Li CJ, Fang QH, Liu ML, Lin JN. Current understanding of the role of Adipose-derived Extracellular Vesicles in Metabolic Homeostasis and Diseases: Communication from the distance between cells/tissues. Am J Cancer Res 2020; 10:7422-7435. [PMID: 32642003 PMCID: PMC7330853 DOI: 10.7150/thno.42167] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) including exosomes, microvesicles (MVs), and apoptotic bodies, are small membrane vesicular structures that are released during cell activation, senescence, or programmed cell death, including apoptosis, necroptosis, and pyroptosis. EVs serve as novel mediators for long-distance cell-to-cell communications and can transfer various bioactive molecules, such as encapsulated cytokines and genetic information from their parental cells to distant target cells. In the context of obesity, adipocyte-derived EVs are implicated in metabolic homeostasis serving as novel adipokines. In particular, EVs released from brown adipose tissue or adipose-derived stem cells may help control the remolding of white adipose tissue towards browning and maintaining metabolic homeostasis. Interestingly, EVs may even serve as mediators for the transmission of metabolic dysfunction across generations. Also, EVs have been recognized as novel modulators in various metabolic disorders, including insulin resistance, diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we summarize the latest progress from basic and translational studies regarding the novel effects of EVs on metabolic diseases. We also discuss EV-mediated cross-talk between adipose tissue and other organs/tissues that are relevant to obesity and metabolic diseases, as well as the relevant mechanisms, providing insight into the development of new therapeutic strategies in obesity and metabolic diseases.
Collapse
|
173
|
Dyleva YA, Gruzdeva OV. [MicroRNA and obesity. A modern view of the problem (review of literature).]. Klin Lab Diagn 2020; 65:411-417. [PMID: 32762178 DOI: 10.18821/0869-2084-2020-65-7-411-417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The incidence of obesity is steadily increasing worldwide, reaching the epidemic. Obesity is associated with cardiometabolic diseases through the complex interactions between genetics and epigenetics predisposition, the environment, diet, and lifestyle. However, the molecular mechanisms and factors influencing these processes are not fully known. MicroRNAs are a new class of important regulatory determinants in many biological and pathological processes. There is increasing evidence of the role of miRNAs in the regulation of the functional activity of adipose tissue and the development of obesity. A change in the expression of MicroRNAs can lead to changes in the activity of genes that control a number of biological processes, including inflammation, lipid metabolism, and adipogenesis. Understanding the role of miRNAs in the regulation of adipogenesis and the development of obesity will establish therapeutic targets for the development of new and effective drugs, which will lead to a breakthrough in the fight against obesity and related diseases. This review presents current data on the role of miRNAs in the regulation of the functional activity of adipose tissue, including adipogenesis of white, beige and brown adipocytes, as well as the prerequisites for using miRNAs as biomarkers of obesity and the possibility of therapeutic use.
Collapse
Affiliation(s)
- Yu A Dyleva
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, 650002, Kemerovo, Russian Federation
| | - O V Gruzdeva
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, 650002, Kemerovo, Russian Federation
| |
Collapse
|
174
|
Milasan A, Farhat M, Martel C. Extracellular Vesicles as Potential Prognostic Markers of Lymphatic Dysfunction. Front Physiol 2020; 11:476. [PMID: 32523544 PMCID: PMC7261898 DOI: 10.3389/fphys.2020.00476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Despite significant efforts made to treat cardiovascular disease (CVD), more than half of cardiovascular events still occur in asymptomatic subjects devoid of traditional risk factors. These observations underscore the need for the identification of new biomarkers for the prevention of atherosclerosis, the main underlying cause of CVD. Extracellular vesicles (EVs) and lymphatic vessel function are emerging targets in this context. EVs are small vesicles released by cells upon activation or death that are present in several biological tissues and fluids, including blood and lymph. They interact with surrounding cells to transfer their cargo, and the complexity of their biological content makes these EVs potential key players in several chronic inflammatory settings. Many studies focused on the interaction of EVs with the most well-known players of atherosclerosis such as the vascular endothelium, smooth muscle cells and monocytes. However, the fate of EVs within the lymphatic network, a crucial route in the mobilization of cholesterol out the artery wall, is not known. In this review, we aim to bring forward evidence that EVs could be at the interplay between lymphatic function and atherosclerosis by summarizing the recent findings on the characterization of EVs in this setting.
