151
|
The importance of the aggregation of ticks on small mammal hosts for the establishment and persistence of tick-borne pathogens: an investigation using the R 0 model. Parasitology 2012; 139:1605-13. [DOI: 10.1017/s0031182012000893] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
152
|
Li S, Hartemink N, Speybroeck N, Vanwambeke SO. Consequences of landscape fragmentation on Lyme disease risk: a cellular automata approach. PLoS One 2012; 7:e39612. [PMID: 22761842 PMCID: PMC3382467 DOI: 10.1371/journal.pone.0039612] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
The abundance of infected Ixodid ticks is an important component of human risk of Lyme disease, and various empirical studies have shown that this is associated, at least in part, to landscape fragmentation. In this study, we aimed at exploring how varying woodland fragmentation patterns affect the risk of Lyme disease, through infected tick abundance. A cellular automata model was developed, incorporating a heterogeneous landscape with three interactive components: an age-structured tick population, a classical disease transmission function, and hosts. A set of simplifying assumptions were adopted with respect to the study objective and field data limitations. In the model, the landscape influences both tick survival and host movement. The validation of the model was performed with an empirical study. Scenarios of various landscape configurations (focusing on woodland fragmentation) were simulated and compared. Lyme disease risk indices (density and infection prevalence of nymphs) differed considerably between scenarios: (i) the risk could be higher in highly fragmented woodlands, which is supported by a number of recently published empirical studies, and (ii) grassland could reduce the risk in adjacent woodland, which suggests landscape fragmentation studies of zoonotic diseases should not focus on the patch-level woodland patterns only, but also on landscape-level adjacent land cover patterns. Further analysis of the simulation results indicated strong correlations between Lyme disease risk indices and the density, shape and aggregation level of woodland patches. These findings highlight the strong effect of the spatial patterns of local host population and movement on the spatial dynamics of Lyme disease risks, which can be shaped by woodland fragmentation. In conclusion, using a cellular automata approach is beneficial for modelling complex zoonotic transmission systems as it can be combined with either real world landscapes for exploring direct spatial effects or artificial representations for outlining possible empirical investigations.
Collapse
Affiliation(s)
- Sen Li
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
153
|
Cagnacci F, Bolzoni L, Rosà R, Carpi G, Hauffe H, Valent M, Tagliapietra V, Kazimirova M, Koci J, Stanko M, Lukan M, Henttonen H, Rizzoli A. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: Empirical assessment. Int J Parasitol 2012; 42:365-72. [DOI: 10.1016/j.ijpara.2012.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/02/2012] [Accepted: 02/16/2012] [Indexed: 11/16/2022]
|
154
|
Bolzoni L, Rosà R, Cagnacci F, Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol 2012; 42:373-81. [PMID: 22429768 DOI: 10.1016/j.ijpara.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022]
Abstract
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.
Collapse
Affiliation(s)
- L Bolzoni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | | | | | | |
Collapse
|
155
|
Bertrand Y, Töpel M, Elväng A, Melik W, Johansson M. First dating of a recombination event in mammalian tick-borne flaviviruses. PLoS One 2012; 7:e31981. [PMID: 22384119 PMCID: PMC3285191 DOI: 10.1371/journal.pone.0031981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.
Collapse
Affiliation(s)
- Yann Bertrand
- Department of Plant and Environmental Sciences, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
156
|
Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. INFECTION GENETICS AND EVOLUTION 2011; 11:1842-61. [DOI: 10.1016/j.meegid.2011.09.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022]
|
157
|
Fornadel CM, Zhang X, Smith JD, Paddock CD, Arias JR, Norris DE. High rates of Rickettsia parkeri infection in Gulf Coast ticks (Amblyomma maculatum) and identification of "Candidatus Rickettsia andeanae" from Fairfax County, Virginia. Vector Borne Zoonotic Dis 2011; 11:1535-9. [PMID: 21867421 DOI: 10.1089/vbz.2011.0654] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Gulf Coast tick, Amblyomma maculatum, is a vector of Rickettsia parkeri, a recently identified human pathogen that causes a disease with clinical symptoms that resemble a mild form of Rocky Mountain spotted fever. Because the prevalence of R. parkeri infection in geographically distinct populations of A. maculatum is not fully understood, A. maculatum specimens collected as part of a tick and pathogen surveillance system in Fairfax County, Virginia, were screened to determine pathogen infection rates. Overall, R. parkeri was found in 41.4% of the A. maculatum that were screened. Additionally, the novel spotted fever group Rickettsia sp., tentatively named "Candidatus Rickettsia andeanae," was observed for the first time in Virginia.
Collapse
Affiliation(s)
- Christen M Fornadel
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205-2179, USA
| | | | | | | | | | | |
Collapse
|
158
|
Burri C, Bastic V, Maeder G, Patalas E, Gern L. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:615-627. [PMID: 21661323 DOI: 10.1603/me10180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The focal distribution of tick-borne encephalitis virus (TBEV; Flaviviridae, Flavivirus) appears to depend mainly on cofeeding transmission between infected Ixodes ricinus L. nymphs and uninfected larvae. To better understand the role of cofeeding ticks in the transmission of TBEV, we investigated tick infestation of rodents and the influence of microclimate on the seasonality of questing I. ricinus ticks. A 3-yr study was carried out at four sites, including two confirmed TBEV foci. Free-living ticks and rodents were collected monthly, and microclimatic data were recorded. A decrease in questing nymph density was observed in 2007, associated with low relative humidity and high temperatures in spring. One site, Thun, did not show this decrease, probably because of microclimatic conditions in spring that favored the questing nymph population. During the same year, the proportion of rodents carrying cofeeding ticks was lower at sites where the questing nymph density decreased, although the proportion of infested hosts was similar among years. TBEV was detected in 0.1% of questing ticks, and in 8.6 and 50.0% of larval ticks feeding on two rodents. TBEV was detected at all but one site, where the proportion of hosts with cofeeding ticks was the lowest. The proportion of hosts with cofeeding ticks seemed to be one of the factors that distinguished a TBEV focus from a non-TBEV focus. The enzootic cycle of TBEV might be disrupted when dry and hot springs occur during consecutive years.
Collapse
Affiliation(s)
- C Burri
- Institute of Biology, Laboratory of Eco-Epidemiology of Parasites, University of Neuchâtel, Emile-Argand 11, 2000 Neuch&tel, Switzerland
| | | | | | | | | |
Collapse
|
159
|
Abstract
SUMMARYIn the epidemiology of infectious diseases, the basic reproduction number, R0, has a number of important applications, most notably it can be used to predict whether a pathogen is likely to become established, or persist, in a given area. We used the R0model to investigate the persistence of 3 tick-borne pathogens;Babesia microti, Anaplasma phagocytophilumandBorrelia burgdorferisensu lato in anApodemus sylvaticus-Ixodes ricinussystem. The persistence of these pathogens was also determined empirically by screening questing ticks and wood mice by PCR. All 3 pathogens behaved differently in response to changes in the proportion of transmission hosts on whichI. ricinusfed, the efficiency of transmission between the host and ticks and the abundance of larval and nymphal ticks found on small mammals. Empirical data supported theoretical predictions of the R0model. The transmission pathway employed and the duration of systemic infection were also identified as important factors responsible for establishment or persistence of tick-borne pathogens in a given tick-host system. The current study demonstrates how the R0model can be put to practical use to investigate factors affecting tick-borne pathogen persistence, which has important implications for animal and human health worldwide.
Collapse
|
160
|
Hasle G, Bjune GA, Midthjell L, Røed KH, Leinaas HP. Transport of Ixodes ricinus infected with Borrelia species to Norway by northward-migrating passerine birds. Ticks Tick Borne Dis 2011; 2:37-43. [DOI: 10.1016/j.ttbdis.2010.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
|
161
|
Kjelland V, Ytrehus B, Stuen S, Skarpaas T, Slettan A. Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks collected from moose (Alces alces) and roe deer (Capreolus capreolus) in southern Norway. Ticks Tick Borne Dis 2011; 2:99-103. [PMID: 21771543 DOI: 10.1016/j.ttbdis.2010.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022]
Abstract
As part of a larger survey, ears from 18 roe deer (Capreolus capreolus) and 52 moose (Alces alces) shot in the 2 southernmost counties in Norway were collected and examined for Ixodes ricinus ticks. Seventy-two adult ticks, 595 nymphs, and 267 larvae from the roe deer, and 182 adult ticks, 433 nymphs, and 70 larvae from the moose were investigated for infection with Borrelia burgdorferi sensu lato (s.l.). The results showed the presence of B. burgdorferi s.l. DNA in 2.9% of the nymphs collected from roe deer and in 4.4% of the nymphs and 6.0% of the adults collected from moose. The spirochetes were not detected in adult ticks from roe deer, or in larvae feeding on roe deer or moose. In comparison, the mean infection prevalences in questing I. ricinus collected from the same geographical area were 0.5% infection in larvae, 24.5% in nymphs, and 26.9% in adults. The most prevalent B. burgdorferi genospecies identified in ticks collected from roe deer was B. afzelii (76.5%), followed by B. garinii (17.6%), and B. burgdorferi sensu stricto (5.9%). Only B. afzelii (76.7%) and B. garinii (23.3%) were detected in ticks collected from moose. The present study indicates a lower prevalence of B. burgdorferi infection in I. ricinus ticks feeding on roe deer and moose compared to questing ticks. This is the first study to report B. burgdorferi s.l. prevalence in ticks removed from cervids in Norway.
