151
|
Falktoft B, Lambert IH. Ca2+-mediated Potentiation of the Swelling-induced Taurine Efflux from HeLa Cells: On the Role of Calmodulin and Novel Protein Kinase C Isoforms. J Membr Biol 2004; 201:59-75. [PMID: 15630544 DOI: 10.1007/s00232-004-0705-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 07/19/2004] [Indexed: 11/27/2022]
Abstract
The present work sets out to investigate how Ca(2+) regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca(2+)-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation of the release pathway. The accelerated inactivation is not observed in hypotonic Ca(2+)-free or high-K(+) media. Addition of Ca(2+)-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca(2+)-activated K(+) channels. The taurine release from control cells and cells exposed to Ca(2+) agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca(2+)-augmented taurine release. Exposure to Ca(2+)-mobilizing agonists prior to a hypotonic challenge also augments a subsequent swelling-induced taurine release even though the intracellular Ca(2+)-concentration has returned to the unstimulated level. The Ca(2+)-induced augmentation of the swelling-induced taurine release is abolished by inhibition of calmodulin, but unaffected by inhibition of calmodulin-dependent kinase II, myosin light chain kinase and calcineurin. The effect of Ca(2+)-mobilizing agonists is mimicked by protein kinase C (PKC) activation and abolished in the presence of the PKC inhibitor Gö6850 and following downregulation of phorbol ester-sensitive PKC isoforms. It is suggested that Ca(2+) regulates the volume-sensitive taurine-release pathway through activation of calmodulin and PKC isoforms belonging to the novel subclass (nPKC).
Collapse
Affiliation(s)
- B Falktoft
- Biochemical Department, August Krogh Institute, Universitetsparken 13, Copenhagen, DK-2100 Denmark
| | | |
Collapse
|
152
|
Nylandsted J, Jäättelä M, Hoffmann EK, Pedersen SF. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins. Pflugers Arch 2004; 449:175-85. [PMID: 15340851 DOI: 10.1007/s00424-004-1332-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found that severe hypertonic stress greatly diminished the viability of murine fibrosarcoma cells (WEHI-902) and immortalized murine embryonic fibroblasts (iMEFs). This effect was attenuated markedly by Hsp70 over-expression. To determine whether the protective effect of Hsp70 was mediated via an effect on volume regulatory ion transport, we compared regulatory volume decrease (RVD) and increase (RVI) in control WEHI-902 cells and after increasing Hsp70 levels by heat shock or over-expression (WEHI-912). Hsp70 levels affected neither RVD, RVI nor the relative contributions of the Na(+)/H(+)-exchanger (NHE1) and Na(+),K(+),2Cl(-)-cotransporter (NKCC1) to RVI. Hypertonic stress induced caspase-3 activity in WEHI cells and iMEFs, an effect potentiated by Hsp70 in WEHI cells but inhibited by Hsp70 in iMEFs. Osmotic shrinkage-induced PCD was associated with Hsp70-inhibitable cysteine cathepsin release in iMEFs and attenuated by caspase and cathepsin inhibitors in WEHI cells. Treatment with TNF-alpha or the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl)amiloride (EIPA) reduced the viability of WEHI cells further under isotonic and mildly, but not severely, hypertonic conditions. Thus, it is concluded that shrinkage-induced PCD involves both caspase- and cathepsin-dependent death mechanisms and is potently counteracted by Hsp70.
Collapse
Affiliation(s)
- J Nylandsted
- Apoptosis Laboratory, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen O, Denmark
| | | | | | | |
Collapse
|
153
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
154
|
Pedersen SF, Cala PM. Comparative biology of the ubiquitous Na+/H+ exchanger, NHE1: lessons from erythrocytes. ACTA ACUST UNITED AC 2004; 301:569-78. [PMID: 15229867 DOI: 10.1002/jez.a.47] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By virtue of their electroneutral exchange of intracellular H+ for extracellular Na+, the Na+/H+ exchangers (NHE1-NHE8) play a pivotal role in many physiological processes. This review focuses on the ubiquitous plasma membrane isoform, NHE1. Particular attention is given to the roles and regulation of NHE1 in erythrocytes, in their own right and as model systems, but pertinent findings from non-erythroid cells are also discussed. NHE1 plays a key role in the regulation of cell volume and pH, and consequently in the control of such diverse processes as blood O2/CO2 transport, and cell proliferation, motility, and survival. Disturbances in NHE1 function are involved in important pathological states such as hypoxic cell damage and cancer development. NHE1 has a predicted topology of 12 transmembrane domains, and a hydrophilic C-terminus thought to be the major site for NHE1 regulation. NHE1 is highly conserved throughout the vertebrate phylum, particularly in the transmembrane region and the proximal part of the C-terminus. In non-erythroid, and probably also in erythroid cells, this part of the hydrophilic C-terminus interacts with multiple binding partners important for NHE1 function. Erythrocyte NHE1s from mammalian, amphibian, and teleost species are activated by cell shrinkage, decreased pH(i), inhibition of Ser/Thr protein phosphatases, and activation of Ser/Thr protein kinases, i.e., many of the stimuli activating NHE1 in non-erythroid cells. In erythrocytes of many lower vertebrates, NHE1 is activated during hypoxia and is an important modulator of hemoglobin oxygen affinity. Sensitivity of NHE1 to oxygenation status has recently been described also in non-erythroid mammalian cells.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Dept. of Biochemistry, August Krogh Institute, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
155
|
Zhao H, Hyde R, Hundal HS. Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells. J Physiol 2004; 560:123-36. [PMID: 15284343 PMCID: PMC1665208 DOI: 10.1113/jphysiol.2004.066423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have investigated the expression and regulation of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) by insulin and hyperosmotic stress in L6 rat skeletal muscle cells. NKCC was identified by immunoblotting as a 170 kDa protein in L6 myotubes and mediated 54% of K(+) ((86)Rb(+)) influx based on the sensitivity of ion transport to bumetanide, a NKCC inhibitor. The residual (86)Rb(+) influx occurred via the Na(+),K(+)-ATPase and other transporters not sensitive to bumetanide or ouabain. NKCC-mediated (86)Rb(+) influx was enhanced significantly ( approximately 1.6-fold) by acute cell exposure to insulin, but was inhibited significantly by tyrosine kinase inhibitors, wortmannin and rapamycin, consistent with a role for the insulin receptor tyrosine kinase, phosphoinositide 3 (PI3)-kinase and mTOR, respectively, in cotransporter activation. In contrast, the hormonal activation of NKCC was unaffected by inhibition of the classical Erk-signalling pathway. Subjecting L6 myotubes to an acute hyperosmotic challenge (420 mosmol l(-1)) led to a 40% reduction in cell volume and was accompanied by a rapid stimulation of NKCC activity ( approximately 2-fold). Intracellular volume recovered to normal levels within 60 min, but this regulatory volume increase (RVI) was prevented if bumetanide was present. Unlike insulin, activation of NKCC by hyperosmolarity did not involve PI3-kinase but was suppressed by inhibition of tyrosine kinases and the Erk pathway. While inhibition of tyrosine kinases, using genistein, led to a complete loss in NKCC activation in response to hyperosmotic stress, immunoprecipitation of NKCC revealed that the cotransporter was not regulated directly by tyrosine phosphorylation. Simultaneous exposure of L6 myotubes to insulin and hyperosmotic stress led to an additive increase in NKCC-mediated (86)Rb(+) influx, of which, only the insulin-stimulated component was wortmannin-sensitive. Our findings indicate that L6 myotubes express a functional NKCC that is rapidly activated in response to insulin and hyperosmotic shock by distinct intracellular signalling pathways. Furthermore, activation of NKCC in response to hyperosmotic-induced cell shrinkage represents a critical component of the RVI mechanism that allows L6 muscle cells to volume regulate.
Collapse
Affiliation(s)
- Haiyan Zhao
- Division of Molecular Physiology, Medical Sciences Institute/Wellcome Trust Biocentre Complex, The University of Dundee, Dundee, DD1 4HN, UK
| | | | | |
Collapse
|
156
|
Parkerson KA, Sontheimer H. Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Glia 2004; 46:419-36. [PMID: 15095372 PMCID: PMC2548408 DOI: 10.1002/glia.10361] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rat cortical astrocytes regulate their cell volume in response to hypotonic challenge. This regulation is believed to depend largely on the release of chloride or organic osmolytes through anion channels. Using whole-cell recordings, we identified weakly outwardly rectifying chloride currents that could be activated in response to hypotonic challenge. These currents exhibited the following permeability sequence upon replacement of chloride in the bathing solution with various anions: I- > NO3- > Cl- > Gluc- > or = MeS- > Ise-. Interestingly, extracellular I-, albeit showing the greatest permeability, blocked the currents with an IC50 of approximately 50 mM. Currents were almost completely inhibited by 123 microM NPPB and partially inhibited by 200 microM niflumic acid or 200 microM DIDS. Additionally, the total number of Cl- ions effluxed through the hypotonically activated channels was markedly similar to the total solute efflux during volume regulation. We therefore propose the hypotonically activated chloride channel as a major contributor to volume regulation of astrocytes. To examine potential candidate chloride channel genes expressed by astrocytes, we employed RT-PCR to demonstrate the presence of transcripts for ClC-2, 3, 4, 5, and 7, as well as for VDAC and CFTR in cultured astrocytes. Moreover, we performed immunostaining with antibodies against each of these channels and showed the strongest expression of ClC-2 and ClC-3, strong expression of ClC-5 and VDAC, weak expression of ClC-7 and very weak expression of ClC-4 and CFTR. Intriguingly, although we found at least seven Cl- channel proteins from three different gene families in astrocytes, none appeared to be active in resting cells.