Collapse
Affiliation(s)
- Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Maya Farhat
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
175
|
Abstract
Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Collapse
|
176
|
Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158:1899-1912. [PMID: 32061598 DOI: 10.1053/j.gastro.2019.12.054] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Adipose tissue and the liver play significant roles in the regulation of whole-body energy homeostasis, but they have not evolved to cope with the continuous, chronic, nutrient surplus seen in obesity. In this review, we detail how prolonged metabolic stress leads to adipose tissue dysfunction, inflammation, and adipokine release that results in increased lipid flux to the liver. Overall, the upshot of hepatic fat accumulation alongside an insulin-resistant state is that hepatic lipid enzymatic pathways are modulated and overwhelmed, resulting in the selective buildup of toxic lipid species, which worsens the pro-inflammatory and pro-fibrotic shift observed in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge.
| | - Michele Vacca
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Samuel Virtue
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Michael Allison
- The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge
| | - Antonio Vidal-Puig
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
177
|
Zhu S, Bennett S, Kuek V, Xiang C, Xu H, Rosen V, Xu J. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Am J Cancer Res 2020; 10:5957-5965. [PMID: 32483430 PMCID: PMC7255007 DOI: 10.7150/thno.45422] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Blood vessels are conduits distributed throughout the body, supporting tissue growth and homeostasis by the transport of cells, oxygen and nutrients. Endothelial cells (ECs) form the linings of the blood vessels, and together with pericytes, are essential for organ development and tissue homeostasis through producing paracrine signalling molecules, called angiocrine factors. In the skeletal system, ECs - derived angiocrine factors, combined with bone cells-released angiogenic factors, orchestrate intercellular crosstalk of the bone microenvironment, and the coupling of angiogenesis-to-osteogenesis. Whilst the involvement of angiogenic factors and the blood vessels of the skeleton is relatively well established, the impact of ECs -derived angiocrine factors on bone and cartilage homeostasis is gradually emerging. In this review, we survey ECs - derived angiocrine factors, which are released by endothelial cells of the local microenvironment and by distal organs, and act specifically as regulators of skeletal growth and homeostasis. These may potentially include angiocrine factors with osteogenic property, such as Hedgehog, Notch, WNT, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF). Understanding the versatile mechanisms by which ECs-derived angiocrine factors orchestrate bone and cartilage homeostasis, and pathogenesis, is an important step towards the development of therapeutic potential for skeletal diseases.
Collapse
|
178
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
179
|
Tamara C, Nerea LB, Belén BS, Aurelio S, Iván C, Fernando S, Javier B, Felipe CF, María P. Vesicles Shed by Pathological Murine Adipocytes Spread Pathology: Characterization and Functional Role of Insulin Resistant/Hypertrophied Adiposomes. Int J Mol Sci 2020; 21:E2252. [PMID: 32214011 PMCID: PMC7139903 DOI: 10.3390/ijms21062252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as a relevant way of cell to cell communication, and its analysis has become an indirect approach to assess the cell/tissue of origin status. However, the knowledge about their nature and role on metabolic diseases is still very scarce. We have established an insulin resistant (IR) and two lipid (palmitic/oleic) hypertrophied adipocyte cell models to isolate EVs to perform a protein cargo qualitative and quantitative Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) analysis by mass spectrometry. Our results show a high proportion of obesity and IR-related proteins in pathological EVs; thus, we propose a panel of potential obese adipose tissue EV-biomarkers. Among those, lipid hypertrophied vesicles are characterized by ceruloplasmin, mimecan, and perilipin 1 adipokines, and those from the IR by the striking presence of the adiposity and IR related transforming growth factor-beta-induced protein ig-h3 (TFGBI). Interestingly, functional assays show that IR and hypertrophied adipocytes induce differentiation/hypertrophy and IR in healthy adipocytes through secreted EVs. Finally, we demonstrate that lipid atrophied adipocytes shed EVs promote macrophage inflammation by stimulating IL-6 and TNFα expression. Thus, we conclude that pathological adipocytes release vesicles containing representative protein cargo of the cell of origin that are able to induce metabolic alterations on healthy cells probably exacerbating the disease once established.
