151
|
Zhao Y, Yang L, Zhou Z. Dipeptidyl peptidase-4 inhibitors: multitarget drugs, not only antidiabetes drugs. J Diabetes 2014; 6:21-9. [PMID: 23683065 DOI: 10.1111/1753-0407.12063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022] Open
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are a new class of antidiabetic agents that reduce blood glucose by preventing the degradation of the endogenous incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Protection by DPP-4 inhibitors of β-cell function has been demonstrated in patients with type 2 diabetes. Because DPP-4 is an enzyme widely expressed in humans, DPP-4 inhibitors are speculated to be multitarget agents. However, other potential therapeutic benefits of DPP-4 inhibitors remain unknown. Recently, some therapeutic effects of DPP-4 inhibitors, such as immune regulation, cardiovascular protection, and anti-inflammatory effects, have been observed. This article provides a systematic and comprehensive review of current research into the newly found effects and mechanism of action of DPP-4 inhibitors in a therapeutic context.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Diabetes Center, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China
| | | | | |
Collapse
|
152
|
The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice. Eur J Pharmacol 2013; 723:207-15. [PMID: 24309217 DOI: 10.1016/j.ejphar.2013.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 01/18/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4)-deficient mice exhibit prevention of obesity with increased energy expenditure, whereas currently available DPP-4 inhibitors do not induce similar changes. We investigated the impact of the novel DPP-4 inhibitor teneligliptin on body weight, energy expenditure, and obesity-related manifestations in diet-induced obese mice. Six-weeks-old C57BL/6N mice were fed a high-fat diet (60%kcal fat) ad libitum and administered teneligliptin (30 or 60mg/kg) via drinking water for 10 weeks. Mice fed a high-fat diet showed accelerated body weight gain. In contrast, compared with the vehicle group, the administration of teneligliptin reduced body weight to 88% and 71% at dose of 30mg/kg/day and 60mg/kg/day, respectively. Although there was no change in locomotor activity, indirect calorimetry studies showed that teneligliptin (60mg/kg) increased oxygen consumption by 22%. Adipocyte hypertrophy and hepatic steatosis induced by a high-fat diet were suppressed by teneligliptin. The mean adipocyte size in the 60-mg/kg treatment group was 44% and hepatic triglyceride levels were 34% of the levels in the vehicle group. Furthermore, treatment with teneligliptin (60mg/kg) reduced plasma levels of insulin to 40% and increased the glucose infusion rate to 39%, as measured in the euglycemic clamp study, indicating its beneficial effect on insulin resistance. We showed for the first time that the DPP-4 inhibitor prevents obesity and obesity-related manifestations with increased energy expenditure. Our findings suggest the potential utility of teneligliptin for the treatment of a broad spectrum of metabolic disorders related to obesity beyond glycemic control.
Collapse
|
153
|
Price JD, Linder G, Li WP, Zimmermann B, Rother KI, Malek R, Alattar M, Tarbell KV. Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study. Clin Exp Immunol 2013; 174:120-8. [PMID: 23711188 DOI: 10.1111/cei.12144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 01/04/2023] Open
Abstract
Sitagliptin, a dipeptidyl-peptidase 4 (DPP-4) inhibitor, improves blood glucose control in patients with type 2 diabetes by blocking cleavage of glucagon-like peptide 1 (GLP-1). In type 2 diabetes patients sitagliptin use is associated with an increase in minor infections, and in new-onset type 1 diabetes patients the ability of sitagliptin to dampen autoimmunity is currently being tested. DPP-4, also known as CD26, is expressed on leucocytes and can inactivate many chemokines important for leucocyte migration, as well as act as a co-stimulatory molecule on T cells. Therefore, this study was conducted to test whether sitagliptin is immunomodulatory. In this randomized, placebo-controlled trial, healthy volunteers were given sitagliptin or placebo daily for 28 days, and blood was drawn for immune assays. No significant differences were observed in the percentage of leucocyte subsets within peripheral blood mononuclear cells (PBMCs), plasma chemokine/cytokine levels or cytokines released by stimulation of PBMCs with either lipopolysaccharide (LPS) or anti-CD3. Individuals taking sitagliptin displayed increases in the percentage of cells expressing higher levels of CD26 at early time-points compared to placebo controls, but these differences resolved by day 28 of treatment. Therefore, in healthy volunteers, treatment with sitagliptin daily for 28 days does not overtly alter systemic immune function.
Collapse
Affiliation(s)
- J D Price
- Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Zhang H, Chen Y, Keane FM, Gorrell MD. Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol Cancer Res 2013; 11:1487-1496. [PMID: 24038034 DOI: 10.1158/1541-7786.mcr-13-0272] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DPP8 and DPP9 are recently identified members of the dipeptidyl peptidase IV (DPPIV) enzyme family, which is characterized by the rare ability to cleave a post-proline bond two residues from the N-terminus of a substrate. DPP8 and DPP9 have unique cellular localization patterns, are ubiquitously expressed in tissues and cell lines, and evidence suggests important contributions to various biological processes including: cell behavior, cancer biology, disease pathogenesis, and immune responses. Importantly, functional differences between these two proteins have emerged, such as DPP8 may be more associated with gut inflammation whereas DPP9 is involved in antigen presentation and intracellular signaling. Similarly, the DPP9 connections with H-Ras and SUMO1, and its role in AKT1 pathway downregulation provide essential insights into the molecular mechanisms of DPP9 action. The recent discovery of novel natural substrates of DPP8 and DPP9 highlights the potential role of these proteases in energy metabolism and homeostasis. This review focuses on the recent progress made with these post-proline dipeptidyl peptidases and underscores their emerging importance.
Collapse
Affiliation(s)
- Hui Zhang
- Molecular Hepatology, Centenary Institute, Locked Bag No. 6, Newtown, NSW 2042, Australia.
| | | | | | | |
Collapse
|
155
|
Sell H, Blüher M, Klöting N, Schlich R, Willems M, Ruppe F, Knoefel WT, Dietrich A, Fielding BA, Arner P, Frayn KN, Eckel J. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care 2013; 36:4083-90. [PMID: 24130353 PMCID: PMC3836153 DOI: 10.2337/dc13-0496] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To study expression of the recently identified adipokine dipeptidyl peptidase-4 (DPP4) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of patients with various BMIs and insulin sensitivities, as well as to assess circulating DPP4 in relation to obesity and insulin sensitivity. RESEARCH DESIGN AND METHODS DPP4 expression was measured in SAT and VAT from 196 subjects with a wide range of BMIs and insulin sensitivities. DPP4 release was measured ex vivo in paired biopsies from SAT and VAT as well as in vivo from SAT of lean and obese patients. Circulating DPP4 was measured in insulin-sensitive and insulin-resistant BMI-matched obese patients. RESULTS DPP4 expression was positively correlated with BMI in both SAT and VAT, with VAT consistently displaying higher expression than SAT. Ex vivo release of DPP4 from adipose tissue explants was higher in VAT than in SAT in both lean and obese patients, with obese patients displaying higher DPP4 release than lean controls. Net release of DPP4 from adipose tissue was also demonstrated in vivo with greater release in obese subjects than in lean subjects and in women than in men. Insulin-sensitive obese patients had significantly lower circulating DPP4 than did obesity-matched insulin-resistant patients. In this experiment, DPP4 positively correlated with the amount of VAT, adipocyte size, and adipose tissue inflammation. CONCLUSIONS DPP4, a novel adipokine, has a higher release from VAT that is particularly pronounced in obese and insulin-resistant patients. Our data suggest that DPP4 may be a marker for visceral obesity, insulin resistance, and the metabolic syndrome.
Collapse
|
156
|
Aso Y, Terasawa T, Kato K, Jojima T, Suzuki K, Iijima T, Kawagoe Y, Mikami S, Kubota Y, Inukai T, Kasai K. The serum level of soluble CD26/dipeptidyl peptidase 4 increases in response to acute hyperglycemia after an oral glucose load in healthy subjects: association with high-molecular weight adiponectin and hepatic enzymes. Transl Res 2013; 162:309-16. [PMID: 23994650 DOI: 10.1016/j.trsl.2013.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
A soluble form of CD26/dipeptidyl peptidase 4 (sCD26/DPP4) is found in serum and it has DPP4 enzymatic activity. We investigated whether the serum level of sCD26/DPP4 was influenced by the oral glucose tolerance test (OGTT) in healthy subjects. The serum sCD26/DPP4 level increased significantly from 824.5 ng/mL (interquartile range, from 699.0 to 1050 ng/mL) at baseline to a peak of 985.0 ng/mL (interquartile range, from 796.5 to 1215 ng/mL) during the OGTT (P < 0.0001). The peak sCD26/DPP4 level correlated positively with the baseline age and body mass index, and fasting plasma glucose (FPG), homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides (TG), alanine aminotransferase, and γ-glutamyl transpeptidase (GGT) levels whereas it correlated negatively with high-density lipoprotein (HDL) cholesterol and the serum levels of total and high-molecular weight (HMW) adiponectin. Stepwise regression analysis was done with forward selection of variables, including age, FPG, HOMA-IR, TG, HDL cholesterol, uric acid, GGT, C-reactive protein, and HMW adiponectin. In a model that explained 57.5% of the variation of the peak sCD26/DPP4 level, GGT (β = 0.382, P = 0.007) and HOMA-IR (β = 0.307, P = 0.034) were independent determinants of the peak serum level of sCD26/DPP4. Serum HMW adiponectin decreased significantly from 4.43 μg/mL (interquartile range, from 2.80 to 6.65 μg/mL) at baseline to 4.17 μg/mL (interquartile range, from 2.48 to 6.96 μg/mL) 120 minutes after the oral glucose load (P < 0.0001). The baseline serum level of sCD26/DPP4 showed a significant negative correlation with the percent change of HMW adiponectin during the OGTT. In conclusion, the serum level of sCD26/DPP4 increased acutely after an oral glucose load in apparently healthy subjects. The abrupt increase of serum sCD26/DPP4 after a glucose load may be a marker of insulin resistance that could come from liver or muscle.