Collapse
Affiliation(s)
- Kimberly A Parkerson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
157
|
Marklund L, Andersson B, Behnam-Motlagh P, Sandström PE, Henriksson R, Grankvist K. Cellular Potassium Ion Deprivation Enhances Apoptosis Induced by Cisplatin. Basic Clin Pharmacol Toxicol 2004; 94:245-51. [PMID: 15125695 DOI: 10.1111/j.1742-7843.2004.pto940508.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anticancer drug cisplatin induces cell death by apoptosis. Apoptosis is dependent on cellular loss of potassium ions (K+). We have recently shown that the antifungal drug amphotericin B (enhancing K+ efflux), combined with the Na+, K+, 2Cl(-)-cotransport blocker bumetanide (decreasing K+ influx), augmented cisplatin-induced apoptosis in vitro. We therefore quantified K+ fluxes with the K+ analogue rubidium (86Rb+) in cisplatin-induced apoptosis of mesothelioma cells treated with bumetanide and amphotericin B. Bumetanide combined with amphotericin B enhanced cisplatin-induced apoptosis by a pronounced initial reduction of K+ influx due (in addition to Na+, K+, 2Cl(-)-cotransport inhibition) also to Na+, K+, ATPase pump inhibition. As 86Rb+ efflux was initially preserved, combination of the drugs would lead to net K+ loss. Combinations of K+ flux modulators leading to cellular potassium ion deprivation thus augments cisplatin-induced apoptosis and could therefore possibly be used to enhance the antitumour efficacy of cisplatin treatment.
Collapse
Affiliation(s)
- Linda Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, S-901 85 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
158
|
Drew C, Ball V, Robinson H, Clive Ellory J, Gibson JS. Oxygen sensitivity of red cell membrane transporters revisited. Bioelectrochemistry 2004; 62:153-8. [PMID: 15039019 DOI: 10.1016/j.bioelechem.2003.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 07/23/2003] [Accepted: 07/25/2003] [Indexed: 11/17/2022]
Abstract
In this paper, we provide an update on O2-dependent membrane transport in red cells. O2-sensitive membrane transport was compared in nucleated (chicken) and enucleated (human) red cells, to investigate effects on organic (glucose transporter [GLUT]) and inorganic (K(+)-Cl- cotransporter [KCC]/Na(+)-K(+)-2Cl- cotransporter [NKCC]) transporters, to study the response of so-called "housekeeping" transporters (Na+/K+ pump and anion exchanger [AE]) and, finally, to compare O2 sensitivity in normal human red cells with those from sickle cell patients. The Na+/K+ pump showed no change in activity between oxygenated and deoxygenated cells in any of the samples. KCC in normal human red cells had the greatest O2 sensitivity, being stimulated some 20-fold on oxygenation. It was more modestly stimulated by O2 in chicken red cells and HbS cells. By contrast, NKCC was stimulated by deoxygenation in all cases. GLUT showed little response to O2 tension, other than a small stimulation in deoxygenated chicken red cells. Finally, AE1 was stimulated by oxygenation in HbA cells, but this stimulation by O2 was absent in HbS cells and pink ghosts prepared from HbA cells. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Clare Drew
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
159
|
Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF. Cell volume regulation and swelling-activated chloride channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:153-62. [PMID: 14729152 DOI: 10.1016/j.bbamem.2003.10.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maintenance of a constant volume is essential for normal cell function. Following cell swelling, as a consequence of reduction of extracellular osmolarity or increase of intracellular content of osmolytes, animal cells are able to restore their original volume by activation of potassium and chloride conductances. The loss of these ions, followed passively by water, is responsible for the homeostatic response called regulatory volume decrease (RVD). Activation of a chloride conductance upon cell swelling is a key step in RVD. Several proteins have been proposed as candidates for this chloride conductance. The status of the field is reviewed, with particular emphasis on ClC-3, a member of the ClC family which has been recently proposed as the chloride channel involved in cell volume regulation.
Collapse
Affiliation(s)
- Alessandro Sardini
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
160
|
Hermoso M, Olivero P, Torres R, Riveros A, Quest AFG, Stutzin A. Cell volume regulation in response to hypotonicity is impaired in HeLa cells expressing a protein kinase Calpha mutant lacking kinase activity. J Biol Chem 2004; 279:17681-9. [PMID: 14960580 DOI: 10.1074/jbc.m304506200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chloride conductance (G(Cl,swell)) that participates in the regulatory volume decrease process triggered by osmotic swelling in HeLa cells was impaired by removal of extracellular Ca(2+), depletion of intracellular Ca(2+) stores with thapsigargin, or by preloading the cells with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Furthermore, overnight exposure to the phorbol ester tetradecanoyl phorbol acetate and acute incubation with inhibitors of the conventional protein kinase C (PKC) isoforms bisindolylmaleimide I and Gö6976 inhibited G(Cl,swell). Treatment of HeLa cells with U73122, a phospholipase C inhibitor, also prevented G(Cl,swell). Hypotonicity induced selective PKC alpha accumulation in the membrane/cytoskeleton fraction in fractionation experiments and translocation of a green fluorescent protein-PKC alpha fusion protein to the plasma membrane of transiently transfected HeLa cells. To further explore the role of PKCs in hypotonicity-induced G(Cl,swell), HeLa clones stably expressing either a kinase-dead dominant negative variant of the Ca(2+)-dependent PKC isoform alpha (PKC alpha K386R) or of the atypical PKC isoform zeta (PKCzeta K275W) were generated. G(Cl,swell) was significantly reduced in HeLa cells expressing the dominant negative PKC alpha mutant but remained unaltered in cells expressing dominant negative PKCzeta. These findings strongly implicate PKC alpha as a critical regulatory element that is required for efficient regulatory volume decrease in HeLa cells.
Collapse
Affiliation(s)
- Marcela Hermoso
- Instituto de Ciencias Biomédicas and Centro de Estudios Moleculares de la Célula Facultad de Medicina, Universidad de Chile, Santiago 6530499, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
161
|
Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 2004; 148:1-80. [PMID: 12687402 DOI: 10.1007/s10254-003-0009-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems-channels and carriers alike-have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | | | | | | | |
Collapse
|
162
|
Leguen I, Prunet P. Effect of hypotonic shock on cultured pavement cells from freshwater or seawater rainbow trout gills. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:259-69. [PMID: 15123200 DOI: 10.1016/j.cbpb.2003.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 09/25/2003] [Accepted: 09/26/2003] [Indexed: 11/17/2022]
Abstract
The effect of hypotonic shock on cultured pavement gill cells from freshwater (FW)- and seawater (SW)-adapted trout was investigated. Exposure to 2/3rd strength Ringer solution produced an increase in cell volume followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also induced a biphasic increase in cytosolic Ca(2+) with an initial peak followed by a sustained plateau. Absence of external Ca(2+) did not modify cell volume under isotonic conditions, but inhibited RVD after hypotonic shock. [Ca(2+)](i) response to hypotonicity was also partially inhibited in Ca-free bathing solutions. Similar results were obtained whether using cultured gill cells prepared from FW or SW fishes. When comparing freshly isolated cells with cultured gill cells, a similar Ca(2+) signalling response to hypotonic shock was observed regardless of the presence or absence of Ca(2+) in the solution. In conclusion, gill pavement cells in primary culture are able to regulate cell volume after a cell swelling and express a RVD response associated with an intracellular calcium increase. A similar response to a hypotonic shock was recorded for cultured gill cells collected from FW and SW trout. Finally, we showed that calcium responses were physiologically relevant as comparable results were observed with freshly isolated cells exposed to hypoosmotic shock.
