151
|
Wang DD, Wu F, Wen M, Ding L, Du L, Xue CH, Xu J, Wang YM. Replenishment of Docosahexaenoic Acid (DHA) in Dietary n-3-Deficient Mice Fed DHA in Triglycerides or Phosphatidylcholines After Weaning. J Food Sci 2018; 83:481-488. [PMID: 29337366 DOI: 10.1111/1750-3841.14017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/19/2017] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that DHA in triglyceride (TG) and phosphatidylcholine (PC) forms are different in their bioavailability. The aim of this study was to investigate the comparative effects of DHA-TG and DHA-PC on tissue DHA accretion in dietary n-3 polyunsaturated fatty acid deficient (n-3 Def) mice. The mice were fed with n-3 Def diet containing DHA-TG or DHA-PC (5 g/kg diet) for 2, 4, 7, or 14 d after weaning, respectively. The DHA levels in the cortex, liver, testis, and erythrocytes were analyzed by gas chromatography. For liver, DHA mainly existed in hepatic phospholipids relative to triglycerides. Both DHA-TG and DHA-PC could recover the hepatic DHA to a normal level. Interestingly, DHA-TG was more effective in increasing the DHA level in hepatic triglycerides, and DHA-PC was more effective in increasing the DHA level in hepatic phospholipids. For erythrocytes, during the first 7 d, no difference was observed after dietary DHA-TG and DHA-PC but a significantly higher DHA percentage was detected in the DHA-PC group after 14 d. For cortex, the DHA-TG group showed a higher cortical DHA level at the 4th day, but the DHA-PC group showed a higher cortical DHA level with a greater slope from Day 7 to Day 14, and the same trend was observed in testis. But unexpectedly, the DHA level in testis showed a downtrend from Day 7 to Day 14. This study suggests that, under dietary n-3-deficient condition, both DHA-TG and DHA-PC could recover the DHA level in tissues after weaning, and DHA-PC showed a better supplemental effect. PRACTICAL APPLICATION Dietary DHA is essential for neurodevelopment which is usually accompanied by large amounts of DHA accretion in the brain. Our present study showed that DHA-PC had a better efficiency for DHA accretion in the brain and other tissues compared with DHA-TG. The findings are supposed to pave the way for the DHA in phospholipids as a novel nutrient added into the infant formula and assisted food for neurodevelopment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Fang Wu
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Min Wen
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Lei Du
- Faculty of Fisheries Sciences, Hokkaido Univ., 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| |
Collapse
|
152
|
Fetal DHA inadequacy and the impact on child neurodevelopment: a follow-up of a randomised trial of maternal DHA supplementation in pregnancy. Br J Nutr 2018; 119:271-279. [PMID: 29316994 DOI: 10.1017/s0007114517003531] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DHA is an important component of neural lipids accumulating in neural tissue during development. Inadequate DHA in gestation may compromise infant development, but it is unknown whether there are lasting effects. We sought to determine whether the observed effects of fetal DHA inadequacy on infant development persist into early childhood. This follow-up study assessed children (5-6 years) whose mothers received 400 mg/d DHA or a placebo during pregnancy. Child neurodevelopment was assessed with several age-appropriate tests including the Kaufman Assessment Battery for Children. A risk-reduction model was used whereby the odds that a child from the maternal placebo group would fail to achieve a test score in the top quartile was calculated. The association of maternal DHA intake and status in gestation with child test scores, as well as with child DHA intake and status, was also determined. No differences were detected in children (n 98) from the maternal placebo and DHA groups achieving a high neurodevelopment test score (P>0·05). However, maternal DHA status was positively related to child performance on some tests including language and short-term memory. Furthermore, child DHA intake and status were related to the mother's intake and status in gestation. The neurodevelopment effects of fetal DHA inadequacy may have been lost or masked by other variables in the children. Although we provide evidence that maternal DHA status is related to child cognitive performance, the association of maternal and child DHA intake and status limits the interpretation of whether DHA before or after birth is important.
Collapse
|
153
|
Lien EL, Richard C, Hoffman DR. DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins Leukot Essent Fatty Acids 2018; 128:26-40. [PMID: 29413359 DOI: 10.1016/j.plefa.2017.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are present in breast milk and play important roles in early infant development. A supply of these fatty acids in infant formula (typically following breast milk as a model with ARA > DHA) is thought to be important since endogenous synthesis is insufficient to maintain tissue levels equivalent to breast-fed infants. Intervention studies assessing the impact of DHA- and ARA-supplemented formulas have resulted in numerous positive developmental outcomes (closer to breast-fed infants) including measures of specific cognition functions, visual acuity, and immune responses. A critical analysis of outcome assessment tools reveals the essentiality of selecting appropriate, focused techniques in order to provide accurate evaluation of DHA- and ARA-supplemented formulas. Future research directions should encompass in-depth assessment of specific cognitive outcomes, immune function, and disease incidence, as well as sources of experimental variability such as the status of fatty acid desaturase polymorphisms.
Collapse
Affiliation(s)
- E L Lien
- Department of Food Science and Human Nutrition, University of Illinois, 905S. Goodwin Ave., Urbana, IL 61801, USA.
| | - C Richard
- Department of Agricultural Food and Nutritional Science, 4-002G Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - D R Hoffman
- Retina Foundation of the Southwest, 9600 North. Central Expressway, Dallas, TX 75231, USA
| |
Collapse
|
154
|
Beharry KD, Cai CL, Valencia GB, Lazzaro D, Valencia AM, Salomone F, Aranda JV. Human retinal endothelial cells and astrocytes cultured on 3-D scaffolds for ocular drug discovery and development. Prostaglandins Other Lipid Mediat 2018; 134:93-107. [PMID: 28923362 PMCID: PMC5803320 DOI: 10.1016/j.prostaglandins.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
Topical ocular ketorolac improves the outcomes of severe retinopathy of prematurity and when administered with systemic caffeine, decreases the severity of oxygen-induced retinopathy. We tested the hypothesis that co-cultures of human retinal endothelial cells (HRECs) and human retinal astrocytes (HRAs) on 3-dimensional (3-D) hydrogel scaffolds is a more representative biomimetic paradigm of the blood-retinal-barrier (BRB) than 2-D cultures, and should be utilized for preclinical drug discovery and development. Mono- and co-cultures of HRECs and HRAs were treated with standard doses of ketorolac, ibuprofen, and/or caffeine, and exposed to hyperoxia, intermittent hypoxia (IH), or normoxia on 2-D surfaces or 3-D biodegradable hydrogel scaffolds (AlgiMatrix or Geltrex). Media and cells were collected at 72h post treatment for arachidonic acid metabolites. Cells cultured on 3-D scaffolds exhibited less oxidative stress and variability in drug responses. HRAs enhanced the responses of HRECs to drugs and changes in oxygen environment. PGE2 and PGI2 were the predominant prostanoids produced in response to IH, reflecting COX-2 immunoreactivity. We conclude that HRECs and HRAs co-cultured on 3-D scaffolds may recapitulate drug responses of the dynamic BRB and therefore should be implemented for preclinical ocular drug discovery and development.
Collapse
Affiliation(s)
- Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA.
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Douglas Lazzaro
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA
| | | | | | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA
| |
Collapse
|
155
|
The Relationship Between Breastfeeding Duration and Preschooler Problem Behavior:
The Mediating Role of Cognitive Development. ADONGHAKOEJI 2017. [DOI: 10.5723/kjcs.2017.38.6.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
156
|
Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, Crippa A, Mazzocchi A, Altamura CA, Brambilla P. The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD. Int J Mol Sci 2017; 18:E2608. [PMID: 29207548 PMCID: PMC5751211 DOI: 10.3390/ijms18122608] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022] Open
Abstract
In this systematic review, we will consider and debate studies that have explored the effects of ω-3 polyunsaturated fatty acids (PUFAs) in three major, and somehow related, developmental psychiatric disorders: Autism, Attention Deficit and Hyperactivity disorder and Psychosis. The impact of ω-3 PUFAs on clinical symptoms and, if possible, brain trajectory in children and adolescents suffering from these illnesses will be reviewed and discussed, considering the biological plausibility of the effects of omega-3 fatty acids, together with their potential perspectives in the field. Heterogeneity in study designs will be discussed in the light of differences in results and interpretation of studies carried out so far.
Collapse
Affiliation(s)
- Carlo Agostoni
- Pediatric Intermediate Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
- SIGENP (Italian Society of Pediatric Gastroenterology, Hepatology, and Nutrition), via Libero Temolo 4 (Torre U8), 20126 Milan, Italy.
| | - Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy.