Collapse
Affiliation(s)
- Vivian Kjelland
- Department of Engineering and Science, University of Agder, Kristiansand, Norway.
| | | | | | | | | |
Collapse
|
162
|
Telford SR, Goethert HK. Toward an understanding of the perpetuation of the agent of tularemia. Front Microbiol 2011; 1:150. [PMID: 21687803 PMCID: PMC3109306 DOI: 10.3389/fmicb.2010.00150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/29/2010] [Indexed: 11/13/2022] Open
Abstract
The epidemiology of tularemia has influenced, perhaps incorrectly skewed, our views on the ecology of the agent of tularemia. In particular, the central role of lagomorphs needs to be reexamined. Diverse observations, some incidental, and some that are more generally reproducible, have not been synthesized so that the critical elements of the perpetuation of Francisella tularensis can be identified. Developing a quantitative model of the basic reproduction number of F. tularensis may require separate treatments for Type A and Type B given the fundamental differences in their ecology.
Collapse
Affiliation(s)
- Sam R Telford
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University North Grafton, MA, USA
| | | |
Collapse
|
163
|
Zemtsova G, Killmaster LF, Mumcuoglu KY, Levin ML. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 52:383-392. [PMID: 20589416 DOI: 10.1007/s10493-010-9375-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/10/2010] [Indexed: 05/29/2023]
Abstract
Rickettsia conorii is widely distributed in Europe, Asia, and Africa. The brown dog tick, Rhipicephalus sanguineus, is the recognized vector of R. conorii. In this study, we assessed the efficiency of R. conorii israelensis transmission between co-feeding Rh. sanguineus ticks. Infected Rh. sanguineus adults and uninfected nymphs were fed simultaneously upon either naïve dogs or a dog previously exposed to this agent. When ticks were placed upon naïve dogs, 92-100% of nymphs acquired the infection and 80-88% of infected engorged nymphs transmitted it transstadially. When ticks were placed upon a seropositive dog, only 8-28.5% of recipient nymphs became infected. Our results establish the first evidence for efficient natural transmission of R. conorii israelensis between co-feeding ticks upon both naïve and seropositive dogs. This route of transmission can ensure continuous circulation of R. conorii israelensis in tick vectors even in the absence of naïve reservoir hosts.
Collapse
Affiliation(s)
- G Zemtsova
- Rickettsial Zoonoses Branch, Mail Stop G-13, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
164
|
Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from migratory birds in Southern Norway. Acta Vet Scand 2010; 52:59. [PMID: 21054890 PMCID: PMC2988791 DOI: 10.1186/1751-0147-52-59] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/06/2010] [Indexed: 11/18/2022] Open
Abstract
Background Borrelia burgdorferi sensu lato (s.l.) are the causative agent for Lyme borreliosis (LB), the most common tick-borne disease in the northern hemisphere. Birds are considered important in the global dispersal of ticks and tick-borne pathogens through their migration. The present study is the first description of B. burgdorferi prevalence and genotypes in Ixodes ricinus ticks feeding on birds during spring and autumn migration in Norway. Methods 6538 migratory birds were captured and examined for ticks at Lista Bird Observatory during the spring and the autumn migration in 2008. 822 immature I. ricinus ticks were collected from 215 infested birds. Ticks were investigated for infection with B. burgdorferi s.l. by real-time PCR amplification of the 16S rRNA gene, and B. burgdorferi s.l. were thereafter genotyped by melting curve analysis after real-time PCR amplification of the hbb gene, or by direct sequencing of the PCR amplicon generated from the rrs (16S)-rrl (23S) intergenetic spacer. Results B. burgdorferi s.l. were detected in 4.4% of the ticks. The most prevalent B. burgdorferi genospecies identified were B. garinii (77.8%), followed by B.valaisiana (11.1%), B. afzelii (8.3%) and B. burgdorferi sensu stricto (2.8%). Conclusion Infection rate in ticks and genospecies composition were similar in spring and autumn migration, however, the prevalence of ticks on birds was higher during spring migration. The study supports the notion that birds are important in the dispersal of ticks, and that they may be partly responsible for the heterogeneous distribution of B. burgdorferi s.l. in Europe.
Collapse
|
165
|
Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 2010; 9:54. [PMID: 20979609 PMCID: PMC2984574 DOI: 10.1186/1476-072x-9-54] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Landscape attributes influence spatial variations in disease risk or incidence. We present a review of the key findings from eight case studies that we conducted in Europe and West Africa on the impact of land changes on emerging or re-emerging vector-borne diseases and/or zoonoses. The case studies concern West Nile virus transmission in Senegal, tick-borne encephalitis incidence in Latvia, sandfly abundance in the French Pyrenees, Rift Valley Fever in the Ferlo (Senegal), West Nile Fever and the risk of malaria re-emergence in the Camargue, and rodent-borne Puumala hantavirus and Lyme borreliosis in Belgium. RESULTS We identified general principles governing landscape epidemiology in these diverse disease systems and geographic regions. We formulated ten propositions that are related to landscape attributes, spatial patterns and habitat connectivity, pathways of pathogen transmission between vectors and hosts, scale issues, land use and ownership, and human behaviour associated with transmission cycles. CONCLUSIONS A static view of the "pathogenecity" of landscapes overlays maps of the spatial distribution of vectors and their habitats, animal hosts carrying specific pathogens and their habitat, and susceptible human hosts and their land use. A more dynamic view emphasizing the spatial and temporal interactions between these agents at multiple scales is more appropriate. We also highlight the complementarity of the modelling approaches used in our case studies. Integrated analyses at the landscape scale allows a better understanding of interactions between changes in ecosystems and climate, land use and human behaviour, and the ecology of vectors and animal hosts of infectious agents.
Collapse
Affiliation(s)
- Eric F Lambin
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, University of Louvain, 3 place Pasteur, Louvain-la-Neuve, B-1348, Belgium
- School of Earth Sciences and Woods Institute, Stanford University, 473 Via Ortega, Stanford, CA 94305-4216, USA
| | - Annelise Tran
- CIRAD, Animal et gestion intégrée des risques (Agirs), CIRAD, Montpellier, France
- CIRAD, UMR Territoires, environnement, télédétection et information spatiale (TETIS), CIRAD, Montpellier, France
- SAS Nevantropic, Cayenne, French Guiana, France
| | - Sophie O Vanwambeke
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, University of Louvain, 3 place Pasteur, Louvain-la-Neuve, B-1348, Belgium
| | - Catherine Linard
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Valérie Soti
- CIRAD, Animal et gestion intégrée des risques (Agirs), CIRAD, Montpellier, France
| |
Collapse
|
166
|
Davis S, Bent SJ. Loop analysis for pathogens: niche partitioning in the transmission graph for pathogens of the North American tick Ixodes scapularis. J Theor Biol 2010; 269:96-103. [PMID: 20950628 DOI: 10.1016/j.jtbi.2010.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 10/19/2022]
Abstract
In population biology, loop analysis is a method of decomposing a life cycle graph into life history pathways so as to compare the relative contributions of pathways to the population growth rate across species and populations. We apply loop analysis to the transmission graph of five pathogens known to infect the black-legged tick, Ixodes scapularis. In this context loops represent repeating chains of transmission that could maintain the pathogen. They hence represent completions of the life cycle, in much the same way as loops in a life cycle graph do for plants and animals. The loop analysis suggests the five pathogens fall into two distinct groups. Borellia burgdorferi, Babesia microti and Anaplasma phagocytophilum rely almost exclusively on a single loop representing transmission to susceptible larvae feeding on vertebrate hosts that were infected by nymphs. Borellia miyamotoi, in contrast, circulates among a separate set of host types and utilizes loops that are a mix of vertical transmission and horizontal transmission. For B. miyamotoi the main loop is from vertebrate hosts to susceptible nymphs, where the vertebrate hosts were infected by larvae that were infected from birth. The results for Powassan virus are similar to B. miyamotoi. The predicted impacts of the known variation in tick phenology between populations of I. scapularis in the Midwest and Northeast of the United States are hence markedly different for the two groups. All of these pathogens benefit, though, from synchronous activity of larvae and nymphs.
