151
|
Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning. Neuroimaging Clin N Am 2014; 24:655-69. [PMID: 25441506 DOI: 10.1016/j.nic.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique.
Collapse
|
152
|
You J, Du C, Volkow ND, Pan Y. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:3217-30. [PMID: 25401033 PMCID: PMC4230874 DOI: 10.1364/boe.5.003217] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 05/03/2023]
Abstract
Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible.
Collapse
Affiliation(s)
- Jiang You
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingtian Pan
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
153
|
Sarbishegi M, Mehraein F, Soleimani M. Antioxidant role of oleuropein on midbrain and dopaminergic neurons of substantia nigra in aged rats. IRANIAN BIOMEDICAL JOURNAL 2014; 18:16-22. [PMID: 24375158 DOI: 10.6091/ibj.1274.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Oleuropein is a phenolic compound which is present in the olive leaf extract. The purpose of the present study was to investigate the neuroprotective effect of oleuropein as an antioxidant agent on the substantia nigra in aged rats. METHODS Twenty 18-month-old Wistar rats (450-550 g) were randomly divided into control and experimental groups. The experimental group received a daily single dose of 50 mg/kg of oleuropein by oral gavage for 6 months. The control group received only distilled water. All rats were sacrificed two hours after the last gavage and the brains were removed and midbrains were cut. One part of the midbrains were homogenized and centrifuged. The tissue supernatant was assayed for lipid peroxidation (LPO) and antioxidant enzyme activities. The other part of midbrains fixed and embedded in paraffin, then processed for Nissl and immunohistochemistry (IHC) staining. Data was analyzed using SPSS by t-test. Differences were considered significant for P<0.05. RESULTS The level of LPO in midbrain of the rats was decreased significantly in the experimental group, but superoxide dismutase, catalase and glutathione peroxidase activities were increased in experimental group compared to control group (P<0.05). Morphometric analyses showed significantly that the experimental group had more neurons in substantia nigra pars compacta (SNc) either in Nissl or IHC staining when compared to control (P<0.05). CONCLUSION The results of the present study indicate that treatment of the old rats with oleuropein reduces the oxidative damage in SNc by increasing the antioxidant enzyme activities.
Collapse
Affiliation(s)
- Maryam Sarbishegi
- Dept. of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehraein
- Dept. of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansooreh Soleimani
- Dept. of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
154
|
Khan A, Nazar H, Sabir SM, Irshad M, Awan SI, Abbas R, Akram M, Khaliq A, Rocha JBT, Ahmad SD, Malik F. Antioxidant activity and inhibitory effect of some commonly used medicinal plants against lipid per-oxidation in mice brain. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:83-90. [PMID: 25395710 DOI: 10.4314/ajtcam.v11i5.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The present study compares the protective properties of aqueous extracts of six medicinal plants, Phyllanthus emblica, Terminalia chebula (black and yellow), Terminalia arjuna, Balsamodendron Mukul and Alium sativum against lipid per-oxidation in mice brain. METHODS The antioxidant activities were analyzed by lipid per-oxidation assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, total antioxidant activity and metal chelation. RESULTS The extracts (fruits and bark) showed inhibition against thiobarbituric acid reactive species (TBARS) induced by pro-oxidant (10 µM FeSO4) in mice brain. Moreover, the free radical scavenging activities of the extracts was evaluated by the scavenging of DPPH radical (IC₅₀, 23.23 ± 1.2 µg/ml (Phyllanthus emblica), 20.24 ± 0.9 µg/ml (Terminalia chebula yellow) and 17.33 ± 1.1 µg/ml (Terminalia chebula black), 19.44 ± 0.45 µg/ml (Terminalia arjuna), 56.59 ± 2.1 µg/ml (Balsamodendron Mukul) and < 200 µg/ml (Alium sativum). CONCLUSION The higher antioxidant and inhibitory effect of Terminalia chebula black in this study could be attributed to its significantly higher phenolic content, Fe(II) chelating ability, reducing ability and free radical scavenging activity. Therefore oxidative stress in brain could be potentially prevented by the intake of these plants.
Collapse
Affiliation(s)
- Asmatullah Khan
- Faculty of Eastern Medicine, Hamdard University Karachi, Pakistan
| | - Halima Nazar
- Faculty of Eastern Medicine, Hamdard University Karachi, Pakistan
| | | | - Muhammad Irshad
- Department of Chemistry, University of Poonch Rawalakot A.K Pakistan
| | - Shahid Iqbal Awan
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot A.K Pakistan
| | - Rizwan Abbas
- University of Azad Jammu and Kashmir, Muzaffarabad A.K Pakistan
| | - Muhammad Akram
- Faculty of Medical and Health Sciences, University of Poonch Rawalakot A.K Pakistan
| | - Abdul Khaliq
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot A.K Pakistan
| | - João Batista Texeira Rocha
- Departmento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Brazil
| | | | - Farnaz Malik
- National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
155
|
Antioxidant activities and inhibitory effects of dietary plants against sodium nitroprusside induced lipid peroxidation in the mouse brain and liver. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
156
|
Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct Funct 2014; 220:1867-84. [PMID: 25017191 DOI: 10.1007/s00429-014-0843-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
The aim of this paper is twofold: firstly, to explore the potential of simultaneously acquiring multimodal MR-PET-EEG data in a human 9.4 T scanner to provide a platform for metabolic brain imaging. Secondly, to demonstrate that the three modalities are complementary, with MRI providing excellent structural and functional imaging, PET providing quantitative molecular imaging, and EEG providing superior temporal resolution. A 9.4 T MRI scanner equipped with a PET insert and a commercially available EEG device was used to acquire in vivo proton-based images, spectra, and sodium- and oxygen-based images with MRI, EEG signals from a human subject in a static 9.4 T magnetic field, and demonstrate hybrid MR-PET capability in a rat model. High-resolution images of the in vivo human brain with an isotropic resolution of 0.5 mm and post-mortem brain images of the cerebellum with an isotropic resolution of 320 µm are presented. A (1)H spectrum was also acquired from 2 × 2 × 2 mm voxel in the brain allowing 12 metabolites to be identified. Imaging based on sodium and oxygen is demonstrated with isotropic resolutions of 2 and 5 mm, respectively. Auditory evoked potentials measured in a static field of 9.4 T are shown. Finally, hybrid MR-PET capability at 9.4 T in the human scanner is demonstrated in a rat model. Initial progress on the road to 9.4 T multimodal MR-PET-EEG is illustrated. Ultra-high resolution structural imaging, high-resolution images of the sodium distribution and proof-of-principle (17)O data are clearly demonstrated. Further, simultaneous MR-PET data are presented without artefacts and EEG data successfully corrected for the cardioballistic artefact at 9.4 T are presented.
Collapse
|
157
|
Li X, Zhao X, Xu X, Mao X, Liu Z, Li H, Guo L, Bi K, Jia Y. Schisantherin A recovers Aβ-induced neurodegeneration with cognitive decline in mice. Physiol Behav 2014; 132:10-6. [PMID: 24813830 DOI: 10.1016/j.physbeh.2014.04.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Schisantherin A (STA) is a main bioactive lignan isolated from Schisandra chinensis (Turcz.) Baill., which has been widely used as a tonic in traditional Chinese medicine for many years. Lots of studies have reported that STA exhibited anti-inflammatory and antioxidant effects. This paper was designed to investigate the effects of STA on cognitive function and neurodegeneration in the mouse control of Alzheimer's disease (AD) induced by Aβ1-42. It was found that successive intracerebroventricular (ICV) administration of STA (0.01 and 0.1mg/kg) for 5days significantly attenuated Aβ1-42-induced learning and memory impairment as measured by the Y-maze test, shuttle-box test and Morris water maze test. Furthermore, STA at a dose of 0.1mg/kg restored the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as the levels of Aβ1-42, malondialdehyde (MDA) and glutathione (GSH) to some extent in the hippocampus and cerebral cortex. It also noticeably improved the histopathological changes in the hippocampus. The results suggested that STA might protect against cognitive deficits, oxidative stress and neurodegeneration induced by Aβ1-42, and serve as a potential agent in treatment of AD.