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
| | - Alessandra Tesei
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy.
| | - Stefano Turolo
- Pediatric Nephrology & Dialysis, Milano Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
| | - Alessandro Crippa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy.
| | - Alessandra Mazzocchi
- Pediatric Intermediate Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
| | - Carlo A Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
- Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, 77021 TX, USA.
| |
Collapse
|
157
|
Role of DHA, ARA, & phospholipids in brain development: An Indian perspective. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2017. [DOI: 10.1016/j.cegh.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
158
|
Iannotti LL, Lutter CK, Waters WF, Gallegos Riofrío CA, Malo C, Reinhart G, Palacios A, Karp C, Chapnick M, Cox K, Aguirre S, Narvaez L, López F, Sidhu R, Kell P, Jiang X, Fujiwara H, Ory DS, Young R, Stewart CP. Eggs early in complementary feeding increase choline pathway biomarkers and DHA: a randomized controlled trial in Ecuador. Am J Clin Nutr 2017; 106:1482-1489. [PMID: 29092879 PMCID: PMC5698841 DOI: 10.3945/ajcn.117.160515] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Choline status has been associated with stunting among young children. Findings from this study showed that an egg intervention improved linear growth by a length-for-age z score of 0.63.Objective: We aimed to test the efficacy of eggs introduced early in complementary feeding on plasma concentrations of biomarkers in choline pathways, vitamins B-12 and A, and essential fatty acids.Design: A randomized controlled trial, the Lulun ("egg" in Kichwa) Project, was conducted in a rural indigenous population of Ecuador. Infants aged 6-9 mo were randomly assigned to treatment (1 egg/d for 6 mo; n = 80) and control (no intervention; n = 83) groups. Socioeconomic data, anthropometric measures, and blood samples were collected at baseline and endline. Household visits were made weekly for morbidity surveillance. We tested vitamin B-12 plasma concentrations by using chemiluminescent competitive immunoassay and plasma concentrations of choline, betaine, dimethylglycine, retinol, essential fatty acids, methionine, dimethylamine (DMA), trimethylamine, and trimethylamine-N-oxide (TMAO) with the use of liquid chromatography-tandem mass spectrometry.Results: Socioeconomic factors and biomarker concentrations were comparable at baseline. Of infants, 11.4% were vitamin B-12 deficient and 31.7% marginally deficient at baseline. In adjusted generalized linear regression modeling, the egg intervention increased plasma concentrations compared with control by the following effect sizes: choline, 0.35 (95% CI: 0.12, 0.57); betaine, 0.29 (95% CI: 0.01, 0.58); methionine, 0.31 (95% CI: 0.03, 0.60); docosahexaenoic acid, 0.43 (95% CI: 0.13, 0.73); DMA, 0.37 (95% CI: 0.37, 0.69); and TMAO, 0.33 (95% CI: 0.08, 0.58). No significant group differences were found for vitamin B-12, retinol, linoleic acid (LA), α-linolenic acid (ALA), or ratios of betaine to choline and LA to ALA.Conclusion: The findings supported our hypothesis that early introduction of eggs significantly improved choline and other markers in its methyl group metabolism pathway. This trial was registered at clinicaltrials.gov as NCT02446873.
Collapse
Affiliation(s)
| | - Chessa K Lutter
- School of Public Health, University of Maryland, College Park, MD;,RTI International, Research Triangle Park, NC
| | - William F Waters
- Institute for Research in Health and Nutrition, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos Andres Gallegos Riofrío
- Brown School, Institute for Public Health, and,Institute for Research in Health and Nutrition, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carla Malo
- Institute for Research in Health and Nutrition, Universidad San Francisco de Quito, Quito, Ecuador
| | - Gregory Reinhart
- The Mathile Institute for the Advancement of Human Nutrition, Dayton, OH
| | - Ana Palacios
- The Mathile Institute for the Advancement of Human Nutrition, Dayton, OH;,Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX
| | - Celia Karp
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | | | | | - Luis Narvaez
- NETLAB Laboratorios Especializados, Quito, Ecuador; and
| | | | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Pamela Kell
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Rebecca Young
- Department of Nutrition, University of California, Davis, Davis, CA
| | | |
Collapse
|
159
|
Michels KA, Ghassabian A, Mumford SL, Sundaram R, Bell EM, Bello SC, Yeung EH. Breastfeeding and motor development in term and preterm infants in a longitudinal US cohort. Am J Clin Nutr 2017; 106:1456-1462. [PMID: 29092884 PMCID: PMC5698835 DOI: 10.3945/ajcn.116.144279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/05/2017] [Indexed: 12/21/2022] Open
Abstract
Background: The relation between breastfeeding and early motor development is difficult to characterize because of the problems in existing studies such as incomplete control for confounding, retrospective assessment of infant feeding, and even the assessment of some motor skills too early.Objective: We sought to estimate associations between infant feeding and time to achieve major motor milestones in a US cohort.Design: The Upstate New York Infant Development Screening Program (Upstate KIDS Study) enrolled mothers who delivered live births in New York (2008-2010). Mothers of 4270 infants (boys: 51.7%) reported infant motor development at 4, 8, 12, 18, and 24 mo postpartum; information on infant feeding was reported at 4 mo. Accelerated failure time models were used to compare times to standing or walking across feeding categories while adjusting for parental characteristics, daycare, region, and infant plurality, sex, rapid weight gain, and baseline neurodevelopmental test results. Main models were stratified by preterm birth status.Results: The prevalence of exclusive breastfeeding in preterm infants was lower than in term infants at 4 mo postpartum (8% compared with 19%). After adjustment for confounders, term infants who were fed solids in addition to breast milk at 4 mo postpartum achieved both standing [acceleration factor (AF): 0.93; 95% CI: 0.87, 0.99] and walking (AF: 0.93; 95% CI: 0.88, 0.98) 7% faster than did infants who were exclusively breastfed, but these findings did not remain statistically significant after correction for multiple testing. We did not identify feeding-associated differences in motor milestone achievement in preterm infants.Conclusion: Our results suggest that differences in feeding likely do not translate into large changes in motor development. The Upstate KIDS Study was registered at clinicaltrials.gov as NCT03106493.
Collapse
Affiliation(s)
- Kara A Michels
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Akhgar Ghassabian
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Sunni L Mumford
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rajeshwari Sundaram
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY; and
| | | | - Edwina H Yeung
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD;
| |
Collapse
|
160
|
Long-chain n-3 PUFA in vegetarian women: a metabolic perspective. J Nutr Sci 2017; 6:e58. [PMID: 29209497 PMCID: PMC5705809 DOI: 10.1017/jns.2017.62] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Vegetarian diets have been associated with health benefits, but paradoxically are low in EPA and DHA which are important for development, particularly of the central nervous system, and for health. Humans have limited capacity for synthesis of EPA and DHA from α-linolenic acid, although this is greater in women than men. Oily fish and, to a lesser extent, dairy foods and meat are the primary sources of EPA and DHA in the diet. Exclusion of these foods from the diet by vegetarians is associated consistently with lower EPA and DHA status in vegetarian women compared with omnivores. The purpose of the present review was to assess the impact of low EPA and DHA status in vegetarian pregnancies on the development and health of children. EPA and DHA status was lower in breast milk and in infants of vegetarian mothers than those born to omnivore mothers, which suggests that in the absence of pre-formed dietary EPA and DHA, synthesis from α-linolenic acid is an important process in determining maternal EPA and DHA status in pregnancy. However, there have been no studies that have investigated the effect of low maternal DHA status in vegetarians on cognitive function in children. It is important to address this gap in knowledge in order to be confident that vegetarian and vegan diets during pregnancy are safe in the context of child development.
Collapse
|
161
|
Gaitán AV, Drewery ML, Thaxton CA, Carabante KM, Seidemann E, Elkind-Hirsch K, Lammi-Keefe CJ. Dietary Intake and Omega-3 DHA Status in Pregnant Women Who Are Overweight. J Obstet Gynecol Neonatal Nurs 2017; 47:438-450. [PMID: 29040821 DOI: 10.1016/j.jogn.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To estimate dietary intake of pregnant women who are overweight, assess their omega-3 docosahexaenoic acid (DHA) status, and compare results between Black and White women. DESIGN Cross-sectional study with a longitudinal component (dietary assessment). SETTING Outpatient clinics at Woman's Hospital, Baton Rouge, Louisiana and telephone calls. PARTICIPANTS Pregnant women (N = 21) who were overweight (body mass index = 25.0-29.9 kg/m2). METHODS Repeated 24-hour dietary recalls using the University of Minnesota Nutrition Data System for Research were conducted to determine nutrient intakes. Red blood cell fatty acids were analyzed with gas chromatography to determine omega-3 DHA status. Descriptive statistics, one- and two-sample t tests, Fisher's exact tests, chi-square test, and analysis of covariance were used to analyze data. RESULTS On average, participants consumed 72 ± 63 mg omega-3 DHA/day. Age, race, and socioeconomic status did not affect the probability of achieving recommended omega-3 DHA dietary intake (p > .05). Black women had lower omega-3 DHA status (7.98 ± 0.94 weight percentage) than White women (9.29 ± 1.68 weight percentage; p ≤ .05). CONCLUSION Analysis of our data suggests a need for nutrition education regarding the benefits of omega-3 DHA consumption during pregnancy for women of childbearing age. The current finding warrants further exploration.