Collapse
Affiliation(s)
- Stephen Davis
- Yale School of Public Health, 60 College St., P.O. Box 208034, New Haven, CT 06520, USA.
| | | |
Collapse
|
167
|
Kiffner C, Vor T, Hagedorn P, Niedrig M, Rühe F. Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Parasitol Res 2010; 108:323-35. [PMID: 20878183 PMCID: PMC3024494 DOI: 10.1007/s00436-010-2065-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/10/2010] [Indexed: 10/31/2022]
Abstract
Identifying factors affecting individual vector burdens is essential for understanding infectious disease systems. Drawing upon data of a rodent monitoring programme conducted in nine different forest patches in southern Hesse, Germany, we developed models which predict tick (Ixodes spp. and Dermacentor spp.) burdens on two rodent species Apodemus flavicollis and Myodes glareolus. Models for the two rodent species were broadly similar but differed in some aspects. Patterns of Ixodes spp. burdens were influenced by extrinsic factors such as season, unexplained spatial variation (both species), relative humidity and vegetation cover (A. flavicollis). We found support for the 'body mass' (tick burdens increase with body mass/age) and for the 'dilution' hypothesis (tick burdens decline with increasing rodent densities) and little support for the 'sex-bias' hypothesis (both species). Surprisingly, roe deer densities were not correlated with larvae counts on rodents. Factors influencing the mean burden did not significantly explain the observed dispersion of tick counts. Co-feeding aggregations, which are essential for tick-borne disease transmission, were mainly found in A. flavicollis of high body mass trapped in areas with fast increase in spring temperatures. Locally, Dermacentor spp. appears to be an important parasite on A. flavicollis and M. glareolus. Dermacentor spp. was rather confined to areas with higher average temperatures during the vegetation period. Nymphs of Dermacentor spp. mainly fed on M. glareolus and were seldom found on A. flavicollis. Whereas Ixodes spp. is the dominant tick genus in woodlands of our study area, the distribution and epidemiological role of Dermacentor spp. should be monitored closely.
Collapse
Affiliation(s)
- Christian Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
168
|
Kiffner C, Lödige C, Alings M, Vor T, Rühe F. Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus). EXPERIMENTAL & APPLIED ACAROLOGY 2010; 52:73-84. [PMID: 20204470 PMCID: PMC2914293 DOI: 10.1007/s10493-010-9341-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/30/2010] [Indexed: 05/16/2023]
Abstract
Despite the importance of roe deer as a host for Ixodes ticks in central Europe, estimates of total tick burden on roe deer are not available to date. We aimed at providing (1) estimates of life stage and sex specific (larvae, nymphs, males and females, hereafter referred to as tick life stages) total Ixodes burden and (2) equations which can be used to predict the total life stage burden by counting the life stage on a selected body area. Within a period of 1(1/2) years, we conducted whole body counts of ticks from 80 hunter-killed roe deer originating from a beech dominated forest area in central Germany. Averaged over the entire study period (winter 2007-summer 2009), the mean tick burden per roe deer was 64.5 (SE +/- 10.6). Nymphs were the most numerous tick life stage per roe deer (23.9 +/- 3.2), followed by females (21.4 +/- 3.5), larvae (10.8 +/- 4.2) and males (8.4 +/- 1.5). The individual tick burden was highly aggregated (k = 0.46); levels of aggregation were highest in larvae (k = 0.08), followed by males (k = 0.40), females (k = 0.49) and nymphs (k = 0.71). To predict total life stage specific burdens based on counts on selected body parts, we provide linear equations. For estimating larvae abundance on the entire roe deer, counts can be restricted to the front legs. Tick counts restricted to the head are sufficient to estimate total nymph burden and counts on the neck are appropriate for estimating adult ticks (females and males). In order to estimate the combined tick burden, tick counts on the head can be used for extrapolation. The presented linear models are highly significant and explain 84.1, 77.3, 90.5, 91.3, and 65.3% (adjusted R (2)) of the observed variance, respectively. Thus, these models offer a robust basis for rapid tick abundance assessment. This can be useful for studies aiming at estimating effects of abiotic and biotic factors on tick abundance, modelling tick population dynamics, modelling tick-borne pathogen transmission dynamics or assessing the efficacy of acaricides.
Collapse
Affiliation(s)
- Christian Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Christina Lödige
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Matthias Alings
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Torsten Vor
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Ferdinand Rühe
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| |
Collapse
|
169
|
Kiffner C, Zucchini W, Schomaker P, Vor T, Hagedorn P, Niedrig M, Rühe F. Determinants of tick-borne encephalitis in counties of southern Germany, 2001-2008. Int J Health Geogr 2010; 9:42. [PMID: 20707897 PMCID: PMC2928184 DOI: 10.1186/1476-072x-9-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) virus can cause severe symptoms in humans. The incidence of this vector-borne pathogen in humans is characterised by spatial and temporal heterogeneity. To explain the variation in reported human TBE cases per county in southern Germany, we designed a time-lagged, spatially-explicit model that incorporates ecological, environmental, and climatic factors. RESULTS We fitted a logistic regression model to the annual counts of reported human TBE cases in each of 140 counties over an eight year period. The model controlled for spatial autocorrelation and unexplained temporal variation. The occurrence of human TBE was found to be positively correlated with the proportions of broad-leafed, mixed and coniferous forest cover. An index of forest fragmentation was negatively correlated with TBE incidence, suggesting that infection risk is higher in fragmented landscapes. The results contradict previous evidence regarding the relevance of a specific spring-time temperature regime for TBE epidemiology. Hunting bag data of roe deer (Capreolus capreolus) in the previous year was positively correlated with human TBE incidence, and hunting bag density of red fox (Vulpes vulpes) and red deer (Cervus elaphus) in the previous year were negatively correlated with human TBE incidence. CONCLUSIONS Our approach suggests that a combination of landscape and climatic variables as well as host-species dynamics influence TBE infection risk in humans. The model was unable to explain some of the temporal variation, specifically the high counts in 2005 and 2006. Factors such as the exposure of humans to infected ticks and forest rodent population dynamics, for which we have no data, are likely to be explanatory factors. Such information is required to identify the determinants of TBE more reliably. Having records of TBE infection sites at a finer scale would also be necessary.
Collapse
Affiliation(s)
- Christian Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
170
|
Vor T, Kiffner C, Hagedorn P, Niedrig M, Rühe F. Tick burden on European roe deer (Capreolus capreolus). EXPERIMENTAL & APPLIED ACAROLOGY 2010; 51:405-417. [PMID: 20099011 PMCID: PMC2898109 DOI: 10.1007/s10493-010-9337-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 01/09/2010] [Indexed: 05/28/2023]
Abstract
In our study we assessed the tick burden on roe deer (Capreolus capreolus L.) in relation to age, physical condition, sex, deer density and season. The main objective was to find predictive parameters for tick burden. In September 2007, May, July, and September 2008, and in May and July 2009 we collected ticks on 142 culled roe deer from nine forest departments in Southern Hesse, Germany. To correlate tick burden and deer density we estimated deer density using line transect sampling that accounts for different detectability in March 2008 and 2009, respectively. We collected more than 8,600 ticks from roe deer heads and necks, 92.6% of which were Ixodes spp., 7.4% Dermacentor spp. Among Ixodes, 3.3% were larvae, 50.5% nymphs, 34.8% females and 11.4% males, with significant seasonal deviation. Total tick infestation was high, with considerable individual variation (from 0 to 270 ticks/deer). Adult tick burden was positively correlated with roe deer body indices (body mass, age, hind foot length). Significantly more nymphs were found on deer from forest departments with high roe deer density indices, indicating a positive correlation with deer abundance. Overall, tick burden was highly variable. Seasonality and large scale spatial characteristics appeared to be the most important factors affecting tick burden on roe deer.