Collapse
Affiliation(s)
- Isabelle Leguen
- INRA-SCRIBE, Fish Adaptation and Stress Group, IFR Reproduction, Development and Ecophysiology, campus de Beaulieu, 35042 Rennes Cedex, France.
| | | |
Collapse
|
163
|
Srinivas SP, Maertens C, Goon LH, Goon L, Satpathy M, Yue BYJT, Droogmans G, Nilius B. Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells. Exp Eye Res 2004; 78:15-26. [PMID: 14667824 DOI: 10.1016/j.exer.2003.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Hyposmolar perfusion of intact trabecular meshwork (TM) induces a decrease in its hydraulic conductivity (Lp). However, exposure to agents that elevate intracellular cAMP in TM cells increases Lp. Since volume of TM cells could directly influence porosity of the TM and hence Lp, this study has investigated changes in volume in response to acute hyposmotic shock (i.e. regulatory volume decrease or RVD) and elevated cAMP in cultured TM cells. METHODS Bovine trabecular meshwork cells (BTMC), grown on glass coverslips and loaded with the fluorescent dye MQAE, were used to measure rapid changes in cell volume using the principle of dynamic fluorescence quenching. Activation of volume-regulated anion channels (VRAC) was assessed by measuring volume-sensitive Cl(-) currents (I(Cl,swell)) in the whole cell configuration of the patch clamp technique and by determining the swelling-induced enhancement in I(-) permeability using the halide-sensitivity of MQAE. Expressions of ClC (chloride channels of the ClC gene family), P-glycoprotein (Pgp), and cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels were examined by RT-PCR. Elevation of cAMP in response to forskolin was confirmed by determining the phosphorylation of cAMP response element-binding protein and activating transcription factor-1 (CREB, ATF-1), which form the downstream targets of protein kinase A. RESULTS As a response to hyposmotic shock, there was an acute increase in cell volume but there was no robust RVD. Patch clamp experiments showed activation of a characteristic Cl(-) current in response to cell swelling. This Cl(-) current was inhibited by NPPB (100microM) and fluoxetine (50microM), both of which are known blockers of VRAC. Experiments, which used the halide-sensitivity of MQAE, also indicated a 9-fold increase in I(-) influx upon cell swelling (8.9+/-4.6; n=9), consistent with activation of a VRAC-like Cl(-) current. To examine whether RVD is limited by K(+) conductance, the swollen cells were exposed to gramicidin, which is known to induce cation channel activity. Such a maneuver led to secondary swelling with [Na(+)](o)=140mM but a rapid shrinkage [Na(+)](o)=8mM indicating that the RVD is limited by cationic conductance necessary for K(+) efflux. Exposure to forskolin, which resulted in CREB and ATF-1 phosphorylation, caused a reversible decrease in cell volume (14.5+/-5%; n=20) under isosmotic and hyposmotic conditions. RT-PCR analysis confirmed expression of ClC-2, ClC-5, and Pgp Cl(-) channels in bovine TM cells. However, ClC-3 and CFTR were not expressed. CONCLUSIONS TM cells respond to acute hyposmotic shock in an osmometric manner, but their RVD is limited by K(+) conductance. The lack of CFTR expression and decrease in cell volume in response to forskolin concomitant with hyposmolarity suggest that elevated cAMP activates a K(+) conductance. Thus, the altered resistance to aqueous outflow in response to hyposmotic perfusion of the TM and elevated cAMP may be attributed to persistent cell swelling and cell shrinkage, respectively.
Collapse
Affiliation(s)
- S P Srinivas
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Varela D, Simon F, Riveros A, Jørgensen F, Stutzin A. The Volume-Activated Chloride Current Depends on Phospholipase C Activation and Intracellular Calcium Mobilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004. [DOI: 10.1007/0-387-23752-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
165
|
Petrunkina AM, Radcke S, Günzel-Apel AR, Harrison RAP, Töpfer-Petersen E. Role of potassium channels, the sodium-potassium pump and the cytoskeleton in the control of dog sperm volume. Theriogenology 2004; 61:35-54. [PMID: 14643860 DOI: 10.1016/s0093-691x(03)00184-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Response to osmotic shock is an important aspect of mammalian sperm physiology. In this study we recorded volume changes of dog spermatozoa at 39, 33, and 25 degrees C under isotonic conditions and following hypotonic shock. Cell volume measurements were performed electronically in saline solutions of 300 and 150 mOsmol kg(-1), and Percoll-washed preparations were compared with unwashed samples. The involvement of potassium channels in volume control was tested by treatment with quinine, while the involvement of the plasma membrane Na(+)-K+ pump was tested by treatment with ouabain. The role of the cytoskeleton was investigated by treatment with colchicine and cytochalasin D. The number of cell populations observed varied with temperature and tonicity. In both types of sperm preparations, between two and three populations were present under isotonic conditions at 25 degrees C whereas at 39 and 33 degrees C only one population was detected. Hypotonic stress at the higher temperatures caused the single population to swell, whereas at 25 degrees C it resulted in a population of cells whose modal volume was similar to that of the middle isotonic sub-population. Both quinine and the cytoskeletal inhibitors markedly increased swelling both under hypotonic conditions at 39 degrees C and under isotonic conditions at 25 degrees C. However, little or no effect of ouabain was observed. We conclude that in dog spermatozoa swelling in response to hypotonic conditions is minimised through the activity of potassium channels and the presence of an intact cytoskeletal network. Under isotonic conditions at 25 degrees C, a considerable proportion of the sperm population is already swollen; this swelling varies between individual males and appears to be due to lowered cytoskeletal and potassium channel activity.
Collapse
Affiliation(s)
- A M Petrunkina
- Institute for Reproductive Medicine, School of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany.
| | | | | | | | | |
Collapse
|
166
|
Petrunkina AM, Hebel M, Waberski D, Weitze KF, Töpfer-Petersen E. Requirement for an intact cytoskeleton for volume regulation in boar spermatozoa. Reproduction 2004; 127:105-15. [PMID: 15056775 DOI: 10.1530/rep.1.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osmotically induced cell swelling triggers a chain of events leading to a net loss of major cell ions and water, resulting in cell volume recovery, a process known as regulatory volume decrease (RVD). In many cell types, there is an evidence that the cytoskeleton may play a role in the initial sensing and transduction of the signal of volume change. In this study, we tested the hypothesis that an intact microfilament and microtubule network is required for volume response and RVD in boar sperm before and after capacitation treatment and whether addition of cytochalasin D and colchicine to the capacitation medium would affect volumetric behaviour. Capacitation is a series of cellular and molecular alterations that enable the spermatozoon to fertilize an oocyte. Cell volume measurements of washed sperm suspensions were performed electronically in Hepes-buffered saline solutions of 300 and 180 mosmol/kg. After exposure to hypoosmotic conditions, boar sperm showed initial swelling (up to 150% of initial volume within 5 min), which was subsequently partially reversed (to about 120–130% after 20 min). Treatment with cytochalasin D led to reduced initial swelling (1 μmol/l) and loss of RVD in washed sperm (1–10 μmol/l) and at the beginning of incubation under capacitating conditions (5 μmol/l). Short treatment with 500 μmol/l colchicine affected the volume regulatory ability in sperm under capacitating conditions but not in washed sperm. No significant differences in cell volume response were observed after subsequent addition of cytochalasin D and colchicine to the suspensions of sperm incubated for 3 h under capacitating conditions. However, the incubation under capacitating conditions in the presence of cytochalasin D led to improved volume regulation at the end of the incubation period (23%). The microfilament network appears to be important for volume regulation in washed boar spermatozoa while intact microtubules do not seem to be necessary for osmotically induced RVD. The changes in cytoskeleton microfilament organization during capacitation, possibly affecting the osmotically induced volume response, appear to occur at the later stages of capacitation, whereas changes in microtubules, related to volume regulatory ability, may be programmed within the first stages of capacitation.
Collapse
Affiliation(s)
- A M Petrunkina
- Institute for Reproductive Medicine, School of Veterinary Medicine Hanover, Bünteweg 15, 30559 Hanover, Germany.
| | | | | | | | | |
Collapse
|
167
|
Hoffmann EK, Pedersen SF. Effectors and signaling events activated by cell shrinkage in ehrlich ascites tumor cells: implications for cell proliferation and programmed cell death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:169-178. [PMID: 18727238 DOI: 10.1007/0-387-23752-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Else K Hoffmann
- Dept. of Biochemistry, August Krogh Institute, 13, Universitetsparken, DK-2100 Copenhagen O, Denmark.
| | | |
Collapse
|
168
|
Wulff T, Hougaard C, Klaerke DA, Hoffmann EK. Co-expression of mCysLT1 receptors and IK channels in Xenopus laevis oocytes elicits LTD4-stimulated IK current, independent of an increase in [Ca2+]i. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:75-9. [PMID: 14757222 DOI: 10.1016/j.bbamem.2003.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Addition of LTD4 (10 nM) to Xenopus laevis oocytes expressing the mCysLT1 receptor together with hBK or hIK channels resulted in the activation of both channels secondary to an LTD4-induced increase in [Ca2+]i. In addition, the hIK channel is activated by low concentrations of LTD4 (<0.1 nM), which did not result in any increase in [Ca2+]i. Even though activation of hIK by low concentrations of LTD4 was independent of an increase in [Ca2+]i, a certain "permissive" level of [Ca2+]i was required for its activation, since buffering of intracellular Ca2+ by EGTA completely abolished the response to LTD4. Neither hTBAK1 nor hTASK2 was activated following stimulations with LTD4 (0.1 and 100 nM).