Collapse
Affiliation(s)
- Camino Tamara
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
| | - Lago-Baameiro Nerea
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
| | - Bravo Susana Belén
- Unidad de Proteómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain;
| | - Sueiro Aurelio
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (S.A.); (C.F.F.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Couto Iván
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía Plástica y Reparadora, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Santos Fernando
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Baltar Javier
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Casanueva F. Felipe
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (S.A.); (C.F.F.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Pardo María
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| |
Collapse
|
180
|
Schou AS, Nielsen JE, Askeland A, Jørgensen MM. Extracellular vesicle-associated proteins as potential biomarkers. Adv Clin Chem 2020; 99:1-48. [PMID: 32951635 DOI: 10.1016/bs.acc.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Every cell in the body secretes extracellular vesicles (EVs) possibly as cellular signaling components and these cell-derivatives can be found in multiple numbers in biological fluids. EVs have in the scientific field received great attention in relation to pathophysiology and disease diagnostics. Altered protein expressions associated with circulating EVs in diseased individuals can serve as biomarkers for different disease states. This capacity paves the way for non-invasive screening tools and early diagnostic markers. However, no isolation method of EVs has been acknowledged as the "golden standard," thus reproducibility of the studies remains inadequate. Increasing interest in EV proteins as disease biomarkers could give rise to more scientific knowledge with diagnostic applicability. In this chapter, studies of proteins believed to be associated with EVs within cancer, autoimmunity, metabolic and neurodegenerative diseases have been outlined.
Collapse
Affiliation(s)
- Anne Sophie Schou
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
181
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
182
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|
183
|
Extracellular Vesicles Derived from Senescent Fibroblasts Attenuate the Dermal Effect on Keratinocyte Differentiation. Int J Mol Sci 2020; 21:ijms21031022. [PMID: 32033114 PMCID: PMC7037765 DOI: 10.3390/ijms21031022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
The skin is a multilayered and primary defensive organ. Intimate intercellular communication in the skin is necessary to ensure effective surveillance. Extracellular vesicles (EVs) are being explored for their involvement in intercellular skin communication. The aim of this study was to evaluate how human dermal fibroblasts (HDFs) accelerate EV production during senescence and the effects of senescence-associated EVs on epidermal homeostasis. Replicative senescent HDFs were assessed with senescence-associated β-galactosidase staining and the expression of senescence-related markers. Isolated EVs were characterized by dynamic light scattering and EV marker expression. EVs secreted from untreated young or senescent HDFs, or from those treated with a nSMase inhibitor, antioxidant, and lysosomal activity regulators, were determined by sandwich ELISA for CD81. Human epidermal keratinocytes were treated with young- and senescent HDF-derived EVs. Compared to young HDFs, senescent HDFs produced relatively high levels of EVs due to the increased nSMase activity, oxidative stress, and altered lysosomal activity. The nSMase inhibitor, antioxidant, and agents that recovered lysosomal activity reduced EV secretion in senescent HDFs. Relative to young HDF-derived EVs, senescent HDF-derived EVs were less supportive in keratinocyte differentiation and barrier function but increased proinflammatory cytokine IL-6 levels. Our study suggests that dermis-derived EVs may regulate epidermal homeostasis by reflecting cellular status, which provides insight as to how the dermis communicates with the epidermis and influences skin senescence.
Collapse
|
184
|
Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine Growth Factor Rev 2020; 51:27-39. [PMID: 31917095 DOI: 10.1016/j.cytogfr.2019.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022]
Abstract
Metabolic diseases are based on a dysregulated crosstalk between various cells such as adipocytes, hepatocytes and immune cells. Generally, hormones and metabolites mediate this crosstalk that becomes alterated in metabolic syndrome including obesity and diabetes. Recently, Extracellular Vesicles (EVs) are emerging as a novel way of cell-to-cell communication and represent an attractive strategy to transfer fundamental informations between the cells through the transport of proteins and nucleic acids. EVs, released in the extracellular space, circulate via the various body fluids and modulate the cellular responses following their interaction with the near and far target cells. Clinical and experimental data support their role as biomarkers and bioeffectors in several diseases includimg also the metabolic syndrome. Despite numerous studies on the role of macrophages in the development of metabolic diseases, to date, there are little informations about the influence of metabolic stress on the EVs produced by macrophages and about the role of the released vesicles in the organism. Here, we review current understanding about the role of EVs in metabolic diseases, mainly in inflammation status burst. This knowledge may play a relevant role in health monitoring, medical diagnosis and personalized medicine.
