151
|
Chen T, Luo S, Wang X, Zhou Y, Dai Y, Zhou L, Feng S, Yuan M, Ding C. Polyphenols from Blumea laciniata Extended the Lifespan and Enhanced Resistance to Stress in Caenorhabditis elegans via the Insulin Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10111744. [PMID: 34829615 PMCID: PMC8614712 DOI: 10.3390/antiox10111744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Blumea laciniata is widely used as a folk medicine in Asia, but relevant literature on it is rarely reported. We confirmed that polyphenol extract (containing chlorogenic acid, rutin, and luteolin-4-O-glucoside) from B. laciniata (EBL) showed strong antioxidant ability in vitro. Hence, in this work, we applied Caenorhabditis elegans to further investigate the antioxidant and anti-ageing abilities of EBL in vivo. The results showed that EBL enhanced the survival of C. elegans under thermal stress by 12.62% and sharply reduced the reactive oxygen species level as well as the content of malonaldehyde. Moreover, EBL increased the activities of antioxidant enzymes such as catalase and superoxide dismutase. Additionally, EBL promoted DAF-16, a transcription factor, into the nucleus. Besides, EBL extended the lifespan of C. elegans by 17.39%, showing an anti-ageing effect. Different mutants indicated that the insulin/IGF-1 signaling pathway participated in the antioxidant and anti-ageing effect of EBL on C. elegans.
Collapse
|
152
|
Clinical and Correlated Responses among Steroid Hormones and Oxidant/Antioxidant Biomarkers in Pregnant, Non-Pregnant and Lactating CIDR-Pre-Synchronized Dromedaries ( Camelus dromedarius). Vet Sci 2021; 8:vetsci8110247. [PMID: 34822620 PMCID: PMC8624123 DOI: 10.3390/vetsci8110247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Overproduction of free radicals is controlled by antioxidant defense mechanisms. These defense mechanisms are achieved by antioxidant enzymes such as catalase (CAT). The current study aimed to assess the changes in steroid hormones, oxidant/antioxidants biomarkers, lipid profiles/liver functions indices, renal function biomarkers and minerals metabolism in non-pregnant, lactating or pregnant one-humped she-camels (Camelus dromedarius) pre-synchronized with controlled internal drug releasing. The study also focused on the correlational relationships between steroid hormones and the oxidant/antioxidant biomarkers, lipid profiles and liver functions indices, renal functions and mineral metabolism in these she-camels. The study was conducted on apparently healthy dromedary she-camels (n = 60) during breeding season. A sexually active camel-bull was introduced to she-camels pre-synchronized with CIDR. Fifty to sixty days after natural mating, she-camels were examined for pregnancy. She-camels were divided into three main groups according to both pregnancy and lactation as following: pregnant (PREG, n = 38) which was kept as control one, non-pregnant and lactating (LACT, n = 8), and non-pregnant and non-lactating she-camels (NPREG, n= 14). Steroid hormones, i.e., progesterone (P4), estradiol (E2) and cortisol, oxidant indictors, i.e., malondialdehyde (MDA), antioxidant biomarkers, i.e., superoxide dismutase (SOD), total antioxidant capacity (TAC), CAT and reduced glutathione (GSH), lipid profiles indices, renal functions and related minerals were assessed. The present study confirmed the efficacy of using CIDR for synchronization in she-camels. Significant elevations in serum steroids hormones in PREG compare with LACT and NPREG. The highest concentrations of MDA as lipid peroxidation and oxidative stress indictors and lowest levels of antioxidant biomarkers except for SOD, i.e., TAC, CAT and GSH, were reported in PREG compared with LACT and NPREG. PREG showed the highest liver enzymes activities and lowest total protein values. Remarkable increases in serum concentrations of renal function parameters and phosphorous (P) were observed in PREG when compared with the other two groups. The investigated she-camels revealed significant correlation between steroid hormones and the oxidant biomarkers, antioxidant biomarkers, liver functions, renal functions and minerals metabolism parameters. P4 showed positive correlations with antioxidant biomarkers, i.e., TAC, CAT and GSH, and serum aspartate aminotransferase (AST) activities, whereas negative correlations were reported between P4 and renal functions biomarkers, i.e., blood urea nitrogen (BUN), creatinine (Cr) and creatinine kinase (CK), and minerals metabolism parameters, i.e., P and magnesium (Mg), in CIDR pre-synchronized she-camels. In contrast, E2 and cortisol showed negative correlations with antioxidant biomarkers, i.e., TAC, CAT and GSH, lipid profiles/liver functions indices, i.e., AST, alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT), CK and Mg, however, positive correlations were demonstrated between E2 and cortisol, and MDA, Cr and P in investigated she-camels. In conclusion, the present study confirmed the efficacy of using CIDR for synchronization in she-camels. The highest MDA levels as indictors for oxidative stress and the lowest antioxidant levels, i.e., TAC, CAT and GSH, except for SOD in pregnant she-camels, were attributable to physiological oxidative stress as excellent compensatory responses observed in the PREG group to face such a physiologic stage. Moreover, lower P levels in non-pregnant she-camels would be contributed to failure of conception or early embryonic death. The investigated she-camels revealed significant correlations between steroid hormones and the oxidant indicators, antioxidant biomarkers, lipid profile indices and renal functions biomarkers that provided better understanding for physiological stress during pregnancy in camels.