Collapse
|
162
|
Meldrum SJ, Li Y, Zhang G, Heaton AEM, D’Vaz N, Manz J, Reischl E, Koletzko BV, Prescott SL, Simmer K. Can polymorphisms in the fatty acid desaturase (FADS) gene cluster alter the effects of fish oil supplementation on plasma and erythrocyte fatty acid profiles? An exploratory study. Eur J Nutr 2017; 57:2583-2594. [DOI: 10.1007/s00394-017-1529-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
|
163
|
Alashmali SM, Kitson AP, Lin L, Lacombe RJS, Bazinet RP. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus. Nutr Neurosci 2017; 22:223-234. [PMID: 28903622 DOI: 10.1080/1028415x.2017.1372160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compared to offspring (starting from post-weaning) affect the levels of n-6 and n-3 fatty acids in phospholipids (PL) and lipid mediators in the hippocampus of mice. METHODS Pregnant mice were randomly assigned to consume either a deprived or an adequate n-6 PUFA diet during pregnancy and lactation (maternal exposure). On postnatal day (PND) 21, half of the male pups were weaned onto the same diet as their dams, and the other half were switched to the other diet for 9 weeks (offspring exposure). At PND 84, upon head-focused high-energy microwave irradiation, hippocampi were collected for PL fatty acid and lipid mediator analyses. RESULTS Arachidonic acid (ARA) concentrations were significantly decreased in both total PL and PL fractions, while eicosapentaenoic acid (EPA) concentrations were increased only in PL fractions upon n-6 PUFA deprivation of offspring, regardless of maternal exposure. Several ARA-derived eicosanoids were reduced, while some of the EPA-derived eicosanoids were elevated by n-6 PUFA deprivation in offspring. There was no effect of diet on docosahexaenoic acid (DHA) or DHA-derived docosanoids concentrations under either maternal or offspring exposure. DISCUSSION These results indicate that the maternal exposure to dietary n-6 PUFA may not be as important as the offspring exposure in regulating hippocampal ARA and some lipid mediators. Results from this study will be helpful in the design of experiments aimed at testing the significance of altering brain ARA levels over different stages of life.
Collapse
Affiliation(s)
- Shoug M Alashmali
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Alex P Kitson
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Lin Lin
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - R J Scott Lacombe
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Richard P Bazinet
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| |
Collapse
|
164
|
Cardoso C, Afonso C, Bandarra NM. Dietary DHA, bioaccessibility, and neurobehavioral development in children. Crit Rev Food Sci Nutr 2017; 58:2617-2631. [PMID: 28665691 DOI: 10.1080/10408398.2017.1338245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA) is a key nutritional n-3 polyunsaturated fatty acid and needs to be supplied by the human diet. High levels of DHA intake appear to reduce the risk of depression, bipolar disorder, and mood disorders. On the basis of these connections between DHA and neurological health, this paper reviews what is currently known about DHA and children neurodevelopment as well as the benefits of DHA intake to prevention of autism and behavior disorders through a selective and representative revision of different papers ranging from pure observational studies to randomized controlled trials (RCTs). This review also highlights the issue of DHA bioaccessibility and its implications to the performance of studies. As main conclusions, it can be mentioned that high DHA intake may prevent autism disorder. However, more studies are required to strengthen the connection between autism and dietary DHA. Regarding behavioral disorders, the evidence is also contradictory, thereby raising the need of further studies. From all screened studies on autism, attention deficit/hyperactivity disorder, and other disorders, it can be concluded that study samples should be larger for greater statistical significance and RCTs should be more carefully designed.
Collapse
Affiliation(s)
- Carlos Cardoso
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| | - Cláudia Afonso
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| | - Narcisa M Bandarra
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| |
Collapse
|
165
|
Zhang JY, Qin X, Liang A, Kim E, Lawrence P, Park WJ, Kothapalli KSD, Brenna JT. Fads3 modulates docosahexaenoic acid in liver and brain. Prostaglandins Leukot Essent Fatty Acids 2017; 123:25-32. [PMID: 28838557 PMCID: PMC5609706 DOI: 10.1016/j.plefa.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
Fatty acid desaturase 3 (FADS3) is the third member of the FADS gene cluster. FADS1 and FADS2 code for enzymes required for highly unsaturated fatty acid (HUFA) biosynthesis, but FADS3 function remains elusive. We generated the first Fads3 knockout (KO) mouse with an aim to characterize its metabolic phenotype and clues to in vivo function. All mice (wild type (WT) and KO) were fed facility rodent chow devoid of HUFA. No differences in overt phenotypes (survival, fertility, growth rate) were observed. Docosahexaenoic acid (DHA, 22:6n-3) levels in the brain of postnatal day 1 (P1) KO mice were lower than the WT (P < 0.05). The ratio of docosapentaenoic acid (DPA, 22:5n-3) to DHA in P1 KO liver was higher than in WT suggesting lower desaturase activity. Concomitantly, 20:4n-6 was lower but its elongation product 22:4n-6 was greater in the liver of P1 KO mice. P1 KO liver Fads1 and Fads2 mRNA levels were significantly downregulated whereas expression levels of elongation of very long chain 2 (Elovl2) and Elovl5 genes were upregulated compared to age-matched WT. No Δ13-desaturation of vaccenic acid was observed in liver or heart in WT mice expressing FADS3 as was reported in vitro. Taken together, the fatty acid compositional results suggest that Fads3 enhances liver-mediated 22:6n-3 synthesis to support brain 22:6n-3 accretion before and during the brain growth spurt.
Collapse
Affiliation(s)
- Ji Yao Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xia Qin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Allison Liang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ellen Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
166
|
The effect of perinatal fish oil supplementation on neurodevelopment and growth of infants: a randomized controlled trial. Eur J Nutr 2017; 57:2387-2397. [DOI: 10.1007/s00394-017-1512-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
167
|
Sheppard KW, Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, Bartlett C, Coury DL, Keim SA. Effect of Omega-3 and -6 Supplementation on Language in Preterm Toddlers Exhibiting Autism Spectrum Disorder Symptoms. J Autism Dev Disord 2017; 47:3358-3369. [DOI: 10.1007/s10803-017-3249-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
168
|
D’avila LF, Dias VT, Vey LT, Milanesi LH, Roversi K, Emanuelli T, Bürger ME, Trevizol F, Maurer HL. Toxicological aspects of interesterified fat: Brain damages in rats. Toxicol Lett 2017; 276:122-128. [DOI: 10.1016/j.toxlet.2017.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
169
|
Transport of long-chain polyunsaturated fatty acids in preterm infant plasma is dominated by phosphatidylcholine. Eur J Nutr 2017. [DOI: 10.1007/s00394-017-1484-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
170
|
Ernst KD. Essential fatty acid deficiency during parenteral soybean oil lipid minimization. J Perinatol 2017; 37:695-697. [PMID: 28333161 DOI: 10.1038/jp.2017.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine if parenteral lipid minimization in infants results in essential fatty acid (EFA) deficiency. STUDY DESIGN Prospective study of infants >30 days old and >34 weeks postmenstrual age receiving parenteral lipid minimization (<1.5 g kg-1 per day) with either soybean oil or fish oil and >90% of total nutritional intake parenterally in the 14 days before a serum EFA sample. Nonparametric tests were used for statistical analyses with significance at 0.05. RESULTS Fifteen samples on soybean oil and nine on fish oil were included. Energy and macronutrient intakes and weight gain were similar between groups. Biochemical EFA deficiency occurred in 60% receiving soybean oil but none receiving fish oil (P<0.01). Average daily weight gain was 49% less in EFA deficient infants than EFA sufficient infants (P=0.02). CONCLUSION Infants on lipid minimization with parenteral soybean oil, but not fish oil, are at high risk of biochemical EFA deficiency with slower weight gain.
Collapse
Affiliation(s)
- K D Ernst
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, The University of Oklahoma, College of Medicine, Oklahoma City, OK, USA
| |
Collapse
|
171
|
Ferchaud-Roucher V, Rudolph MC, Jansson T, Powell TL. Fatty acid and lipid profiles in primary human trophoblast over 90h in culture. Prostaglandins Leukot Essent Fatty Acids 2017; 121:14-20. [PMID: 28651693 DOI: 10.1016/j.plefa.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
Little is known about the mechanisms underlying the preferential transport of long chain polyunsaturated fatty acids (LCPUFA) to the fetus by the syncytiotrophoblast and the role of cytotrophoblasts in placental lipid metabolism and transport. We studied primary human trophoblast (PHT) cells cultured for 90h to determine the fatty acid and lipid composition of cytotrophoblast (18h culture) and syncytiotrophoblast (90h culture) cells. In cultured PHT total lipid fatty acids were significantly (P < 0.05) reduced at 90h compared to 18h in culture including lower levels of palmitic acid (PA, 16:0, -37%), palmitoleic acid (POA, 16:1n-7, -30%), oleic acid (OA, 18:1n-9, -31%), LCPUFA arachidonic acid (AA, 20:4n-6, -28%) and α-linolenic acid (ALA, 18:3n-3, -55%). In major lipid classes, OA and most of the n-3 and n-6 LCPUFA were markedly lower at 90h in TG (-57 to -76%; p < 0.05). In the cellular NEFA, n-6 LCPUFA, dihomo-γ-linolenic acid (DGLA, 20:3n-6) and AA were both reduced by -51% and DHA was -55% lower (p < 0.05) at 90h. In contrast, phospholipid FA content did not change between cytotrophoblasts and syncytiotrophoblast except for OA, which decreased by -62% (p < 0.05). Decreasing PHT TG and NEFA lipid content at 90h in culture is likely due to processes related to differentiation such as alterations in lipase activity that occur as cytotrophoblast cells differentiate. We speculate that syncytiotrophoblast prioritizes PL containing AA and DHA for transfer to the fetus by mobilizing FA from storage lipids.