Collapse
Affiliation(s)
- Xiaolong Li
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xu Zhao
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xuan Xu
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xin Mao
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Zhi Liu
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Huan Li
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Lin Guo
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Kaishun Bi
- The Engineering Laboratory of National and Local Union of Quality Control for Traditional Chinese Medicine, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- Shenyang Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
158
|
Lee J, Hwang JY, Park SM, Jung HY, Choi SW, Kim DJ, Lee JY, Choi JS. Differential resting-state EEG patterns associated with comorbid depression in Internet addiction. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:21-6. [PMID: 24326197 DOI: 10.1016/j.pnpbp.2013.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/14/2013] [Accepted: 11/29/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Many researchers have reported a relationship between Internet addiction and depression. In the present study, we compared the resting-state quantitative electroencephalography (QEEG) activity of treatment-seeking patients with comorbid Internet addiction and depression with those of treatment-seeking patients with Internet addiction without depression, and healthy controls to investigate the neurobiological markers that differentiate pure Internet addiction from Internet addiction with comorbid depression. METHOD Thirty-five patients diagnosed with Internet addiction and 34 age-, sex-, and IQ-matched healthy controls were enrolled in this study. Patients with Internet addiction were divided into two groups according to the presence (N=18) or absence (N=17) of depression. Resting-state, eye-closed QEEG was recorded, and the absolute and relative power of the brain were analyzed. RESULTS The Internet addiction group without depression had decreased absolute delta and beta powers in all brain regions, whereas the Internet addiction group with depression had increased relative theta and decreased relative alpha power in all regions. These neurophysiological changes were not related to clinical variables. CONCLUSION The current findings reflect differential resting-state QEEG patterns between both groups of participants with Internet addiction and healthy controls and also suggest that decreased absolute delta and beta powers are neurobiological markers of Internet addiction.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Psychiatry, Gangnam Eulji Hospital, Eulji University, Seoul, Republic of Korea
| | - Jae Yeon Hwang
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Su Mi Park
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sam-Wook Choi
- Department of Psychiatry, Gangnam Eulji Hospital, Eulji University, Seoul, Republic of Korea
| | - Dai Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
159
|
Strelnikov K. Neuroenergetics at the brain-mind interface: a conceptual approach. Cogn Process 2014; 15:297-306. [PMID: 24633631 DOI: 10.1007/s10339-014-0609-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/10/2014] [Indexed: 12/30/2022]
Abstract
Modern neuroimaging techniques, such as PET and fMRI, attracted specialists in cognitive processing to the problems of brain energy and its transformations in relation to information processing. Neuroenergetics has experienced explosive progress during the last decade, complex biochemical and biophysical models of energy turnover in the brain necessitate the search of the general principles behind them, which could be linked to the cognitive view of the brain. In our conceptual descriptive generalization, we consider how the basic thermodynamical reasoning can be used to better understand brain energy. We suggest how thermodynamical principles can be applied to the existing data and theories to obtain the holistic framework of energetic processes in the brain coupled with information processing. This novel and purely descriptive framework permits the integration of approaches of different disciplines to cognitive processing: psychology, physics, physiology, mathematics, molecular biology, biochemistry, etc. Thus, the proposed general principled approach would be helpful for specialists from different fields of cognition.
Collapse
Affiliation(s)
- Kuzma Strelnikov
- Cerveau and Cognition, Université Paul Sabatier, Université de Toulouse, Toulouse, France,
| |
Collapse
|
160
|
Briones TL, Darwish H. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state. Neuroscience 2014; 262:143-55. [PMID: 24412233 PMCID: PMC4103183 DOI: 10.1016/j.neuroscience.2013.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 01/01/2023]
Abstract
In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.
Collapse
Affiliation(s)
- T L Briones
- Department of Adult Health, Wayne State University, Detroit, MI 48202, United States.
| | - H Darwish
- Hariri School of Nursing, American University of Beirut, Lebanon
| |
Collapse
|
161
|
Contributions of magnetic resonance spectroscopy to understanding development: potential applications in the study of adolescent alcohol use and abuse. Dev Psychopathol 2014; 26:405-23. [PMID: 24621605 DOI: 10.1017/s0954579414000030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing body of research has documented structural and functional brain development during adolescence, yet little is known about neurochemical changes that occur during this important developmental period. Magnetic resonance spectroscopy (MRS) is a well-developed technology that permits the in vivo quantification of multiple brain neurochemicals relevant to neuronal health and functioning. However, MRS technology has been underused in exploring normative developmental changes during adolescence and the onset of alcohol and drug use and abuse during this developmental period. This review begins with a brief overview of normative cognitive and neurobiological development during adolescence, followed by an introduction to MRS principles. The subsequent sections provide a comprehensive review of the existing MRS studies of development and cognitive functioning in healthy children and adolescents. The final sections of this article address the potential application of MRS in identifying neurochemical predictors and consequences of alcohol use and abuse in adolescence. MRS studies of adolescent populations hold promise for advancing our understanding of neurobiological risk factors for psychopathology by identifying the biochemical signatures associated with healthy brain development, as well as neurobiological and cognitive correlates of alcohol and substance use and abuse.
Collapse
|
162
|
Zhang R, Zhang Q, Niu J, Lu K, Xie B, Cui D, Xu S. Screening of microRNAs associated with Alzheimer's disease using oxidative stress cell model and different strains of senescence accelerated mice. J Neurol Sci 2014; 338:57-64. [DOI: 10.1016/j.jns.2013.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/02/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
163
|
Golomb BA, Erickson LC, Scott-Van Zeeland AA, Koperski S, Haas RH, Wallace DC, Naviaux RK, Lincoln AJ, Reiner GE, Hamilton G. Assessing bioenergetic compromise in autism spectrum disorder with 31P magnetic resonance spectroscopy: preliminary report. J Child Neurol 2014; 29:187-93. [PMID: 24141271 PMCID: PMC3931549 DOI: 10.1177/0883073813498466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We sought to examine, via Phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) in a case-control design, whether bioenergetic deficits in autism spectrum disorders extend to the brain and muscle. Six cases with autism spectrum disorder with suspected mitochondrial dysfunction (age 6-18 years) and 6 age/sex-matched controls underwent (31)P magnetic resonance spectroscopy. The outcomes of focus were muscle resting phosphocreatine and intracellular pH as well as postexercise phosphocreatine recovery time constant and frontal brain phosphocreatine. Intracellular muscle pH was lower in each autism spectrum disorder case than their matched control (6/6, P = .03; P = .0048, paired t test). Muscle phosphocreatine (5/6), brain phosphocreatine (3/4), and muscle phosphocreatine recovery time constant (3/3) trends were in the predicted direction (not all participants completed each). This study introduces (31)P magnetic resonance spectroscopy as a noninvasive tool for assessment of mitochondrial function in autism spectrum disorder enabling bioenergetic assessment in brain and provides preliminary evidence suggesting that bioenergetic defects in cases with autism spectrum disorder are present in muscle and may extend to brain.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Family and Preventive Medicine, University of
California, San Diego, La Jolla, CA, USA
| | - Laura C. Erickson
- Department of Family and Preventive Medicine, University of
California, San Diego, La Jolla, CA, USA
- Interdisciplinary Program in Neuroscience, Georgetown
University, Washington, DC, USA
| | | | - Sabrina Koperski
- Department of Family and Preventive Medicine, University of
California, San Diego, La Jolla, CA, USA
| | - Richard H. Haas
- Departments of Neuroscience and Pediatrics, University of
California, San Diego, La Jolla, CA, USA
| | - Douglas C. Wallace
- Department of Pathology and Laboratory Medicine, University of