Collapse
Affiliation(s)
- Torsten Vor
- Department of Forest Zoology and Forest Conservation, Büsgen-Institute, Georg-August-University Göttingen, Germany.
| | | | | | | | | |
Collapse
|
171
|
Nonaka E, Ebel GD, Wearing HJ. Persistence of pathogens with short infectious periods in seasonal tick populations: the relative importance of three transmission routes. PLoS One 2010; 5:e11745. [PMID: 20668521 PMCID: PMC2909195 DOI: 10.1371/journal.pone.0011745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model. Methodology/Principal Findings We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related “deer tick virus,” emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission. Conclusions/Significance Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence.
Collapse
Affiliation(s)
- Etsuko Nonaka
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America.
| | | | | |
Collapse
|
172
|
Ragagli C, Bertolotti L, Giacobini M, Mannelli A, Bisanzio D, Amore G, Tomassone L. Transmission dynamics of Borrelia lusitaniae and Borrelia afzelii among Ixodes ricinus, lizards, and mice in Tuscany, central Italy. Vector Borne Zoonotic Dis 2010; 11:21-8. [PMID: 20482342 DOI: 10.1089/vbz.2008.0195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To estimate the basic reproduction number (R(0)) of Borrelia lusitaniae and Borrelia afzelii, we formulated a mathematical model considering the interactions among the tick vector, vertebrate hosts, and pathogens in a 500-ha enclosed natural reserve on Le Cerbaie hills, Tuscany, central Italy. In the study area, Ixodes ricinus were abundant and were found infected by B. lusitaniae and B. afzelii. Lizards (Podarcis spp.) and mice (Apodemus spp.), respectively, are the reservoir hosts of these two Borrelia burgdorferi sensu lato (s.l.) genospecies and compete for immature ticks. B. lusitaniae R(0) estimation is in agreement with field observations, indicating the maintenance and diffusion of this genospecies in the study area, where lizards are abundant and highly infested by I. ricinus immature stages. In fact, B. lusitaniae shows a focal distribution in areas where the tick vector and the vertebrate reservoir coexist. Mouse population dynamics and their relatively low suitability as hosts for nymphs seem to determine, on the other hand, a less efficient transmission of B. afzelii, whose R(0) differs between scenarios in the study area. Considering host population dynamics, the proposed model suggests that, given a certain combination of the two host population sizes, both spirochete genospecies can coexist in our study area. Additional incompetent hosts for B. burgdorferi s.l. have a negative effect on B. afzelii maintenance, whose R(0) results > 1 only with high mouse population densities and/or low lizards abundance, but they do not seem to influence B. lusitaniae transmission cycle on Le Cerbaie. Secondly, our model confirms the importance of nymphs' infestation, of host population density and diversity, and spirochetes host association for the maintenance of the transmission cycle of B. burgdorferi s.l.
Collapse
Affiliation(s)
- Charlotte Ragagli
- Department of Animal Reproduction, Epidemiology, and Ecology, Faculty of Veterinary Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
173
|
Pfeffer M, Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasit Vectors 2010; 3:35. [PMID: 20377873 PMCID: PMC2868497 DOI: 10.1186/1756-3305-3-35] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Martin Pfeffer
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | |
Collapse
|
174
|
Randolph SE, Rogers DJ. Tick-borne disease systems: mapping geographic and phylogenetic space. ADVANCES IN PARASITOLOGY 2009; 62:263-91. [PMID: 16647973 DOI: 10.1016/s0065-308x(05)62008-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence is presented that the evolution of the tick-borne flaviviruses is driven by biotic factors, principally the exploitation of new hosts as transmission routes. Because vector-borne diseases are limited by climatic conditions, however, abiotic factors have the potential to direct and constrain the evolutionary pathways. This idea is explored by testing the hypothesis that closely related viruses occupy more similar eco-climatic spaces than do more distantly related viruses. A statistical comparison of the conventional phylogenetic tree derived from molecular distances and a novel phenetic tree derived from distances between the climatic spaces within which each virus circulates, indicates that these trees match each other more closely than would be expected at random. This suggests that these viruses are indeed limited in the degree to which they can evolve into new environmental conditions.
Collapse
Affiliation(s)
- S E Randolph
- Oxford Tick Research Group, Tinbergen Building, Department of Zoology, South Parks Road, Oxford, UK
| | | |
Collapse
|
175
|
Carpi G, Bertolotti L, Rosati S, Rizzoli A. Prevalence and genetic variability of tick-borne encephalitis virus in host-seeking Ixodes ricinus in northern Italy. J Gen Virol 2009; 90:2877-2883. [PMID: 19675189 DOI: 10.1099/vir.0.013367-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tick-borne encephalitis (TBE) is a severe disease that has been endemic in north-east Italy since 1992. Over the past two decades, there has been an increase in the number of human cases reported in many European countries, including Italy. To assess the current TBE infection risk, questing ticks were collected from known TBE foci, as well as from a site in northern Italy where no human infections have been reported previously. A total of 1739 Ixodes ricinus (1485 nymphs and 254 adults) was collected and analysed for TBEV prevalence by a real-time RT-PCR targeting the 3' untranslated region. Phylogenetic analyses of the partial envelope gene were conducted on two newly sequenced TBE virus (TBEV) strains and 28 previously published sequences to investigate the genealogical relationships of the circulating TBEV strains. These phylogenetic analyses confirmed a previous report that the European TBEV subtype is the only subtype circulating within the TBE foci in north-east Italy. Interestingly, nucleotide sequence analysis revealed a high degree of divergence (mean 2.54 %) between the TBEV strains recovered in the Italian province of Trento, despite the circulation of a single TBEV subtype. This elevated genetic variability within a single TBE focus may reflect local differences in the long-standing evolutionary dynamics of TBEV at this site relative to previously characterized sites, or more recent and continuous reintroduction of various TBEV strains.
Collapse
Affiliation(s)
- Giovanna Carpi
- Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy.,IASMA Research and Innovation Centre, Fondazione Edmund Mach, Environment and Natural Resources Area, S. Michele all'Adige, Trento, Italy
| | - Luigi Bertolotti
- Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Sergio Rosati
- Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Annapaola Rizzoli
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Environment and Natural Resources Area, S. Michele all'Adige, Trento, Italy
| |
Collapse
|
176
|
Földvári G, Rigó K, Majláthová V, Majláth I, Farkas R, Pet'ko B. Detection ofBorrelia burgdorferisensu lato in Lizards and Their Ticks from Hungary. Vector Borne Zoonotic Dis 2009; 9:331-6. [DOI: 10.1089/vbz.2009.0021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Krisztina Rigó
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | | | - Igor Majláth
- Institute of Biology and Ecology, P. J. Šafárik University, Košice, Slovakia
| | - Róbert Farkas
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Branislav Pet'ko
- Parasitological Institute of Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
177
|
Tsao JI. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet Res 2009; 40:36. [PMID: 19368764 PMCID: PMC2701186 DOI: 10.1051/vetres/2009019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 04/15/2009] [Indexed: 02/04/2023] Open
Abstract
Lyme borreliosis (LB) is caused by a group of pathogenic spirochetes – most often Borrelia burgdorferi, B. afzelii, and B. garinii – that are vectored by hard ticks in the Ixodes ricinus-persulcatus complex, which feed on a variety of mammals, birds, and lizards. Although LB is one of the best-studied vector-borne zoonoses, the annual incidence in North America and Europe leads other vector-borne diseases and continues to increase. What factors make the LB system so successful, and how can researchers hope to reduce disease risk – either through vaccinating humans or reducing the risk of contacting infected ticks in nature? Discoveries of molecular interactions involved in the transmission of LB spirochetes have accelerated recently, revealing complex interactions among the spirochete-tick-vertebrate triad. These interactions involve multiple, and often redundant, pathways that reflect the evolution of general and specific mechanisms by which the spirochetes survive and reproduce. Previous reviews have focused on the molecular interactions or population biology of the system. Here molecular interactions among the LB spirochete, its vector, and vertebrate hosts are reviewed in the context of natural maintenance cycles, which represent the ecological and evolutionary contexts that shape these interactions. This holistic system approach may help researchers develop additional testable hypotheses about transmission processes, interpret laboratory results, and guide development of future LB control measures and management.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48864, USA.
| |
Collapse
|
178
|
Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 2009; 136:1403-13. [PMID: 19366480 DOI: 10.1017/s0031182009005782] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review focuses on some of the more ground-shifting advances of recent decades, particularly those at the molecular and cellular level that illuminate mechanisms underpinning the natural ecology of tick-host-pathogen interactions and the consequent epidemiology of zoonotic infections in humans. Knowledge of components of tick saliva, now recognized as the central pillar in the tick's ability to complete its blood meal and the pathogen's differential ability to use particular hosts for transmission, has burgeoned with new molecular techniques. Functional studies have linked a few of them to saliva-assisted transmission of non-systemic infections between co-feeding ticks, the quantitative key to persistent cycles of the most significant tick-borne pathogen in Europe. Human activities, however, may be equally important in determining dynamic patterns of infection incidence in humans.