Collapse
Affiliation(s)
- Tune Wulff
- Biochemical Department, August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
169
|
Shen MR, Chou CY, Chiu WT. Streptomycin and its analogues are potent inhibitors of the hypotonicity-induced Ca2+ entry and Cl- channel activity. FEBS Lett 2003; 554:494-500. [PMID: 14623118 DOI: 10.1016/s0014-5793(03)01231-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Streptomycin is a common antibiotic used in culture media. It is also a known blocker of stretch-activated and mechanosensitive ion channels in neurons and cardiac myocytes. But very little information is available on its effect in the regulation of epithelial ion channels. Osmotic swelling is a kind of mechanical stretch. The opening of stretch-activated Ca(2+) channels contributes to hypotonicity-induced Ca(2+) influx which is necessary for the activation of volume-regulated Cl(-) channels in human cervical cancer cells. This study aimed to investigate the role of streptomycin in cell volume regulation. Treatment of cervical cancer SiHa cells with streptomycin and its analogues (gentamicin and netilmicin) did not affect the basal cytosolic Ca(2+) ([Ca(2+)](i)) level. But it attenuated the hypotonicity-stimulated increase of [Ca(2+)](i) in a dose-dependent manner with half-maximal inhibitory concentrations (IC(50)) of 25, 90 and 200 microM for streptomycin, gentamicin and netilmicin, respectively, when measured at room temperature. In contrast, under free extracellular Ca(2+) condition, hypotonic stress only induced a small, progressive increase of [Ca(2+)](i), while 500 microM streptomycin did not affect this Ca(2+) signaling. Streptomycin and its analogues (gentamicin and netilmicin) also inhibited the activation of volume-regulated Cl(-) channels in a dose-dependent manner with IC(50) of 30, 95 and 250 microM at room temperature, respectively. Chronic culture with 50 microM streptomycin downregulates the activity of volume-regulated Cl(-) channels and retards the process of regulatory volume decrease in SiHa cells and MDCK cells. We suggest that using cells chronically cultured with streptomycin to study epithelial ion channels risks studying cellular and molecular pathology rather than physiology.
Collapse
Affiliation(s)
- Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | | | | |
Collapse
|
170
|
Makara JK, Koncz P, Petheö GL, Spät A. Role of cell volume in K+-induced Ca2+ signaling by rat adrenal glomerulosa cells. Endocrinology 2003; 144:4916-22. [PMID: 12960104 DOI: 10.1210/en.2003-0383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The involvement of cell volume in the K+-evoked Ca2+ signaling was studied in cultured rat glomerulosa cells. Previously we reported that hyposmosis (250 mOsm) increased the amplitude of T-type Ca2+ current and, accordingly, enhanced the Ca2+ response of cultured rat glomerulosa cells to K+. In the present study we found that this enhancement is not influenced by the cytoskeleton-disrupting drugs cytochalasin-D (20 microM) and colchicine (100 microM). Elevation of extracellular potassium concentration ([K+]e) from 3.6 to 4.6-8.6 mM induced cell swelling, which had slower kinetics than the Ca2+ signal. Cytoplasmic Ca2+ signal measured in single glomerulosa cells in response to stimulation with 5 mm K+ for 2 min showed two phases: after a rapid rise reaching a plateau within 20-30 sec, [Ca2+]c increased further slowly by approximately one third. When 5 mM K+ was coapplied with elevation of extracellular osmolarity from 290 to 320 mOsm, the second phase was prevented. These results indicate that cell swelling evoked by physiological elevation of [K+]e may contribute to the generation of sustained Ca2+ signals by enhancing voltage-activated Ca2+ influx.
Collapse
Affiliation(s)
- Judit K Makara
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University Medical School and Hungarian Academy of Sciences, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
171
|
Ohshima K, Shiba Y, Hirono C, Sugita M, Iwasa Y, Shintani H. Luminal space enlargement by carbachol in rat parotid intralobular ducts. Eur J Oral Sci 2003; 111:405-9. [PMID: 12974684 DOI: 10.1034/j.1600-0722.2003.00061.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carbachol (CCh) enlarges the luminal space in rat parotid intralobular ducts, but the mechanism of their enlargement remains obscure. We investigated the involvement of intracellular calcium ions in the enlargement of luminal space by monitoring the luminal space under optical sectioning in a confocal laser scanning microscope using sulforhodamine B. Carbachol increased the intracellular concentration of calcium ions ([Ca2+]i) and the inside diameter without any change in the outside diameter. Removal of extracellular calcium ions modulated CCh-induced changes in [Ca2+]i to transient, but did not markedly inhibit the CCh-induced increase in the inside diameter. Additional loading of BAPTA (1,2-bis (o-aminophenoxy-ethane-n,n,n',n'-tetraacetic acid) in the duct cells suppressed CCh-induced changes. Diphenylamine-2-carboxylate (DPC), but not cytochalasin D, calmodulin inhibitor or nitric oxide synthase inhibitor profoundly suppressed CCh-induced changes. These results suggest that CCh induces enlargement of the luminal space through the activation of DPC-sensitive channels by the release of calcium ions from the intracellular pool.
Collapse
Affiliation(s)
- Kazunobu Ohshima
- Department of Operative Dentistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
172
|
Srinivas SP, Bonanno JA, Larivière E, Jans D, Van Driessche W. Measurement of rapid changes in cell volume by forward light scattering. Pflugers Arch 2003; 447:97-108. [PMID: 12937987 PMCID: PMC4118695 DOI: 10.1007/s00424-003-1145-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 05/27/2003] [Accepted: 06/04/2003] [Indexed: 11/27/2022]
Abstract
Light scattering is an empirical technique employed to measure rapid changes in cell volume. This study describes a new configuration for the method of light scattering and its corroboration by measurements of cell height (as a measure of cell volume). Corneal endothelial cells cultured on glass cover-slips were mounted in a perfusion chamber on the stage of an inverted microscope. A beam of light was focused on the cells from above the stage at an angle of 40 degrees to the plane of the stage. The scattered light intensity (SLI), captured by the objective and referred to as forward light scatter (FLS), increased and decreased in response to hyposmotic and hyperosmotic shocks, respectively. The rapid increase and decrease in SLI corresponded to cell swelling and shrinkage, respectively. Subsequently, SLI decreased and increased as expected for a regulatory volume decrease (RVD) and increase (RVI), respectively. These data are in agreement with measurements of cell height, demonstrating that the method of light scatter in FLS mode is useful for monitoring rapid changes in cell volume of cultured cells. Changes in SLI caused by gramicidin were consistent with cell volume changes induced by equilibration of NaCl and KCl concentrations across the cell membrane. Similarly, an additional decrease in SLI was recorded during RVD upon increasing K+ conductance by valinomycin. Decreasing K+ conductance of the cell membrane with Ba2+ changed the time course of SLI consistent with the effect of the K+ channel blocker on RVD. Bumetanide and dihydro-ouabain inhibited increases in SLI during RVI. In conclusion, FLS is a valid method for qualitative analysis of cell volume changes with a high time resolution.
Collapse
Affiliation(s)
- S P Srinivas
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
173
|
Mechanick JI, Brett EM, Chausmer AB, Dickey RA, Wallach S. American Association of Clinical Endocrinologists Medical Guidelines for the Clinical Use of Dietary Supplements and Nutraceuticals. Endocr Pract 2003; 9:417-70. [PMID: 14583426 DOI: 10.4158/ep.9.5.417] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
174
|
Grosse T, Heid I, Oztürk I, Borgmann S, Beck FX, Dörge A. Recovery of cell volume and electrolytes of A6 cells after re-establishing isotonicity following hypotonic stress. Pflugers Arch 2003; 447:29-34. [PMID: 12898258 DOI: 10.1007/s00424-003-1139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 05/21/2003] [Accepted: 06/20/2003] [Indexed: 10/26/2022]
Abstract
Cellular element concentrations and dry weight contents in A6 cells were determined using electron microprobe analysis to establish whether these cells exhibit a regulatory volume increase (post-RVD-RVI) when re-establishing isotonicity following a hypotonically induced regulatory volume decrease (RVD). Hypotonic stress was induced by reducing basolateral [NaCl], and hence, osmolarity fell from 260 to 140 mosmol/l. The alterations in cell volume after re-establishing isotonicity, calculated from the cellular dry weight changes, indicate within the first 2 min cell shrinkage from 120 to 76% of control, compatible with almost ideal osmometric behaviour of A6 cells, and thereafter a post-RVD-RVI to 94%. The cellular uptake of osmolytes necessary to explain the post-RVD-RVI could be accounted for solely by a gain in cellular K and Cl. The involvement of a Na-K-2Cl cotransporter in most of the KCl uptake seems plausible since basolateral bumetanide blocked KCl uptake and post-RVD-RVI. The net uptake of cations (K uptake of 185.2, Na loss of 8.2 mmol/kg dry wt) during the isotonic period exceeded the Cl uptake by 38.2 mmol/kg dry wt, suggesting the uptake of another anion and/or the alteration of cellular buffer capacity. The relatively low Na concentration maintained during the isotonic period (13.3 vs. 20.4 mmol/kg wet wt under control conditions) might favour electrolyte uptake via the Na-K-2Cl cotransporter.