Collapse
Affiliation(s)
- Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 2013; 62:1543-52. [PMID: 23932846 PMCID: PMC3809332 DOI: 10.1016/j.metabol.2013.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/11/2023]
Abstract
Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance.
Collapse
Affiliation(s)
- Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | | | | | | | | |
Collapse
|
158
|
Mimura S, Ando T, Ishiguro K, Maeda O, Watanabe O, Ujihara M, Hirayama Y, Morise K, Maeda K, Matsushita M, Funasaka K, Nakamura M, Miyahara R, Ozaki N, Goto H. Dipeptidyl peptidase-4 inhibitor anagliptin facilitates restoration of dextran sulfate sodium-induced colitis. Scand J Gastroenterol 2013; 48:1152-9. [PMID: 24047394 DOI: 10.3109/00365521.2013.832366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE. Inflammatory bowel disease (IBD) is a chronic debilitating disease associated with severe damage to the intestinal mucosa. Glucagon-like peptide-2 (GLP-2) is a potent and specific gastrointestinal growth factor. GLP-2 released from enteroendocrine cells is inactivated by dipeptidyl peptidase-4 (DPP-4). The aim of this study was to examine whether the DPP-4 inhibitor anagliptin improves experimental murine colitis. MATERIAL AND METHODS. Male C57BL/6 mice aged 8 weeks were exposed to 1.5% dextran sulfate sodium (DSS) in drinking water for 7 days to induce experimental colitis. Anagliptin (0.1% in diet) was administrated from 2 days before the beginning of DSS to 7 days after the end of DSS. Changes in body weight and disease activity index were evaluated daily. Histological colitis severity, cellular proliferation and gene expression were determined in colonic tissues. RESULTS. Treatment with anagliptin clearly improved body weight loss and disease activity index in the recovery phase. Histological score in the DSS + anagliptin group at day 14 was significantly lower than that in the DSS alone group. Treatment with anagliptin increased the Ki67-positive rate at days 10 and 14, and tended to increase insulin-like growth factor-1 mRNA expression in the DSS + anagliptin group. CONCLUSION. In this model of experimental colitis, the DPP-4 inhibitor anagliptin facilitated the restoration of mucosal damage, thereby resulting in the acceleration of healing. These findings suggest a new and novel therapeutic approach for the treatment of IBD.
Collapse
Affiliation(s)
- Shunya Mimura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Ishibashi Y, Matsui T, Maeda S, Higashimoto Y, Yamagishi SI. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc Diabetol 2013; 12:125. [PMID: 23984879 PMCID: PMC3765742 DOI: 10.1186/1475-2840-12-125] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023] Open
Abstract
Background Advanced glycation end products (AGEs) and receptor RAGE interaction play a role in diabetic vascular complications. Inhibition of dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target for type 2 diabetes. However, the role of DPP-4 in AGE-induced endothelial cell (EC) damage remains unclear. Methods In this study, we investigated the effects of DPP-4 on reactive oxygen species (ROS) generation and RAGE gene expression in ECs. We further examined whether an inhibitor of DPP-4, linagliptin inhibited AGE-induced soluble DPP-4 production, ROS generation, RAGE, intercellular adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1) gene expression in ECs. Results DPP-4 dose-dependently increased ROS generation and RAGE gene expression in ECs, which were prevented by linagliptin. Mannose 6-phosphate (M6P) and antibodies (Ab) raised against M6P/insulin-like growth factor II receptor (M6P/IGF-IIR) completely blocked the ROS generation in DPP-4-exposed ECs, whereas surface plasmon resonance revealed that DPP-4 bound to M6P/IGF-IIR at the dissociation constant of 3.59 x 10-5 M. AGEs or hydrogen peroxide increased soluble DPP-4 production by ECs, which was prevented by N-acetylcysteine, RAGE-Ab or linagliptin. Linagliptin significantly inhibited the AGE-induced ROS generation, RAGE, ICAM-1 and PAI-1 gene expression in ECs. Conclusions The present study suggests that AGE-RAGE-induced ROS generation stimulates the release of DPP-4 from ECs, which could in turn act on ECs directly via the interaction with M6P/IGF-IIR, further potentiating the deleterious effects of AGEs. The blockade by linagliptin of positive feedback loop between AGE-RAGE axis and DPP-4 might be a novel therapeutic target for vascular injury in diabetes.
Collapse
Affiliation(s)
- Yuji Ishibashi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | | | | | | | | |
Collapse
|
160
|
Differential expression of dipeptidyl peptidase IV in human versus cynomolgus monkey skin eccrine sweat glands. J Mol Histol 2013; 44:733-47. [DOI: 10.1007/s10735-013-9524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
161
|
Gómez H, Chappé M, Valiente PA, Pons T, de Los Angeles Chávez M, Charli JL, Pascual I. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV. J Biosci 2013; 38:461-9. [DOI: 10.1007/s12038-013-9333-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
162
|
Herlihy SE, Pilling D, Maharjan AS, Gomer RH. Dipeptidyl peptidase IV is a human and murine neutrophil chemorepellent. THE JOURNAL OF IMMUNOLOGY 2013; 190:6468-77. [PMID: 23677473 DOI: 10.4049/jimmunol.1202583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, AprA is a secreted protein that inhibits proliferation and causes chemorepulsion of Dictyostelium cells, yet AprA has little sequence similarity to any human proteins. We found that a predicted structure of AprA has similarity to human dipeptidyl peptidase IV (DPPIV). DPPIV is a serine protease present in extracellular fluids that cleaves peptides with a proline or alanine in the second position. In Insall chambers, DPPIV gradients below, similar to, and above the human serum DPPIV concentration cause movement of human neutrophils away from the higher concentration of DPPIV. A 1% DPPIV concentration difference between the front and back of the cell is sufficient to cause chemorepulsion. Neutrophil speed and viability are unaffected by DPPIV. DPPIV inhibitors block DPPIV-mediated chemorepulsion. In a murine model of acute respiratory distress syndrome, aspirated bleomycin induces a significant increase in the number of neutrophils in the lungs after 3 d. Oropharyngeal aspiration of DPPIV inhibits the bleomycin-induced accumulation of mouse neutrophils. These results indicate that DPPIV functions as a chemorepellent of human and mouse neutrophils, and they suggest new mechanisms to inhibit neutrophil accumulation in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
163
|
McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne) 2013; 4:52. [PMID: 23675368 PMCID: PMC3650620 DOI: 10.3389/fendo.2013.00052] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/22/2013] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation initiate a state of insulin resistance (IR). The secretion of chemoattractants such as MCP-1 and MIF and of cytokines IL-6, TNF-α, and IL-1β, draw immune cells including dendritic cells, T cells, and macrophages into adipose tissue (AT). Dysfunctional AT lipid metabolism leads to increased circulating free fatty acids, initiating inflammatory signaling cascades in the population of infiltrating cells. A feedback loop of pro-inflammatory cytokines exacerbates this pathological state, driving further immune cell infiltration and cytokine secretion and disrupts the insulin signaling cascade. Disruption of normal AT function is causative of defects in hepatic and skeletal muscle glucose homeostasis, resulting in systemic IR and ultimately the development of type 2 diabetes. Pharmaceutical strategies that target the inflammatory milieu may have some potential; however there are a number of safety concerns surrounding such pharmaceutical approaches. Nutritional anti-inflammatory interventions could offer a more suitable long-term alternative; whilst they may be less potent than some pharmaceutical anti-inflammatory agents, this may be advantageous for long-term therapy. This review will investigate obese AT biology, initiation of the inflammatory, and insulin resistant environment; and the mechanisms through which dietary anti-inflammatory components/functional nutrients may be beneficial.