Collapse
|
179
|
Hamer SA, Tsao JI, Walker ED, Mansfield LS, Foster ES, Hickling GJ. Use of tick surveys and serosurveys to evaluate pet dogs as a sentinel species for emerging Lyme disease. Am J Vet Res 2009; 70:49-56. [PMID: 19119948 DOI: 10.2460/ajvr.70.1.49] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate dogs as a sentinel species for emergence of Lyme disease in a region undergoing invasion by Ixodes scapularis. SAMPLE POPULATION 353 serum samples and 78 ticks obtained from dogs brought to 18 veterinary clinics located in the lower peninsula of Michigan from July 15, 2005, through August 15, 2005. PROCEDURES Serum samples were evaluated for specific antibodies against Borrelia burgdorferi by use of 3 serologic assays. Ticks from dogs were subjected to PCR assays for detection of pathogens. RESULTS Of 353 serum samples from dogs in 18 counties in 2005, only 2 (0.6%) contained western blot analysis-confirmed antibodies against B burgdorferi. Ten of 13 dogs with I scapularis were from clinics within or immediately adjacent to the known tick invasion zone. Six of 18 I scapularis and 12 of 60 noncompetent vector ticks were infected with B burgdorferi. No ticks were infected with Anaplasma phagocytophilum, and 3 were infected with Babesia spp. CONCLUSIONS AND CLINICAL RELEVANCE Serosurvey in dogs was found to be ineffective in tracking early invasion dynamics of I scapularis in this area. Tick chemoprophylaxis likely reduces serosurvey sensitivity in dogs. Ticks infected with B burgdorferi were more common and widely dispersed than seropositive dogs. In areas of low tick density, use of dogs as a source of ticks is preferable to serosurvey for surveillance of emerging Lyme disease. IMPACT FOR HUMAN MEDICINE By retaining ticks from dogs for identification and pathogen testing, veterinarians can play an important role in early detection in areas with increasing risk of Lyme disease.
Collapse
Affiliation(s)
- Sarah A Hamer
- Department of Fisheries and Wildlife, College of Agricultural and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
180
|
Wilson A, Mellor PS, Szmaragd C, Mertens PPC. Adaptive strategies of African horse sickness virus to facilitate vector transmission. Vet Res 2008; 40:16. [PMID: 19094921 PMCID: PMC2695022 DOI: 10.1051/vetres:2008054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/16/2008] [Indexed: 11/14/2022] Open
Abstract
African horse sickness virus (AHSV) is an orbivirus that is usually transmitted between its equid hosts by adult Culicoides midges. In this article, we review the ways in which AHSV may have adapted to this mode of transmission. The AHSV particle can be modified by the pH or proteolytic enzymes of its immediate environment, altering its ability to infect different cell types. The degree of pathogenesis in the host and vector may also represent adaptations maximising the likelihood of successful vectorial transmission. However, speculation upon several adaptations for vectorial transmission is based upon research on related viruses such as bluetongue virus (BTV), and further direct studies of AHSV are required in order to improve our understanding of this important virus.
Collapse
Affiliation(s)
- Anthony Wilson
- Vector-Borne Disease Programme, Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | | | | |
Collapse
|
181
|
Schwint ON, Knowles DP, Ueti MW, Kappmeyer LS, Scoles GA. Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) is restricted to one generation in the absence of alimentary reinfection on a susceptible equine host. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1152-1155. [PMID: 19058641 DOI: 10.1603/0022-2585(2008)45[1152:tobcbd]2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tropical horse tick, Dermacentor nitens, is a natural vector of Babesia caballi in the Americas. B. caballi, one of the etiologic agents of equine piroplasmosis, occurs widely throughout the world, but the United States and a few other countries are considered to be free of infection. B. caballi is transovarially transmitted by the one-host tick D. nitens; we tested the hypothesis that B. caballi can persist in multiple generations of D. nitens in the absence of opportunity to reacquire infection from a susceptible equine host. Partially engorged female D. nitens were collected from a B. caballi-infected horse in Puerto Rico and allowed to reattach and feed on an uninfected horse, successfully transmitting the infection. Three subsequent generations of ticks were reared on calves (nonsusceptible hosts for B. caballi), testing for B. caballi infection in each generation by feeding a sample of the larvae on naive horses. The first generation ofD. nitens reared on a nonsusceptible host transmitted B. caballi, whereas the second and third failed to transmit to naive horses, showing that D. nitens infection with B. caballi was restricted to one generation in the absence of alimentary reinfection. These results imply that, in the event of the introduction of this pathogen into areas of the continental United States where D. nitens occurs, the tick could become a short-term reservoir of B. caballi, making control of introduced infections more complex.
Collapse
Affiliation(s)
- O Nicolas Schwint
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
182
|
Hartemink NA, Randolph SE, Davis SA, Heesterbeek JAP. The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections. Am Nat 2008; 171:743-54. [PMID: 18462128 DOI: 10.1086/587530] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Characterizing the basic reproduction number, R(0), for many wildlife disease systems can seem a complex problem because several species are involved, because there are different epidemiological reactions to the infectious agent at different life-history stages, or because there are multiple transmission routes. Tick-borne diseases are an important example where all these complexities are brought together as a result of the peculiarities of the tick life cycle and the multiple transmission routes that occur. We show here that one can overcome these complexities by separating the host population into epidemiologically different types of individuals and constructing a matrix of reproduction numbers, the so-called next-generation matrix. Each matrix element is an expected number of infectious individuals of one type produced by a single infectious individual of a second type. The largest eigenvalue of the matrix characterizes the initial exponential growth or decline in numbers of infected individuals. Values below 1 therefore imply that the infection cannot establish. The biological interpretation closely matches that of R(0) for disease systems with only one type of individual and where infection is directly transmitted. The parameters defining each matrix element have a clear biological meaning. We illustrate the usefulness and power of the approach with a detailed examination of tick-borne diseases, and we use field and experimental data to parameterize the next-generation matrix for Lyme disease and tick-borne encephalitis. Sensitivity and elasticity analyses of the matrices, at the element and individual parameter levels, allow direct comparison of the two etiological agents. This provides further support that transmission between cofeeding ticks is critically important for the establishment of tick-borne encephalitis.
Collapse
Affiliation(s)
- N A Hartemink
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
183
|
Effect of host populations on the intensity of ticks and the prevalence of tick-borne pathogens: how to interpret the results of deer exclosure experiments. Parasitology 2008; 135:1531-44. [PMID: 18442427 DOI: 10.1017/s003118200800036x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deer are important blood hosts for feeding Ixodes ricinus ticks but they do not support transmission of many tick-borne pathogens, so acting as dead-end transmission hosts. Mathematical models show their role as tick amplifiers, but also suggest that they dilute pathogen transmission, thus reducing infection prevalence. Empirical evidence for this is conflicting: experimental plots with deer removal (i.e. deer exclosures) show that the effect depends on the size of the exclosure. Here we present simulations of dynamic models that take into account different tick stages, and several host species (e.g. rodents) that may move to and from deer exclosures; models were calibrated with respect to Ixodes ricinus ticks and tick-borne encephalitis (TBE) in Trentino (northern Italy). Results show that in small exclosures, the density of rodent-feeding ticks may be higher inside than outside, whereas in large exclosures, a reduction of such tick density may be reached. Similarly, TBE prevalence in rodents decreases in large exclosures and may be slightly higher in small exclosures than outside them. The density of infected questing nymphs inside small exclosures can be much higher, in our numerical example almost twice as large as that outside, leading to potential TBE infection risk hotspots.