Collapse
Affiliation(s)
- Véronique Ferchaud-Roucher
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
172
|
Rong S, Li Y, Guan Y, Zhu L, Zhou Q, Gao M, Pan H, Zou L, Chang D. Long-chain unsaturated fatty acids as possible important metabolites for primary angle-closure glaucoma based on targeted metabolomic analysis. Biomed Chromatogr 2017; 31. [PMID: 28214354 DOI: 10.1002/bmc.3963] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shengzhong Rong
- School of Public Health; Mudanjiang Medical University; Mudanjiang China
| | - Yang Li
- Hongqi Hospital; Mudanjiang Medical University; Mudanjiang China
| | - Yue Guan
- Hongqi Hospital; Mudanjiang Medical University; Mudanjiang China
| | - Lili Zhu
- Department of Foreign Language; Mudanjiang Medical University; Mudanjiang China
| | - Qiang Zhou
- School of Public Health; Harbin Medical University; Harbin China
| | - Mucong Gao
- School of Public Health; Harbin Medical University; Harbin China
| | - Hongzhi Pan
- School of Public Health; Harbin Medical University; Harbin China
| | - Lina Zou
- Hongqi Hospital; Mudanjiang Medical University; Mudanjiang China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital; Fudan University Pudong Medical Center; Shanghai China
| |
Collapse
|
173
|
Forsyth S, Gautier S, Salem Jr. N. Dietary Intakes of Arachidonic Acid and Docosahexaenoic Acid in Early Life - With a Special Focus on Complementary Feeding in Developing Countries. ANNALS OF NUTRITION & METABOLISM 2017; 70:217-227. [PMID: 28301845 PMCID: PMC5475235 DOI: 10.1159/000463396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND In developing countries, dietary intakes of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in early life are lower than current recommended levels. This review specifically focusses on the contribution that complementary feeding makes to ARA and DHA intakes in medium- to low-income countries. The aims of the review are (1) to determine the availability of ARA and DHA food sources in developing countries, (2) to estimate the contribution of complementary feeding to dietary intakes of ARA and DHA in infants aged 6-36 months, and (3) to relate the dietary ARA and DHA intake data to key socioeconomic and health indicators. SUMMARY The primary dietary data was collected by the Food and Agriculture Organisation (FAO) using Food Balance Sheets, and fatty acid composition was based on the Australian food composition tables. There is evidence of wide variation in per capita dietary intake for both DHA and ARA food sources, with low intakes of meat and seafood products being highly prevalent in most low-income countries. In children aged 6-36 months, the supply of ARA and DHA from the longer duration of breastfeeding in low-income countries is counterbalanced by the exceptionally low provision of ARA and DHA from complementary foods. The lowest tertile for ARA intake is associated with higher percentages of childhood stunting, birth rate, infant mortality, and longer duration of breast feeding. Key Message: In developing countries, intakes of DHA and ARA from complementary foods are low, and public health organisations need to adopt pragmatic strategies that will ensure that there is a nutritional safety net for the most vulnerable infants.
Collapse
Affiliation(s)
- Stewart Forsyth
- School of Medicine, University of Dundee, West Ferry, Dundee, UK
- DSM Nutritional Products, Columbia, MD, USA
| | | | | |
Collapse
|
174
|
Daly A, Evans S, Ashmore C, Chahal S, Santra S, MacDonald A. The challenge of nutritional profiling of a protein-free feed module for children on low protein tube feeds with organic acidaemias. J Hum Nutr Diet 2017; 30:292-301. [PMID: 28294445 DOI: 10.1111/jhn.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Enteral tube feeding for children with organic acidaemias (OA) is recommended. Protein restriction, providing minimum safe levels of protein intake, is advocated. Standard paediatric tube feeding formulae provide more than the minimum safe protein requirements and are unsuitable in OA without modification. Modified paediatric enteral feeds consist of several modular ingredients. The aim of this prospective longitudinal interventional study was to assess the efficacy of a premeasured novel protein-free module developed for children aged over 12 months compared to conventional practice. METHODS In total, 15 children with OA (11.6-31 kg) needing enteral feeding were recruited. The protein-free module, from either a protein-free infant feed or modular ingredients, was replaced by the study feed. To ensure metabolic stability, energy and protein intake were unchanged. Dietary intake, anthropometry and nutritional biochemistry were recorded at baseline and week 26. RESULTS Dietary intakes of magnesium (P = 0.02), sodium (P = 0.005), vitamin D (P = 0.04), docosahexaenoic acid (P = 0.01) and arachidonic acid (P = 0.001) significantly improved; plasma selenium (P = 0.002) and whole blood glutathione peroxidase (P = 0.02) significantly increased. Feed preparation accuracy as measured by composition analysis showed consistent errors both in pre- and study feeds. CONCLUSIONS A protein-free module improved nutritional intake and biochemistry, although feed preparation errors remained a common finding.
Collapse
Affiliation(s)
- A Daly
- Birmingham Children's Hospital, Birmingham, UK
| | - S Evans
- Birmingham Children's Hospital, Birmingham, UK
| | - C Ashmore
- Birmingham Children's Hospital, Birmingham, UK
| | - S Chahal
- Birmingham Children's Hospital, Birmingham, UK
| | - S Santra
- Birmingham Children's Hospital, Birmingham, UK
| | - A MacDonald
- Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
175
|
Abstract
Although the literature on the contribution of DHA and arachidonic acid (ARA) to fundamental metabolic functions in brain, immune and cardiovascular systems is extensive, there is a lack of consensus on the need for explicit recommendations on dietary intake for both DHA and ARA during the early years of life. This review takes a public health perspective with the objective of ensuring that recommendations protect the most vulnerable children worldwide. Most studies on the effects of DHA and ARA in early life have been undertaken in high-income countries and this is reflected in policy recommendations. Although breast milk is considered the gold standard and always contains DHA and ARA, there are proposals that infant formulas, especially follow-on formulas, do not need to be supplemented with these fatty acids. Complementary foods frequently have low concentrations of ARA and DHA and this is most significant in low-income countries where availability is also limited. Recent evidence shows that in developing countries, intakes of DHA and ARA during the age period 6–36 months are low and this relates to low national income. It is concluded that a continuum of DHA and ARA intake needs to be maintained during early life, a critical period of infant growth and development. For both infant and follow-on formulas, DHA and ARA should be mandatory at levels that are equivalent to breast milk. An optional recommendation may be limited to countries that can demonstrate evidence of adequate intakes of DHA and ARA during early life.
Collapse
|
176
|
Falk MC, Zheng X, Chen D, Jiang Y, Liu Z, Lewis KD. Developmental and reproductive toxicological evaluation of arachidonic acid (ARA)-Rich oil and docosahexaenoic acid (DHA)-Rich oil. Food Chem Toxicol 2017; 103:270-278. [PMID: 28284730 DOI: 10.1016/j.fct.2017.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/24/2017] [Accepted: 03/05/2017] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the reproductive and developmental toxicity of dietary exposure to DHA-rich oil from Schizochytrium sp. and ARA-rich oil from Mortierella alpina. In a developmental toxicity study, pregnant Wistar rats were untreated (control) or administered corn oil (vehicle control), 1000, 2500, or 5000 mg/kg bw/day of DHA-rich oil or ARA-rich oil via gavage from gestation days 6 through 20. In the reproductive toxicity study, male and female Wistar rats were administered vehicle control (corn oil), or 1000, 2500, or 5000 mg/kg bw/day of DHA- or ARA-rich oil via gavage throughout the mating period, pregnancy, and the nursing and lactation period. Differences in the number of fetuses, fetal skeletal malformations, and external and visceral anomalies in the developmental study and mortality, clinical signs, fertility indices, physical observations, gross necropsy findings, and gestation period length in the reproductive toxicity study were not dose-related or significantly different from control groups, and were not considered to be treatment related. The no observed adverse effect level (NOAEL) for maternal toxicity and embryo/fetal development and for paternal or maternal treatment-related reproductive toxicity for the DHA-rich oil and ARA-rich oil administered by gavage, was 5000 mg/kg bw/day.
Collapse
Affiliation(s)
- Michael C Falk
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD 20854, United States.
| | - Xiaohui Zheng
- Runke Bioengineering (Fujian) Co., Ltd, Zhao'an County, Zhangzhou City, Fujian Province, China
| | - Dieling Chen
- Runke Bioengineering (Fujian) Co., Ltd, Zhao'an County, Zhangzhou City, Fujian Province, China
| | - Yue Jiang
- Runke Bioengineering (Fujian) Co., Ltd, Zhao'an County, Zhangzhou City, Fujian Province, China
| | - Zeshen Liu
- Runke Bioengineering (Fujian) Co., Ltd, Zhao'an County, Zhangzhou City, Fujian Province, China
| | - Kara D Lewis
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD 20854, United States
| |
Collapse
|
177
|
Kawabata T, Kagawa Y, Kimura F, Miyazawa T, Saito S, Arima T, Nakai K, Yaegashi N. Polyunsaturated Fatty Acid Levels in Maternal Erythrocytes of Japanese Women during Pregnancy and after Childbirth. Nutrients 2017; 9:nu9030245. [PMID: 28272345 PMCID: PMC5372908 DOI: 10.3390/nu9030245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
Background: The transport of polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), to the fetus from maternal stores increases depending on the fetal requirements for PUFA during the last trimester of pregnancy. Therefore, maternal blood PUFA changes physiologically with gestational age. However, the changes in PUFA levels in maternal blood erythrocytes during pregnancy and after childbirth have not been fully investigated in a fish-eating population. Objective: To examine the changes of ARA and DHA levels in maternal erythrocytes with the progress of pregnancy and the relationship between maternal and umbilical cord erythrocyte PUFA levels in pregnant Japanese women who habitually eat fish and shellfish. Design: This study was performed as a part of the adjunct study of the Japan Environment and Children’s Study (JECS). The participants were 74 pregnant women. The maternal blood samples were collected at 27, 30, and 36 weeks of pregnancy, and 2 days and 1 month after delivery, and umbilical cord blood was collected at delivery. The fatty acid levels of erythrocytes in these blood samples were determined. Results: ARA and DHA levels in maternal erythrocytes tended to decrease with the progress of pregnancy. While the DHA level decreased further after delivery, the ARA level returned to the value at 27 weeks of pregnancy within 1 month after delivery. The n-3 and n-6 PUFA levels in maternal erythrocytes at 27, 30, and 36 weeks of pregnancy were significantly positively correlated with the corresponding fatty acid levels in umbilical cord erythrocytes. Conclusion: The present findings showed a significant change in erythrocyte PUFA levels during pregnancy and after childbirth in a fish-eating population. The PUFA levels of maternal blood after the second trimester may be a reliable marker for predicting PUFA levels in infants’ circulating blood.