Collapse
Affiliation(s)
- Maeve A. McArdle
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Orla M. Finucane
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Ruth M. Connaughton
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Aoibheann M. McMorrow
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| |
Collapse
|
164
|
Birnbaum Y, Castillo AC, Qian J, Ling S, Ye H, Perez-Polo JR, Bajaj M, Ye Y. Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus. Cardiovasc Drugs Ther 2013; 26:445-56. [PMID: 22936458 DOI: 10.1007/s10557-012-6409-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE We assessed whether phosphodiesterase-III inhibition with cilostazol (Cil) augments the infarct size (IS)-limiting effects of MK0626 (MK), a dipeptidyl-peptidase-4 (DPP4) inhibitor, by increasing intracellular cAMP in mice with type-2 diabetes. METHODS Db/Db mice received 3-day MK (0, 1, 2 or 3 mg/kg/d) with or without Cil (15 mg/kg/d) by oral gavage and were subjected to 30 min coronary artery occlusion and 24 h reperfusion. RESULTS Cil and MK at 2 and 3 mg/kg/d significantly reduced IS. Cil and MK had additive effects at all three MK doses. IS was the smallest in the MK-3+Cil. MK in a dose dependent manner and Cil increased cAMP levels (p < 0.001). cAMP levels were higher in the combination groups at all MK doses. MK-2 and Cil increased PKA activity when given alone; however, PKA activity was significantly higher in the MK-2+Cil group than in the other groups. Both MK-2 and Cil increased myocardial levels of Ser(133) P-CREB, Ser(523) P-5-lipoxygenase, Ser(473)P-Akt and Ser(633) P-eNOS. These levels were significantly higher in the MK-2+Cil group. Myocardial PTEN (Phosphatase and tensin homolog on chromosome ten) levels were significantly higher in the Db/Db mice compared to nondiabetic mice. MK-2 and Cil normalized PTEN levels. PTEN levels tended to be lower in the combination group than in the MK and Cil alone groups. CONCLUSION MK and Cil have additive IS-limiting effects in diabetic mice. The additive effects are associated with an increase in myocardial cAMP levels and PKA activity with downstream phosphorylation of Akt, eNOS, 5-lipoxygenase and CREB and downregulation of PTEN expression.
Collapse
Affiliation(s)
- Yochai Birnbaum
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Leibovitz E, Gottlieb S, Goldenberg I, Gevrielov-Yusim N, Matetzky S, Gavish D. Sitagliptin pretreatment in diabetes patients presenting with acute coronary syndrome: results from the Acute Coronary Syndrome Israeli Survey (ACSIS). Cardiovasc Diabetol 2013; 12:53. [PMID: 23537430 PMCID: PMC3637090 DOI: 10.1186/1475-2840-12-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022] Open
Abstract
Background Chronic treatment with currently available oral hypoglyemic medications may result in a differential effect on the clinical presentation of diabetic patients with acute coronary syndrome (ACS). Methods We evaluated presentation characteristics and the risk for in-hospital complications and 30-day major adverse cardiovascular events (MACE) among 445 patients with diabetes mellitus enrolled in the Acute Coronary Syndrome Israeli Survey (ACSIS) 2010. Patients were categorized into 3 groups according to glucose lowering medications at time of admission for ACS: 1) DPP 4 inhibitors (as monotherapy or in combination; DPP4i), 2) Metformin (monotherapy or in combination, excluding DPP4i) and 3) other oral hypoglycemics. Results Patients in the DPP4i group displayed similar baseline clinical characteristics to the other 2 groups, with the exception of a younger age and a lower frequency of prior coronary heart disease and chronic renal failure. Medical therapy with DPP4i was associated with a significantly lower in-hospital complication rate (post MI angina, re-infarction, pulmonary edema, infections, acute renal failure and better KILLIP class) (9.7%), lower rates of 30-day MACE (12.9%) and a shorter hospital stay (5.4 ± 3.8 days) as compared with patients treated with metformin (24.4%, 31.6% and 5.6 ± 5.0 days respectively) or other oral hypoglycemic drugs (45.5%, 48.5% and 7.5 ± 6.5 days respectively). Consistently, multivariate logistic regression modeling revealed that treatment with DPP4i was associated with a lower risk for in-hospital complications (OR = 0.129, p = 0.002) and 30-day MACE (OR = 0.157, p = 0.002) compared with other oral hypoglycaemic therapy. Conclusions Our data suggests that chronic treatment with DPP4i may have cardioprotective effects in diabetes patients presenting with acute coronary syndrome.
Collapse
Affiliation(s)
- Eyal Leibovitz
- Department of Internal Medicine A Wolfson Medical Center, Holon, Israel.
| | | | | | | | | | | |
Collapse
|
166
|
Wilson CH, Indarto D, Doucet A, Pogson LD, Pitman MR, McNicholas K, Menz RI, Overall CM, Abbott CA. Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism. J Biol Chem 2013; 288:13936-13949. [PMID: 23519473 PMCID: PMC3656252 DOI: 10.1074/jbc.m112.445841] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dipeptidyl peptidases (DP) 8 and 9 are homologous, cytoplasmic N-terminal post-proline-cleaving enzymes that are anti-targets for the development of DP4 (DPPIV/CD26) inhibitors for treating type II diabetes. To date, DP8 and DP9 have been implicated in immune responses and cancer biology, but their pathophysiological functions and substrate repertoire remain unknown. This study utilizes terminal amine isotopic labeling of substrates (TAILS), an N-terminal positional proteomic approach, for the discovery of in vivo DP8 and DP9 substrates. In vivo roles for DP8 and DP9 in cellular metabolism and homeostasis were revealed via the identification of more than 29 candidate natural substrates and pathways affected by DP8/DP9 overexpression. Cleavage of 14 substrates was investigated in vitro; 9/14 substrates for both DP8 and DP9 were confirmed by MALDI-TOF MS, including two of high confidence, calreticulin and adenylate kinase 2. Adenylate kinase 2 plays key roles in cellular energy and nucleotide homeostasis. These results demonstrate remarkable in vivo substrate overlap between DP8/DP9, suggesting compensatory roles for these enzymes. This work provides the first global investigation into DP8 and DP9 substrates, providing a number of leads for future investigations into the biological roles and significance of DP8 and DP9 in human health and disease.
Collapse
Affiliation(s)
- Claire H Wilson
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, Centre for Blood Research and Faculty Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dono Indarto
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5001, Australia
| | - Alain Doucet
- Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, Centre for Blood Research and Faculty Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lisa D Pogson
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5001, Australia
| | - Melissa R Pitman
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - Kym McNicholas
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - R Ian Menz
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - Christopher M Overall
- Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, Centre for Blood Research and Faculty Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Catherine A Abbott
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia; Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
167
|
Aroor A, McKarns S, Nistala R, DeMarco V, Gardner M, Garcia-Touza M, Whaley-Connell A, Sowers JR. DPP-4 Inhibitors as Therapeutic Modulators of Immune Cell Function and Associated Cardiovascular and Renal Insulin Resistance in Obesity and Diabetes. Cardiorenal Med 2013; 3:48-56. [PMID: 23946724 DOI: 10.1159/000348756] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/07/2013] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity and diabetes continues to rise in the United States and worldwide. These findings parallel the expansion of childhood obesity and diabetes. Obesity is a central component of the cardiorenal metabolic syndrome (CRS) which increases the risk for cardiovascular disease (CVD) and chronic kidney disease (CKD). The hallmark of obesity, CRS, and early type 2 diabetes is insulin resistance, a result of decreased insulin metabolic signaling due, in part, to enhanced serine phosphorylation and/or proteasome-mediated degradation of the insulin receptor substrate. Cardiovascular and renal insulin resistance significantly contributes to endothelial dysfunction, impaired cardiac diastolic and vascular relaxation, glomerular injury, and tubular dysfunction. In this context, multiple factors including oxidative stress, increased inflammation, and inappropriate activation of the renin-angiotensin-aldosterone and the sympathetic nervous system contribute to overweight- and obesity-induced systemic and tissue insulin resistance. One common link between obesity and the development of insulin resistance appears to be a low-grade inflammatory response resulting from dysfunctional innate and adaptive immunity. In this regard, there has been recent work on the role of dipeptidyl peptidase-4 (DPP-4) in modulating innate and adaptive immunity. The direct effects of DPP-4 on immune cells and the indirect effects through GLP-1-dependent and -independent pathways suggest effects of DPP-4 inhibition may have beneficial effects beyond glycemic control in improving CVD and renal outcomes. Accordingly, this review addresses new insights into the role of DPP-4 in immune modulation and the potential beneficial effects of DPP-4 inhibitors in insulin resistance and associated CVD and CKD prevention.
Collapse
|
168
|
Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013; 226:305-314. [PMID: 23083681 DOI: 10.1016/j.atherosclerosis.2012.09.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/22/2012] [Accepted: 09/14/2012] [Indexed: 02/09/2023]
Abstract
The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events.