Collapse
Affiliation(s)
- T Grosse
- Physiologisches Institut, Pettenkoferstrasse 12, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
175
|
Jorgensen NK, Pedersen SF, Rasmussen HB, Grunnet M, Klaerke DA, Olesen SP. Cell swelling activates cloned Ca(2+)-activated K(+) channels: a role for the F-actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:115-25. [PMID: 12948593 DOI: 10.1016/s0005-2736(03)00237-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling-induced activation of hIK channels was strongly inhibited by cytochalasin D (CD), in concentrations that caused depolymerization of F-actin filaments, indicating a role for the F-actin cytoskeleton in modulation of hIK by changes in cell volume. In conclusion, hIK and rSK3 channels are activated by cell swelling and inhibited by shrinkage. A role for the F-actin cytoskeleton in the swelling-induced activation of hIK channels is suggested.
Collapse
Affiliation(s)
- Nanna K Jorgensen
- Department of Medical Physiology, and the Copenhagen Heart Arrythmia Research Center, The Panum Institute, Denmark.
| | | | | | | | | | | |
Collapse
|
176
|
Maroulis SL, Schofield PJ, Edwards MR. Osmoregulation in the parasitic protozoan Tritrichomonas foetus. Appl Environ Microbiol 2003; 69:4527-33. [PMID: 12902238 PMCID: PMC169155 DOI: 10.1128/aem.69.8.4527-4533.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2002] [Accepted: 05/02/2003] [Indexed: 11/20/2022] Open
Abstract
Tritrichomonas foetus was shown to undergo a regulatory volume increase (RVI) when it was subjected to hyperosmotic challenge, but there was no regulatory volume decrease after hypoosmotic challenge, as determined by using both light-scattering methods and measurement of intracellular water space to monitor cell volume. An investigation of T. foetus intracellular amino acids revealed a pool size (65 mM) that was similar to that of Trichomonas vaginalis but was considerably smaller than those of Giardia intestinalis and Crithidia luciliae. Changes in amino acid concentrations in response to hyperosmotic challenge were found to account for only 18% of the T. foetus RVI. The T. foetus intracellular sodium and potassium concentrations were determined to be 35 and 119 mM, respectively. The intracellular K(+) concentration was found to increase considerably during exposure to hyperosmotic stress, and, assuming that there was a monovalent accompanying anion, this increase was estimated to account for 87% of the RVI. By using light scattering it was determined that the T. foetus RVI was enhanced by elevated external K(+) concentrations and was inhibited when K(+) and/or Cl(-) was absent from the medium. The results suggested that the well-documented Na(+)-K(+)-2Cl(-) cotransport system was responsible for the K(+) influx activated during the RVI. However, inhibitors of Na(+)-K(+)-2Cl(-) cotransport in other systems, such as quinine, ouabain, furosemide, and bumetanide, had no effect on the RVI or K(+) influx in T. foetus.
Collapse
Affiliation(s)
- Sarah L Maroulis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
177
|
Krasznai Z, Morisawa M, Krasznai ZT, Morisawa S, Inaba K, Bazsáné ZK, Rubovszky B, Bodnár B, Borsos A, Márián T. Gadolinium, a mechano-sensitive channel blocker, inhibits osmosis-initiated motility of sea- and freshwater fish sperm, but does not affect human or ascidian sperm motility. CELL MOTILITY AND THE CYTOSKELETON 2003; 55:232-43. [PMID: 12845597 DOI: 10.1002/cm.10125] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Exposure to hypo-osmotic or hyperosmotic environment triggers the initiation of fish sperm motility. In this article, we report that calcium and potassium channel blockers do not influence motility of puffer fish sperm but calmodulin antagonists reversibly decrease it, suggesting that calmodulin-Ca(2+) interactions are prerequisite for the initiation of sperm motility in this species. Gadolinium (a stretch activated ion channel blocker) decreased the motility of puffer fish sperm from 92 +/- 3% to 6 +/- 3% and that of carp sperm from 91 +/- 7% to 3.5 +/- 4.3% in a dose-dependent manner (10-40 micro M). The effect of gadolinium was reversible, suggesting that stretch activated ion channels participate in the initiation of sperm motility of the two species. Gadolinium inhibits changes in the isoelectric point of certain proteins of puffer fish sperm, which occur when sperm motility is initiated in a hypertonic solution. Anisotropy measurements showed that hypo-osmotic treatment, which initiates carp sperm motility, increased membrane fluidity. When hypo-osmotic treatment was given in the presence of gadolinium, the sperm membrane remained as rigid as in quiescent cells, while motility was blocked. By contrast, gadolinium did not influence the motility parameters of Ciona or human sperm. Based on these lines of evidence, we suggest that conformational changes of mechanosensitive membrane proteins are involved in osmolality-dependent but not osmolality-independent sperm.
Collapse
Affiliation(s)
- Zoltán Krasznai
- Department of Biophysics and Cell Biology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Bize I, Taher S, Brugnara C. Regulation of K-Cl cotransport during reticulocyte maturation and erythrocyte aging in normal and sickle erythrocytes. Am J Physiol Cell Physiol 2003; 285:C31-8. [PMID: 12606312 DOI: 10.1152/ajpcell.00447.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The age/density-dependent decrease in K-Cl cotransport (KCC), PP1 and PP2A activities in normal and sickle human erythrocytes, and the effect of urea, a known KCC activator, were studied using discontinuous, isotonic gradients. In normal erythrocytes, the densest fraction (d approximately 33.4 g/dl) has only about approximately 5% of the KCC and 4% of the membrane (mb)-PP1 activities of the least-dense fraction (d approximately 24.7 g/dl). In sickle and normal erythrocytes, density-dependent decreases for mb-PP1 activity were similar (d50% 28.1 +/- 0.4 vs. 27.2 +/- 0.2 g/dl, respectively), whereas those for KCC activity were not (d50% 31.4 +/- 0.9 vs. 26.8 +/- 0.3 g/dl, respectively, P = 0.004). Excluding the 10% least-dense cells, a very tight correlation exists between KCC and mb-PP1 activities in normal (r2 = 0.995) and sickle erythrocytes (r2 = 0.93), but at comparable mb-PP1 activities, KCC activity is higher in sickle erythrocytes, suggesting a defective, mb-PP1-independent KCC regulation. In normal, least-dense but not in densest cells, urea stimulates KCC (two- to fourfold) and moderately increases mb-PP1 (20-40%). Thus mb-PP1 appears to mediate part of urea-stimulated KCC activity.
Collapse
Affiliation(s)
- Isabel Bize
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | | | | |
Collapse
|
179
|
Wilkins RJ, Fairfax TPA, Davies ME, Muzyamba MC, Gibson JS. Homeostasis of intracellular Ca2+ in equine chondrocytes: response to hypotonic shock. Equine Vet J 2003; 35:439-43. [PMID: 12875320 DOI: 10.2746/042516403775600541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Ca2+ homeostasis in articular chondrocytes affects synthesis and degradation of the cartilage matrix, as well as other cellular functions, thereby contributing to joint integrity. Although it will be affected by mechanical loading, the sensitivity of intracellular Ca2+ concentration ([Ca2+]i) in equine articular chondrocytes to many stimuli remains unknown. HYPOTHESIS An improved understanding of Ca2+ homeostasis in equine articular chondrocytes, and how it is altered during joint loading and pathology, will be important in understanding how joints respond to mechanical loads. METHODS [Ca2+]i was determined using the fluorophore fura-2. We examined the effects of hypotonic shock, a perturbation experienced in vivo during mechanical loading cycles. We used inhibitors of Ca2+ transporters to ascertain the important factors in Ca2+ homeostasis. RESULTS Under isotonic conditions, [Ca2+]i was 148 +/- 23 nmol/l, increasing by 216 +/- 66 nmol/l in response to reduction in extracellular osmolality of 50%. Resting [Ca2+]i, and the increase following hypotonic shock, were decreased by Ca2+ removal; they were both elevated when extracellular [Ca2+] ([Ca2+]o) was raised or following Na+ removal. The hypotonicity-induced rise in [Ca2+]i was inhibited by exposure of cells to gadolinium (Gd3+; 10 micromol/l), an inhibitor of mechanosensitive channels. [Ca2+]i was also elevated following treatment of cells with thapsigargin (10 micromol/l), an inhibitor of the Ca2+ pump of intracellular stores. CONCLUSIONS A model is presented which interprets these findings in relation to Ca2+ homeostasis in equine articular chondrocytes, including the presence of mechanosensitive channels allowing Ca2+ entry, a Na+/Ca2+ exchanger for removal of intracellular Ca2+ and intracellular stores sensitive to thapsigargin. POTENTIAL RELEVANCE A more complete understanding of Ca2+ homeostasis in equine chondrocytes may allow development of future therapeutic regimes to ameliorate joint disease.