Collapse
|
153
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
154
|
Zhou Z, Zhou B, Chen H, Lu K, Wang Y. Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117341. [PMID: 34023659 DOI: 10.1016/j.envpol.2021.117341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Our previous study showed that 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), the most biotoxic polybrominated diphenyl ether (PBDE) in the marine environment, induced apoptosis in rainbow trout gonadal RTG-2 cells. This effect occurred via ROS- and Ca2+-mediated apoptotic pathways, but the exact mechanism remains unknown. Therefore, in the present study, the possible mechanism was examined from the perspective of ROS-induced oxidative stress. The results showed that BDE-47 exposure significantly elevated the malondialdehyde (MDA) contents and the intracellular GSH/GSSG ratio, and the GSH-related enzymes were greatly altered, indicating alteration of the redox status and occurrence of oxidative stress. The mRNA levels of nuclear factor E2-related factor 2 (Nrf2) and its downstream genes were simultaneously greatly elevated. The p38 mitogen-activated protein kinase (MAPK) signaling pathway was also found to be induced by BDE-47 exposure. The addition of SB203580, a p38 MAPK inhibitor resulted in decreased apoptosis. In addition, supplementation with Ca2+ inhibitors BAPTA-AM positively affected p38 MAPK activation. Taken together, BDE-47 exposure resulted in the occurrence of oxidative stress and initiated the Nrf2-mediated antioxidant response. Subsequently, the altered redox status induced p38 MAPK activation, which played a pivotal role in the cellular apoptosis of RTG-2 cells.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Hongmei Chen
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Keyu Lu
- Department of Geography, University College London, London, WC1E 6BT, UK.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
155
|
Nishimoto K, Umegaki T, Ohira S, Soeda T, Anada N, Uba T, Shoji T, Kusunoki M, Nakajima Y, Kamibayashi T. Impact of Permissive Hypoxia and Hyperoxia Avoidance on Clinical Outcomes in Septic Patients Receiving Mechanical Ventilation: A Retrospective Single-Center Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7332027. [PMID: 34692840 PMCID: PMC8531788 DOI: 10.1155/2021/7332027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Septic patients often require mechanical ventilation due to respiratory dysfunction, and effective ventilatory strategies can improve survival. The effects of the combination of permissive hypoxia and hyperoxia avoidance for managing mechanically ventilated patients are unknown. This study examines these effects on outcomes in mechanically ventilated septic patients. METHODS In a retrospective before-and-after study, we examined adult septic patients (aged ≥18 years) requiring mechanical ventilation at a university hospital. On April 1, 2017, our mechanical ventilation policy changed from a conventional oxygenation target (SpO2: ≥96%) to more conservative targets with permissive hypoxia (SpO2: 88-92% or PaO2: 60 mmHg) and hyperoxia avoidance (reduced oxygenation for PaO2 > 110 mmHg). Patients were divided into a prechange group (April 2015 to March 2017; n = 83) and a postchange group (April 2017 to March 2019; n = 130). Data were extracted from clinical records and insurance claims. Using a multiple logistic regression model, we examined the association of the postchange group (permissive hypoxia and hyperoxia avoidance) with intensive care unit (ICU) mortality after adjusting for variables such as Sequential Organ Failure Assessment (SOFA) score and PaO2/FiO2 ratios. RESULTS The postchange group did not have significantly lower adjusted ICU mortality (0.67, 0.33-1.43; P = 0.31) relative to the prechange group. However, there were significant intergroup differences in mechanical ventilation duration (prechange: 11.0 days, postchange: 7.0 days; P = 0.01) and ICU stay (prechange: 11.0 days, postchange: 9.0 days; P = 0.02). CONCLUSIONS Permissive hypoxia and hyperoxia avoidance had no significant association with reduced ICU mortality in mechanically ventilated septic patients. However, this approach was significantly associated with shorter mechanical ventilation duration and ICU stay, which can improve patient turnover and ventilator access.