Collapse
|
184
|
Medlock JM, Pietzsch ME, Rice NVP, Jones L, Kerrod E, Avenell D, Los S, Ratcliffe N, Leach S, Butt T. Investigation of ecological and environmental determinants for the presence of questing Ixodes ricinus (Acari: Ixodidae) on Gower, South Wales. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:314-325. [PMID: 18402148 DOI: 10.1603/0022-2585(2008)45[314:ioeaed]2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The spatial heterogeneity of questing Ixodes ricinus (L.) (Acari: Ixodidae) within endemic areas in Great Britain is well established. Their presence is acutely responsive to blood host availability and their ability to maintain water balance, which are in turn governed by a variety of ecological and environmental factors. This article details the findings of a 3-yr study on the Gower peninsula, south Wales, which investigated the contribution of such factors (both ground- and geographic information systems [GIS] -derived) for predicting the presence of questing I. ricinus (Q(P)), at a local scale. Statistically significant univariate associations were found between Q(P) and calcareous/ neutral grassland and heathland habitats, particularly those grazed by livestock, and various factors that intuitively promote tick survival. For example, topographical features, such as certain aspects, that reduce exposure to cold northerly winds and the hot midday sun, favored Q(P). Similarly, positive associations were found with substrata composed of less permeable soil types and less permeable superficial/bedrock geologies that promote a moist microhabitat and reduce the likelihood of desiccation. Q(P) was also higher in areas of high soil moisture. This study highlighted a number of GIS-derived data sets that could be applied in the development of local and national predictive maps for I. ricinus in Great Britain. An understanding of the influence of these factors on questing I. ricinus can aid targeted tick control programs and help to educate the public, and those occupationally exposed, in understanding likely I. ricinus prolific areas within an I. ricinus endemic region.
Collapse
Affiliation(s)
- J M Medlock
- Health Protection Agency, Centre for Emergency Preparedness & Response, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol Infect 2007; 136:1416-24. [PMID: 18081949 DOI: 10.1017/s0950268807000039] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Roe deer Capreolus capreolus are among the most important feeding hosts for the sheep tick Ixodes ricinus, thus contributing to the occurrence of tick-borne diseases in Europe. Tick-borne encephalitis (TBE), which is transmitted by co-feeding of larvae and nymphs on rodents, requires precise climatic conditions to occur. We used roe deer as sentinels for potential circulation of TBE virus in Northern Italy, by examining the association between tick infestation, occurrence of TBE human cases, geographical and climatic parameters. Tick infestation on roe deer, and particularly frequency of co-feeding, was clearly associated with the geographic location and the autumnal cooling rate. Consistently, TBE occurrence in humans was geographically related to co-feeding tick abundance. The surveillance of tick infestation on roe deer, combined with remotely sensed climatic data, could therefore be used as an inexpensive early risk assessment tool of favourable conditions for TBE emergence and persistence in humans.
Collapse
|
186
|
Morán Cadenas F, Rais O, Humair PF, Douet V, Moret J, Gern L. Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:1109-1117. [PMID: 18047213 DOI: 10.1603/0022-2585(2007)44[1109:iohbsa]2.0.co;2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To evaluate the importance of vertebrate species as tick hosts and as reservoir hosts in two endemic areas for Lyme borreliosis in Switzerland, we applied molecular methods for the analysis of bloodmeal source and Borrelia infection in questing Ixodes ricinus L. ticks. In total, 1326 questing ticks were simultaneously analyzed for Borrelia and for blood meal remnants by using reverse line blot. An overall infection prevalence of 19.0% was recorded for Borrelia sp., with similar rates in both sites. Using a newly developed method for the analysis ofbloodmeal targeting the 12S rDNA mitochondrial gene, identification of host DNA from field-collected ticks was possible in 43.6% of cases. Success of host identification at the genus and species level reached 72%. In one site, host identification success reached its maximum in spring (93% in May), decreasing in summer (20% in July) and rising in autumn (73% in October). In the other site, identification rate in ticks remained low from April to July and increased in autumn reaching 68% in October and November. The most prevalent identified host DNA was artiodactyls in both sites. Red squirrel DNA was significantly more frequently detected in ticks collected in one site, whereas insectivore DNA was more frequent in ticks in the other site. DNA from more than one vertebrate host was detected in 19.5% of nymphs and 18.9% of adults. Host DNA was identified in 48.4% of the Borrelia infected ticks. Although DNA from all Borrelia species was found in at least some ticks with DNA from mammals and some ticks with DNA from birds, our results confirm a general association of B. afzelii and B. burgdorferi sensu stricto with rodents, and B. valaisiana and B. garinii with birds.
Collapse
Affiliation(s)
- Francisca Morán Cadenas
- Institut de Biologie, Laboratoire d'Eco-Eipidémiologie des Parasites, University of Neuchâtel, 2009, Switzerland
| | | | | | | | | | | |
Collapse
|
187
|
Krasnov BR, Stanko M, Morand S. Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia 2007; 154:185-94. [PMID: 17684769 DOI: 10.1007/s00442-007-0824-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Abundance of a species in a location results from the interplay between the intrinsic properties of that species and the extrinsic properties, both biotic and abiotic, of the local habitat. Intrinsic factors promote among-population stability in abundance, whereas extrinsic factors generate variation among populations of a species. We studied (a) repeatability and (b) the effect of abundance and species richness of small mammals on the level of their infestation by larvae and nymphs of Ixodes ricinus (ecological generalist) and Ixodes trianguliceps (ecological specialist). We asked if tick infestation parameters are characteristic (=repeatable) for a particular host species or a particular stage of a particular tick species. We also asked how abundance and diversity of hosts affect the level of tick infestation on a particular host species. We predicted that the dilution effect (decrease in tick infestation levels with an increase of host abundance and/or species richness) will be better expressed in an ecological generalist, I. ricinus, than in an ecological specialist, I. trianguliceps. We found that (a) tick abundance, prevalence and aggregation were generally repeatable within tick species/stage; (b) tick abundance and prevalence, but not the aggregation level, were repeatable within host species; (c) the proportion of variance among samples explained by the differences between tick species and stages (as opposed to within-tick species and stage) was higher than that explained by the differences between host species (as opposed to within host species); and (d) the relationship between tick infestation parameters and host abundance and diversity revealed the dilution effect for I. ricinus but not for I. trianguliceps.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion and Ramon Science Center, P.O. Box 194, 80600, Mizpe Ramon, Israel.
| | | | | |
Collapse
|
188
|
Vennestrøm J, Egholm H, Jensen PM. Occurrence of multiple infections with different Borrelia burgdorferi genospecies in Danish Ixodes ricinus nymphs. Parasitol Int 2007; 57:32-7. [PMID: 17804280 DOI: 10.1016/j.parint.2007.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
The pathogen Borrelia burgdorferi causes Lyme Borreliosis in human and animals world-wide. In Europe the pathogen is transmitted to the host by the vector Ixodes ricinus. The nymph is the primary instar for transmission to humans. We here study the infection rate of five Borrelia genospecies: B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae in nymphs, by IFA and PCR. 600 nymphs were collected in North Zealand of Denmark. Each nymph was first analysed by IFA. If positive for spirochaetal infection, the genospecies was determined by PCR. The infection rate of B. burgdorferi sensu lato was 15.5%, with the primary genospecies being B. afzelii (64.3%), B. garinii (57.1%), and B. lusitaniae (26.8%). It is the first time B. lusitaniae is documented in Denmark. Even though, the highest infection rate was discovered for B. afzelii and B. garinii, mixed infections are more common than single infections. Fifty-one percent (29/56) of these were infected with two genospecies, 7.1% (4/56) with three, and 5.3% (3/56) with four. We try to explain the high infection rate and the peculiar number of multiple infections, with a discussion of changes host abundance and occurrence of different transmission patterns.
Collapse
Affiliation(s)
- J Vennestrøm
- Section for Genetics and Microbiology, Department of Ecology, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | |
Collapse
|
189
|
Labruna MB, Pacheco RC, Nava S, Brandão PE, Richtzenhain LJ, Guglielmone AA. Infection by Rickettsia bellii and Candidatus "Rickettsia amblyommii" in Amblyomma neumanni ticks from Argentina. MICROBIAL ECOLOGY 2007; 54:126-33. [PMID: 17264991 DOI: 10.1007/s00248-006-9180-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 05/13/2023]
Abstract
The tick species, Amblyomma neumanni (Acari: Ixodidae) is the most frequent tick parasitizing humans in northwestern Argentina. The present study evaluated the rickettsial infection among 55 A. neumanni adult free-living ticks collected in Dean Funes, Córdoba Province. Ticks were individually processed by the hemolymph test with Gimenez staining, isolation of rickettsia in Vero cell culture by the shell vial technique, and polymerase chain reaction (PCR) targeting the citrate synthase rickettsial gene. Through the shell vial technique, rickettsiae were successfully isolated and established in Vero cell culture from two ticks (ticks 4 and 13), which previously showed to contain Rickettsia-like organisms by the hemolymph test. These two Rickettsia isolates were designated as An4 and An13. Molecular characterization (partial DNA sequences of two to three rickettsial genes were determined) of these two isolates and phylogenetic analyses identified them as Rickettsia bellii (isolate An4) and Candidatus "Rickettsia amblyommii" (isolate An13). After testing all A. neumanni ticks by PCR, the prevalence of Candidatus R. amblyommii and R. bellii was 23.6% (13/55) and 3.6% (2/55), respectively. These two rickettsiae have been considered of unknown pathogenicity and appropriate studies to test their pathogenicity to humans or animals need to be conducted. This is the first report of Rickettsia in ticks from Argentina, and also in the species A. neumanni. The results reinforce previous findings that R. bellii (and probably Candidatus R. amblyommii) are widespread among some Neotropical Amblyomma species, suggesting that these ticks gained these bacterial agents from a common ancestor and/or by recent horizontal transmission of rickettsiae between ticks.