Collapse
Affiliation(s)
- R J Wilkins
- University of Oxford, University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
180
|
Krumschnabel G, Gstir R, Manzl C, Prem C, Pafundo D, Schwarzbaum PJ. Metabolic and ionic responses of trout hepatocytes to anisosmotic exposure. J Exp Biol 2003; 206:1799-808. [PMID: 12728001 DOI: 10.1242/jeb.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trout hepatocytes exposed to hypo- or hyperosmotic conditions respond by swelling and shrinking, respectively, followed by regulatory volume changes that almost, although not completely, restore cell volume. These anisosmotic conditions have a significant impact on metabolic functions. In hyposmotic medium, oxygen consumption (.VO2) and glucose production rates were significantly reduced, whereas lactate accumulation was not significantly affected. By contrast, hyperosmotic conditions did not affect .VO2 and lactate production but caused a sustained reduction in glucose production. Volume changes were also accompanied by alterations in intracellular free calcium ([Ca2+](i)). At the cell population level, hyposmotic exposure evoked a moderate and slowly developing increase in [Ca2+](i), whereas hyperosmolarity caused a pronounced and sustained increase, which peaked at the time of maximum cell shrinkage but clearly exceeded a mere concentration effect due to volume reduction. Responses of individual cells were highly variable in hyposmotic medium, with only 60% showing a clear increase in [Ca2+](i), while in hyperosmotic conditions all cells displayed elevated [Ca2+](i) levels. A decrease in intracellular pH (pHi) observed in hyposmotic medium was insensitive to EIPA, an inhibitor of Na(+)/H(+) exchange, and SITS, an inhibitor of Cl(-)/HCO(3)(-) exchange, but was prevented in Cl(-)-free medium. In hyperosmotic medium, pHi increased. This alkalinization did not occur under conditions of blocked Na(+)/H(+) exchange and was significantly diminished upon inhibition of Cl(-)/HCO(3)(-) exchange, suggesting an important role of these ion transporters in regulatory volume increase of trout hepatocytes.
Collapse
Affiliation(s)
- Gerhard Krumschnabel
- Institut für Zoologie und Limnologie, Abteilung für Okophysiologie, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
181
|
Affiliation(s)
- Mireia Gómez-Angelats
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
182
|
Payne JA, Rivera C, Voipio J, Kaila K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 2003; 26:199-206. [PMID: 12689771 DOI: 10.1016/s0166-2236(03)00068-7] [Citation(s) in RCA: 619] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electrical signaling in neurons is based on the operation of plasmalemmal ion pumps and carriers that establish transmembrane ion gradients, and on the operation of ion channels that generate current and voltage responses by dissipating these gradients. Although both voltage- and ligand-gated channels are being extensively studied, the central role of ion pumps and carriers is largely ignored in current neuroscience. Such an information gap is particularly evident with regard to neuronal Cl- regulation, despite its immense importance in the generation of inhibitory synaptic responses by GABA- and glycine-gated anion channels. The cation-chloride co-transporters (CCCs) have been identified as important regulators of neuronal Cl- concentration, and recent work indicates that CCCs play a key role in shaping GABA- and glycine-mediated signaling, influencing not only fast cell-to-cell communication but also various aspects of neuronal development, plasticity and trauma.
Collapse
Affiliation(s)
- John A Payne
- Department of Human Physiology, School of Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
183
|
Fuertes MA, Alonso C, Pérez JM. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 2003; 103:645-62. [PMID: 12630848 DOI: 10.1021/cr020010d] [Citation(s) in RCA: 702] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel A Fuertes
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain
| | | | | |
Collapse
|
184
|
Katz U, Lancaster JA, Ellory JC. Hypotonic-induced transport pathways in Xenopus laevis erythrocytes: taurine fluxes. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:355-63. [PMID: 12547265 DOI: 10.1016/s1095-6433(02)00271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Taurine fluxes in Xenopus laevis red cells were studied in vitro in media of different tonicities. Both influx and efflux increased 3-10 times reversibly when dilution of the medium exceeded 30%. The absolute values of uptake ranged between 5 and 30 micromol/l cells.h at extracellular taurine concentration of 1 mmol/l, but is poorly selective as almost the same uptake was measured for choline and sucrose. Q(10) of 2.77 and an activation energy of 71.90+/-7.37 kJ/mol were calculated for the uptake process. Taurine uptake was reduced 50% in the absence of Cl(-), whereas the alkali cations (Na(+), K(+), Li(+) and Rb(+)) supported it similarly. Taurine uptake was greatly increased in Ca(2+)-free solution, and was inhibited by alkaline pH. The inhibitor of anion exchange protein, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (IC(50)=25 microM) and the Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid and [(dihydro-indenyl) oxy] alkanoic acid (IC(50)<20 microM) inhibited taurine uptake effectively. Isoproterenol did not affect taurine uptake in isotonic, nor in hypotonic solution. The uptake was reduced slowly to near the original, control level within 15-30 min in hypotonic solutions, indicating deactivation of the hypotonic-induced taurine pathway.
Collapse
Affiliation(s)
- U Katz
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
| | | | | |
Collapse
|
185
|
Jilkina O, Kuzio B, Kupriyanov VV. Hyposmotic shock: effects on rubidium/potassium efflux in normal and ischemic rat hearts, assessed by 87Rb and 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:20-30. [PMID: 12527403 DOI: 10.1016/s0925-4439(02)00210-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.
Collapse
Affiliation(s)
- Olga Jilkina
- Institute for Biodiagnostics, National Research Council of Canada, 435 Ellice Avenue, MB, R3B 1Y6, Winnipeg, Canada.
| | | | | |
Collapse
|
186
|
Yellowley CE, Hancox JC, Donahue HJ. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes. J Cell Biochem 2002; 86:290-301. [PMID: 12111998 DOI: 10.1002/jcb.10217] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chondrocytes experience a dynamic extracellular osmotic environment during normal joint loading when fluid is forced from the matrix, increasing the local proteoglycan concentration and therefore the ionic strength and osmolarity. To exist in such a challenging environment, chondrocytes must possess mechanisms by which cell volume can be regulated. In this study, we investigated the ability of bovine articular chondrocytes (BAC) to regulate cell volume during a hypo-osmotic challenge. We also examined the effect of hypo-osmotic stress on early signaling events including [Ca2+](i) and membrane currents. Changes in cell volume were measured by monitoring the fluorescence of calcein-loaded cells. [Ca2+](i) was quantified using fura-2, and membrane currents were recorded using patch clamp. BAC exhibited regulated volume decrease (RVD) when exposed to hypo-osmotic saline which was inhibited by Gd3+. Swelling stimulated [Ca2+](i) transients in BAC which were dependent on swelling magnitude. Gd3+, zero [Ca2+](o), and thapsigargin all attenuated the [Ca2+](i) response, suggesting roles for Ca2+ influx through stretch activated channels, and Ca2+ release from intracellular stores. Inward and outward membrane currents significantly increased during cell swelling and were inhibited by Gd3+. These results indicate that RVD in BAC may involve [Ca2+](i) and ion channel activation, both of which play pivotal roles in RVD in other cell types. These signaling pathways are also similar to those activated in chondrocytes subjected to other biophysical signals. It is possible, then, that these signaling events may also be involved in a mechanism by which mechanical loads are transduced into appropriate cellular responses by chondrocytes.
Collapse
Affiliation(s)
- Clare E Yellowley
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | |
Collapse
|
187
|
Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 2002; 277:47044-51. [PMID: 12354759 DOI: 10.1074/jbc.m208277200] [Citation(s) in RCA: 514] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared activation by heat of TRPV4 channels, heterogeneously expressed in HEK293 cells, and endogenous channels in mouse aorta endothelium (MAEC). Increasing the temperature above 25 degrees C activated currents and increased [Ca(2+)](i) in HEK293 cells transfected with TRPV4 and in MAEC. When compared with activation of TRPV4 currents by the selective ligand 4alphaPDD (alpha-phorbol 12,13-didecanoate), heat-activated currents in both systems showed the typical biophysical properties of currents through TRPV4, including their single channel conductance. Deletion of the three N-terminal ankyrin binding domains of TRPV4 abolished current activation cells by heat in HEK293. In inside-out patches, TRPV4 could not be activated by heat but still responded to the ligand 4alphaPDD. In MAEC, the same channel is activated under identical conditions as in the HEK expression system. Our data indicate that TRPV4 is a functional temperature-sensing channel in native endothelium, that is likely involved in temperature-dependent Ca(2+) signaling. The failure to activate TRPV4 channels by heat in inside-out patches, which responded to 4alphaPDD, may indicate that heat activation depends on the presence of an endogenous ligand, which is missing in inside-out patches.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Physiology, Campus Gasthuisberg, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
188
|
Yagisawa H, Yamaga M, Okada M, Sasaki K, Fujii M. Regulation of the intracellular localization of phosphoinositide-specific phospholipase Cdelta(1). ADVANCES IN ENZYME REGULATION 2002; 42:261-84. [PMID: 12123720 DOI: 10.1016/s0065-2571(01)00040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hitoshi Yagisawa
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | |
Collapse
|
189
|
Fernández-Fernández JM, Nobles M, Currid A, Vázquez E, Valverde MA. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am J Physiol Cell Physiol 2002; 283:C1705-14. [PMID: 12388065 DOI: 10.1152/ajpcell.00245.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of maxi K+ channels, confirmed by RT-PCR and Western blot. Single-channel and whole cell maxi K+ currents were readily and reversibly activated following the exposure of HBE cells to a 28% hypotonic solution. Both maxi K+ current activation and RVD response showed calcium dependency, inhibition by TEA, Ba2+, iberiotoxin, and the cationic channel blocker Gd3+ but were insensitive to clofilium, clotrimazole, and apamin. The presence of the recently cloned swelling-activated, Gd3+-sensitive cation channels (TRPV4, also known as OTRPC4, TRP12, or VR-OAC) was detected by RT-PCR in HBE cells. This channel, TRPV4, which senses changes in volume, might provide the pathway for Ca2+ influx under hypotonic solutions and, consequently, for the activation of maxi K+ channels.