Collapse
|
185
|
Barreiro K, Huber TB, Holthofer H. Isolating Urinary Extracellular Vesicles as Biomarkers for Diabetic Disease. Methods Mol Biol 2020; 2067:175-188. [PMID: 31701453 DOI: 10.1007/978-1-4939-9841-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles are lipid bilayer enclosed structures secreted by all cell types. Their cargo includes proteins, lipids, RNAs, and DNA, which reflect the physiological state of their cells of origin. Recently, urinary extracellular vesicles have emerged as a valuable source of biomarkers for kidney and systemic disease.Unfortunately, all existing methods for extracellular vesicle isolation from urine are time consuming and/or expensive. Thus, they are not adaptable to large-scale studies and unsuitable for clinical use without special equipment in the laboratory. Recently, our group has devised a set of new, quick, simple, and inexpensive techniques, based on hydrostatic filtration dialysis (HFD) of urine extremely suitable for diagnostic purposes. This novel approach represents a great potential for new diagnostics and understanding disease biology in general and brings the biomarker detection to the scope of all laboratories.
Collapse
Affiliation(s)
- Karina Barreiro
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harry Holthofer
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
186
|
Liu C, Yin H, Jiang H, Du X, Wang C, Liu Y, Li Y, Yang Z. Extracellular Vesicles Derived from Mesenchymal Stem Cells Recover Fertility of Premature Ovarian Insufficiency Mice and the Effects on their Offspring. Cell Transplant 2020; 29:963689720923575. [PMID: 32363925 PMCID: PMC7586265 DOI: 10.1177/0963689720923575] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
It has been reported that extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) can promote the proliferative and secretive functions of granulosa cells. In vivo study further demonstrated that EVs derived from HUCMSCs can not only promote the angiogenesis of ovarian tissue but also restore the function of an ovary of chemically induced premature ovarian insufficiency (POI) mice. However, no study investigates the effects of HUCMSCs derived EVs on fertility recovery of POI mice and evaluating their offspring. This study investigates the effects of HUCMSCs derived EVs on fertility recovery and the cognitive function of their offspring. A POI model was established by intraperitoneal injection of cyclophosphamide (CTX) and busulfan (BUS), and randomly divided into EVs-transplantation group (a single injection of 150 µg EVs proteins which suspended in 0.1 ml phosphate buffer saline [PBS] via tail vein), POI group (a single injection of 0.1 ml PBS via tail vein), and normal control group (a single injection of 0.1 ml PBS via tail vein without intraperitoneal injection of CTX and BUS). After EVs treatment, not only the ovarian function of POI mice recovered but also the fertility increased with less time to get pregnant, evaluating by in vitro fertilization and mating test. Cognitive behaviors of the offspring were similar among the three groups through the Y-maze test and novel object recognition task. An anti-apoptotic effect was identified through immunohistochemistry, real-time polymerase chain reaction and western blot. These findings indicate that HUCMSCs derived EVs can improve the fertility of POI mice without adverse effects on the cognitive behavior of their offspring, highlighting the potential value of EVs to be a cell-free therapy for patients suffering from POI.
Collapse
Affiliation(s)
- Conghui Liu
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Huiqun Yin
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Hong Jiang
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Xin Du
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Cunli Wang
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Yingchun Liu
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Yu Li
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
| | - Ziling Yang
- Reproductive Medicine Center, 105th Hospital of the People’s Liberation Army, Hefei, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
187
|
Morelli MB, Shu J, Sardu C, Matarese A, Santulli G. Cardiosomal microRNAs Are Essential in Post-Infarction Myofibroblast Phenoconversion. Int J Mol Sci 2019; 21:201. [PMID: 31892162 PMCID: PMC6982041 DOI: 10.3390/ijms21010201] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
The inclusion of microRNAs (miRNAs) in extracellular microvesicles/exosomes (named cardiosomes when deriving from cardiomyocytes) allows their active transportation and ensures cell-cell communication. We hypothesize that cardiosomal miRNAs play a pivotal role in the activation of myofibroblasts following ischemic injury. Using a murine model of myocardial infarction (MI), we tested our hypothesis by measuring in isolated fibroblasts and cardiosomes the expression levels of a set of miRNAs, which are upregulated in cardiomyocytes post-MI and involved in myofibroblast phenoconversion. We found that miR-195 was significantly upregulated in cardiosomes and in fibroblasts isolated after MI compared with SHAM conditions. Moreover, primary isolated cardiac fibroblasts were activated both when incubated with cardiosomes isolated from ischemic cardiomyocytes and when cultured in conditioned medium of post-MI cardiomyocytes, whereas no significant effect was observed following incubation with cardiosomes or medium from sham cardiomyocytes. Taken together, our findings indicate for the first time that a cardiomyocyte-specific miRNA, transferred to fibroblasts in form of exosomal cargo, is crucial in the activation of myofibroblasts.