Collapse
Affiliation(s)
- Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan.
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan.
| | - Fumiko Kimura
- Faculty of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori, Miyagi 981-1295, Japan.
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Sciences, Tohoku University, 468-1 aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Sciences, Tohoku University, 468-1 aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 aza-Aoba, Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan.
| | - Shoji Saito
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
- Department of Obstetrics and Gynecology, Yamagata Prefectural Central Hospital, 1800 Ooaza-Aoyagi, Yamagata-shi, Yamagata 990-2292, Japan.
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Kunihiko Nakai
- Department of Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Nobuo Yaegashi
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
178
|
Parekh A, Smeeth D, Milner Y, Thure S. The Role of Lipid Biomarkers in Major Depression. Healthcare (Basel) 2017; 5:healthcare5010005. [PMID: 28165367 PMCID: PMC5371911 DOI: 10.3390/healthcare5010005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
In the UK, the lifetime-documented prevalence of major depressive disorder (MDD) is currently 10%. Despite its increasing prevalence and devastating impact on quality of life, the pathophysiological mechanisms underpinning MDD remain to be fully elucidated. Current theories of neurobiological components remain incomplete and protein-centric, rendering pharmacological treatment options suboptimal. In this review, we highlight the pivotal role of lipids in intra- and inter-neuronal functioning, emphasising the potential use of lipids as biomarkers for MDD. The latter has significant implications for improving our understanding of MDD at the cellular and circuit level. There is particular focus on cholesterol (high and low density lipoprotein), omega-3, and omega-6 polyunsaturated fatty acids due to established evidence in the literature of a link between atherosclerotic disease and major depression. We argue that there is significant potential scope for the use of such peripheral biomarkers in the diagnosis, stratification and treatment of MDD.
Collapse
Affiliation(s)
- Amy Parekh
- Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.
| | - Demelza Smeeth
- Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.
| | - Yasmin Milner
- Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.
| | - Sandrine Thure
- Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
179
|
Garcia-Rodriguez CE, Olza J, Mesa MD, Aguilera CM, Miles EA, Noakes PS, Vlachava M, Kremmyda LS, Diaper ND, Godfrey KM, Calder PC, Gil A. Fatty acid status and antioxidant defense system in mothers and their newborns after salmon intake during late pregnancy. Nutrition 2017; 33:157-162. [DOI: 10.1016/j.nut.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
|
180
|
Sheppard KW, Cheatham CL. Executive functions and the ω-6-to-ω-3 fatty acid ratio: a cross-sectional study. Am J Clin Nutr 2017; 105:32-41. [PMID: 27852615 PMCID: PMC5183732 DOI: 10.3945/ajcn.116.141390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The ω-6 (n-6) to ω-3 (n-3) fatty acid (FA) ratio (n-6:n-3 ratio) was previously shown to be a predictor of executive function performance in children aged 7-9 y. OBJECTIVE We aimed to replicate and extend previous findings by exploring the role of the n-6:n-3 ratio in executive function performance. We hypothesized that there would be an interaction between n-3 and the n-6:n-3 ratio, with children with low n-3 performing best with a low ratio, and those with high n-3 performing best with a high ratio. DESIGN Children were recruited on the basis of their consumption of n-6 and n-3 FAs. The executive function performance of 78 children aged 7-12 y was tested with the use of the Cambridge Neuropsychological Test Automated Battery and a planning task. Participants provided blood for plasma FA quantification, and the caregiver completed demographic and activity questionnaires. We investigated the role of the n-6:n-3 ratio in the entire sample and separately in children aged 7-9 y (n = 41) and 10-12 y (n = 37). RESULTS Dietary and plasma n-6:n-3 ratio and n-3 predicted performance on working memory and planning tasks in children 7-12 y old. The interaction between dietary n-6:n-3 ratio and n-3 predicted the number of moves required to solve the most difficult planning problems in children aged 7-9 y and those aged 10-12 y, similar to results from the previous study. There was also an interaction between the plasma n-6:n-3 ratio and n-3 predicting time spent thinking through the difficult 5-move planning problems. The n-6:n-3 ratio and n-3 predicted executive function performance differently in children aged 7-9 y and in those aged 10-12 y, indicating different optimal FA balances across development. CONCLUSIONS The n-6:n-3 ratio is an important consideration in the role of FAs in cognitive function, and the optimal balance of n-6 and n-3 FAs depends on the cognitive function and developmental period studied. This trial was registered at clinicaltrials.gov as NCT02199808.
Collapse
Affiliation(s)
- Kelly W Sheppard
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC;,Center for Biobehavioral Health, The Research Institute at Nationwide Children’s Hospital, Columbus, OH; and
| | - Carol L Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC; .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| |
Collapse
|
181
|
Gázquez A, Hernández-Albaladejo I, Larqué E. Docosahexaenoic acid supplementation during pregnancy as phospholipids did not improve the incorporation of this fatty acid into rat fetal brain compared with the triglyceride form. Nutr Res 2016; 37:78-86. [PMID: 28215317 DOI: 10.1016/j.nutres.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Prenatal docosahexaenoic acid (DHA) supply is important to ensure an adequate infant neurodevelopment. Several fat supplements with DHA under different chemical structures are available. There is an increased placental phospholipase activity at the end of pregnancy. The hypothesis of this study was to discern whether DHA consumption during pregnancy as phospholipids (PLs) could be more available for placental DHA uptake and fetal accretion than triglycerides (TGs) form. We aimed to evaluate maternofetal DHA status in pregnant rats fed with DHA as PL from egg yolk or TG from algae oil to determine which source might be most effective during pregnancy. Three experimental diets were tested: 2.5% DHA-TG (n = 10), 2.5% DHA-PL (n = 9), and 9% DHA-PL (n = 9). The total PL content of these diets was 2%, 12%, and 38%, respectively. We determined dietary fat absorption and quantified fatty acids by gas chromatography in maternal and fetal tissues. Dietary PL enhanced significantly dietary fat absorption. However, animals fed the highest PL-content diet (38% PL and 9% DHA-PL) stored most of the absorbed fat in maternal liver, promoting hepatic steatosis, which was not observed in the lower PL-content diets (12% and 2%). Despite higher fat absorption of PL-containing diets, maternal and fetal tissues (including fetal brain) did not show major differences in DHA content between the 2.5% DHA-PL and 2.5% DHA-TG-fed groups. We conclude that the chemical form of DHA consumed by the rat during gestation (PL or TG) does not differentially affect DHA accretion into fetal brain, and both lipid sources can be equally used for maternal DHA supplementation during pregnancy.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| |
Collapse
|
182
|
Yeiser M, Harris CL, Kirchoff AL, Patterson AC, Wampler JL, Zissman EN, Berseth CL. Growth and tolerance of infants fed formula with a new algal source of docosahexaenoic acid: Double-blind, randomized, controlled trial. Prostaglandins Leukot Essent Fatty Acids 2016; 115:89-96. [PMID: 27914519 DOI: 10.1016/j.plefa.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022]
Abstract
Docosahexaenoic acid (DHA) in infant formula at concentrations based on worldwide human milk has resulted in circulating red blood cell (RBC) lipids related to visual and cognitive development. In this study, infants received study formula (17mg DHA/100kcal) with a commercially-available (Control: n=140; DHASCO®) or alternative (DHASCO®-B: n=127) DHA single cell oil from 14 to 120 days of age. No significant group differences were detected for growth rates by gender through 120 days of age. Blood fatty acids at 120 days of age were assessed by capillary column gas chromatography in a participant subset (Control: n=34; DHASCO-B: n=27). The 90% confidence interval (91-104%) for the group mean (geometric) total RBC DHA (µg/mL) ratio fell within the pre-specified equivalence limit (80-125%), establishing study formula equivalence with respect to DHA. This study demonstrated infant formula with DHASCO-B was safe, well-tolerated, and associated with normal growth. Furthermore, DHASCO and DHASCO-B represented equivalent sources of DHA as measured by circulating RBC DHA.