Collapse
Affiliation(s)
- José M Fernández-Fernández
- Unitat de Senyalització Cellular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
190
|
Shen MR, Chou CY, Hsu KF, Ellory JC. Osmotic shrinkage of human cervical cancer cells induces an extracellular Cl- -dependent nonselective cation channel, which requires p38 MAPK. J Biol Chem 2002; 277:45776-84. [PMID: 12226098 DOI: 10.1074/jbc.m207993200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study is to integrate a functional role of nonselective cation (NSC) channels into a model of volume regulation on osmotic shrinkage for human cervical cancer cells. Application of a hypertonic solution (400 mosm kg(-1)) induced cell shrinkage, which was accompanied by a 7-fold increase of inward currents at -80 mV from -4.1 +/- 0.4 pA pF(-1) to -29 +/- 1.1 pA pF(-1) (n = 36, p < 0.001). There is a good correlation of channel activity and cell volume changes. Replacement of bath Na(+) by K(+), Cs(+), Li(+), or Rb(+) did not affect the stimulated inward current significantly, but replacement by Ca(2+), Ba(2+), or the impermeable cation N-methyl-d-glucamine abolished the inward current; this demonstrates that the shrinkage-induced currents discriminate poorly between monovalent cations but are not carried by divalent cations. Replacement of extracellular Cl(-) by gluconate abolished the shrinkage-induced currents in a concentration-dependent manner without changing the reversal potential. Gadolinium (Gd(3+)) inhibited the stimulated current, whereas bumetanide and amiloride had no inhibitory effect. Cell shrinkage triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of MAP/extracellular signal-regulated kinase 1/2 (ERK1/2) kinase (MEK1/2), and p38 kinase. Interference with p38 MAPK by either the specific inhibitor (SB202190), or a dominant-negative mutant profoundly suppressed the activation of the shrinkage-induced NSC channels. In contrast, the regulatory mechanism of shrinkage-induced NSC channels was independent of the volume-responsive MEK1/2 signaling pathway. More importantly, the cell volume response to hypertonicity was inhibited significantly in p38 dominant-negative mutant or by SB202190. Therefore, p38 MAPK is critically involved in the activation of a shrinkage-induced NSC channel, which plays an important role in the volume regulation of human cervical cancer cells.
Collapse
Affiliation(s)
- Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | | | | | | |
Collapse
|
191
|
Hoffmann EK, Hoffmann E, Lang F, Zadunaisky JA. Control of Cl- transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:129-39. [PMID: 12421544 DOI: 10.1016/s0005-2736(02)00587-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The eurohaline fish, Fundulus heteroclitus, adapts rapidly to enhanced salinity by increasing the ion secretion by gill chloride cells. An increase of approximately 70 mOsm in plasma osmolarity was previously found during the transition. To mimic this in vitro, isolated opercular epithelia of seawater-adapted Fundulus mounted in a modified Ussing chamber were exposed to an increase in NaCl and/or osmolarity on the basolateral side, which immediately increased I(SC). Various Cl(-) channel blockers as well as the K(+) channel blocker Ba(2+) added to the basolateral side all inhibited the steady-state as well as the hypertonic stimulation of I(SC). The exists -agonist isoproterenol stimulates I(SC) in standard Ringer solutions. In contrast, when cell volume was kept at the larger value by simultaneous addition of water, the stimulation with isoproterenol was abolished, suggesting that the key process for activation of the Na(+), K(+), 2Cl(-) cotransporter is cell shrinkage. The protein kinase C (PKC) inhibitor chelerythrine and the myosin light chain kinase (MLCK) inhibitor ML-7 had strong inhibitory effects on the mannitol activation of I(SC), thus both MLCK and PKC are involved. The two specific protein kinase A (PKA) inhibitors H-89 and KT 5720 had no effect after mannitol addition whereas isoproterenol stimulation was completely blocked by H-89. This indicates that PKA is involved in the activation of the apical Cl(-) channel via c-AMP whereas the shrinkage activation of the Na(+), K(+), 2Cl(-) cotransporter is independent of PKA activation. The steady-state Cl(-) secretion was stimulated by an inhibitor of serine/threonine phosphatases of the PP-1 and PP-2A type and inhibited by a PKC inhibitor but not by a PKA inhibitor. Thus, it seems to be determined by continuous phosphorylation and dephosphorylation involving PKC but not PKA. The steady-state Cl(-) secretion and the maximal obtainable Cl(-) secretion were measured in freshwater-adapted fish and in fish retransferred to saltwater. No I(SC) could be measured in freshwater-adapted fish or in the fish within the first 18 h after transfer to saltwater. As evidenced from Western blot analysis using antiserine-antibodies, a heavily serine phosphorylated protein of about 190 kDa was consistently observed in the saltwater-acclimated fish, but was only weakly present in freshwater-acclimated fish. This observation indicates that acclimatization to saltwater stimulates the expression of this 190-kDa protein and/or a serine/threonine kinase, which subsequently phosphorylates the protein.
Collapse
Affiliation(s)
- E K Hoffmann
- August Krogh Institute Biochemical Department, University of Copenhagen, 13 Universitetsparken, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
192
|
Pritchard S, Erickson GR, Guilak F. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton. Biophys J 2002; 83:2502-10. [PMID: 12414684 PMCID: PMC1302336 DOI: 10.1016/s0006-3495(02)75261-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.
Collapse
Affiliation(s)
- Scott Pritchard
- Department of Surgery, Duke University Medical Center, 374 Medical Sciences Research Building, Durham, NC 27710, USA
| | | | | |
Collapse
|
193
|
Hermoso M, Satterwhite CM, Andrade YN, Hidalgo J, Wilson SM, Horowitz B, Hume JR. ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl- channels and volume regulation in HeLa cells and Xenopus laevis oocytes. J Biol Chem 2002; 277:40066-74. [PMID: 12183454 DOI: 10.1074/jbc.m205132200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Volume-sensitive osmolyte and anion channels (VSOACs) are activated upon cell swelling in most vertebrate cells. Native VSOACs are believed to be a major pathway for regulatory volume decrease (RVD) through efflux of chloride and organic osmolytes. ClC-3 has been proposed to encode native VSOACs in Xenopus laevis oocytes and in some mammalian cells, including cardiac and vascular smooth muscle cells. The relationship between the ClC-3 chloride channel, the native volume-sensitive osmolyte and anion channel (VSOAC) currents, and cell volume regulation in HeLa cells and X. laevis oocytes was investigated using ClC-3 antisense. In situ hybridization in HeLa cells, semiquantitative and real-time PCR, and immunoblot studies in HeLa cells and X. laevis oocytes demonstrated the presence of ClC-3 mRNA and protein, respectively. Exposing both cell types to hypotonic solutions induced cell swelling and activated native VSOACs. Transient transfection of HeLa cells with ClC-3 antisense oligonucleotide or X. laevis oocytes injected with antisense cRNA abolished the native ClC-3 mRNA transcript and protein and significantly reduced the density of native VSOACs activated by hypotonically induced cell swelling. In addition, antisense against native ClC-3 significantly impaired the ability of HeLa cells and X. laevis oocytes to regulate their volume. These results suggest that ClC-3 is an important molecular component underlying VSOACs and the RVD process in HeLa cells and X. laevis oocytes.