Collapse
Affiliation(s)
- Marco B. Morelli
- Department of Medicine, Division of Cardiology and Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, Montefiore University Hospital, New York, NY 10461, USA; (M.B.M.); (J.S.)
| | - Jun Shu
- Department of Medicine, Division of Cardiology and Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, Montefiore University Hospital, New York, NY 10461, USA; (M.B.M.); (J.S.)
| | - Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Alessandro Matarese
- Department of Pneumology and Oncology, AORN “Ospedale dei Colli”, 80100 Naples, Italy;
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology and Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, Montefiore University Hospital, New York, NY 10461, USA; (M.B.M.); (J.S.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
| |
Collapse
|
188
|
Muroya S, Ogasawara H, Nohara K, Oe M, Ojima K, Hojito M. Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1824-1836. [PMID: 32054170 PMCID: PMC7649083 DOI: 10.5713/ajas.19.0682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
Objective On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The ‘Exosome’, ‘Carbohydrate metabolism’ and ‘Lipid metabolism’ were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms ‘Endosome’, ‘Caveola’, ‘Endocytosis’, ‘Carbohydrate metabolism’, and with pathways related to environmental information processing and the endocrine system. Conclusion Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 300-1207, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido 049-3121, Japan
| | - Kana Nohara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido 049-3121, Japan
| | - Mika Oe
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 300-1207, Japan
| | - Koichi Ojima
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 300-1207, Japan
| | - Masayuki Hojito
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido 049-3121, Japan
| |
Collapse
|
189
|
Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY) 2019; 10:3986-3999. [PMID: 30552311 PMCID: PMC6326691 DOI: 10.18632/aging.101689] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Islets damage is a major abnormality underling diabetes. Recent studies suggested the value of exosomes in diagnosis. This study aimed to investigate the impact of injury factors on the miRNA profiles of islet exosomes and determine whether circulating exosomal miRNAs is suitable as biomarkers of islets damage. Islets were isolated from ICR mice and induced injury in vitro by mixed cytokines (Tumor Necrosis Factor-α, Interleukin -1β and Interferon-γ) or streptozotocin (STZ), and exosomes were derived from the cultural supernatant. Using miRNA microarray analysis, we found 22 and 11 differentially expressed miRNAs in islet exosomes of STZ and cytokines treatment, respectively, including 6 miRNAs as the intersection of two injured conditions. Thereinto, mmu-miR-375-3p and mmu-miR-129-5p could be validated by qRT-PCR. Then, Serum exosomes were isolated from STZ injected mice and subjects with various glucose metabolism states and diabetic duration. qRT-PCR demonstrated exosomal mmu-miR-375-3p dramatically increased in serum of STZ treated mouse prior to the disturbance of blood glucose and insulin. In human serum exosomes, hsa-miR-375-3p was elevated in new-onset diabetes patients. Overall, our results suggest that injury factors changed miRNA profiles of exosomes derived from islets and exosomal miR-375-3p showed promising potential as a biomarker of islets damage.
Collapse
|
190
|
Ayala‐Mar S, Donoso‐Quezada J, Gallo‐Villanueva RC, Perez‐Gonzalez VH, González‐Valdez J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 2019; 40:3036-3049. [PMID: 31373715 PMCID: PMC6972601 DOI: 10.1002/elps.201800526] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome-based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.
Collapse
Affiliation(s)
- Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | - Javier Donoso‐Quezada
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | | | - Victor H. Perez‐Gonzalez
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| |
Collapse
|
191
|
Abstract
Obesity is a complex condition that is characterized by excessive fat accumulation, which can lead to the development of metabolic disorders, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease and cardiovascular diseases. Evidence is accumulating that circulating microRNAs (miRNAs) act as a new class of endocrine factor. These miRNAs are released by many types of tissue, including adipose tissues. miRNAs might serve as endocrine and paracrine messengers that facilitate communication between donor cells and tissues with receptor cells or target tissues, thereby potentially having important roles in metabolic organ crosstalk. Moreover, many miRNAs are closely associated with the differentiation of adipocytes and are dysregulated in obesity. As such, circulating miRNAs are attractive potential biomarkers and hold promise for the development of miRNA-based therapeutics (such as miRNA mimetics, anti-miRNA oligonucleotides and exosomes loaded with miRNA) for obesity and related disorders. Here we review the latest research progress on the roles of circulating miRNAs in metabolic organ crosstalk. In addition, we discuss the clinical potential of circulating miRNAs as feasible biomarkers for the assessment of future risk of metabolic disorders and as therapeutic targets in obesity and related diseases.