Collapse
Affiliation(s)
- Jixin Zhong
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
169
|
de la Rica L, Urquiza JM, Gómez-Cabrero D, Islam ABMMK, López-Bigas N, Tegnér J, Toes REM, Ballestar E. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun 2013; 41:6-16. [PMID: 23306098 DOI: 10.1016/j.jaut.2012.12.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 12/13/2022]
Abstract
Autoimmune rheumatic diseases are complex disorders, whose etiopathology is attributed to a crosstalk between genetic predisposition and environmental factors. Both variants of autoimmune susceptibility genes and environment are involved in the generation of aberrant epigenetic profiles in a cell-specific manner, which ultimately result in dysregulation of expression. Furthermore, changes in miRNA expression profiles also cause gene dysregulation associated with aberrant phenotypes. In rheumatoid arthritis, several cell types are involved in the destruction of the joints, synovial fibroblasts being among the most important. In this study we performed DNA methylation and miRNA expression screening of a set of rheumatoid arthritis synovial fibroblasts and compared the results with those obtained from osteoarthritis patients with a normal phenotype. DNA methylation screening allowed us to identify changes in novel key target genes like IL6R, CAPN8 and DPP4, as well as several HOX genes. A significant proportion of genes undergoing DNA methylation changes were inversely correlated with expression. miRNA screening revealed the existence of subsets of miRNAs that underwent changes in expression. Integrated analysis highlighted sets of miRNAs that are controlled by DNA methylation, and genes that are regulated by DNA methylation and are targeted by miRNAs with a potential use as clinical markers. Our study enabled the identification of novel dysregulated targets in rheumatoid arthritis synovial fibroblasts and generated a new workflow for the integrated analysis of miRNA and epigenetic control.
Collapse
Affiliation(s)
- Lorenzo de la Rica
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
171
|
Abstract
The first dipeptidyl-peptidase-IV (DPP-4) inhibitor for the treatment of type 2 diabetes became available in 2006. Since then, the number of DPP-4 inhibitors has increased and DPP-4 inhibitors have developed into an important drug class. DPP-4 inhibitors act by increasing endogenous GLP-1 and GIP concentrations. Via this mechanism, insulin secretion is glucose-dependently stimulated and glucagon secretion inhibited. This results in a low risk for hypoglycemia. Furthermore, DPP-4 inhibitors are weight-neutral. Linagliptin is a novel DPP-4 inhibitor that, in contrast to the other members of this drug class, is eliminated by a biliary/hepatic route rather than by renal elimination. This property allows the use of linagliptin in type 2 diabetic patients with normal kidney function as well as in patients with renal insufficiency without dose adjustments. In comparative clinical studies, linagliptin was noninferior to other established antidiabetic agents, especially to metformin and sulfonylurea. It showed a superior safety profile over glimepiride regarding hypoglycemia, weight gain, a composite cardiovascular endpoint, and stroke. This review gives an overview on the efficacy and safety of linagliptin in comparison to the classical oral antidiabetic drugs as well as to the other DPP-4 inhibitors.
Collapse
Affiliation(s)
- Baptist Gallwitz
- Correspondence: Baptist Gallwitz, Department of Medicine IV, Eberhard-Karls-University Tübingen, Otfried-Müller Strasse 10, 72976 Tübingen, Germany, Tel +49 7071 298 2093, Fax +49 7071 29 5004, Email
| |
Collapse
|
172
|
Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, Needleman B, Satoskar AR, Rajagopalan S. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 2013; 62:149-157. [PMID: 22936179 PMCID: PMC3526020 DOI: 10.2337/db12-0230] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 07/08/2012] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DDP4) inhibitors target the enzymatic degradation of incretin peptides and represent a major advance in the treatment of type 2 diabetes. DPP4 has a number of nonenzymatic functions that involve its interaction with adenosine deaminase (ADA) and other extracellular matrix proteins. Here, we assessed the nonenzymatic role of DPP4 in regulating dendritic cell (DC)/macrophage-mediated adipose inflammation in obesity. Both obese humans and rodents demonstrated increased levels of DPP4 expression in DC/macrophage cell populations from visceral adipose tissue (VAT). The DPP4 expression increased during monocyte differentiation to DC/macrophages and with lipopolysaccharide (LPS)-induced activation of DC/macrophages. The DPP4 colocalized with membrane-bound ADA on human DCs and enhanced the ability of the latter to stimulate T-cell proliferation. The DPP4 interaction with ADA in human DC/macrophages was competitively inhibited by the addition of exogenous soluble DPP4. Knockdown of DPP4 in human DCs, but not pharmacologic inhibition of their enzymatic function, significantly attenuated the ability to activate T cells without influencing its capacity to secrete proinflammatory cytokines. The nonenzymatic function of DPP4 on DC may play a role in potentiation of inflammation in obesity by interacting with ADA. These findings suggest a novel role for the paracrine regulation of inflammation in adipose tissue by DPP4.
Collapse
Affiliation(s)
- Jixin Zhong
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Xiaoquan Rao
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Jeffrey Deiuliis
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Zachary Braunstein
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Vimal Narula
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Jeffrey Hazey
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Dean Mikami
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Bradley Needleman
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Abhay R. Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Sanjay Rajagopalan
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
173
|
Tahara N, Yamagishi SI, Takeuchi M, Tahara A, Kaifu K, Ueda S, Okuda S, Imaizumi T. Serum levels of advanced glycation end products (AGEs) are independently correlated with circulating levels of dipeptidyl peptidase-4 (DPP-4) in humans. Clin Biochem 2012; 46:300-3. [PMID: 23219738 DOI: 10.1016/j.clinbiochem.2012.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Inhibition of dipeptidyl peptidase-4 (DPP-4) has been proposed as a potential therapeutic target for type 2 diabetes. Although soluble DPP-4 has been identified in human serum and could be associated with DPP-4 activity, the kinetics and regulation of circulating DPP-4 levels remain unknown. In this study, we examined which anthropometric and metabolic variables, including serum levels of advanced glycation end products (AGEs), were independently associated with serum DPP-4 levels. Further, we investigated the effects of AGEs on DPP-4 expression in, and soluble DPP-4 release from human cultured proximal tubular epithelial cells. DESIGN AND METHODS The study involved 432 consecutive outpatients (301 males and 131 females; mean ages 61.8 ± 8.8) who underwent complete history and physical examinations, and determinations of blood chemistry and anthropometric variables. Serum DPP-4 and AGE levels were examined by enzyme-linked immunosorbent assay. Protein expression levels of DPP-4 and its release from the cells were analyzed with western blot analysis. RESULTS Mean serum levels of DPP-4 and AGEs were 520.2 ± 39.9 ng/mL and 8.96 ± 2.57 U/mL, respectively. In multiple regression analysis, female (p<0.001), HDL-cholesterol (p<0.001), glycated hemoglobin (p<0.001), AGEs (p<0.03), and the absence of hypertension medication (p<0.05) are independently associated with DPP-4 levels (R(2)=0.167). Western blot analysis revealed that AGEs significantly increased DPP-4 expression in, and soluble DPP-4 release from tubular cells. CONCLUSIONS The present study reveals that serum levels of DPP-4 are independently associated with various metabolic parameters in a general population. AGEs may up-regulate cellular DPP-4 expression and subsequently increase circulating levels of DPP-4 in humans.
Collapse
Affiliation(s)
- Nobuhiro Tahara
- Department of Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Ali S, Fonseca V. Saxagliptin overview: special focus on safety and adverse effects. Expert Opin Drug Saf 2012; 12:103-9. [PMID: 23137182 DOI: 10.1517/14740338.2013.741584] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Saxagliptin (see drug summary box) is a glucose-lowering agent that belongs to the class of Dipeptidylpeptidase-4 (DDP-4) inhibitors used in the treatment of T2DM. Clinical efficacy of saxagliptin as single agent as well as in combination with other medications used for the treatment of T2DM has been well established in several randomized trials. Treatment with saxagliptin is effective, generally safe and well tolerated, apart from a small increase in the incidence of infections such as nasopharyngitis. Its use is not associated with increase risk of hypoglycemia and it is weight neutral. Saxagliptin can be used safely in renal failure (with dose adjustment) and in hepatic impairment. When saxagliptin is used in combination with a strong inhibitor of CYP3A4/A5, reduction in the daily dosage is recommended. AREAS COVERED This paper briefly discusses efficacy and pharmacokinetics of saxagliptin. The paper highlights in detail saxagliptin-associated adverse effects, drug interactions, its use in patients with renal and hepatic disease and long-term safety concerns. EXPERT OPINION Saxagliptin has comparable efficacy with other DPP-4 inhibitors. It is generally safe and well tolerated; however, it requires dose adjustment in renal disease as well as when used with drugs that are strong inhibitor or inducer of CYP3A4/A5 isoforms. Future safety questions regarding immune system and development of cancer still remain to be completely answered.
Collapse
Affiliation(s)
- Shamsa Ali
- Tulane University, Medicine, New Orleans 70112, USA.
| | | |
Collapse
|
175
|
Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M, Cheng XW, Okumura T, Hirashiki A, Nagata K, Murohara T. Dipeptidyl Peptidase-4 Modulates Left Ventricular Dysfunction in Chronic Heart Failure via Angiogenesis-Dependent and -Independent Actions. Circulation 2012; 126:1838-51. [DOI: 10.1161/circulationaha.112.096479] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Toshimasa Shigeta
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Morihiko Aoyama
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Yasuko K Bando
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Akio Monji
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Toko Mitsui
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Miwa Takatsu
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Xiang-Wu Cheng
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Takahiro Okumura
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Akihiro Hirashiki
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Kohzo Nagata
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| | - Toyoaki Murohara
- From the Departments of Cardiology (T.S., M.A., Y.K.B., A.M., T.M., X.-W.C., T.O., A.H., T.M.) and Pathophysiology Laboratory Sciences (M.T.), Nagoya University Graduate School of Medicine, and Department of Medical Technology, Nagoya University School of Health Sciences (K.N.), Nagoya, Japan
| |
Collapse
|
176
|
Guasch L, Ojeda MJ, González-Abuín N, Sala E, Cereto-Massagué A, Mulero M, Valls C, Pinent M, Ardévol A, Garcia-Vallvé S, Pujadas G. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): virtual screening and activity assays. PLoS One 2012; 7:e44971. [PMID: 22984596 PMCID: PMC3440348 DOI: 10.1371/journal.pone.0044971] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
Background There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site. Methodology/Principal Findings We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives. Conclusions/Significance We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for developing more potent DPP-IV inhibitors.