Collapse
Affiliation(s)
- Marcela Hermoso
- Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 6530499, Chile
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Apoptosis is a physiological form of death in which cells turn-on an intrinsic genetic program that eventually leads to their destruction in a highly regulated manner. This process renders elimination of "unwanted cells" in the body, and accounts for cellular turnover and homeostasis of tissues in multicellular organisms. Consequently, an imbalance in the apoptotic rate in a particular tissue can lead to profound effects in the whole organism. Exposure of cells to apoptotic stimuli induces a rapid loss of cell volume (apoptotic volume decrease) that plays a pivotal role in the decision of a cell to undergo apoptosis. Interestingly, the apoptotic volume decrease is driven by changes in ionic fluxes across the plasma membrane that promote a decrease in the intracellular ions that ultimately also leads to a reduction in intracellular ionic strength. Despite an intensive research effort however, the cellular and molecular mechanisms that trigger changes in cell volume during apoptosis remain poorly understood. Nevertheless, this apoptotic volume decrease has been shown to be a necessary component of the apoptotic cascade and an important point of modulation for the entire cell death process. In this review, we will focus on the importance of the apoptotic volume decrease in the context of signaling and modulation of programmed cell death.
Collapse
Affiliation(s)
- Mireia Gómez-Angelats
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
195
|
Pedersen SF, Beisner KH, Hougaard C, Willumsen BM, Lambert IH, Hoffmann EK. Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J Physiol 2002; 541:779-96. [PMID: 12068040 PMCID: PMC2290365 DOI: 10.1113/jphysiol.2002.018887] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of Rho GTPases in the regulatory volume decrease (RVD) process following osmotic cell swelling is controversial and has so far only been investigated for the swelling-activated Cl- efflux. We investigated the involvement of RhoA in the RVD process in NIH3T3 mouse fibroblasts, using wild-type cells and three clones expressing constitutively active RhoA (RhoAV14). RhoAV14 expression resulted in an up to fourfold increase in the rate of RVD, measured by large-angle light scattering. The increase in RVD rate correlated with RhoAV14 expression. RVD in wild-type cells was unaffected by the Rho kinase inhibitor Y-27632 and the phosphatidyl-inositol 3 kinase (PI3K) inhibitor wortmannin. The maximal rates of swelling-activated K+ (86 Rb+ as tracer) and taurine ([3H]taurine as tracer) efflux after a 30 % reduction in extracellular osmolarity were increased about twofold in cells with maximal RhoAV14 expression compared to wild-type cells, but were unaffected by Y-27632. The volume set points for activation of release of both osmolytes appeared to be reduced by RhoAV14 expression. The maximal taurine efflux rate constant was potentiated by the tyrosine phosphatase inhibitor Na(3)VO(4), and inhibited by the tyrosine kinase inhibitor genistein. The magnitude of the swelling-activated Cl- current (I(Cl,swell) ) was higher in RhoAV14 than in wild-type cells after a 7.5 % reduction in extracellular osmolarity, but, in contrast to 86Rb+ and [3H]taurine efflux, similar in both strains after a 30 % reduction in extracellular osmolarity. I(Cl,swell) was inhibited by Y-27632 and strongly potentiated by the myosin light chain kinase inhibitors ML-7 and AV25. It is suggested that RhoA, although not the volume sensor per se, is an important upstream modulator shared by multiple swelling-activated channels on which RhoA exerts its effects via divergent signalling pathways.
Collapse
|
196
|
Shillingford JM, Miyoshi K, Flagella M, Shull GE, Hennighausen L. Mouse mammary epithelial cells express the Na-K-Cl cotransporter, NKCC1: characterization, localization, and involvement in ductal development and morphogenesis. Mol Endocrinol 2002; 16:1309-21. [PMID: 12040017 DOI: 10.1210/mend.16.6.0857] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the fact that physiological evidence points to the existence of a functional Na-K-Cl cotransporter in the mammary gland, the molecular identity of this transport process remains unknown. We now show that the Na-K-Cl cotransporter isoform, NKCC1, is expressed in mammary tissue. Developmental profiling revealed that the level of NKCC1 protein was significantly influenced by the stage of mammary gland development, and immunolocalization studies demonstrated that NKCC1 was present on the basolateral membrane of mammary epithelial cells. To examine whether functional NKCC1 is required for mammary epithelial cell development, we used NKCC1 -/- mice. We demonstrate that NKCC1 -/- mammary epithelium exhibited a significant delay in ductal outgrowth and an increase in branching morphogenesis during virgin development. These effects were autonomous to the epithelium as assessed by mammary gland transplantation. Although the absence of NKCC1 had no apparent effect on gross mammary epithelial cell morphology during lactation, pups born to NKCC1 -/- mice failed to thrive. Finally, analysis of NKCC1 protein in mouse models that exhibit defects in mammary gland development demonstrate that high levels of NKCC1 protein are indicative of ductal epithelial cells, and the presence of NKCC1 protein is characteristic of mammary epithelial cell identity.
Collapse
Affiliation(s)
- Jonathan M Shillingford
- Laboratory of Genetics and Physiology, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
197
|
Abstract
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.
| |
Collapse
|
198
|
Shen MR, Wilkins RJ, Chou CY, Ellory JC. Anion exchanger isoform 2 operates in parallel with Na(+)/H(+) exchanger isoform 1 during regulatory volume decrease of human cervical cancer cells. FEBS Lett 2002; 512:52-8. [PMID: 11852051 DOI: 10.1016/s0014-5793(01)03317-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular pH (pH(i)) homeostasis was investigated in human cervical cancer SiHa cells undergoing regulatory volume decrease (RVD) to determine which transport systems were involved. Using isoform-specific primers, mRNA transcripts of Na(+)/H(+) exchanger isoform 1 (NHE1) and isoform 3 were identified by reverse transcriptase polymerase chain reaction (RT-PCR) and the results confirmed by Western immunoblotting. From anion exchanger isoforms 1-3 (AE1-3), only the mRNA transcript of AE2 was identified by RT-PCR and the identity was confirmed by digestion with a specific restriction endonuclease. SiHa cells loaded with the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and resuspended in isotonic media showed a stable pH(i). In contrast, a gradual internal acidification took place following resuspension in hypotonic media. The NHE inhibitors, HOE694 (10 microM) and amiloride (1 mM), showed a similar potency in enhancing the rate and extent of the hypotonicity-induced internal acidification. The absence of extracellular Na(+) also substantially enhanced the acidification during RVD. These results suggest that internal acidification during RVD is mainly compensated by the operation of NHE1. Extracellular Cl(-) was critically necessary for the pH(i) acidification during RVD. The hypotonicity-induced acidification was significantly attenuated by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, a concentration inhibiting more than 90% AE activity. This indicates that AE2 mediates a net Cl(-) influx with compensating HCO(3)(-) efflux during RVD. We conclude that AE2 operates in parallel with NHE1 to regulate pH(i) during RVD of human cervical cancer cells.
Collapse
|
199
|
Shen MR, Chou CY, Browning JA, Wilkins RJ, Ellory JC. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J Physiol 2001; 537:347-62. [PMID: 11731569 PMCID: PMC2278960 DOI: 10.1111/j.1469-7793.2001.00347.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
1. This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. 2. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. 3. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl- channel. 4. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl- channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. 5. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. 6. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells.
Collapse
Affiliation(s)
- M R Shen
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
200
|
Lindinger MI, Hawke TJ, Vickery L, Bradford L, Lipskie SL. An integrative, in situ approach to examining K+ flux in resting skeletal muscle. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contributions of Na+/K+-ATPase, K+ channels, and the NaK2Cl cotransporter (NKCC) to total and unidirectional K+ flux were determined in mammalian skeletal muscle at rest. Rat hindlimbs were perfused in situ via the femoral artery with a bovine erythrocyte perfusion medium that contained either 86Rb or 42K, or both simultaneously, to determine differences in ability to trace unidirectional K+ flux in the absence and presence of K+-flux inhibitors. In most experiments, the unidirectional flux of K+ into skeletal muscle (JinK) measured using 86Rb was 810% lower than JinK measured using 42K. Ouabain (5 mM) was used to inhibit Na+/K+-ATPase activity, 0.06 mM bumetanide to inhibit NKCC activity, 1 mM tetracaine or 0.5 mM barium to block K+ channels, and 0.05 mM glybenclamide (GLY) to block ATP-sensitive K+ (KATP) channels. In controls, JinK remained unchanged at 0.31 ± 0.03 µmol·g1·min1 during 55 min of perfusion. The ouabain-sensitive Na+/K+-ATPase contributed to 50 ± 2% of basal JinK, K+ channels to 47 ± 2%, and the NKCC to 12 ± 1%. GLY had minimal effect on JinK, and both GLY and barium inhibited unidirectional efflux of K+ (JoutK) from the cell through K+ channels. Combined ouabain and tetracaine reduced JinK by 55 ± 2%, while the combination of ouabain, tetracaine, and bumetanide reduced JinK by 67 ± 2%, suggesting that other K+-flux pathways may be recruited because the combined drug effects on inhibiting JinK were not additive. The main conclusions are that the NKCC accounted for about 12% of JinK, and that KATP channels accounted for nearly all of the JoutK, in resting skeletal muscle in situ.Key words: sodium potassium chloride cotransporter, NKCC, Na+/K+-ATPase, potassium channels, potassium transport, in situ rat hindlimb.
Collapse
|