Pennsylvania, Pittsburg, PA, USA
| | - Robert K. Naviaux
- Departments of Medicine, Pediatrics, and Pathology,
University of California, San Diego, La Jolla, CA, USA
| | - Alan J. Lincoln
- Alliant International University and Center for
Autism Research, Evaluation and Service, San Diego, La Jolla, CA, USA
| | - Gail E. Reiner
- Departments of Neuroscience and Pediatrics, University of
California, San Diego, La Jolla, CA, USA
| | - Gavin Hamilton
- Department of Radiology, University of California,
San Diego, La Jolla, CA, USA
| |
Collapse
|
164
|
Hara Y, Yuk F, Puri R, Janssen WGM, Rapp PR, Morrison JH. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc Natl Acad Sci U S A 2014; 111:486-91. [PMID: 24297907 PMCID: PMC3890848 DOI: 10.1073/pnas.1311310110] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Humans and nonhuman primates are vulnerable to age- and menopause-related decline in working memory, a cognitive function reliant on the energy-demanding recurrent excitation of neurons within Brodmann's Area 46 of the dorsolateral prefrontal cortex (dlPFC). Here, we tested the hypothesis that the number and morphology (straight, curved, or donut-shaped) of mitochondria in dlPFC presynaptic boutons are altered with aging and menopause in rhesus monkeys (Macaca mulatta) and that these metrics correlate with delayed response (DR) accuracy, a well-characterized measure of dlPFC-dependent working memory. Although presynaptic bouton density or size was not significantly different across groups distinguished by age or menses status, DR accuracy correlated positively with the number of total and straight mitochondria per dlPFC bouton. In contrast, DR accuracy correlated inversely with the frequency of boutons containing donut-shaped mitochondria, which exhibited smaller active zone areas and fewer docked synaptic vesicles than those with straight or curved mitochondria. We then examined the effects of estrogen administration to test whether a treatment known to improve working memory influences mitochondrial morphology. Aged ovariectomized monkeys treated with vehicle displayed significant working memory impairment and a concomitant 44% increase in presynaptic donut-shaped mitochondria, both of which were reversed with cyclic estradiol treatment. Together, our data suggest that hormone replacement therapy may benefit cognitive aging, in part by promoting mitochondrial and synaptic health in the dlPFC.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience
- Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Frank Yuk
- Fishberg Department of Neuroscience
- Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Rishi Puri
- Fishberg Department of Neuroscience
- Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - William G. M. Janssen
- Fishberg Department of Neuroscience
- Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224
| | - John H. Morrison
- Fishberg Department of Neuroscience
- Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
- Department of Geriatrics and Palliative Medicine, and
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| |
Collapse
|
165
|
Lee EB, Mattson MP. The neuropathology of obesity: insights from human disease. Acta Neuropathol 2014; 127:3-28. [PMID: 24096619 DOI: 10.1007/s00401-013-1190-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 02/06/2023]
Abstract
Obesity, a pathologic state defined by excess adipose tissue, is a significant public health problem as it affects a large proportion of individuals and is linked with increased risk for numerous chronic diseases. Obesity is the result of fundamental changes associated with modern society including overnutrition and sedentary lifestyles. Proper energy homeostasis is dependent on normal brain function as the master metabolic regulator, which integrates peripheral signals, modulates autonomic outflow and controls feeding behavior. Therefore, many human brain diseases are associated with obesity. This review explores the neuropathology of obesity by examining brain diseases which either cause or are influenced by obesity. First, several genetic and acquired brain diseases are discussed as a means to understand the central regulation of peripheral metabolism. These diseases range from monogenetic causes of obesity (leptin deficiency, MC4R deficiency, Bardet-Biedl syndrome and others) to complex neurodevelopmental disorders (Prader-Willi syndrome and Sim1 deficiency) and neurodegenerative conditions (frontotemporal dementia and Gourmand's syndrome) and serve to highlight the central regulatory mechanisms which have evolved to maintain energy homeostasis. Next, to examine the effect of obesity on the brain, chronic neuropathologic conditions (epilepsy, multiple sclerosis and Alzheimer's disease) are discussed as examples of obesity leading to maladaptive processes which exacerbate chronic disease. Thus, obesity is associated with multiple pathways including abnormal metabolism, altered hormonal signaling and increased inflammation which act in concert to promote downstream neuropathology. Finally, the effect of anti-obesity interventions is discussed in terms of brain structure and function. Together, understanding human diseases and anti-obesity interventions leads to insights into the bidirectional interaction between peripheral metabolism and central brain function, highlighting the need for continued clinicopathologic and mechanistic studies of the neuropathology of obesity.
Collapse
|
166
|
Du F, Cooper A, Thida T, Sehovic S, Lukas SE, Cohen BM, Zhang X, Öngür D. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiatry 2014; 71:19-27. [PMID: 24196348 PMCID: PMC7461723 DOI: 10.1001/jamapsychiatry.2013.2287] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Abnormalities in neural activity and cerebral bioenergetics have been observed in schizophrenia (SZ). Further defining energy metabolism anomalies would provide crucial information about molecular mechanisms underlying SZ and may be valuable for developing novel treatment strategies. OBJECTIVE To investigate cerebral bioenergetics in SZ via measurement of creatine kinase activity using in vivo 31P magnetization transfer spectroscopy. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional case-control study in the setting of clinical services and a brain imaging center of an academic psychiatric hospital. Twenty-six participants with chronic SZ (including a subgroup diagnosed as having schizoaffective disorder) and 26 age-matched and sex-matched healthy control subjects (25 usable magnetic resonance spectroscopy data sets from the latter). INTERVENTION 31P magnetization transfer spectroscopy. MAIN OUTCOMES AND MEASURES The primary outcome measure was the forward rate constant (k(f)) of the creatine kinase enzyme in the frontal lobe. We also collected independent measures of brain intracellular pH and steady-state metabolite ratios of high-energy phosphate-containing compounds (phosphocreatine and adenosine triphosphate [ATP]), inorganic phosphate, and the 2 membrane phospholipids phosphodiester and phosphomonoester. RESULTS A substantial (22%) and statistically significant (P = .003) reduction in creatine kinase kf was observed in SZ. In addition, intracellular pH was significantly reduced (7.00 in the SZ group vs 7.03 in the control group, P = .007) in this condition. The phosphocreatine to ATP ratio, inorganic phosphate to ATP ratio, and phosphomonoester to ATP ratio were not substantially altered in SZ, but a significant (P = .02) reduction was found in the phosphodiester to ATP ratio. The abnormalities were similar between SZ and schizoaffective disorder. CONCLUSIONS AND RELEVANCE Using a novel 31P magnetization transfer magnetic resonance spectroscopy approach, we provide direct and compelling evidence for a specific bioenergetic abnormality in SZ. Reduced kf of the creatine kinase enzyme is consistent with an abnormality in storage and use of brain energy. The intracellular pH reduction suggests a relative increase in the contribution of glycolysis to ATP synthesis, providing convergent evidence for bioenergetic abnormalities in SZ. The similar phosphocreatine to ATP ratios in SZ and healthy controls suggest that the underlying bioenergetics abnormality is not associated with change in this metabolite ratio.
Collapse
Affiliation(s)
- Fei Du
- McLean Hospital,Harvard Medical School,Corresponding Author: Fei Du, Ph.D.,
Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical
School, 115 Mill St, Belmont MA, 02478, Phone: (617) 855-3945,
; Dost
Öngür, M.D. Ph.D., Psychotic Disorders Division, McLean
Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St, Belmont
MA, 02478, Phone:(617) 855-3922,
| | | | | | | | | | | | - Xiaoliang Zhang
- Department of Radiology, University of California, San
Francisco
| | - Dost Öngür
- McLean Hospital,Harvard Medical School,Corresponding Author: Fei Du, Ph.D.,
Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical
School, 115 Mill St, Belmont MA, 02478, Phone: (617) 855-3945,
; Dost
Öngür, M.D. Ph.D., Psychotic Disorders Division, McLean
Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St, Belmont
MA, 02478, Phone:(617) 855-3922,
| |
Collapse
|
167
|
Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain. PLoS One 2013; 8:e82685. [PMID: 24367541 PMCID: PMC3867386 DOI: 10.1371/journal.pone.0082685] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1-/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.