Collapse
Affiliation(s)
- Michael Yeiser
- Owensboro Pediatrics, 2200 E. Parrish Avenue, Owensboro, KY 42303, USA.
| | - Cheryl L Harris
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA.
| | - Ashlee L Kirchoff
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA.
| | - Ashley C Patterson
- Global Regulatory & Nutrition Science, Mead Johnson Nutrition, Evansville, IN 47721, USA.
| | - Jennifer L Wampler
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA.
| | - Edward N Zissman
- Children's Research, LLC, 475 Osceola St, Suite 1100, Altamonte Springs, FL 32701, USA.
| | - Carol Lynn Berseth
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA.
| |
Collapse
|
183
|
Lampl M, Mummert A, Schoen M. Promoting Healthy Growth or Feeding Obesity? The Need for Evidence-Based Oversight of Infant Nutritional Supplement Claims. Healthcare (Basel) 2016; 4:E84. [PMID: 27845744 PMCID: PMC5198126 DOI: 10.3390/healthcare4040084] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) model recognizes growth in infancy and childhood as a fundamental determinant of lifespan health. Evidence of long-term health risks among small neonates who subsequently grow rapidly poses a challenge for interventions aiming to support healthy growth, not merely drive weight gain. Defining healthy growth beyond "getting bigger" is essential as infant and young child feeding industries expand. Liquid-based nutritional supplements, originally formulated for undernourished children, are increasingly marketed for and consumed by children generally. Clarifying the nature of the evidentiary base on which structure/function claims promoting "healthy growth" are constructed is important to curb invalid generalizations. Evidence points to changing social beliefs and cultural practices surrounding supplementary feeding, raising specific concerns about the long-term health consequences of an associated altered feeding culture, including reduced dietary variety and weight gain. Reassessing the evidence for and relevance of dietary supplements' "promoting healthy growth" claims for otherwise healthy children is both needed in a time of global obesity and an opportunity to refine intervention approaches among small children for whom rapid subsequent growth in early life augments risk for chronic disease. Scientific and health care partnerships are needed to consider current governmental oversight shortfalls in protecting vulnerable populations from overconsumption. This is important because we may be doing more harm than good.
Collapse
Affiliation(s)
- Michelle Lampl
- Center for the Study of Human Health, Emory University, Atlanta, GA 30322, USA.
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Amanda Mummert
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Meriah Schoen
- Center for the Study of Human Health, Emory University, Atlanta, GA 30322, USA.
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
184
|
De Rooy L, Hamdallah H, Dyall SC. Extremely preterm infants receiving standard care receive very low levels of arachidonic and docosahexaenoic acids. Clin Nutr 2016; 36:1593-1600. [PMID: 27756480 DOI: 10.1016/j.clnu.2016.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND & AIMS Adequate supply of arachidonic (ARA) and docosahexaenoic (DHA) acids is essential for brain development, and extremely preterm infants may be at risk of deficiency. Current levels of ARA and DHA given to extremely preterm infants and the amounts available for accretion have not been established, although recent evidence suggests DHA intake is at a level likely to lead to severe deficits. This study quantified the omega-6 and omega-3 polyunsaturated fatty acid (PUFA) intakes from all sources in the first six weeks of life of preterm infants in standard care. In addition, the relationship between blood levels of circulating cytokines and PUFAs was explored. METHODS Single centre longitudinal study with omega-6 and omega-3 PUFA intake data analysed from all sources for 17 infants born <28 weeks gestation. At six weeks of age the infants' whole-blood fatty acid levels were measured along with a range of cytokines and chemokines analysed by Luminex® multiplex array. RESULTS ARA intake was significantly below international recommendations in weeks 1-5 (all p < 0.05), and DHA intake was significantly below recommendations in week 1 (p < 0.0001). The amounts of ARA and DHA available for accretion were significantly below estimated accretion rates in all weeks (all p < 0.001). Mean ARA and DHA intakes were correlated with their respective blood levels (r = 0.568, p = 0.017 and r = 0.704, p = 0.002). There were significant relationships between MIP-1β and blood DHA levels (rs = 0.559, p = 0.02) and between RANTES and omega-6:omega-3 PUFA ratio (rs = -0.498, p = 0.042). CONCLUSIONS This study establishes that extremely preterm infants receive insufficient intakes of ARA and DHA. Moreover, blood fatty acid levels may provide a useful measure of intake, where establishing sufficient consumption could have clinical importance. There may also be important interactions between long-chain PUFA status and markers of inflammation, which requires further study.
Collapse
Affiliation(s)
- L De Rooy
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK; Neonatal Unit, St George's University Hospital, London, UK
| | - H Hamdallah
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK
| | - S C Dyall
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK; Faculty of Health and Social Sciences, Bournemouth University, Dorset, UK.
| |
Collapse
|
185
|
Ramakrishnan U, Gonzalez-Casanova I, Schnaas L, DiGirolamo A, Quezada AD, Pallo BC, Hao W, Neufeld LM, Rivera JA, Stein AD, Martorell R. Prenatal supplementation with DHA improves attention at 5 y of age: a randomized controlled trial. Am J Clin Nutr 2016; 104:1075-1082. [PMID: 27604770 PMCID: PMC5039806 DOI: 10.3945/ajcn.114.101071] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 07/28/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Docosahexanoic acid (DHA) is an important constituent of the brain. Evidence from well-designed intervention trials of the long-term benefits of increasing DHA intake during pregnancy has been sparse. OBJECTIVE We evaluated global cognition, behavior, and attention at age 5 y in the offspring of Mexican women who participated in a randomized controlled trial of prenatal DHA supplementation. DESIGN A total of 1094 women were randomly assigned to receive 400 mg of either DHA or placebo/d from 18 to 22 wk of pregnancy until delivery. We assessed cognitive development and behavioral and executive functioning, including attention, in 797 offspring at age 5 y (82% of 973 live births) with the use of the McCarthy Scales of Children's Abilities (MSCA), the parental scale of the Behavioral Assessment System for Children, Second Edition (BASC-2), and the Conners' Kiddie Continuous Performance Test (K-CPT). We compared the groups on raw scores, T-scores, and standardized scores, as appropriate. We examined heterogeneity by the quality of the home environment, maternal intelligence, and socioeconomic status. RESULTS There were no group differences for MSCA scores (P > 0.05), but the positive effect of the home environment at 12 mo on general cognitive abilities was attenuated in the DHA group compared with in the placebo group (P-interaction < 0.05). There were no differences between groups on the BASC-2. On the K-CPT, offspring in the DHA group showed improved mean ± SD T-scores compared with those of the placebo group for omissions (DHA: 47.6 ± 10.3; placebo: 49.6 ± 11.2; P < 0.01) with no differences (P > 0.05) for the other K-CPT scores or of the proportion who were clinically at risk of attention deficit hyperactivity disorders after Bonferroni correction for multiple comparisons. CONCLUSION Prenatal exposure to DHA may contribute to improved sustained attention in preschool children. This trial was registered at clinicaltrials.gov as NCT00646360.
Collapse
Affiliation(s)
- Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA;
| | - Ines Gonzalez-Casanova
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Lourdes Schnaas
- Division of Public Health, National Institute of Perinatology, Mexico City, Mexico
| | - Ann DiGirolamo
- Center of Excellence for Children's Behavioral Health, Georgia Health Policy Center, Georgia State University, Atlanta, GA
| | - Amado D Quezada
- Health and Nutrition Research Center, National Institute of Public Health, Cuernavaca, Mexico; and
| | - Beth C Pallo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Wei Hao
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | | | - Juan A Rivera
- Health and Nutrition Research Center, National Institute of Public Health, Cuernavaca, Mexico; and
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Reynaldo Martorell
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
186
|
Green Corkins K, Shurley T. What's in the Bottle? A Review of Infant Formulas. Nutr Clin Pract 2016; 31:723-729. [PMID: 27646861 DOI: 10.1177/0884533616669362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infant formulas are designed to be a substitute for breast milk. Since they are sole source of nutrition for growing and developing infants, they are highly regulated by the government. All ingredients in infant formulas must be considered "generally recognized as safe." Manufacturers are continually modifying their products to make them more like breast milk. Functional ingredients added to infant formula include long-chain polyunsaturated fatty acids, nucleotides, prebiotics, and probiotics. The most common breast milk substitutes are standard cow's milk-based term infant formulas, which include subcategories of organic and breast milk supplementation, and come in standard dilutions of 19 or 20 calories per ounce. In addition to standard cow's milk-based term infant formulas, there is a line of term infant formulas marketed for signs and symptoms of intolerance. These products include modifications in lactose content, partially hydrolyzed protein, added probiotics, or added rice starch. There are also specialized formulas for medical conditions such as prematurity, gastrointestinal disorders, allergy, disorders of fat metabolism, and renal insufficiency. Infants on specialty formulas should be monitored closely by medical professionals. Formulas come in ready-to-feed, liquid concentrate, and powder forms. Each offers advantages and disadvantages. Each step in the formula mixing process or each manipulation required for the feeding is another opportunity to introduce bacteria to the formula. There are guidelines for preparing formula in institutions. Standard dilution and mixing instructions are different for each formula, so individual recipes are needed. Caregivers should also be educated on proper hygiene when preparing formula at home.