Collapse
Affiliation(s)
- Chenbo Ji
- Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| | - Xirong Guo
- Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
192
|
Jiménez J, Autin L, Ibáñez de Cáceres I, Goodsell DS. Integrative Modeling and Visualization of Exosomes. THE JOURNAL OF BIOCOMMUNICATION 2019; 43:e10. [PMID: 36406636 PMCID: PMC9139774 DOI: 10.5210/jbc.v43i2.10331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Information from proteomics, microscopy, and structural biology are integrated to create structural models of exosomes, small vesicles released from cells. Three visualization methods are employed and compared: 2D painting of a cross section using traditional media, manual creation of a cross section using the mesoscale 2.5D digital painting software cellPAINT, and generation of a 3D atomic model using the mesoscale modeling program cellPACK.
Collapse
Affiliation(s)
- Julia Jiménez
- The Sanitary Research Institution IdiPAZ
- University Hospital La Paz, Madrid
| | | | | | | |
Collapse
|
193
|
Soni S, Tirlapur N, O'Dea KP, Takata M, Wilson MR. Microvesicles as new therapeutic targets for the treatment of the acute respiratory distress syndrome (ARDS). Expert Opin Ther Targets 2019; 23:931-941. [PMID: 31724440 DOI: 10.1080/14728222.2019.1692816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) is a heterogeneous and multifactorial disease; it is a common and devastating condition that has a high mortality. Treatment is limited to supportive measures hence novel pharmacological approaches are necessary. We propose a new direction in ARDS research; this means moving away from thinking about individual inflammatory mediators and instead investigating how packaged information is transmitted between cells. Microvesicles (MVs) represent a novel vehicle for inter-cellular communication with an emerging role in ARDS pathophysiology.Areas covered: This review examines current approaches to ARDS and emerging MV research. We describe advances in our understanding of microvesicles and focus on their pro-inflammatory roles in airway and endothelial signaling. We also offer reasons for why MVs are attractive therapeutic targets.Expert opinion: MVs have a key role in ARDS pathophysiology. Preclinical studies must move away from simple models toward more realistic scenarios while clinical studies must embrace patient heterogeneity. Microvesicles have the potential to aid identification of patients who may benefit from particular treatments and act as biomarkers of cellular status and disease progression. Understanding microvesicle cargoes and their cellular interactions will undoubtedly uncover new targets for ARDS.
Collapse
Affiliation(s)
- Sanooj Soni
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Nikhil Tirlapur
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
194
|
Su J, Li J, Yu Q, Wang J, Li X, Yang J, Xu J, Liu Y, Xu Z, Ji L, Yin F, Chen X. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2019; 72:384-400. [PMID: 31675148 DOI: 10.1002/iub.2189] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) can be used as biomarkers for acute myocardial infarction (AMI). However, few reports have focused on the value of exosomal miRNAs in the mechanism of the pathophysiological process from stable coronary artery disease (SCAD) to AMI. Exosomes were isolated via ultracentrifugation after serum samples were collected. The exosomes were then identified by transmission electron microscopy, western blotting, and nanoparticle tracking analysis. The differential expression of miRNAs in exosomes from six AMI and six matching SCAD patients was screened using the Agilent Human miRNA Microarray Kit. Target genes of the candidate miRNAs were predicted via an online miRNA database, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. Further validation was conducted through quantitative real-time polymerase chain reaction with 60 exosome samples. The expression of 13 miRNAs was significantly downregulated in the AMI samples compared with the SCAD samples. In addition, we identified various target genes that are mainly involved in the pathways of cardiac rehabilitation and remodelling. Validation of the expression of candidate miRNAs indicated that exosomal miR-1915-3p, miR-4,507, and miR-3,656 were significantly less expressed in AMI samples than in SCAD samples, and area under the receiver-operating-characteristic curve (AUC) analysis showed that the expression of these miRNAs resulted in good predictive accuracy [miR-1915-3p (AUC: 0.772); miR-4,507 (AUC: 0.684); and miR-3,656 (AUC: 0.771)], suggesting that these serum exosomal miRNAs might be predictive for AMI at an early stage. Hence, exosomal miRNAs might play an important role in the pathophysiology of AMI and could serve as diagnostic biomarkers.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Jiyi Li
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China.,Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, People's Republic of China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Jingqiao Wang
- Department of Cardiology, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaojing Li
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Jin Yang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Jin Xu
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yahui Liu
- Key laboratory, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhifeng Xu
- Department of Cardiology, Longsai Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Lindan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Fengying Yin
- Department of General Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
195
|
Nakamura Y, Dryanovski DI, Kimura Y, Jackson SN, Woods AS, Yasui Y, Tsai SY, Patel S, Covey DP, Su TP, Lupica CR. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. eLife 2019; 8:e47209. [PMID: 31596232 PMCID: PMC6850780 DOI: 10.7554/elife.47209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cocaine is an addictive drug that acts in brain reward areas. Recent evidence suggests that cocaine stimulates synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) in midbrain, increasing dopamine neuron activity via disinhibition. Although a mechanism for cocaine-stimulated 2-AG synthesis is known, our understanding of 2-AG release is limited. In NG108 cells and mouse midbrain tissue, we find that 2-AG is localized in non-synaptic extracellular vesicles (EVs) that are secreted in the presence of cocaine via interaction with the chaperone protein sigma-1 receptor (Sig-1R). The release of EVs occurs when cocaine causes dissociation of the Sig-1R from ADP-ribosylation factor (ARF6), a G-protein regulating EV trafficking, leading to activation of myosin light chain kinase (MLCK). Blockade of Sig-1R function, or inhibition of ARF6 or MLCK also prevented cocaine-induced EV release and cocaine-stimulated 2-AG-modulation of inhibitory synapses in DA neurons. Our results implicate the Sig-1R-ARF6 complex in control of EV release and demonstrate that cocaine-mediated 2-AG release can occur via EVs.