Collapse
|
168
|
Rodrigues TB, Valette J, Bouzier-Sore AK. (13)C NMR spectroscopy applications to brain energy metabolism. FRONTIERS IN NEUROENERGETICS 2013; 5:9. [PMID: 24367329 PMCID: PMC3856424 DOI: 10.3389/fnene.2013.00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022]
Abstract
(13)C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of (13)C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the (13)C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of (13)C NMR data. Finally, new perspectives and applications offered by (13)C hyperpolarization are described.
Collapse
Affiliation(s)
- Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute and Department of Biochemistry, University of CambridgeCambridge, UK
| | - Julien Valette
- Commissariat à l’Energie Atomique, Institut d’Imagerie Biomédicale, Molecular Imaging Research CenterFontenay-Aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen - Centre National de la Recherche ScientifiqueBordeaux, France
| |
Collapse
|
169
|
Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett 2013; 23:6737-42. [DOI: 10.1016/j.bmcl.2013.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/05/2013] [Accepted: 10/18/2013] [Indexed: 01/14/2023]
|
170
|
Gos T, Steiner J, Krell D, Bielau H, Mawrin C, Krzyżanowski M, Brisch R, Pieśniak D, Bernstein HG, Jankowski Z, Braun K, Bogerts B. Ribosomal DNA transcription in the anterior cingulate cortex is decreased in unipolar but not bipolar I depression. Psychiatry Res 2013; 210:338-45. [PMID: 23541246 DOI: 10.1016/j.psychres.2013.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 12/27/2022]
Abstract
The anterior cingulate cortex (AC) is consistently implicated in the pathophysiology of depression. However, it is not clear whether unipolar and bipolar depression display distinct neuropathological features. Therefore, the objective of this post-mortem study was to re-evaluate this important issue. Brains from 9 patients with major depressive disorder (MDD) and 11 patients with bipolar disorder (BD) subtype I depression as well as 24 matched controls were analysed. The argyrophilic nucleolar organiser region (AgNOR) silver-staining method was applied on paraffin-embedded brain sections in order to assess the transcriptional activity of ribosomal DNA (rDNA) in layer III and V pyramidal neurons of the dorsal and ventral AC in both hemispheres. An AgNOR area decrease suggestive of a diminished transcriptional activity of rDNA was found in the MDD group both versus controls and versus the BD group. The effect was specific for the right hemisphere and dorsal AC and was restricted to layer V pyramidal neurons. The results suggest that only patients with MDD display region-specific chronic hypoactivity of these output neurons, which are critical for mood regulation. Furthermore, in our cohort, unipolar and bipolar I depression could be differentiated relative to the presumed AC hypoactivity and psychotropic medication did not counteract the observed effect.
Collapse
Affiliation(s)
- Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland; Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Tak S, Wang DJJ, Polimeni JR, Yan L, Chen JJ. Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. Neuroimage 2013; 84:672-80. [PMID: 24099842 DOI: 10.1016/j.neuroimage.2013.09.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) in the resting state, particularly fMRI based on the blood-oxygenation level-dependent (BOLD) signal, has been extensively used to measure functional connectivity in the brain. However, the mechanisms of vascular regulation that underlie the BOLD fluctuations during rest are still poorly understood. In this work, using dual-echo pseudo-continuous arterial spin labeling and MR angiography (MRA), we assess the spatio-temporal contribution of cerebral blood flow (CBF) to the resting-state BOLD signals and explore how the coupling of these signals is associated with regional vasculature. Using a general linear model analysis, we found that statistically significant coupling between resting-state BOLD and CBF fluctuations is highly variable across the brain, but the coupling is strongest within the major nodes of established resting-state networks, including the default-mode, visual, and task-positive networks. Moreover, by exploiting MRA-derived large vessel (macrovascular) volume fraction, we found that the degree of BOLD-CBF coupling significantly decreased as the ratio of large vessels to tissue volume increased. These findings suggest that the portion of resting-state BOLD fluctuations at the sites of medium-to-small vessels (more proximal to local neuronal activity) is more closely regulated by dynamic regulations in CBF, and that this CBF regulation decreases closer to large veins, which are more distal to neuronal activity.
Collapse
Affiliation(s)
- Sungho Tak
- Rotman Research Institute at Baycrest Centre, University of Toronto, Toronto, Ontario M6A 2E1, Canada.
| | | | | | | | | |
Collapse
|
172
|
Lu H, Stein EA. Resting state functional connectivity: its physiological basis and application in neuropharmacology. Neuropharmacology 2013; 84:79-89. [PMID: 24012656 DOI: 10.1016/j.neuropharm.2013.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 07/14/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Hanbing Lu
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, USA.
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, USA
| |
Collapse
|
173
|
Oboh G, Olabiyi AA, Akinyemi AJ. Inhibitory effect of aqueous extract of different parts of unripe pawpaw (Carica papaya) fruit on Fe²⁺-induced oxidative stress in rat pancreas in vitro. PHARMACEUTICAL BIOLOGY 2013; 51:1165-1174. [PMID: 23758107 DOI: 10.3109/13880209.2013.782321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Carica papaya L. (Caricaceae) is widespread throughout tropical Africa; it is cultivated for its fruits and it is eaten in various ways. OBJECTIVE This study sought to investigate the inhibitory effect of the aqueous extract of different parts of unripe pawpaw fruit on Fe²⁺-induced lipid peroxidation in rat's pancreas in vitro. MATERIALS AND METHODS The aqueous extract of the unripe pawpaw fruit parts; peel (PG), seed (SG), flesh (FG), flesh with peel (FPG) and a combination of equal amount of all parts (CG) were prepared, the total phenolic content and the antioxidant activities of the extracts were then evaluated using various spectrophotometric methods. RESULT PG had the highest total phenol content (1.24 mg GAE/g), flavonoid content (0.63 mg QUE/g), reducing power (7.07 mg AAE/g) and Fe²⁺ chelating ability while the SG had the highest 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability. Furthermore, all the extracts caused a significant decrease (p < 0.05) in the malondialdehyde contents in the pancreas with SG (IC₅₀ = 4.25 mg/mL) having the highest inhibitory effect on Fe²⁺-induced lipid peroxidation. DISCUSSION AND CONCLUSION This protective effect of the extracts on Fe²⁺-induced lipid peroxidation in rat pancreas could be attributed to their phenolic compounds and, the possible mechanism may be through their antioxidant activities. However, the effect of combination of different parts of unripe pawpaw fruit in equal amount (w/w) on the inhibition of Fe²⁺-induced lipid peroxidation in rat pancreas exhibited additive properties.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
| | | | | |
Collapse
|
174
|
Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer's disease. Biol Psychiatry 2013; 74:340-7. [PMID: 23290495 PMCID: PMC3537262 DOI: 10.1016/j.biopsych.2012.11.028] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 01/17/2023]
Abstract
There has been a dramatic increase in the number of studies using resting state functional magnetic resonance imaging (rs-fMRI), a recent addition to imaging analysis techniques. The technique analyzes ongoing low-frequency fluctuations in the blood oxygen level-dependent signal. Through patterns of spatial coherence, these fluctuations can be used to identify the networks within the brain. Multiple brain networks are present simultaneously, and the relationships within and between networks are in constant dynamic flux. Resting state fMRI functional connectivity analysis is increasingly used to detect subtle brain network differences and, in the case of pathophysiology, subtle abnormalities in illnesses such as Alzheimer's disease (AD). The sequence of events leading up to dementia has been hypothesized to begin many years or decades before any clinical symptoms occur. Here we review the findings across rs-fMRI studies in the spectrum of preclinical AD to clinical AD. In addition, we discuss evidence for underlying preclinical AD mechanisms, including an important relationship between resting state functional connectivity and brain metabolism and how this results in a distinctive pattern of amyloid plaque deposition in default mode network regions.