Collapse
Affiliation(s)
- Laura Guasch
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Maria José Ojeda
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Noemí González-Abuín
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Esther Sala
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Adrià Cereto-Massagué
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Miquel Mulero
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Cristina Valls
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Montserrat Pinent
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Anna Ardévol
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
| | - Santiago Garcia-Vallvé
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
- Centre Tecnològic de Nutrició i Salut, TECNIO, Campus of International excellence southern catalonia, Avinguda Universitat, Catalonia, Spain
| | - Gerard Pujadas
- Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Catalonia, Spain
- Centre Tecnològic de Nutrició i Salut, TECNIO, Campus of International excellence southern catalonia, Avinguda Universitat, Catalonia, Spain
- * E-mail:
| |
Collapse
|
177
|
Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases. PLoS One 2012; 7:e43019. [PMID: 22952628 PMCID: PMC3430648 DOI: 10.1371/journal.pone.0043019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/17/2012] [Indexed: 11/19/2022] Open
Abstract
Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The “specificity domains” are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.
Collapse
|
178
|
Matić IZ, Ðorđić M, Grozdanić N, Damjanović A, Kolundžija B, Erić-Nikolić A, Džodić R, Šašić M, Nikolić S, Dobrosavljević D, Rašković S, Andrejević S, Gavrilović D, Cordero OJ, Juranić ZD. Serum activity of DPPIV and its expression on lymphocytes in patients with melanoma and in people with vitiligo. BMC Immunol 2012; 13:48. [PMID: 22908963 PMCID: PMC3464610 DOI: 10.1186/1471-2172-13-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023] Open
Abstract
Background Dipeptidyl peptidase IV, a multifunctional serine protease, is implicated in regulation of malignant transformation, promotion and further progression of cancer, exerting tumor-suppressing or even completely opposite - tumor-promoting activities. The aim of present research was to determine the serum DPPIV activity, as well as the percentages of CD26+ lymphocytes, CD26+ overall white blood cells and the mean fluorescence intensity of CD26 expression on lymphocytes in patients with melanoma, people with vitiligo and in healthy controls. Methods The activity of DPPIV in serum was determined by colorimetric test. Expression of DPPIV (as CD26) on immunocompetent peripheral white blood cells was done using flow cytometry analysis. Results Data from our study show for the first time statistically significant decrease: in the serum DPPIV activity, in the percentage of CD26+ overall white blood cells and in the percentage of lymphocytes in patients with melanoma in comparison to healthy control people. In addition, significantly lower serum DPPIV activity was found in the group of patients with melanoma in relation to people with vitiligo too. Conclusion This study indicates the need for exploring the cause and the importance of the disturbances in the serum DPPIV activity and in the CD26 expression on immunocompetent cells in complex molecular mechanisms underlying the development and progression of melanoma.
Collapse
Affiliation(s)
- Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Inflammatory bowel diseases (Crohn's disease, ulcerative colitis, undetermined colitis) are a group of chronic autoimmune inflammatory diseases distinguished by recurrent inflammation of various parts of the gastrointestinal (GI) system and presenting a significant public health problem. Despite large basic and clinical research, the aetiology of these diseases and the pathogenesis of inflammation itself remain elusive. Previous studies have confirmed a causal relationship between mediators of inflammatory response and molecules involved in the regulation of their biological activity, especially proteases. The aim of this review is to summarise earlier findings on different aspects of inflammatory bowel diseases, paying particular attention to the involvement of dipeptidyl peptidase IV (CD26 molecule, DPP IV/CD26) in the etiopathogenesis of inflammatory processes in the GI tract. Animal studies of colitis have significantly contributed to the understanding and treatment of these diseases, investigations of ulcerative colitis (DSS-colitis) and Crohn's disease (TNBS-colitis) on the murine model in particular.
Collapse
|
180
|
Baticic L, Detel D, Kucic N, Buljevic S, Pugel EP, Varljen J. Neuroimmunomodulative properties of dipeptidyl peptidase IV/CD26 in a TNBS-induced model of colitis in mice. J Cell Biochem 2012; 112:3322-33. [PMID: 21751235 DOI: 10.1002/jcb.23261] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Causal connections between dipeptidyl peptidase IV, also known as CD26 molecule (DPP IV/CD26) and inflammatory bowel disease (IBD) have been shown, but mechanisms of these interactions are unclear. Our hypothesis was that DPP IV/CD26 could affect the neuroimmune response during inflammatory events. Therefore, we aimed to evaluate its possible role and the relevance of the gut-brain axis in a model of IBD in mice. Trinitrobenzenesulfonic acid-induced (TNBS) colitis was induced in CD26-deficient (CD26(-/-) ) and wild-type (C57BL/6) mice. Pathohistological and histomorphometrical measurements were done. Concentrations and protein expressions of DPP IV/CD26 substrates neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were determined. Concentrations of IL-6 and IL-10 were evaluated. Investigations were conducted at systemic and local levels. Acute inflammation induced increased serum NPY concentrations in both mice strains, more enhanced in CD26(-/-) mice. Increased NPY concentrations were found in colon and brain of C57BL/6 mice, while in CD26(-/-) animals only in colon. VIP and IL-6 serum and tissue concentrations were increased in both mice strains in acute inflammation, more pronouncedly in CD26(-/-) mice. IL-10 concentrations, after a decrease in serum of both mice strains, increased promptly in CD26(-/-) mice. Decreased IL-10 concentration was found in brain of C57BL/6 mice, while it was increased in colon of CD26(-/-) mice in acute inflammation. DPP IV/CD26 deficiency affects the neuroimmune response at systemic and local levels during colitis development and resolution in mice. Inflammatory changes in the colon reflected on investigated parameters in the brain, suggesting an important role of the gut-brain axis in IBD pathogenesis.
Collapse
Affiliation(s)
- Lara Baticic
- Department of Chemistry and Biochemistry, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
181
|
Bezerra GA, Dobrovetsky E, Seitova A, Dhe-Paganon S, Gruber K. Crystallization and preliminary X-ray diffraction analysis of human dipeptidyl peptidase 10 (DPPY), a component of voltage-gated potassium channels. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:214-7. [PMID: 22298003 PMCID: PMC3274407 DOI: 10.1107/s1744309111055230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022]
Abstract
Dipeptidyl peptidase 10 (DPP10, DPPY) is an inactive peptidase associated with voltage-gated potassium channels, acting as a modulator of their electrophysiological properties, cell-surface expression and subcellular localization. Because potassium channels are important disease targets, biochemical and structural characterization of their interaction partners was sought. DPP10 was cloned and expressed using an insect-cell system and the protein was purified via His-tag affinity and size-exclusion chromatography. Crystals obtained by the sitting-drop method were orthorhombic, belonging to space group P2(1)2(1)2(1) with unit-cell parameters a = 80.91, b = 143.73, c = 176.25 Å. A single solution with two molecules in the asymmetric unit was found using the structure of DPP6 (also called DPPX; PDB entry 1xfd) as the search model in a molecular replacement protocol.
Collapse
Affiliation(s)
- Gustavo Arruda Bezerra
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A-8010 Graz, Austria
| | - Elena Dobrovetsky
- Department of Physiology and Structural Genomics Consortium, University of Toronto, MaRS Centre, South Tower, 101 College Street, Suite 700, Toronto, ON M5G 1L7, Canada
| | - Alma Seitova
- Department of Physiology and Structural Genomics Consortium, University of Toronto, MaRS Centre, South Tower, 101 College Street, Suite 700, Toronto, ON M5G 1L7, Canada
| | - Sirano Dhe-Paganon
- Department of Physiology and Structural Genomics Consortium, University of Toronto, MaRS Centre, South Tower, 101 College Street, Suite 700, Toronto, ON M5G 1L7, Canada
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A-8010 Graz, Austria
| |
Collapse
|
182
|
Baetta R, Corsini A. Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs 2012; 71:1441-67. [PMID: 21812507 DOI: 10.2165/11591400-000000000-00000] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dipeptidyl peptidase (DPP)-4 inhibitors, which enhance glucose-dependent insulin secretion from pancreatic β cells by preventing DPP-4-mediated degradation of endogenously released incretin hormones, represent a new therapeutic approach to the management of type 2 diabetes mellitus. The 'first-in-class' DPP-4 inhibitor, sitagliptin, was approved in 2006; it was followed by vildagliptin (available in the EU and many other countries since 2007, although approval in the US is still pending), saxagliptin (in 2009), alogliptin (in 2010, presently only in Japan) and linagliptin, which was approved in the US in May 2011 and is undergoing regulatory review in Japan and the EU. As the number of DPP-4 inhibitors on the market increases, potential differences among the different members of the class become important when deciding which agent is best suited for an individual patient. The aim of this review is to provide a comprehensive and updated comparison of the pharmacodynamic and pharmacokinetic properties of DPP-4 inhibitors, and to pinpoint pharmacological differences of potential interest for their use in therapy. Despite their common mechanism of action, these agents show significant structural heterogeneity that could translate into different pharmacological properties. At the pharmacokinetic level, DPP-4 inhibitors have important differences, including half-life, systemic exposure, bioavailability, protein binding, metabolism, presence of active metabolites and excretion routes. These differences could be relevant, especially in patients with renal or hepatic impairment, and when considering combination therapy. At the pharmacodynamic level, the data available so far indicate a similar glucose-lowering efficacy of DPP-4 inhibitors, either as monotherapy or in combination with other hypoglycaemic drugs, a similar weight-neutral effect, and a comparable safety and tolerability profile. Data on nonglycaemic parameters are scant at present and do not allow a comparison among DPP-4 inhibitors. Several phase III trials of DPP-4 inhibitors are currently ongoing; these trials, along with post-marketing surveillance data, will hopefully increase our knowledge about the long-term efficacy and safety of DPP-4 inhibitor therapy, the effect on pancreatic cell function and peripheral glucose metabolism, and the effect on cardiovascular outcomes in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Roberta Baetta
- Department of Pharmacological Sciences, University of Milan, Italy.