Collapse
Affiliation(s)
- Yoki Nakamura
- Cellular Pathobiology Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Dilyan I Dryanovski
- Electrophysiology Research Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Yuriko Kimura
- Cellular Pathobiology Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Shelley N Jackson
- Structural Biology Unit, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Amina S Woods
- Structural Biology Unit, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Yuko Yasui
- Cellular Pathobiology Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Sachin Patel
- Cellular Pathobiology Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt Brain InstituteVanderbilt University Medical Center, Vanderbilt UniversityNashvilleUnited States
| | - Daniel P Covey
- Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Carl R Lupica
- Electrophysiology Research Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
196
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
197
|
Mou S, Zhou M, Li Y, Wang J, Yuan Q, Xiao P, Sun J, Wang Z. Extracellular Vesicles from Human Adipose-Derived Stem Cells for the Improvement of Angiogenesis and Fat-Grafting Application. Plast Reconstr Surg 2019; 144:869-880. [PMID: 31568294 DOI: 10.1097/prs.0000000000006046] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The efficacy of autologous fat transplantation is reduced by fat absorption and fibrosis that are closely related to unsatisfactory vascularization. Extracellular vesicles are key components of the cell secretome, which can mirror the functional and molecular characteristics of their parental cells. Growing evidence has revealed that adipose-derived mesenchymal stem cells have the ability to enhance vascularization, which is partly ascribed to extracellular vesicles. The authors evaluated whether adipose-derived mesenchymal stem cell-derived extracellular vesicles improved vascularization of fat grafts and increased their retention rate. METHODS To test the angiogenesis ability of adipose-derived mesenchymal stem cell-derived extracellular vesicles, they were isolated from the supernatant of cultured human adipose-derived mesenchymal stem cells and incubated with human umbilical vein endothelial cells in vitro. Then, the vesicles were co-transplanted with fat into nude mice subcutaneously. Three months after transplantation, the retention rate and inflammatory reaction of the grafts were analyzed by histologic assay. RESULTS The experimental group could significantly promote migration and tube formation at the concentration of 20 μg/ml. At 3 months after transplantation, the volume of the experimental group (0.12 ± 0.03 mm) was larger compared with the blank group (0.05 ± 0.01 mm). Histology and immunohistology results demonstrated significantly fewer cysts and vacuoles, less fibrosis, and more neovessels in the extracelluar vesicle group. CONCLUSIONS The authors co-transplanted adipose-derived mesenchymal stem cell-derived extracellular vesicles with fat into a nude mouse model and found that the vesicles improved volume retention by enhancing vascularization and regulating the inflammatory response.