Collapse
Affiliation(s)
- Yvette I Sheline
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | |
Collapse
|
175
|
Choi JS, Park SM, Lee J, Hwang JY, Jung HY, Choi SW, Kim DJ, Oh S, Lee JY. Resting-state beta and gamma activity in Internet addiction. Int J Psychophysiol 2013; 89:328-33. [PMID: 23770040 DOI: 10.1016/j.ijpsycho.2013.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/26/2013] [Accepted: 06/06/2013] [Indexed: 12/24/2022]
|
176
|
Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. FRONTIERS IN NEUROENGINEERING 2013; 6:7. [PMID: 24009582 PMCID: PMC3757302 DOI: 10.3389/fneng.2013.00007] [Citation(s) in RCA: 419] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/03/2022]
Abstract
It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich's first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Andrew D. Wong
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| | - Mao Ye
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| | - Amanda F. Levy
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| | - Jeffrey D. Rothstein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimore, MD, USA
- Brain Sciences Institute, Johns Hopkins UniversityBaltimore, MD, USA
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimore, MD, USA
| | - Peter C. Searson
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
177
|
Sensory information processing may be neuroenergetically more demanding in migraine patients. Neuroreport 2013; 24:202-5. [PMID: 23381352 DOI: 10.1097/wnr.0b013e32835eba81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electrophysiological studies of stimulus-evoked brain activation suggest that sensory processing in migraine patients is abnormal between attacks. The main findings are increased amplitudes and decreased habituation of cortical evoked potentials. Recent findings in healthy individuals showed that evoked potentials result mainly from phase resetting of background electroencephalographic activity. We recorded single trial visual evoked potentials during repetitive visual stimulation in migraine patients and healthy controls and analyzed these in the frequency domain for amplitude and phase. Increases in visual evoked potential amplitudes in migraine patients are explained almost entirely by increases in local amplitude, rather than increases in phase synchrony across trials. As amplitude modulation is generally considered more energy demanding than phase synchronization, this may explain the increased vulnerability of migraine patients to sensory stressors and the effectiveness of drugs that reduce evoked potential amplitudes or enhance aerobic energy metabolism.
Collapse
|
178
|
Wang J. Hypothesis on two different functionalities co-existing in frontal lobe of human brains. Med Hypotheses 2013; 81:367-70. [PMID: 23856241 DOI: 10.1016/j.mehy.2013.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Human frontal lobe is a key area from where our cognition, memory and emotion display or function. In medical case study, there are patients with social dysfunctions, lack of passion or emotion as result of their frontal lobe damage caused by pathological changes, traumatic damage, and brain tumor remove operations. The syndrome of frontal lobe damage remains at large unanswered medically. From early stage of pregnancy, there exists lobe layers, nerve combine, and neurons synaptic, indicating a completion of growth of functionality inside frontal lobe. However, this completion of growth does not match the growth of human intelligence. Human infants only start and complete their cognition and memory functionality one full year after their birth which is marked by huge amount of neurons synaptic inside their frontal lobe, which is not part of a continual growth of originally developed functions. By reasoning on pathological changes of frontal lobe, a hypothesis was established that two individually functional mechanisms co-existed inside one frontal lobe. This neuron system is particularly for human beings.
Collapse
|
179
|
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108:21-43. [PMID: 23850509 DOI: 10.1016/j.pneurobio.2013.06.004] [Citation(s) in RCA: 489] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
180
|
Abstract
OBJECTIVE Utilization of anemia tolerance reduces the need for and risks of perioperative transfusion. Recent publications indicate that the critical limit for oxygen supply might not be the same for each organ system. Therefore, we investigated the effects of acute dilutional anemia on heart, brain, kidneys, liver, small intestine, and skeletal muscle to quantify organ-specific tolerance of different levels of acute anemic hypoxia. We hypothesized that, in some organs, tissue hypoxia occurs before the critical limits of systemic oxygen supply are reached. DESIGN Laboratory animal experiments. SETTING Animal research laboratory at university medical school. SUBJECTS A total of 18 domestic pigs of either sex (average weight: 19.6 kg). INTERVENTIONS Animals were anesthetized, ventilated, and randomized into three groups and then hemodiluted by exchange of 6% hydroxyethyl starch (130,000:0.4) for whole blood to the group-specific endpoint: Sham (no hemodilution), Hb4 (hemoglobin 4.3 g/dL), Hbcrit (2.7 g/dL). Subsequently, 10 mg/kg pimonidazole (which forms protein adducts in hypoxic cells) was injected. One hour after injection, tissue samples were collected and analyzed for pimonidazole-protein adduct quantification (dot blot) and as a surrogate for transcriptional activation during hypoxia the expression of vascular endothelial growth factor messenger RNA. Relevant hemodynamic and metabolic parameters were collected. MEASUREMENTS AND MAIN RESULTS Hemodynamics, metabolic parameters, or oxygen consumption did not indicate that tissue oxygenation was restricted before reaching Hbcrit. However, kidneys and skeletal muscle showed enhanced pimonidazole binding and vascular endothelial growth factor expression at Hb4. By contrast, liver oxygenation was actually improved at Hb4. Heart, brain, and liver showed no signs of tissue hypoxia at Hb4. CONCLUSIONS Heart, brain, kidneys, liver, small intestine, and skeletal muscle experience tissue hypoxia at different degrees of acute anemia, as assessed by the pimonidazole method and vascular endothelial growth factor expression. Further studies are needed to elucidate the mechanisms that determine organ-specific anemia tolerance.
Collapse
|
181
|
Lee CH, Park JH, Won MH. Decreased glucokinase protein expression in the aged gerbil hippocampus. Cell Mol Neurobiol 2013; 33:477-81. [PMID: 23515967 PMCID: PMC11497888 DOI: 10.1007/s10571-013-9928-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/13/2013] [Indexed: 11/26/2022]
Abstract
Glucokinase (GK) and its regulatory protein (GKRP) play roles in glucose utilization as well as glucose-sensing process in the brain. In the present study, we compared GK and GKRP protein expressions in the hippocampus of adult (postnatal month 6) and aged (postnatal month 24) gerbils using immunohistochemistry and western blot analysis. Both GK and GKRP immunoreactivities were observed primarily in the pyramidal cells of the hippocampus proper and in the granule cells of the dentate gyrus of the adult and aged hippocampus. GK, not GKRP, immunoreactivity was apparently decreased in the pyramidal and granule cells of the aged group compared with that in the adult group. In addition, western blot analysis also showed that the GK, not GKRP, protein level was significantly decreased in the aged hippocampus. These results indicate that the decrease of GK may be closely related to the reduction of glucose utilization and uptake, although the ability for regulation of GK is maintained in the aged hippocampus.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
182
|
Herzog RI, Jiang L, Herman P, Zhao C, Sanganahalli BG, Mason GF, Hyder F, Rothman DL, Sherwin RS, Behar KL. Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia. J Clin Invest 2013; 123:1988-98. [PMID: 23543056 DOI: 10.1172/jci65105] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/31/2013] [Indexed: 12/30/2022] Open
Abstract
Hypoglycemia occurs frequently during intensive insulin therapy in patients with both type 1 and type 2 diabetes and remains the single most important obstacle in achieving tight glycemic control. Using a rodent model of hypoglycemia, we demonstrated that exposure to antecedent recurrent hypoglycemia leads to adaptations of brain metabolism so that modest increments in circulating lactate allow the brain to function normally under acute hypoglycemic conditions. We characterized 3 major factors underlying this effect. First, we measured enhanced transport of lactate both into as well as out of the brain that resulted in only a small increase of its contribution to total brain oxidative capacity, suggesting that it was not the major fuel. Second, we observed a doubling of the glucose contribution to brain metabolism under hypoglycemic conditions that restored metabolic activity to levels otherwise only observed at euglycemia. Third, we determined that elevated lactate is critical for maintaining glucose metabolism under hypoglycemia, which preserves neuronal function. These unexpected findings suggest that while lactate uptake was enhanced, it is insufficient to support metabolism as an alternate substrate to replace glucose. Lactate is, however, able to modulate metabolic and neuronal activity, serving as a "metabolic regulator" instead.