Collapse
Affiliation(s)
- Kelly Green Corkins
- 1 Department of Nutrition Therapy, LeBonheur Children's Hospital, Memphis, Tennessee, USA
| | - Teresa Shurley
- 1 Department of Nutrition Therapy, LeBonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
187
|
Red blood cell membrane fatty acid composition in infants fed formulas with different lipid profiles. Early Hum Dev 2016; 100:11-5. [PMID: 27391868 DOI: 10.1016/j.earlhumdev.2016.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is growing interest in the fatty acid composition of breast milk and substitute formulas used to replace or complement infant breastfeeding. AIM The aims of this study were to assess the impact of two follow-up infant formulas based on cow milk fat, vegetable oils and different docosahexaenoic (DHA) and arachidonic (ARA) acid content on red blood cell membrane fatty acid composition, and determine the percent saturated fatty acid (SFA) incorporation into the membrane. STUDY DESIGN This was a double-blind, randomized, controlled, parallel-group clinical trial. Infants received treatment or control product for at least four months before the age of six months. The control group (n=25) received standard infant formula (FA) and the treatment group (n=24) received the same formula supplemented with higher DHA and ARA content (FB). The reference group (n=47) consisted of normal healthy exclusively breastfed infants. OUTCOME MEASURE Red blood cell membrane fatty acid composition was determined by capillary gas chromatography. RESULTS Ninety-six infants completed the study (FA, 25; FB, 24; reference, 47). Higher DHA content reflected higher DHA percentage in the red blood cell membrane. Breast milk and FB did not show any significant differences in DHA content. ARA percentage was higher in breastfed infants and palmitic acid percentage was higher in FB- compared with FA-fed infants. CONCLUSION DHA and palmitic acid percent distributions were higher in the red blood cell membrane of infants receiving FB. DHA percent distribution was not significantly different in FB-fed and breastfed infants. SFA percent distribution was not significantly different when comparing both formulas with breast milk.
Collapse
|
188
|
Carlson SE, Colombo J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv Pediatr 2016; 63:453-71. [PMID: 27426911 PMCID: PMC5207030 DOI: 10.1016/j.yapd.2016.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, MS 4013, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - John Colombo
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Psychology, Life Span Institute, 1000 Sunnyside Avenue, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
189
|
Morgese MG, Trabace L. Maternal Malnutrition in the Etiopathogenesis of Psychiatric Diseases: Role of Polyunsaturated Fatty Acids. Brain Sci 2016; 6:E24. [PMID: 27472366 PMCID: PMC5039453 DOI: 10.3390/brainsci6030024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Evidence from human studies indicates that maternal metabolic state and malnutrition dramatically influence the risk for developing psychiatric complications in later adulthood. In this regard, the central role of polyunsaturated fatty acids (PUFAs), and particularly n-3 PUFAs, is emerging considering that epidemiological evidences have established a negative correlation between n-3 PUFA consumption and development of mood disorders. These findings were supported by clinical studies indicating that low content of n-3 PUFAs in diet is linked to an increased susceptibility to psychiatric disorders. PUFAs regulate membrane fluidity and exert their central action by modulating synaptogenesis and neurotrophic factor expression, neurogenesis, and neurotransmission. Moreover, they are precursors of molecules implicated in modulating immune and inflammatory processes in the brain. Importantly, their tissue concentrations are closely related to diet intake, especially to maternal consumption during embryonal life, considering that their synthesis from essential precursors has been shown to be inefficient in mammals. The scope of this review is to highlight the possible mechanisms of PUFA functions in the brain during pre- and post-natal period and to evaluate their role in the pathogenesis of psychiatric diseases.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy.
| |
Collapse
|
190
|
Essaid D, Rosilio V, Daghildjian K, Solgadi A, Vergnaud J, Kasselouri A, Chaminade P. Artificial plasma membrane models based on lipidomic profiling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2725-2736. [PMID: 27457703 DOI: 10.1016/j.bbamem.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts.
Collapse
Affiliation(s)
- Donia Essaid
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France; Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Katia Daghildjian
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Audrey Solgadi
- Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT SAMM, Châtenay-Malabry, France
| | - Juliette Vergnaud
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Athena Kasselouri
- Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Pierre Chaminade
- Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| |
Collapse
|
191
|
Schipper L, Oosting A, Scheurink AJW, van Dijk G, van der Beek EM. Reducing dietary intake of linoleic acid of mouse dams during lactation increases offspring brain n-3 LCPUFA content. Prostaglandins Leukot Essent Fatty Acids 2016; 110:8-15. [PMID: 27255638 DOI: 10.1016/j.plefa.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/24/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023]
Abstract
Omega (n-)3 and n-6 long chain polyunsaturated fatty acids (LCPUFA) accumulation in the infant brain after birth is strongly driven by dietary supply of n-3 and n-6 LCPUFAs and their C18 precursors through breast milk or infant formula. n-3 LCPUFA accretion is associated with positive effects on neurodevelopmental outcome whereas high n-6 LCPUFA accumulation is considered disadvantageous. Maternal diet is crucial for breast milk fatty acid composition. Unfortunately, global increases in linoleic acid (C18:2n-6; LA) intake have dramatically increased n-6 LCPUFA and reduced n-3 LCPUFA availability for breastfed infants. We investigated the effects of reducing maternal dietary LA, or increasing n-3 LCPUFA, during lactation on milk and offspring brain fatty acids in mice. Offspring brain n-3 LCPUFA was higher following both interventions, although effects were mediated by different mechanisms. Because of competitive interactions between n-3 and n-6 fatty acids, lowering maternal LA intake may support neurodevelopment in breastfed infants.
Collapse
Affiliation(s)
- L Schipper
- Nutricia Research, Danone Nutricia Early Life Nutrition, Utrecht, The Netherlands.
| | - A Oosting
- Nutricia Research, Danone Nutricia Early Life Nutrition, Utrecht, The Netherlands
| | - A J W Scheurink
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - G van Dijk
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - E M van der Beek
- Nutricia Research, Danone Nutricia Early Life Nutrition, Utrecht, The Netherlands
| |
Collapse
|
192
|
Schipper L, van Dijk G, Broersen LM, Loos M, Bartke N, Scheurink AJ, van der Beek EM. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice. J Nutr 2016; 146:1155-61. [PMID: 27146919 DOI: 10.3945/jn.115.224998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/06/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. OBJECTIVE We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. METHODS From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. RESULTS The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. CONCLUSIONS Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas.
Collapse
Affiliation(s)
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands; and
| | | | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, Netherlands
| | - Nana Bartke
- Danone Nutricia Research, Utrecht, Netherlands
| | - Anton Jw Scheurink
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands; and
| | | |
Collapse
|
193
|
Gellert S, Schuchardt JP, Hahn A. Higher omega-3 index and DHA status in pregnant women compared to lactating women - Results from a German nation-wide cross-sectional study. Prostaglandins Leukot Essent Fatty Acids 2016; 109:22-8. [PMID: 27269710 DOI: 10.1016/j.plefa.2016.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION During pregnancy and lactation, there is a high need of long-chain (LC) omega-3 fatty acids (n-3 PUFA), especially docosahexaenoic acid (DHA), for fetus and infant. Also, a low LC n-3 PUFA status during pregnancy is associated with postpartum depression. The aim of this cross-sectional study was to analyze the LC n-3 PUFA status in German women during pregnancy and lactation. MATERIAL AND METHODS As a part of a nationwide cross-sectional study in which the nutrient status of women in different stages of life was determined, 213 pregnant (≥27th week of gestation) and 127 lactating women between 18 and 44 years were evaluated regarding their LC n-3 PUFA status by measuring the omega-3 index (relative eicosapentaenoic acid (EPA) and DHA concentration in erythrocyte fatty acid). RESULTS The mean omega-3 index of the total study population was 6.23±1.48%. Pregnant women showed significant (p≤0.001) higher omega-3 index values (6.40±1.31%) and DHA concentrations (5.91±1.23%) than lactating women (omega-3 index: 5.50±1.34%; DHA: 4.79±1.27%). Woman with LC n-3 PUFA supplementation showed higher omega-3 index values (7.73±1.28%) vs. women without supplementation (6.04±1.39%, p≤0.001). Week of pregnancy, month of lactation as well as smoking were negatively associated with the omega-3 index. CONCLUSION Comprehensive data on the long-term LC n-3 PUFA status of German women during pregnancy and lactation are presented. To evaluate an optimal maternal omega-3 index in view of the fetal and infant development further studies are needed.
Collapse
Affiliation(s)
- Sandra Gellert
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany.
| | | | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| |
Collapse
|
194
|
Gould JF, Treyvaud K, Yelland LN, Anderson PJ, Smithers LG, Gibson RA, McPhee AJ, Makrides M. Does n-3 LCPUFA supplementation during pregnancy increase the IQ of children at school age? Follow-up of a randomised controlled trial. BMJ Open 2016; 6:e011465. [PMID: 27188814 PMCID: PMC4874207 DOI: 10.1136/bmjopen-2016-011465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Despite recommendations that pregnant women increase their docosahexaenoic acid (DHA) intake to support fetal brain development, a recent systematic review found a lack of high-quality data to support the long-term effects of DHA supplementation on children's neurodevelopment. METHODS AND ANALYSIS We will assess child neurodevelopment at 7 years of age in follow-up of a multicentre double-blind randomised controlled trial of DHA supplementation in pregnancy. In 2010-2012, n=2399 Australian women with a singleton pregnancy <21 weeks' gestation were randomised to receive 3 capsules daily containing a total dose of 800 mg DHA/day or a vegetable oil placebo until birth. N=726 children from Adelaide (all n=97 born preterm, random sample of n=630 born at term) were selected for neurodevelopmental follow-up and n=638 (preterm n=85) are still enrolled at 7 years of age. At the 7-year follow-up, a psychologist will assess the primary outcome, IQ, with the Wechsler Abbreviated Scale of Intelligence, Second Edition. Specific measures of executive functioning (Fruit Stroop and the Rey Complex Figure), attention (Test of Everyday Attention for Children), memory and learning (Rey Auditory Verbal Learning Test), language (Clinical Evaluation of Language Fundamentals, Fourth Edition) and basic educational skills (Wide Range Achievement Test, Fourth Edition) will also be administered. Caregivers will be asked to complete questionnaires measuring behaviour and executive functioning. Families, clinicians and research personnel are blinded to group assignment with the exception of families who requested unblinding prior to the follow-up. All analyses will be conducted according to the intention-to-treat principal. ETHICS AND DISSEMINATION All procedures will be approved by the relevant institutional ethics committees prior to start of the study. The results of this study will be disseminated in peer-reviewed journal publications and academic presentations. TRIAL REGISTRATION NUMBERS ACTRN12605000569606 and ACTRN12614000770662.