Collapse
Affiliation(s)
- Shan Mou
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Muran Zhou
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuan Li
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jiecong Wang
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Quan Yuan
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Peng Xiao
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jiaming Sun
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhenxing Wang
- From the Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
198
|
Khalaj K, Miller JE, Lingegowda H, Fazleabas AT, Young SL, Lessey BA, Koti M, Tayade C. Extracellular vesicles from endometriosis patients are characterized by a unique miRNA-lncRNA signature. JCI Insight 2019; 4:128846. [PMID: 31534048 DOI: 10.1172/jci.insight.128846] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
With multifactorial etiologies, combined with disease heterogeneity and a lack of suitable diagnostic markers and therapy, endometriosis remains a major reproductive health challenge. Extracellular vesicles (EVs) have emerged as major contributors of disease progression in several conditions, including a variety of cancers; however, their role in endometriosis pathophysiology has remained elusive. Using next-generation sequencing of EVs obtained from endometriosis patient tissues and plasma samples compared with controls, we have documented that patient EVs carry unique signatures of miRNAs and long noncoding RNAs (lncRNAs) reflecting their contribution to disease pathophysiology. Mass spectrophotometry-based proteomic analysis of EVs from patient plasma and peritoneal fluid further revealed enrichment of specific pathways, as well as altered immune and metabolic processes. Functional studies in endometriotic epithelial and endothelial cell lines using EVs from patient plasma and controls clearly indicate autocrine uptake and paracrine cell proliferative roles, suggestive of their involvement in endometriosis. Multiplex cytokine analysis of cell supernatants in response to patient and control plasma-derived EVs indicate robust signatures of important inflammatory and angiogenic cytokines known to be involved in disease progression. Collectively, these findings suggest that endometriosis-associated EVs carry unique cargo and contribute to disease pathophysiology by influencing inflammation, angiogenesis, and proliferation within the endometriotic lesion microenvironment.
Collapse
Affiliation(s)
- Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, USA
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Obstetrics and Gynecology and.,Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
199
|
Okamatsu-Ogura Y, Matsushita M, Bariuan JV, Nagaya K, Tsubota A, Saito M. Association of circulating exosomal miR-122 levels with BAT activity in healthy humans. Sci Rep 2019; 9:13243. [PMID: 31519959 PMCID: PMC6744505 DOI: 10.1038/s41598-019-49754-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
Brown adipose tissue (BAT) plays an important role in body fat accumulation and the regulation of energy expenditure. Since the role of miRNAs in the pathogenesis of obesity and related metabolic diseases is contentious, we analyzed exosomal miRNAs in serum of healthy subjects with special references to BAT activity and body fat level. Forty male volunteers aged 20–30 years were recruited. Their BAT activity was assessed by fluorodeoxyglucose positron emission tomography and computed tomography after 2 h of cold exposure and expressed as a maximal standardized uptake value (SUVmax). Exosomal miRNA levels was analyzed using microarray and real-time PCR analyses. The miR-122-5p level in the high BAT activity group (SUV ≧ 3) was 53% lower than in the low BAT activity group (SUVmax <3). Pearson’s correlation analysis revealed that the serum miR-122-5p level correlated negatively with BAT activity and the serum HDL-cholesterol, and it correlated positively with age, BMI, body fat mass, and total cholesterol and triglyceride serum levels. Multivariate regression analysis revealed that BAT activity was associated with the serum miR-122-5p level independently of the other parameters. These results reveal the serum exosomal miR-122-5p level is negatively associated with BAT activity independently of obesity.
Collapse
Affiliation(s)
- Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, 065-0013, Japan
| | - Jussiaea Valente Bariuan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuki Nagaya
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
200
|
Molecular Targets of Aspirin and Prevention of Preeclampsia and Their Potential Association with Circulating Extracellular Vesicles during Pregnancy. Int J Mol Sci 2019; 20:ijms20184370. [PMID: 31492014 PMCID: PMC6769718 DOI: 10.3390/ijms20184370] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Uncomplicated healthy pregnancy is the outcome of successful fertilization, implantation of embryos, trophoblast development and adequate placentation. Any deviation in these cascades of events may lead to complicated pregnancies such as preeclampsia (PE). The current incidence of PE is 2–8% in all pregnancies worldwide, leading to high maternal as well as perinatal mortality and morbidity rates. A number of randomized controlled clinical trials observed the association between low dose aspirin (LDA) treatment in early gestational age and significant reduction of early onset of PE in high-risk pregnant women. However, a substantial knowledge gap exists in identifying the particular mechanism of action of aspirin on placental function. It is already established that the placental-derived exosomes (PdE) are present in the maternal circulation from 6 weeks of gestation, and exosomes contain bioactive molecules such as proteins, lipids and RNA that are a “fingerprint” of their originating cells. Interestingly, levels of exosomes are higher in PE compared to normal pregnancies, and changes in the level of PdE during the first trimester may be used to classify women at risk for developing PE. The aim of this review is to discuss the mechanisms of action of LDA on placental and maternal physiological systems including the role of PdE in these phenomena. This review article will contribute to the in-depth understanding of LDA-induced PE prevention.
Collapse
|