Collapse
Affiliation(s)
- Raimund I Herzog
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut 06520-8040, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Status of antioxidant defense and lipid peroxidation in schizophrenics with positive, negative and cognitive symptoms. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.fra.2013.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
184
|
Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, Koretski J, Harman S, Petrakis IL, Krystal JH, Mason GF. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 2013; 123:1605-14. [PMID: 23478412 DOI: 10.1172/jci65153] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022] Open
Abstract
When a person consumes ethanol, the body quickly begins to convert it to acetic acid, which circulates in the blood and can serve as a source of energy for the brain and other organs. This study used 13C magnetic resonance spectroscopy to test whether chronic heavy drinking is associated with greater brain uptake and oxidation of acetic acid, providing a potential metabolic reward or adenosinergic effect as a consequence of drinking. Seven heavy drinkers, who regularly consumed at least 8 drinks per week and at least 4 drinks per day at least once per week, and 7 light drinkers, who consumed fewer than 2 drinks per week were recruited. The subjects were administered [2-13C]acetate for 2 hours and scanned throughout that time with magnetic resonance spectroscopy of the brain to observe natural 13C abundance of N-acetylaspartate (NAA) and the appearance of 13C-labeled glutamate, glutamine, and acetate. Heavy drinkers had approximately 2-fold more brain acetate relative to blood and twice as much labeled glutamate and glutamine. The results show that acetate transport and oxidation are faster in heavy drinkers compared with that in light drinkers. Our finding suggests that a new therapeutic approach to supply acetate during alcohol detoxification may be beneficial.
Collapse
Affiliation(s)
- Lihong Jiang
- Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Savitz J, Nugent AC, Bellgowan PSF, Wright N, Tinsley R, Zarate CA, Herscovitch P, Drevets WC. Catecholamine depletion in first-degree relatives of individuals with mood disorders: An [(18)F]fluorodeoxyglucose positron emission tomography study. NEUROIMAGE-CLINICAL 2013; 2:341-55. [PMID: 24179788 PMCID: PMC3778263 DOI: 10.1016/j.nicl.2013.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/23/2013] [Indexed: 11/26/2022]
Abstract
Catecholamine depletion with alpha-methylparatyrosine (AMPT) has previously been shown to induce depressive symptoms in currently remitted patients with major depressive disorder (MDD) but not healthy controls. Thus sensitivity to catecholamine depletion has been hypothesized to be an endophenotype of MDD. Here we tested this hypothesis in the context of a randomized, double-blinded, placebo-controlled design by measuring changes in mood in a group of psychiatrically-healthy individuals at risk of mood disorders by virtue of family history (high-risk subjects, HRs). In addition, we tested whether HRs differed from healthy controls with no family-history of mood disorders (low-risk controls, LRs) in their cerebral metabolic response when undergoing catecholamine depletion. Eight healthy LRs (6 males, mean age = 34.1 ± 7.1) and 6 healthy HRs (3 males, mean age = 29.3 ± 4.6) participated in two, 3-day-long identical sessions during which they completed standardized measures of depression, anxiety and fatigue and an [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan. On one occasion participants received 4 weight-adjusted doses of AMPT and on the other occasion participants received 4 doses of placebo. The LR and HR groups did not differ from each other in their mood during sham depletion. However, during the period of peak catecholamine depletion, the HR group reported significantly more depression, anxiety and fatigue than the LR group. A region-of-interest analysis showed that during catecholamine depletion versus placebo the combined LR and HR groups displayed a significant increase in cerebral metabolic rate in the left and right ventral striata, left and right amygdalae, and left and right hippocampi (FWE-corrected p < 0.05). Whole brain voxel-wise analyses indicated significantly increased glucose metabolism in the left and right putamina (FWE-corrected p < 0.05) in the combined LR and HR groups in the AMPT versus the placebo session. In the LR group, alone, no significant elevation in glucose metabolism was observed in the regions-of-interest in the catecholamine depletion versus placebo condition. In the HR group, alone, the region-of-interest analysis showed a significant increase in cerebral metabolic rate in the left and right ventral striata (FWE-corrected p < 0.05). No regions-of-interest showed significantly different metabolism in the HR group versus the LR group in the placebo condition, however compared with the LR group, the HR group displayed nominally increased glucose metabolism in the left amygdala during catecholamine depletion (SVC-corrected p = 0.05). A region-of-interest analysis for the interaction contrast confirmed that catecholamine depletion had differential effects on HR and LR participants. Compared with the LR group, the HR group displayed significantly increased glucose metabolism in the left ventral striatum, left amygdala, and left lateral orbitofrontal cortex (OFC) (FWE-corrected p < 0.05). Our results suggest that sensitivity to catecholamine depletion may be a phenotypic marker of vulnerability to mood disorders that is characterized at the neurophysiological level by disinhibition of the striatum and its efferent projections comprising the limbic–cortical–striatal–pallidal–thalamic circuitry. High-risk subjects were more depressed and fatigued during catecholamine depletion. During depletion HR subjects > metabolism in the left striatum, amygdala, and OFC Sensitivity to catecholamine depletion may be an endophenotype of depression.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA ; Department of Medicine, Tulsa School of Community Medicine at the University of Tulsa, Tulsa, OK 74104, USA ; Section on Neuroimaging in Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Hyder F, Fulbright RK, Shulman RG, Rothman DL. Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J Cereb Blood Flow Metab 2013; 33:339-47. [PMID: 23299240 PMCID: PMC3587823 DOI: 10.1038/jcbfm.2012.207] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rodent (13)C magnetic resonance spectroscopy studies show that glutamatergic signaling requires high oxidative energy in the awake resting state and allowed calibration of functional magnetic resonance imaging (fMRI) signal in terms of energy relative to the resting energy. Here, we derived energy used for glutamatergic signaling in the awake resting human. We analyzed human data of electroencephalography (EEG), positron emission tomography (PET) maps of oxygen (CMR(O2)) and glucose (CMR(glc)) utilization, and calibrated fMRI from a variety of experimental conditions. CMR(glc) and EEG in the visual cortex were tightly coupled over several conditions, showing that the oxidative demand for signaling was four times greater than the demand for nonsignaling events in the awake state. Variations of CMR(O2) and CMR(glc) from gray-matter regions and networks were within ±10% of means, suggesting that most areas required similar energy for ubiquitously high resting activity. Human calibrated fMRI results suggest that changes of fMRI signal in cognitive studies contribute at most ±10% CMR(O2) changes from rest. The PET data of sleep, vegetative state, and anesthesia show metabolic reductions from rest, uniformly >20% across, indicating no region is selectively reduced when consciousness is lost. Future clinical investigations will benefit from using quantitative metabolic measures.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
187
|
Killeen PR, Russell VA, Sergeant JA. A behavioral neuroenergetics theory of ADHD. Neurosci Biobehav Rev 2013; 37:625-57. [PMID: 23454637 DOI: 10.1016/j.neubiorev.2013.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023]
Abstract
Energetic insufficiency in neurons due to inadequate lactate supply is implicated in several neuropathologies, including attention-deficit/hyperactivity disorder (ADHD). By formalizing the mechanism and implications of such constraints on function, the behavioral Neuroenergetics Theory (NeT) predicts the results of many neuropsychological tasks involving individuals with ADHD and kindred dysfunctions, and entails many novel predictions. The associated diffusion model predicts that response times will follow a mixture of Wald distributions from the attentive state, and ex-Wald distributions after attentional lapses. It is inferred from the model that ADHD participants can bring only 75-85% of the neurocognitive energy to bear on tasks, and allocate only about 85% of the cognitive resources of comparison groups. Parameters derived from the model in specific tasks predict performance in other tasks, and in clinical conditions often associated with ADHD. The primary action of therapeutic stimulants is to increase norepinephrine in active regions of the brain. This activates glial adrenoceptors, increasing the release of lactate from astrocytes to fuel depleted neurons. The theory is aligned with other approaches and integrated with more general theories of ADHD. Therapeutic implications are explored.