| | | |
Collapse
|
183
|
Gallwitz B. Linagliptin-a novel dipeptidyl peptidase inhibitor for type 2 diabetes therapy. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2012; 5:1-11. [PMID: 22879795 PMCID: PMC3411498 DOI: 10.4137/cmed.s7274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Incretin based therapies have been introduced into the treatment options of type 2 diabetes a few years ago. Among them, the orally active DPP-4 inhibitors have established themselves as insulinotropic agents. Their advantage is the glucose-dependent insulinotropic action without an intrinsic risk for causing hypoglycemia. Additionally DPP-4 inhibitors have a glucose dependent glucagonostatic action contributing to improved glucose control. They are weight neutral and show a good safety and tolerability profile with comparable efficacy to sulfonylureas. Linagliptin is a novel DPP-4 inhibitor with a distinct pharmacological profile. In contrast to the other approved DPP-4 inhibitors it is eliminated by a hepatic/biliary route rather than a renal route. Therefore no dose adjustment is recommended in patients with type 2 diabetes and renal impairment. In clinical studies, it has been shown to be non-inferior to sulfonylurea treatment regarding glycemic parameters, but to possess favourable safety advantages regarding hypoglycemia frequency, body weight development and effects on cardioavascular parameters. This article gives an overview on the pharmacology of linagliptin as well as on the clinical data available.
Collapse
Affiliation(s)
- Baptist Gallwitz
- Department of Medicine IV, Eberhard-Karls-University, Otfried-Müller Strasse 10, 72976 Tübingen, Germany
| |
Collapse
|
184
|
Aso Y, Ozeki N, Terasawa T, Naruse R, Hara K, Suetsugu M, Takebayashi K, Shibazaki M, Haruki K, Morita K, Inukai T. Serum level of soluble CD26/dipeptidyl peptidase-4 (DPP-4) predicts the response to sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes controlled inadequately by metformin and/or sulfonylurea. Transl Res 2012; 159:25-31. [PMID: 22153807 DOI: 10.1016/j.trsl.2011.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 02/09/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors is a new class of antihyperglycemic agents that is now available for the treatment of type 2 diabetes. We investigated the relationship between the baseline serum level of soluble CD 26/DPP-4 and the response to treatment with sitagliptin, a DPP-4 inhibitor, over 24 weeks in patients who had type 2 diabetes inadequately controlled by metformin and/or sulfonylurea therapy. We studied 52 consecutive patients with type 2 diabetes who had poor glycemic control despite treatment with metformin and/or sulfonylurea. All patients were given 50 mg/day of sitagliptin and were followed at monthly intervals for 24 weeks. Treatment with sitagliptin decreased significantly hemoglobin A1c (HbA1c) from 7.91 ± 1.08% at baseline to 6.96 ± 1.18% at 8 weeks, 7.04 ± 0.77% at 16 weeks, and 7.08 ± 0.80% at 24 weeks. The baseline serum level of sCD26 was correlated positively with HbA1c at both 16 weeks and 24 weeks. Furthermore, the serum sCD26 level at baseline was also correlated positively with the changes from baseline of HbA1c at 16 and 24 weeks (r = 0.318, P = 0.0296 and r = 0.516, P = 0.0003, respectively). In a multivariate logistic regression model that explained 56.1% (R(2) = 0.561) of the variation of the changes from baseline of HbA1c at 24 weeks, the baseline HbA1c (β = -0.638, P < 0.001) and serum sCD26 (β = 0.357, P = 0.041) were independent determinants of the change of HbA1c at 24 weeks. In conclusions, a higher serum level of sCD26 is associated with a worse response to sitagliptin in patients with type 2 diabetes controlled inadequately by metformin and/or sulfonylurea therapy.
Collapse
Affiliation(s)
- Yoshimasa Aso
- Department of Internal Medicine, Koshigaya Hospital, Dokkyo Medical University, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Adipose tissue plays a central role in body weight homeostasis, inflammation, and insulin resistance via serving as a fat-buffering system, regulating lipid storage and mobilization and releasing a large range of adipokines and cytokines. Adipose tissue is also the major inflammation-initiated site in obesity. Adipose-derived adipokines and cytokines are known to be involved in the modulation of a wide range of important physiological processes, particularly immune response, glucose and lipid homeostasis and insulin resistance. Adipose tissue dysfunction, characterized by an imbalanced secretion of pro- and anti-inflammatory adipokines and cytokines, decreased insulin-stimulated glucose uptake, dysregulation of lipid storage and release and mitochondrial dysfunction, has been linked to obesity and its associated metabolic disorders. Proteomic technology has been a powerful tool for identifying key components of the adipose proteome, which may contribute to the pathogenesis of adipose tissue dysfunction in obesity. In this review, we summarized the recent advances in the proteomic characterization of adipose tissue and discussed the identified proteins that potentially play important roles in insulin resistance and lipid homeostasis.
Collapse
|
186
|
Marchetti C, Di Carlo A, Facchiano F, Senatore C, De Cristofaro R, Luzi A, Federici M, Romani M, Napolitano M, Capogrossi MC, Germani A. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia 2012; 55:236-44. [PMID: 21656024 DOI: 10.1007/s00125-011-2213-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/16/2011] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS High mobility group box 1 (HMGB1) is a cytokine with a key role in tissue regeneration and angiogenesis. Previous studies have shown that topical application of HMGB1 to skin wounds of mouse models of diabetes enhanced vessel density and accelerated wound healing, suggesting that diabetes may affect endogenous HMGB1 functions. Dipeptidyl peptidase IV (DPP-IV/CD26) is a protease whose activity is increased in diabetes and whose inhibition improves glucose tolerance. Since HMGB1 contains potential DPP-IV cleavage sites, we determined whether HMGB1 may be a substrate for DPP-IV and whether DPP-IV-mediated cleavage may alter the biological activity of HMGB1. METHODS Reversed phase HPLC, mass spectrometry and western blot analyses were performed to analyse and identify HMGB1 peptides generated following DPP-IV digestion. HMGB1 angiogenic functions in the presence of DPP-IV were evaluated in vitro and in vivo. HMGB1 protein was detected in the serum of type 2 diabetic patients before and after treatment with DPP-IV inhibitors. RESULTS DPP-IV cleaved HMGB1 at its N-terminal region and affected its angiogenic functions. Specifically, DPP-IV inhibited HMGB1-induced endothelial cell migration and capillary-like structure formation, as well as HMGB1-mediated vascular network formation in Matrigel implants in mice. We had previously found that HMGB1 promoted endothelial cell migration through activation of extracellular regulated kinase signalling pathway. Here we showed that such an effect was abolished in the presence of DPP-IV. Finally, the N-terminal truncated form of HMGB1 was detected in the serum of type 2 diabetic patients, in whom DPP-IV inhibitors enhanced the levels of full-length HMGB1. CONCLUSIONS/INTERPRETATION DPP-IV cleaves HMGB1 and, via this mechanism, inhibits HMGB1 angiogenic activity. Treatment with DPP-IV inhibitors may enhance HMGB1 activity in diabetic patients, thereby improving angiogenesis in this condition.