Collapse
Affiliation(s)
- Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil.
| | | | | | | | | | | |
Collapse
|
190
|
Piccolin G, Benedetti G, Doglioni C, Lorenzato C, Mancuso S, Papa N, Pitton L, Ramon MC, Zasio C, Bertiato G. A study of the presence of B. burgdorferi, Anaplasma (previously Ehrlichia) phagocytophilum, Rickettsia, and Babesia in Ixodes ricinus collected within the territory of Belluno, Italy. Vector Borne Zoonotic Dis 2007; 6:24-31. [PMID: 16584324 DOI: 10.1089/vbz.2006.6.24] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the years 2000 and 2001, we sampled ticks in order to establish the distribution of Ixodes ricinus in the province of Belluno; 5987 tick samples from 244 sites throughout the province were gathered, by dragging for a 5-min period. In 40 sites, seasonal variations and cycle stages of the parasites were studied at monthly intervals from March to September. A polymerase chain reaction (PCR) technique was used to identify the tick-infected sites. Of 1931 individual ticks, 8.23% were positive for Borrelia burgdorferi, 4.4% were positive for Ehrlichia, 1.6% were positive for Rickettsia, and 1.6% were positive for Babesia. The co-presence of Borrelia and Ehrlichia (1.2%) and Babesia (0.5%), Borrelia, Ehrlichia and Rickettsia (0.1%) was also found.
Collapse
Affiliation(s)
- G Piccolin
- Observatory for the Study, Surveillance and Prevention of Tick-Borne Diseases, ULSS, Veneto, Belluno, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Models can be useful at many different levels when considering complex issues such as biological control of mosquitoes. At an early stage, exploratory models are valuable in exploring the characteristics of an ideal biological control agent and for guidance in data collection. When more data are available, models can be used to explore alternative control strategies and the likelihood of success. There are few modeling studies that explicitly consider biological control in mosquitoes; however, there have been many theoretical studies of biological control in other insect systems and of mosquitoes and mosquito-borne diseases in general. Examples are used here to illustrate important aspects of designing, using and interpreting models. The stability properties of a model are valuable in assessing the potential of a biological control agent, but may not be relevant to a mosquito population with frequent environmental perturbations. The time scale and goal of proposed control strategies are important considerations when analyzing a model. The underlying biology of the mosquito host and the biological control agent must be carefully considered when deciding what to include in a model. Factors such as density dependent population growth in the host, the searching efficiency and aggregation of a natural enemy, and the resource base of both have been shown to influence the stability and dynamics of the interaction. Including existing mosquito control practices into a model is useful if biological control is proposed for locations with current insecticidal control. The development of Integrated Pest Management (IPM) strategies can be enhanced using modeling techniques, as a wide variety of options can be simulated and examined. Models can also be valuable in comparing alternate routes of disease transmission and to investigate the level of control needed to reduce transmission.
Collapse
Affiliation(s)
- Cynthia C Lord
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA
| |
Collapse
|
192
|
Majláthová V, Majláth I, Derdáková M, Víchová B, Pet'ko B. Borrelia lusitaniae and green lizards (Lacerta viridis), Karst Region, Slovakia. Emerg Infect Dis 2006; 12:1895-901. [PMID: 17326941 PMCID: PMC3291370 DOI: 10.3201/eid1212.060784] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Europe, spirochetes within the Borrelia burgdorferi sensu lato complex are transmitted by Ixodes ricinus ticks. Specific associations are described between reservoir hosts and individual genospecies. We focused on green lizard (Lacerta viridis) as a host for ticks and potential host for borreliae. In 2004 and 2005, a total of 146 green lizards infested by ticks were captured, and 469 I. ricinus ticks were removed. Borrelial infection was detected in 16.6% of ticks from lizards. Of 102 skin biopsy specimens collected from lizards, 18.6% tested positive. The most frequently detected genospecies was B. lusitaniae (77.9%-94.7%). More than 19% of questing I. ricinus collected in areas where lizards were sampled tested positive for borreliae. B. garinii was the dominant species, and B. lusitaniae represented 11.1%. The presence of B. lusitaniae in skin biopsy specimens and in ticks that had fed on green lizards implicates this species in the transmission cycle of B. lusitaniae.
Collapse
|
193
|
Rosà R, Pugliese A. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Math Biosci 2006; 208:216-40. [PMID: 17125804 DOI: 10.1016/j.mbs.2006.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 09/01/2006] [Accepted: 10/11/2006] [Indexed: 11/23/2022]
Abstract
The transmission and the persistence of tick-borne infections are strongly influenced by the densities and the structure of host populations. By extending previous models and analysis, in this paper we analyse how the persistence of ticks and pathogens, is affected by the dynamics of tick populations, and by their host densities. The effect of host densities on infection persistence is explored through the analysis and simulation of a series of models that include different assumptions on tick-host dynamics and consider different routes of infection transmission. Ticks are assumed to feed on two types of host species which vary in their reservoir competence. Too low densities of competent hosts (i.e., hosts where transmission can occur) do not sustain the infection cycle, while too high densities of incompetent hosts may dilute the competent hosts so much to make infection persistence impossible. A dilution effect may occur also for competent hosts as a consequence of reduced tick to host ratio; this is possible only if the regulation of tick populations is such that tick density does not increase linearly with host densities.
Collapse
Affiliation(s)
- Roberto Rosà
- Centre for Alpine Ecology, Viote del Monte Bondone, 38040 Trento, Italy.
| | | |
Collapse
|
194
|
Stanko M, Krasnov BR, Miklisova D, Morand S. Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks. Parasitology 2006; 134:59-68. [PMID: 17032480 DOI: 10.1017/s0031182006001296] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 11/06/2022]
Abstract
We tested whether the prevalence of ticks can be predicted reliably from a simple epidemiological model that takes into account only mean abundance and its variance. We used data on the abundance and distribution of larvae and nymphs of 2 ixodid ticks parasitic on small mammals (Apodemus agrarius,Apodemus flavicollis,Apodemus uralensis,Clethrionomys glareolusandMicrotus arvalis) in central Europe.Ixodes triangulicepsis active all year round, occurs in the study area in the mountain and sub-mountain habitats only and inhabits mainly host burrows and nests, whereasIxodes ricinusoccurs mainly during the warmer seasons, occupies a large variety of habitats and quests for hosts outside their shelters. InI. ricinus, the models withkvalues calculated from Taylor's power law overestimated prevalences. However, if moment estimates ofkcorrected for host number were used instead, expected prevalences of both larvae and nymphsI. ricinusin either host did not differ significantly from observed prevalences. In contrast, prevalences of larvae and nymphs ofI. triangulicepspredicted by models using parameters of Taylor's power law did not differ significantly from observed prevalences, whereas the models with moment estimates ofkcorrected for host number in some cases under-estimated relatively lower larval prevalences and over-estimated relatively higher larval prevalences, but predicted nymphal prevalences well.