Collapse
Affiliation(s)
- Peter R Killeen
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA.
| | | | | |
Collapse
|
188
|
Savitz J, Hodgkinson CA, Martin-Soelch C, Shen PH, Szczepanik J, Nugent A, Herscovitch P, Grace AA, Goldman D, Drevets WC. The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement. PLoS One 2013; 8:e54108. [PMID: 23365649 PMCID: PMC3554713 DOI: 10.1371/journal.pone.0054108] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023] Open
Abstract
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, and Department of Psychiatry, University of Oklahoma College of Medicine, Tulsa, Oklahoma, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci U S A 2013; 110:3549-54. [PMID: 23319606 DOI: 10.1073/pnas.1214912110] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The continuous need for ion gradient restoration across the cell membrane, a prerequisite for synaptic transmission and conduction, is believed to be a major factor for brain's high oxidative demand. However, do energy requirements of signaling and nonsignaling components of cortical neurons and astrocytes vary with activity levels and across species? We derived oxidative ATP demand associated with signaling (P(s)) and nonsignaling (P(ns)) components in the cerebral cortex using species-specific physiologic and anatomic data. In rat, we calculated glucose oxidation rates from layer-specific neuronal activity measured across different states, spanning from isoelectricity to awake and sensory stimulation. We then compared these calculated glucose oxidation rates with measured glucose metabolic data for the same states as reported by 2-deoxy-glucose autoradiography. Fixed values for P(s) and P(ns) were able to predict the entire range of states in the rat. We then calculated glucose oxidation rates from human EEG data acquired under various conditions using fixed P(s) and P(ns) values derived for the rat. These calculated metabolic data in human cerebral cortex compared well with glucose metabolism measured by PET. Independent of species, linear relationship was established between neuronal activity and neuronal oxidative demand beyond isoelectricity. Cortical signaling requirements dominated energy demand in the awake state, whereas nonsignaling requirements were ∼20% of awake value. These predictions are supported by (13)C magnetic resonance spectroscopy results. We conclude that mitochondrial energy support for signaling and nonsignaling components in cerebral cortex are conserved across activity levels in mammalian species.
Collapse
|
190
|
Abstract
The Hodgkin-Huxley studies of the action potential, published 60 years ago, are a central pillar of modern neuroscience research, ranging from molecular investigations of the structural basis of ion channel function to the computational implications at circuit level. In this Symposium Review, we aim to demonstrate the ongoing impact of Hodgkin's and Huxley's ideas. The Hodgkin-Huxley model established a framework in which to describe the structural and functional properties of ion channels, including the mechanisms of ion permeation, selectivity, and gating. At a cellular level, the model is used to understand the conditions that control both the rate and timing of action potentials, essential for neural encoding of information. Finally, the Hodgkin-Huxley formalism is central to computational neuroscience to understand both neuronal integration and circuit level information processing, and how these mechanisms might have evolved to minimize energy cost.
Collapse
|
191
|
Calvetti D, Somersalo E. Quantitative in silico Analysis of Neurotransmitter Pathways Under Steady State Conditions. Front Endocrinol (Lausanne) 2013; 4:137. [PMID: 24115944 PMCID: PMC3792486 DOI: 10.3389/fendo.2013.00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/16/2013] [Indexed: 12/05/2022] Open
Abstract
The modeling of glutamate/GABA-glutamine cycling in the brain tissue involving astrocytes, glutamatergic and GABAergic neurons leads to a complex compartmentalized metabolic network that comprises neurotransmitter synthesis, shuttling, and degradation. Without advanced computational tools, it is difficult to quantitatively track possible scenarios and identify viable ones. In this article, we follow a sampling-based computational paradigm to analyze the biochemical network in a multi-compartment system modeling astrocytes, glutamatergic, and GABAergic neurons, and address some questions about the details of transmitter cycling, with particular emphasis on the ammonia shuttling between astrocytes and neurons, and the synthesis of transmitter GABA. More specifically, we consider the joint action of the alanine-lactate shuttle, the branched chain amino acid shuttle, and the glutamine-glutamate cycle, as well as the role of glutamate dehydrogenase (GDH) activity. When imposing a minimal amount of bound constraints on reaction and transport fluxes, a preferred stoichiometric steady state equilibrium requires an unrealistically high reductive GDH activity in neurons, indicating the need for additional bound constants which were included in subsequent computer simulations. The statistical flux balance analysis also suggests a stoichiometrically viable role for leucine transport as an alternative to glutamine for replenishing the glutamate pool in neurons.
Collapse
Affiliation(s)
- Daniela Calvetti
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA
- *Correspondence: Daniela Calvetti, Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA e-mail:
| | - Erkki Somersalo
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
192
|
Haratake M, Yoshida S, Mandai M, Fuchigami T, Nakayama M. Elevated amyloid-β plaque deposition in dietary selenium-deficient Tg2576 transgenic mice. Metallomics 2013; 5:479-83. [DOI: 10.1039/c3mt00035d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
193
|
Ha YS, Chihara Y, Yoon HY, Kim YJ, Kim TH, Woo SH, Yun SJ, Kim IY, Hirao Y, Kim WJ. Downregulation of fumarate hydratase is related to tumorigenesis in sporadic renal cell cancer. Urol Int 2012; 90:233-9. [PMID: 23295344 DOI: 10.1159/000345608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Although germline mutations of fumarate hydratase (FH) are a useful molecular marker of hereditary leiomyomatosis and renal cell cancer (RCC) syndrome, their clinical significance in sporadic RCC has not been studied in detail. The aim of the present study was to investigate possible correlations between the expression of FH and the clinical implications of sporadic RCC. MATERIALS AND METHODS FH mRNA levels were evaluated in 140 tumor specimens from patients with primary RCC and in 62 specimens of corresponding normal-appearing kidney tissue using real-time quantitative polymerase chain reaction. Immunohistochemical staining was performed on 6 normal surrounding tissues and 71 RCC tissues. RESULTS FH mRNA levels were significantly lower in tumor tissues than in matched normal-appearing kidney tissues (p = 0.031). In all normal tissues, FH staining intensity was strong. However, the expression of FH showed no significant correlation with the pathological and clinical characteristics of patients with sporadic RCC. CONCLUSIONS Our results showed that FH mRNA expression decreased significantly in correlation with the transition from normal renal parenchyma to RCC. FH may be an indicator or tumorigenesis in sporadic RCC and could be a potential target for therapies against RCC in the future.
Collapse
Affiliation(s)
- Yun-Sok Ha
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Oxidative stress mediated-alterations of the microRNA expression profile in mouse hippocampal neurons. Int J Mol Sci 2012; 13:16945-60. [PMID: 23443129 PMCID: PMC3546732 DOI: 10.3390/ijms131216945] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/21/2012] [Accepted: 11/29/2012] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress plays a critical role in the etiology and pathogenesis of neurodegenerative disorders, and the molecular mechanisms that control the neuron response to ROS have been extensively studied. However, the oxidative stress-effect on miRNA expression in hippocampal neurons has not been investigated, and little is known on the effect of ROS-modulated miRNAs on cell function. In this study, H2O2 was used to stimulate the mouse primary hippocampal neurons to develop an oxidative stress cell model. The alterations of miRNAs expression were detected by microarray analysis and five miRNAs were validated by real-time RT-PCR. The bioinformatic analysis of deregulated miRNAs was performed to determine their potential roles in the pathogenesis of neurological disorders. We found that H2O2 mediated a total of 101 deregulated miRNAs, which mainly took part in the regulation of the MAPK pathway. Among them, miR-135b and miR-708 were up-regulated significantly and their targets were predicted to be involved in DNA recombination, protein ubiquitination, protein autophosphorylation and development of neurons. These results demonstrated that oxidative stress alters the miRNA expression profile of hippocampal neurons, and the deregulated miRNAs might play a potential role in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease (AD).
Collapse
|
195
|
Distler MG, Palmer AA. Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights. Front Genet 2012. [PMID: 23181072 PMCID: PMC3500958 DOI: 10.3389/fgene.2012.00250] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme that participates in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis that induces protein modification (advanced glycation end-products, AGEs), oxidative stress, and apoptosis. The concentration of MG is elevated under high-glucose conditions, such as diabetes. As such, GLO1 and MG have been implicated in the pathogenesis of diabetic complications. Recently, findings have linked GLO1 to numerous behavioral phenotypes, including psychiatric diseases (anxiety, depression, schizophrenia, and autism) and pain. This review highlights GLO1's association with behavioral phenotypes, describes recent discoveries that have elucidated the underlying mechanisms, and identifies opportunities for future research.