Collapse
Affiliation(s)
- C Marchetti
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Yazbeck R, Howarth GS, Butler RN, Geier MS, Abbott CA. Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol 2011; 226:3219-3224. [PMID: 21351101 DOI: 10.1002/jcp.22682] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dextran sulfate sodium (DSS) model of colitis has been commonly utilized in mice to assess novel treatments for ulcerative colitis. Recent studies have indicated that morphological and biochemical changes extend to the small intestine (SI). This study aimed to characterize histological and biochemical changes in the SI during DSS colitis in wild-type (WT) and DPIV knock-out (DPIV(-/-) ) mice treated with saline or the DPIV inhibitors, Ile-Pyrr-(2-CN)*TFA or Ile-Thia. Groups (n = 10) of DPIV(-/-) and WT mice were orally gavaged twice daily with saline, Ile-Pyrr-(2-CN)*TFA or Ile-Thia. Mice consumed 2% DSS in drinking water for 6 days to induce colitis. Small intestinal tissue was assessed for histological changes, sucrase, and DPIV activity and neutrophil infiltration. Jejunal villus length was increased in all groups after 6 days DSS consumption (P < 0.05). Jejunal DPIV activity was significantly lower by 35% in WT mice receiving Ile-Pyrr-(2-CN)*TFA compared to saline controls. Jejunal MPO activity was significantly increased in the WT + saline and DPIV(-/-) + saline groups following DSS consumption, compared to WT and DPIV(-/-) controls at day 0. Increased sucrase activity was apparent at day 0 in DPIV(-/-) compared to WT mice (P < 0.05). We conclude that DSS-induced damage is not restricted to the colon, but also extends to the small intestine. Furthermore, reduced or absent DPIV activity resulted in functional adaptations to brush border enzyme activity. DPIV inhibitors are now a recognized therapy for type-II diabetes. The work presented here highlights the need to delineate any long-term effects of DPIV inhibitors on SI function, to further validate their safety and tolerability.
Collapse
Affiliation(s)
- Roger Yazbeck
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
188
|
Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, Xu X, Lu B, Moffatt-Bruce S, Durairaj R, Sun Q, Mihai G, Maiseyeu A, Rajagopalan S. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011; 124:2338-2349. [PMID: 22007077 PMCID: PMC4224594 DOI: 10.1161/circulationaha.111.041418] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dipeptidyl-peptidase 4 (DPP-4) inhibitors are increasingly used to accomplish glycemic targets in patients with type II diabetes mellitus. Because DPP-4 is expressed in inflammatory cells, we hypothesized that its inhibition will exert favorable effects in atherosclerosis. METHODS AND RESULTS Male LDLR(-/-) mice (6 weeks) were fed a high-fat diet or normal chow diet for 4 weeks and then randomized to vehicle or alogliptin, a high-affinity DPP-4 inhibitor (40 mg · kg(-1) · d(-1)), for 12 weeks. Metabolic parameters, blood pressure, vascular function, atherosclerosis burden, and indexes of inflammation were obtained in target tissues, including the vasculature, adipose, and bone marrow, with assessment of global and cell-specific inflammatory pathways. In vitro and in vivo assays of DPP-4 inhibition (DPP-4i) on monocyte activation/migration were conducted in both human and murine cells and in a short-term ApoE(-/-) mouse model. DPP-4i improved markers of insulin resistance and reduced blood pressure. DPP-4i reduced visceral adipose tissue macrophage content (adipose tissue macrophages; CD11b(+), CD11c(+), Ly6C(hi)) concomitant with upregulation of CD163. DPP-4 was highly expressed in bone marrow-derived CD11b(+) cells, with DPP-4i downregulating proinflammatory genes in these cells. DPP-4i decreased aortic plaque with a striking reduction in plaque macrophages. DPP-4i prevented monocyte migration and actin polymerization in in vitro assays via Rac-dependent mechanisms and prevented in vivo migration of labeled monocytes to the aorta in response to exogenous tumor necrosis factor-α and DPP-4. CONCLUSION DPP-4i exerts antiatherosclerotic effects and reduces inflammation via inhibition of monocyte activation/chemotaxis. These findings have important implications for the use of this class of drugs in atherosclerosis.
Collapse
Affiliation(s)
- Zubair Shah
- Davis Heart & Lung Research Institute, 473 W 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Mendieta L, Tarrago T, Giralt E. Recent patents of dipeptidyl peptidase IV inhibitors. Expert Opin Ther Pat 2011; 21:1693-741. [DOI: 10.1517/13543776.2011.627325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
190
|
Suen CS, Burn P. The potential of incretin-based therapies in type 1 diabetes. Drug Discov Today 2011; 17:89-95. [PMID: 21920456 DOI: 10.1016/j.drudis.2011.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 02/07/2023]
Abstract
Finding a cure for type 1 diabetes (T1D) has been elusive. Incretin-based therapies, since their approval, have demonstrated their clinical utilities in type 2 diabetes (T2D). Yet, their potential clinical benefits in T1D remain to be appraised. GLP-1, in addition to its insulinotropic action in alleviating hyperglycemia, possesses beneficial effects in protecting progressive impairment of pancreatic β-cell function, preservation of β-cell mass and suppression of glucagon secretion, gastric emptying and appetite. Preclinical data using incretin-based therapies in diabetic NOD mice demonstrated additional effects including immuno-modulation, anti-inflammation and β-cell regeneration. Thus, data accumulated hold the promise that incretin-based therapies may be effective in delaying the new-onset, halting the further progression, or reversing T1D in subjects with newly diagnosed or long-standing, established disease.
Collapse
Affiliation(s)
- Chen S Suen
- The Sanford Project, Sanford Research, Sanford Health and Department of Pediatrics, Sanford School of Medicine of The University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | | |
Collapse
|
191
|
Van Goethem S, Matheeussen V, Joossens J, Lambeir AM, Chen X, De Meester I, Haemers A, Augustyns K, Van der Veken P. Structure-activity relationship studies on isoindoline inhibitors of dipeptidyl peptidases 8 and 9 (DPP8, DPP9): is DPP8-selectivity an attainable goal? J Med Chem 2011; 54:5737-46. [PMID: 21711053 DOI: 10.1021/jm200383j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work represents the first directed study to identify modification points in the topology of a representative DPP8/9-inhibitor, capable of rendering selectivity for DPP8 over DPP9. The availability of a DPP8-selective compound would be highly instrumental for studying and untwining the biological roles of DPP8 and DPP9 and for the disambiguation of biological effects of nonselective DPP-inhibitors that have mainly been ascribed to blocking of DPPIV's action. The cell-permeable DPP8/9-inhibitor 7 was selected as a lead and dissected into several substructures that were modified separately for evaluating their potential to contribute to selectivity. The obtained results, together with earlier work from our group, clearly narrow down the most probable DPP8-selectivity imparting modification points in DPP8/9 inhibitors to parts of space that are topologically equivalent to the piperazine ring system in 7. This information can be considered of high value for future design of compounds with maximal DPP8 selectivity.
Collapse
Affiliation(s)
- Sebastiaan Van Goethem
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Nader MA. Inhibition of anaphylaxis like reaction and mast cell activation by Sitagliptin. Int Immunopharmacol 2011; 11:1052-6. [DOI: 10.1016/j.intimp.2011.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 02/07/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
|
193
|
Erić-Nikolić A, Matić IZ, Dorđević M, Milovanović Z, Marković I, Džodić R, Inić M, Srdić-Rajić T, Jevrić M, Gavrilović D, Cordero OJ, Juranić ZD. Serum DPPIV activity and CD26 expression on lymphocytes in patients with benign or malignant breast tumors. Immunobiology 2011; 216:942-6. [PMID: 21281985 DOI: 10.1016/j.imbio.2011.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
The aim of this work was to determine serum DPPIV activity as well as the percentage of CD26+ white blood cells and of CD26+ lymphocytes and the mean fluorescence intensity (MFI) of CD26 expression on lymphocytes in groups of patients with benign or malignant breast tumors and in healthy control people. Serum DPPIV activity was determined by colorimetric test, while CD26+ cells were counted using flow cytometer. Results of this study show that there is no statistically significant difference in serum DPPIV activity between examined groups of patients and healthy controls. However, two times higher frequency of patients with breast cancers had the enhanced DPPIV enzymatic activity in comparison to controls. Significant decrease in the percentage of CD26+ total white blood cells was found in the group of breast cancer patients and in patients with benign breast tumors compared to that found for healthy people. Although there was decrease in the percentage of lymphocytes in patients with breast tumors it was not statistically significant. The MFI of CD26 expression on these cells was significantly lower for cancer patients in comparison to healthy controls. In conclusion, this work showed the enhanced frequency of breast cancer patients with higher serum DPPIV activity. Decreased percentage of CD26+ white blood cells and decreased CD26 expression on lymphocytes are also characteristics of this group of patients. Determination of the clinical outcome of analyzed patients, 1 and 2 years after the surgical resection of the tumor, would clarify potential prognostic values of examined parameters for breast cancer.