Collapse
Affiliation(s)
- M Stanko
- Institute of Zoology, Slovak Academy of Sciences, Lofflerova 10, SK-04001 Kosice, Slovakia
| | | | | | | |
Collapse
|
195
|
Ogden NH, Bigras-Poulin M, O'callaghan CJ, Barker IK, Kurtenbach K, Lindsay LR, Charron DF. Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis. Parasitology 2006; 134:209-27. [PMID: 17032476 DOI: 10.1017/s0031182006001417] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/22/2006] [Accepted: 07/18/2006] [Indexed: 11/06/2022]
Abstract
Fitness of tick-borne pathogens may be determined by the degree to which their infection dynamics in vertebrate hosts permits transmission cycles if infective and uninfected tick stages are active at different times of the year. To investigate this hypothesis we developed a simulation model that integrates the transmission pattern imposed by seasonally asynchronous nymphal and larval Ixodes scapularis ticks in northeastern North America, with a model of infection in white-footed mice (Peromyscus leucopus) reservoir hosts, using the bacteria Borrelia burgdorferi and Anaplasma phagocytophilum as examples. In simulations, survival of microparasites, their sensitivity to reduced rodent and tick abundance, and to 'dilution' by a reservoir-incompetent host depended on traits that allowed (i) highly efficient transmission from acutely-infected hosts, (ii) long-lived acute or 'carrier' host infections, and/or (iii) transmission amongst co-feeding ticks. Minimum values for transmission efficiency to ticks, and duration of host infectivity, necessary for microparasite persistence, were always higher when nymphal and larval ticks were seasonally asynchronous than when these instars were synchronous. Thus, traits influencing duration of host infectivity, transmission efficiency to ticks and co-feeding transmission are likely to be dominant determinants of fitness in I. scapularis-borne microparasites in northeastern North America due to abiotic forcings influencing I. scapularis seasonality.
Collapse
Affiliation(s)
- N H Ogden
- Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, QC, J2S 7C6, Canada.
| | | | | | | | | | | | | |
Collapse
|
196
|
Lagal V, Portnoï D, Faure G, Postic D, Baranton G. Borrelia burgdorferi sensu stricto invasiveness is correlated with OspC-plasminogen affinity. Microbes Infect 2006; 8:645-52. [PMID: 16513394 DOI: 10.1016/j.micinf.2005.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 08/17/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is transmitted through tick bite. Lyme borreliosis evolves in two stages: a primary red skin lesion called erythema migrans; later on, invasive bacteria disseminate to distant sites inducing secondary manifestations (neuropathies, arthritis, carditis, late skin disorders). It has been previously suggested that the ospC gene could be associated with invasiveness in humans depending on its sequence. Here, we confirm the pattern of invasiveness, according to B. burgdorferi sensu stricto (B. b. ss) ospC group, using the mouse as an experimental host of B. b. ss. As it has been shown that the host plasminogen activation system is used by B. burgdorferi to disseminate throughout the host, we studied the interaction of plasminogen with OspC proteins from invasive and non-invasive groups of B. b. ss. Using two methods, ELISA and surface plasmon resonance, we demonstrate that indeed OspC is a plasminogen-binding protein. Moreover, significant differences in binding affinity for plasminogen are correlated with different invasiveness patterns in mice. These results suggest that the correlation between ospC polymorphism and Borrelia invasiveness in humans is linked, at least in part, to differences in OspC affinity for plasminogen.
Collapse
Affiliation(s)
- Vanessa Lagal
- Laboratoire des Spirochètes, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
197
|
Nunn MA, Barton TR, Wanless S, Hails RS, Harris MP, Nuttall PA. Tick-borne Great Island Virus: (I) Identification of seabird host and evidence for co-feeding and viraemic transmission. Parasitology 2005; 132:233-40. [PMID: 16216136 DOI: 10.1017/s0031182005008930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/01/2005] [Accepted: 08/03/2005] [Indexed: 11/06/2022]
Abstract
Great Island Virus (GIV) is an arbovirus present in the tick Ixodes uriae, a common ectoparasite of nesting seabirds. Common guillemot (Uria aalge) and black-legged kittiwake (Rissa tridactyla) are the preferred and most abundant hosts of I. uriae on the Isle of May, Scotland. As part of a study to understand the epidemiology of GIV, the ability of guillemot and kittiwake to support tick-borne transmission of GIV was examined. GIV was present in ticks feeding in isolated guillemot colonies and guillemots had virus-specific neutralizing antibodies demonstrating previous GIV infection. By contrast, only uninfected ticks were found in colonies inhabited solely by kittiwakes. GIV was isolated from kittiwake ticks in colonies which also contained breeding guillemots but no virus-specific neutralizing antibodies were present in blood samples of kittiwake on which infected ticks were feeding. Thus guillemots are the main vertebrate hosts of GIV on the Isle of May whereas kittiwakes do not appear to be susceptible to infection. Virus infection of adult ticks feeding on guillemots was highly efficient and may involve both viraemic transmission and transmission from infected to uninfected ticks feeding together on birds that do not develop a patent viraemia.
Collapse
Affiliation(s)
- M A Nunn
- NERC Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR.
| | | | | | | | | | | |
Collapse
|
198
|
Kocan KM, Yoshioka J, Sonenshine DE, de la Fuente J, Ceraul SM, Blouin EF, Almazán C. Capillary tube feeding system for studying tick-pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:864-74. [PMID: 16366000 DOI: 10.1093/jmedent/42.5.864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A capillary tube feeding (CTF) system was adapted for studying the interaction between Dermacentor variabilis (Say) and the rickettsial cattle pathogen Anaplasma marginale Theiler. A. marginale undergoes a complex developmental cycle in ticks that begins in midguts and ends by transmission from salivary glands. In this CTF system, male D. variabilis were fed A. marginale-infected blood or cultured tick cells. Ticks that fed on highly rickettsemic calves developed midgut and salivary gland infections as detected by PCR, whereas ticks that were fed from capillary tubes on the same blood developed only midgut infections. An unexpected result of capillary tube feeding was that antibodies against the A. marginale adhesin, major surface protein la, enhanced midgut infections and caused cell culture-derived A. marginale to infect midguts. Another unexpected result was the infection of the midguts of the nonvector tick Amblyomma americanum (L.), after capillary tube feeding on infected bovine blood. The gut cell response of ticks to A. marginale, as determined from SDS-polyacrylamide gel electrophoresis protein profiles, did not differ when ticks were fed infected or uninfected cells from capillary tubes. Selected protein bands, as identified by tryptic digestion-mass spectrometry, contained mostly proteins of bovine origin, including bovine albumin, undigested alpha- and beta-chain hemoglobin and hemoglobin fragments. Although infection of ticks by A. marginale CTF system was not the same as infection by feeding on cattle, the results obtained demonstrated the potential use of this system for identifying aspects of pathogen-vector interactions that are not readily recognized in naturally feeding ticks.
Collapse
Affiliation(s)
- Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Higgs S, Schneider BS, Vanlandingham DL, Klingler KA, Gould EA. Nonviremic transmission of West Nile virus. Proc Natl Acad Sci U S A 2005; 102:8871-4. [PMID: 15951417 PMCID: PMC1157059 DOI: 10.1073/pnas.0503835102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with >15,000 human cases and >600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here, we demonstrate nonviremic transmission of WNV between cofeeding mosquitoes. Donor, Culex pipiens quinquefasciatus mosquitoes infected with WNV were fed simultaneously with uninfected "recipient" mosquitoes on naïve mice. At all times, donor and recipient mosquitoes were housed in separate sealed containers, precluding the possibility of mixing. Recipients became infected in all five trials, with infection rates as high as 5.8% and no detectable viremia in the hosts. Remarkably, a 2.3% infection rate was observed when 87 uninfected mosquitoes fed adjacent to a single infected mosquito. This phenomenon could potentially enhance virus survival, transmission, and dispersion and obviate the requirement for viremia. All vertebrates, including immune and insusceptible animals, might therefore facilitate mosquito infection. Our findings question the status of dead-end hosts in the WNV transmission cycle and may partly explain the success with which WNV established and rapidly dispersed throughout North America.
Collapse
Affiliation(s)
- Stephen Higgs
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | | | | | | | |
Collapse
|
200
|
Foppa IM. The basic reproductive number of tick–borne encephalitis virus. J Math Biol 2005; 51:616-28. [PMID: 15940535 DOI: 10.1007/s00285-005-0337-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is reciprocally transmitted between Ixodes ricinus ticks and small mammals. Recently, transmission between co-feeding ticks has been postulated as an epidemiological by important mechanism of perpetuating the agent. To empirically examine the question whether the "traditional" mode of transmission is sufficient to maintain enzootic TBEV transmission, the basic reproductive number R(0) of TBEV could be estimated under this model for sites in which TBEV is enzootic. I propose an empirical estimator of R(0) for TBEV which is based on longitudinal stage-specific local tick infestation densities assessed by live trapping of small mammals. A Gibbs sampler-based 95%-credibility interval is presented. When applied to published field data from TBEV enzootic sites sub-critical R(0) estimates are obtained for both sites. I discuss potential shortcomings of this method and possible implications of these findings on the discussion of supplemental mechanisms of transmission.
Collapse
Affiliation(s)
- Ivo M Foppa
- Arnold School of Public Health, Department of Epidemiology and Biostatistics, 800 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|