Collapse
|
196
|
Moujahid A, d'Anjou A. Metabolic efficiency with fast spiking in the squid axon. Front Comput Neurosci 2012; 6:95. [PMID: 23162461 PMCID: PMC3498622 DOI: 10.3389/fncom.2012.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/29/2012] [Indexed: 11/13/2022] Open
Abstract
Fundamentally, action potentials in the squid axon are consequence of the entrance of sodium ions during the depolarization of the rising phase of the spike mediated by the outflow of potassium ions during the hyperpolarization of the falling phase. Perfect metabolic efficiency with a minimum charge needed for the change in voltage during the action potential would confine sodium entry to the rising phase and potassium efflux to the falling phase. However, because sodium channels remain open to a significant extent during the falling phase, a certain overlap of inward and outward currents is observed. In this work we investigate the impact of ion overlap on the number of the adenosine triphosphate (ATP) molecules and energy cost required per action potential as a function of the temperature in a Hodgkin-Huxley model. Based on a recent approach to computing the energy cost of neuronal action potential generation not based on ion counting, we show that increased firing frequencies induced by higher temperatures imply more efficient use of sodium entry, and then a decrease in the metabolic energy cost required to restore the concentration gradients after an action potential. Also, we determine values of sodium conductance at which the hydrolysis efficiency presents a clear minimum.
Collapse
Affiliation(s)
- Abdelmalik Moujahid
- Computational Intelligence Group, Department of Computer Science, University of the Basque Country UPV/EHU San Sebastián, Spain
| | | |
Collapse
|
197
|
The synaptic proteome in Alzheimer's disease. Alzheimers Dement 2012; 9:499-511. [PMID: 23154051 DOI: 10.1016/j.jalz.2012.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/28/2011] [Accepted: 04/25/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Synaptic dysfunction occurs early in Alzheimer's disease (AD) and is recognized to be a primary pathological target for treatment. Synapse degeneration or dysfunction contributes to clinical signs of dementia through altered neuronal communication; the degree of synaptic loss correlates strongly with cognitive impairment. The molecular mechanisms underlying synaptic degeneration are still unclear, and identifying abnormally expressed synaptic proteins in AD brain will help to elucidate such mechanisms and to identify therapeutic targets that might slow AD progression. METHODS Synaptosomal fractions from human autopsy brain tissue from subjects with AD (n = 6) and without AD (n = 6) were compared using two-dimensional differential in-gel electrophoresis. AD pathology is region specific; human subjects can be highly variable in age, medication, and other factors. To counter these factors, two vulnerable areas (the hippocampus and the temporal cortex) were compared with two relatively spared areas (the motor and occipital cortices) within each group. Proteins exhibiting significant changes in expression were identified (≥20% change, Newman-Keuls P value < .05) using either matrix-assisted laser desorption ionization time-of-flight or electrospray ionisation quadrupole-time of flight mass spectrometry. RESULTS Twenty-six different synaptic proteins exhibited more than twofold differences in expression between AD and normal subjects. These proteins are involved in regulating different cellular functions, including energy metabolism, signal transduction, vesicle transport, structure, and antioxidant activity. CONCLUSION Comparative proteome analysis uncovered markers of pathogenic mechanisms involved in synaptic dysfunction.
Collapse
|
198
|
Age-related changes in the somatosensory processing of tactile stimulation--an fMRI study. Behav Brain Res 2012; 238:259-64. [PMID: 23123141 DOI: 10.1016/j.bbr.2012.10.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 11/20/2022]
Abstract
Age-related changes in brain function are complex. Although ageing is associated with a reduction in cerebral blood flow and neuronal activity, task-related processing is often correlated with an enlargement of the corresponding and additionally recruited brain areas. This supplemental employment is considered an attempt to compensate for deficits in the ageing brain. Although there are contradictory reports regarding the role of the primary somatosensory cortex (SI), currently, there is little knowledge about age-related functional changes in other brain areas in the somatosensory network (secondary somatosensory cortex (SII), and insular, anterior (ACC) and posterior cingulate cortices (PCC)). We investigated 16 elderly (age range, 62-71 years) and 18 young subjects (age range, 21-28 years) by determining the current perception threshold (CPT) and applying functional magnetic resonance imaging (fMRI) using a 3.0 Tesla scanner under tactile stimulation of the right hand. CPT was positively correlated with age. fMRI analysis revealed significantly increased activation in the contralateral SI and ipsilateral motor cortex in elderly subjects. Furthermore, we demonstrated age-related reductions in the activity in the SII, ACC, PCC, and dorsal parts of the corpus callosum. Our study revealed dramatic age-related differences in the processing of a simple tactile stimulus in the somatosensory network. Specifically, we detected enhanced activation in the contralateral SI and ipsilateral motor cortex assumingly caused by deficient inhibition and decreased activation in later stages of somatosensory processing (SII, cingulate cortex) in elderly subjects. These results indicate that, in addition to over-activation to compensate for impaired brain functions, there are complex mechanisms of modified inhibition and excitability involved in somatosensory processing in the ageing brain.
Collapse
|
199
|
Abdallah CG, Coplan JD, Jackowski A, Sato JR, Mao X, Shungu DC, Mathew SJ. Riluzole effect on occipital cortex: a structural and spectroscopy pilot study. Neurosci Lett 2012; 530:103-7. [PMID: 23043888 DOI: 10.1016/j.neulet.2012.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND To investigate the mechanism underlying the anxiolytic properties of riluzole, a glutamate-modulating agent, we previously studied the effect of this drug on hippocampal N-acetylaspartate (NAA) and volume in patients with generalized anxiety disorder (GAD). In the same cohort, we now extend our investigation to the occipital cortex, a brain region that was recently implicated in the antidepressant effect of riluzole. METHODS Fourteen medication-free adult patients with GAD received 8-week of open-label riluzole. Ten healthy subjects served as a comparison group. The healthy group did not receive riluzole treatment. Both groups underwent magnetic resonance imaging and spectroscopy at baseline and at the end of Week 8. Hamilton Anxiety Rating Scale (HAM-A) and Penn State Worry Questionnaire (PSWQ) were used as the primary and secondary outcome measures, respectively. RESULTS At baseline, we found clusters of increased cortical thickness in the occipital region in GAD compared to healthy subjects. In the right hemisphere, 8 weeks of treatment reduced occipital cortical thickness in the GAD group (t=3.67, p=0.004). In addition, the improvement in HAM-A scores was negatively correlated with post-treatment right occipital NAA (r=-0.68, p=0.008), and with changes in NAA levels (r=-0.53, p=0.051). In the left hemisphere, we found positive associations between changes in occipital cortical thickness and improvement in HAM-A (r=0.60, p=0.04) and PSWQ (r=0.62, p=0.03). CONCLUSION These pilot findings implicate the occipital cortex as a brain region associated with pathology and clinical improvement in GAD. In addition, the region specific effect of riluzole implies a distinct pathophysiology in the occipital cortex - compared to other, previously studied, frontolimbic brain structures.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | | | | | | | |
Collapse
|
200
|
A linear/nonlinear characterization of resting state brain networks in FMRI time series. Brain Topogr 2012; 26:39-49. [PMID: 22941499 DOI: 10.1007/s10548-012-0249-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
Resting state functional connectivity studies in fMRI have been used to demonstrate that the human brain is organized into inherent functional networks in the absence of stimuli. The basis for this activity is based on the spontaneous fluctuations observed during rest. In the present study, the time series generated from these fluctuations were characterized as either being linear or nonlinear based on the Delay Vector Variance method, applied through an examination of the local predictability of the signal. It was found that the default mode resting state network is composed of relatively more linear signals compared to the visual, task positive visuospatial, motor, and auditory resting state network time series. Also, it was shown that the visual cortex resting state network is more nonlinear relative to these aforementioned networks. Furthermore, using a histogram map of the nonlinearly characterized voxels for all the subjects, the histogram map was able to retrieve the peak intensity in four out of six resting state networks. Thus, the findings may provide the basis for a novel way to explore spontaneous fluctuations in the resting state brain.
Collapse
|