Collapse
Affiliation(s)
- Jacqueline F Gould
- Women's & Children's Health Research Institute, North Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Karli Treyvaud
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Lisa N Yelland
- Women's & Children's Health Research Institute, North Adelaide, South Australia, Australia
- School of Public Health, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Lisa G Smithers
- School of Public Health, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Robert A Gibson
- FOODplus Research Centre, School of Agriculture, Food and Wine, Discipline of Paediatrics, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Andrew J McPhee
- Neonatal Services, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Maria Makrides
- Women's & Children's Health Research Institute, North Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
195
|
Hsi HC, Hsu YW, Chang TC, Chien LC. Methylmercury Concentration in Fish and Risk-Benefit Assessment of Fish Intake among Pregnant versus Infertile Women in Taiwan. PLoS One 2016; 11:e0155704. [PMID: 27187161 PMCID: PMC4871344 DOI: 10.1371/journal.pone.0155704] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/14/2016] [Indexed: 12/27/2022] Open
Abstract
This study examined methylmercury (MeHg) concentrations in fish, the daily MeHg exposure dose, and the risk-benefit of MeHg, ω-3 polyunsaturated fatty acid (ω-3 PUFA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) related to fish intake among pregnant and infertile women in Taiwan. The measured MeHg concentrations in fish did not exceed the Codex guideline level of 1 mg/kg. Swordfish (0.28 ± 0.23 mg/kg) and tuna (0.14 ± 0.13 mg/kg) had the highest MeHg concentrations. The MeHg concentration in the hair of infertile women (1.82 ± 0.14 mg/kg) was significantly greater than that of pregnant women (1.24 ± 0.18 mg/kg). In addition, 80% of infertile women and 68% of pregnant women had MeHg concentrations in hair that exceeded the USEPA reference dose (1 mg/kg). The MeHg concentrations in hair were significantly and positively correlated with the estimated daily MeHg exposure dose. Based on the risk-benefit evaluation results, this paper recommends consumption of fish species with a low MeHg concentration and high concentrations of DHA + EPA and ω-3 PUFA (e.g., salmon, mackerel, and greater amberjack).
Collapse
Affiliation(s)
- Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - You-Wen Hsu
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Tien-Chin Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
196
|
Maas C, Franz AR, Shunova A, Mathes M, Bleeker C, Poets CF, Schleicher E, Bernhard W. Choline and polyunsaturated fatty acids in preterm infants' maternal milk. Eur J Nutr 2016; 56:1733-1742. [PMID: 27164830 DOI: 10.1007/s00394-016-1220-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Choline, docosahexaenoic acid (DHA), and arachidonic acid (ARA) are essential to fetal development, particularly of the brain. These components are actively enriched in the fetus. Deprivation from placental supply may therefore result in impaired accretion in preterm infants. OBJECTIVE To determine choline, choline metabolites, DHA, and ARA in human breast milk (BM) of preterm infants compared to BM of term born infants. DESIGN We collected expressed BM samples from 34 mothers (N = 353; postnatal day 6-85), who had delivered 35 preterm infants undergoing neonatal intensive care (postmenstrual age 30 weeks, range 25.4-32.0), and from mothers after term delivery (N = 9; postnatal day 6-118). Target metabolites were analyzed using tandem mass spectrometry and gas chromatography and reported as medians and 25th/75th percentiles. RESULTS In BM, choline was mainly present in the form of phosphocholine and glycerophosphocholine, followed by free choline, phosphatidylcholine, sphingomyelin, and lyso-phosphatidylcholine. In preterm infants' BM total choline ranged from 61 to 360 mg/L (median: 158 mg/L) and was decreased compared to term infants' BM (range 142-343 mg/L; median: 258 mg/L; p < 0.01). ARA and DHA comprised 0.81 (range: 0.46-1.60) and 0.43 (0.15-2.42) % of total preterm BM lipids, whereas term BM values were 0.68 (0.52-0.88) and 0.35 (0.18-0.75) %, respectively. Concentrations of all target parameters decreased after birth, and frequently 150 ml/kg/d BM did not meet the estimated fetal accretion rates. CONCLUSIONS Following preterm delivery, BM choline concentrations are lower, whereas ARA and DHA levels are comparable versus term delivery. Based on these findings we suggest a combined supplementation of preterm infants' BM with choline, ARA and DHA combined to improve the nutritional status of preterm infants. STUDY REGISTRATION This study was registered at www.clinicaltrials.gov. Identifier: NCT01773902.
Collapse
Affiliation(s)
- Christoph Maas
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Axel R Franz
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
- Center for Pediatric Clinical Studies, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Anna Shunova
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Michaela Mathes
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Christine Bleeker
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Christian F Poets
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Erwin Schleicher
- Department of Internal Medicine IV, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Wolfgang Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany.
| |
Collapse
|
197
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
198
|
Brenna JT. Arachidonic acid needed in infant formula when docosahexaenoic acid is present. Nutr Rev 2016; 74:329-36. [PMID: 27013482 DOI: 10.1093/nutrit/nuw007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, the European Food Safety Authority asserted that arachidonic acid (ARA) is an optional nutrient for the term infant even when docosahexaenoic acid (DHA) is present. The brief rationale is based on an explicit, widespread misapplication of the concept of "essential fatty acids" to linoleic acid that implies it is uniquely required as a nutrient per se. Linoleic acid prevents acute clinical symptoms caused by polyunsaturated fatty acid-deficient diets and is the major precursor for ARA in most human diets. Experimental diets with ARA as the sole n-6 similarly prevent symptoms but at a lower energy percentage than linoleic acid and show ARA is a precursor for linoleic acid. The absence of consistent evidence of ARA benefit from randomized controlled trials is apparently an issue as well. This review highlights basic and clinical research relevant to ARA requirements as an adjunct to DHA in infancy. ARA is a major structural central nervous system component, where it rapidly accumulates perinatally and is required for signaling. Tracer studies show that ARA-fed infants derive about half of their total body ARA from dietary preformed ARA. Clinically, of the 3 cohorts of term infants studied with designs isolating the effects of ARA (DHA-only vs DHA+ARA), none considered ARA-specific outcomes such as vascular or immune function; the study with the highest ARA level showed significant neurocognitive benefit. All breastfed term infants of adequately nourished mothers consume both DHA and ARA. The burden of proof to substantially deviate from the composition of breastmilk is greater than that available from inherently empirical human randomized controlled trial evidence. Infant formulas with DHA but without ARA risk harm from suppression of ARA-mediated metabolism manifest among the many unstudied functions of ARA.
Collapse
Affiliation(s)
- J Thomas Brenna
- J.T. Brenna is with the Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
199
|
Liu Z, Cocks BG, Rochfort S. Comparison of Molecular Species Distribution of DHA-Containing Triacylglycerols in Milk and Different Infant Formulas by Liquid Chromatography-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2134-2144. [PMID: 26902881 DOI: 10.1021/acs.jafc.5b05920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA) are an important nutritional lipid and have potential in being able to promote human health. Docosahexaenoic acid (DHA, C22:6ω3) is often added in infant formulas to meet the nutritional requirement of formula-fed infants. A comprehensive survey on DHA-containing triacylglycerol (DHA-TAG) molecular species has been conducted for seven infant formulas (IFs) sourced from Australia, Europe, and the USA as well as bovine milk and human milk. Using LC-triple quadrupole MS and LC-LTQ-orbitrap MS we were able to identify and quantify 56 DHA-TAG species in these samples; the fatty acid structure of these species was assigned using their MS(2) spectra. The species composition of DHA-TAG was found to be different between bovine milk, human milk, and IFs and also between different brands of IFs. Bovine milk and human milk contain DHA-TAG of smaller molecular size (728-952 Da), whereas five out of the seven IF samples contain species of broader mass range (from 728 to 1035 Da). Our study indicates that two types of DHA were used in the seven IF products surveyed and that there is very large difference in molecular species distribution in different IF products that may influence the fine nutritional profile and biological functions of IF products.
Collapse
Affiliation(s)
- Zhiqian Liu
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research, AgriBio , 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Benjamin G Cocks
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research, AgriBio , 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology, La Trobe University , Bundoora, Victoria 3083, Australia
| | - Simone Rochfort
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research, AgriBio , 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology, La Trobe University , Bundoora, Victoria 3083, Australia
| |
Collapse
|
200
|
El-Ansary A, Al-Ghamdi M, Bhat RS, Al-Daihan S, Al-Ayadhi L. Potency of pre-post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism. Food Nutr Res 2016; 60:28127. [PMID: 26945230 PMCID: PMC4779327 DOI: 10.3402/fnr.v60.28127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. OBJECTIVE This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA)-treated rats. DESIGN Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group). The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for 1 week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups). Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. RESULTS The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre-post melatonin and coenzyme Q groups. CONCLUSIONS Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mashael Al-Ghamdi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia; ;
| | - Sooad Al-Daihan
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|