Collapse
|
194
|
Kania DS, Gonzalvo JD, Weber ZA. Saxagliptin: A Clinical Review in the Treatment of Type 2 Diabetes Mellitus. Clin Ther 2011; 33:1005-22. [DOI: 10.1016/j.clinthera.2011.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2011] [Indexed: 12/24/2022]
|
195
|
Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Müller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 2011; 60:1917-25. [PMID: 21593202 PMCID: PMC3121429 DOI: 10.2337/db10-1707] [Citation(s) in RCA: 457] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Comprehensive proteomic profiling of the human adipocyte secretome identified dipeptidyl peptidase 4 (DPP4) as a novel adipokine. This study assessed the functional implications of the adipokine DPP4 and its association to the metabolic syndrome. RESEARCH DESIGN AND METHODS Human adipocytes and skeletal and smooth muscle cells were used to monitor DPP4 release and assess the effects of soluble DPP4 on insulin signaling. In lean and obese subjects, depot-specific expression of DPP4 and its release from adipose tissue explants were determined and correlated to parameters of the metabolic syndrome. RESULTS Fully differentiated adipocytes exhibit a substantially higher release of DPP4 compared with preadipocytes or macrophages. Direct addition of DPP4 to fat and skeletal and smooth muscle cells impairs insulin signaling. A fivefold higher level of DPP4 protein expression was seen in visceral compared with subcutaneous fat of obese patients, with no regional difference in lean subjects. DPP4 serum concentrations significantly correlated with adipocyte size. By using adipose tissue explants from lean and obese subjects, we observed a twofold increase in DPP4 release that strongly correlated with adipocyte volume and parameters of the metabolic syndrome and was decreased to the lean level after weight reduction. DPP4 released from adipose tissue correlated positively with an increasing risk score for the metabolic syndrome. CONCLUSIONS DPP4 is a novel adipokine that may impair insulin sensitivity in an autocrine and paracrine fashion. Furthermore, DPP4 release strongly correlates with adipocyte size, potentially representing an important source of DPP4 in obesity. Therefore, we suggest that DPP4 may be involved in linking adipose tissue and the metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Lamers
- Paul-Langerhans-Group, German Diabetes Center, Duesseldorf, Germany
| | - Susanne Famulla
- Paul-Langerhans-Group, German Diabetes Center, Duesseldorf, Germany
| | - Nina Wronkowitz
- Paul-Langerhans-Group, German Diabetes Center, Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group, German Diabetes Center, Duesseldorf, Germany
| | - Jean M. Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Mikael Ryden
- Department of Medicine, Karolinska Institute at Karolinska Hospital, Stockholm, Sweden
| | - Stefan Müller
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Johannes Ruige
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Peter Arner
- Department of Medicine, Karolinska Institute at Karolinska Hospital, Stockholm, Sweden
| | - Henrike Sell
- Paul-Langerhans-Group, German Diabetes Center, Duesseldorf, Germany
| | - Juergen Eckel
- Paul-Langerhans-Group, German Diabetes Center, Duesseldorf, Germany
- Corresponding author: Juergen Eckel,
| |
Collapse
|
196
|
Abstract
CD26 is a 110-kDa surface glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity that is expressed on various cell types and has many biological functions. An important aspect of CD26 biology is its peptidase activity and its functional and physical association with molecules with key roles in human immunological programs. CD26 role in immune regulation has been extensively characterized, with recent findings elucidating its link age with signaling pathways and structures involved in T cell activation a well as antigen-presenting cell-T cell interaction, being a marker of diseas behavior clinically as well as playing an important role in autoimmune pathogenesis and development. Through the use of various experimental approaches and agents to influence CD26/DPPIV expression and activity, such as anti-CD26 antibodies, CD26/DPPIV chemical inhibitors, siRNAs to inhibit CD26 expression, overexpressing CD26 transfectants, soluble CD26 molecules and proteomic approach, we have shown that CD26 interacts with structures with essential cellular functions in T cell responses. We will review emerging data that suggest CD26 may be an appropriate therapeutic target for the treatment of selected immune disorders.
Collapse
Affiliation(s)
- Kei Ohnuma
- Division of Rheumatology and Allergy, Research Hospital, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
197
|
Reinhold D, Bank U, Entz D, Goihl A, Stoye D, Wrenger S, Brocke S, Thielitz A, Stefin S, Nordhoff K, Heimburg A, Täger M, Ansorge S. PETIR-001, a dual inhibitor of dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN), ameliorates experimental autoimmune encephalomyelitis in SJL/J mice. Biol Chem 2011; 392:233-7. [PMID: 21194377 DOI: 10.1515/bc.2011.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular dipeptidyl peptidase IV (DP IV, CD26) and amino-peptidase N (APN, CD13) play regulatory roles in T cell activation and represent potential targets for treatment of inflammatory disorders. We have developed a novel therapeutic strategy, 'peptidase-targeted Immunoregulation' (PETIR™), which simultaneously targets both cellular DP IV and APN via selective binding sites different from the active sites with a single inhibitor. To prove the therapeutic concept of PETIR™ in autoimmunity of the central nervous system (CNS), we evaluated the effect of a single substance, PETIR-001, in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in SJL/J mice. Administration of PETIR-001 significantly delayed and decreased clinical signs of active EAE, when given in a therapeutic manner intraperitoneally from day 15 to day 24 after induction of EAE. Both the acute phase and the first relapse of EAE were markedly inhibited. Importantly, a similar therapeutic benefit was obtained after oral administration of PETIR-001 from day 12 to day 21 after disease induction. Our results demonstrate that PETIR-001 exhibits a therapeutic effect on EAE in SJL/J mice. Thus, PETIR™ represents a novel and efficient therapeutic approach for immunotherapy of CNS inflammation.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Pascual I, Gómez H, Pons T, Chappé M, Vargas MA, Valdés G, Lopéz A, Saroyán A, Charli JL, de los Angeles Chávez M. Effect of divalent cations on the porcine kidney cortex membrane-bound form of dipeptidyl peptidase IV. Int J Biochem Cell Biol 2010; 43:363-71. [PMID: 21093607 DOI: 10.1016/j.biocel.2010.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 11/28/2022]
Abstract
Dipeptidyl peptidase IV is an ectopeptidase with multiple physiological roles including the degradation of incretins, and a target of therapies for type 2 diabetes mellitus. Divalent cations can inhibit its activity, but there has been little effort to understand how they act. The intact membrane-bound form of porcine kidney dipeptidyl peptidase IV was purified by a simple and fast procedure. The purified enzyme hydrolyzed Gly-Pro-p-nitroanilide with an average V(max) of 1.397±0.003 μmol min(-1) mL(-1), k(cat) of 145.0±1.2 s(-1), K(M) of 0.138±0.005 mM and k(cat)/K(M) of 1050 mM(-1) s(-1). The enzyme was inhibited by bacitracin, tosyl-L-lysine chloromethyl ketone, and by the dipeptidyl peptidase IV family inhibitor L-threo-Ile-thiazolidide (K(i) 70 nM). The enzyme was inhibited by the divalent ions Ca(2+), Co(2+), Cd(2+), Hg(2+) and Zn(2+), following kinetic mechanisms of mixed inhibition, with K(i) values of 2.04×10(-1), 2.28×10(-2), 4.21×10(-4), 8.00×10(-5) and 2.95×10(-5) M, respectively. According to bioinformatic tools, Ca(2+) ions preferentially bound to the β-propeller domain of the porcine enzyme, while Zn(2+) ions to the α-β hydrolase domain; the binding sites were strikingly conserved in the human enzyme and other homologues. The functional characterization indicates that porcine and human homologues have very similar functional properties. Knowledge about the mechanisms of action of divalent cations may facilitate the design of new inhibitors.
Collapse
Affiliation(s)
- Isel Pascual
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de la Habana, Calle 25 No. 455, Vedado, La Habana 10400, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Gerich J. DPP-4 inhibitors: what may be the clinical differentiators? Diabetes Res Clin Pract 2010; 90:131-40. [PMID: 20708812 DOI: 10.1016/j.diabres.2010.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 01/09/2023]
Abstract
Attenuation of the prandial incretin effect, mediated by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), contributes to hyperglycemia in type 2 diabetes mellitus (T2DM). Since the launch of sitagliptin in 2006, a compelling body of evidence has accumulated showing that dipeptidyl peptidase-4 (DPP-4) inhibitors, which augment endogenous GLP-1 and GIP levels, represent an important advance in the management of T2DM. Currently, three DPP-4 inhibitors - sitagliptin, vildagliptin and saxagliptin - have been approved in various countries worldwide. Several other DPP-4 inhibitors, including linagliptin and alogliptin, are currently in clinical development. As understanding of, and experience with, the growing number of DPP-4 inhibitors broadens, increasing evidence suggests that the class may offer advantages over other antidiabetic drugs in particular patient populations. The expanding evidence base also suggests that certain differences between DPP-4 inhibitors may prove to be clinically significant. This therapeutic diversity should help clinicians tailor treatment to the individual patient, thereby increasing the proportion that safely attain target HbA(1c) levels, and reducing morbidity and mortality. This review offers an overview of DPP-4 inhibitors in T2DM and suggests some characteristics that may provide clinically relevant differentiators within this class.
Collapse
Affiliation(s)
- John Gerich
- University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
200
|
Jin NS, Dong Z, Fu JM, Zeng FX. DPP-4 inhibitors and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2010; 18:3215-3219. [DOI: 10.11569/wcjd.v18.i30.3215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, debilitating disease associated with severe damage to the intestinal mucosa whose etiology is still unknown. The two most common forms of IBD are ulcerative colitis (UC) and Crohn's disease (CD). DPP-4 inhibitors are a new class of agents developed for treatment of diabetes. However, recent studies have indicated that DPP-4 inhibitors have therapeutic effects against IBD in animal models. This may provide a new avenue to cure IBD.
Collapse
|