Collapse
Affiliation(s)
- Kota Nishimoto
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Sayaka Ohira
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Takehiro Soeda
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Natsuki Anada
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Takeo Uba
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Tomohiro Shoji
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Munenori Kusunoki
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Yasufumi Nakajima
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Takahiko Kamibayashi
- Department of Anesthesiology, Kansai Medical University Hospital, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| |
Collapse
|
156
|
Wang P, Wang D, Hu J, Tan BK, Zhang Y, Lin S. Natural bioactive peptides to beat exercise-induced fatigue: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
157
|
Li Y, Wang S, Hu Y, Cheng J, Cheng X, Cheng P, Cui Z. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (Cynoglossus semiliaevis). FISH & SHELLFISH IMMUNOLOGY 2021; 116:52-60. [PMID: 34216786 DOI: 10.1016/j.fsi.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate the effects of dietary bile acids (BAs) on intestinal healthy status of tongue sole in terms of immunity, antioxidant status, digestive ability, mucosal barrier-related genes expression and microbiota. Three experimental diets were prepared with BA levels at 0 mg/kg (CT), 300 mg/kg (BA1) and 900 mg/kg (BA2) in a commercial basal diet. Each diet was fed to three replicates with 120 fish (10.87 ± 0.32 g) in each tank. After an 8-week feeding trial, growth parameters were significantly enhanced in both BAs supplementary groups (P < 0.05), and compared with CT group, survival rate in BA2 group was significantly improved (P < 0.05). Intestinal lysozyme activity and contents of immunoglobulin M and complement 3 were significantly increased in both BAs supplementary groups (P < 0.05), suggesting an enhancement effect on the non-specific immune response. BAs inclusion also significantly improved intestinal antioxidant capabilities by increasing antioxidase activities and decreasing malondialdehyde levels. In addition, compared with CT group, intestinal digestive ability was substantially enhanced as indicated by the significantly increased lipase activity in BA2 group (P < 0.05) and significantly increased amylase activity in BA1 and BA2 groups (P < 0.05). Coincidentally, BAs inclusion significantly upregulated the relative expression of intestinal mucosal barrier-related genes (P < 0.05). Further, dietary BAs distinctly remodeled intestinal microbiota by decreased the abundance of some potential pathogenic bacteria. In conclusion, dietary BAs supplementation is an effective way to improve the intestinal healthy status of tongue sole.
Collapse
Affiliation(s)
- Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shengpeng Wang
- Dezhou Key Laboratory for Applied Bile Acid Research, Shandong Longchang Animal Health Product CO., Ltd., Dezhou 251100, China.
| | - Yuanri Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiayu Cheng
- Engineering and Technology Center for Flatfish Aquaculture of Tangshan, Tangshan Weizhuo Aquaculture Co., Ltd., Tangshan 063202, China
| | - Xiangming Cheng
- Engineering and Technology Center for Flatfish Aquaculture of Tangshan, Tangshan Weizhuo Aquaculture Co., Ltd., Tangshan 063202, China
| | - Peng Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhongkai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
158
|
Eteng OE, Moses CA, Ugwor EI, Enobong JE, Akamo AJ, Akinloye DI, Sadiku IO, Iwara A, Ubana E. Sub-acute exposure to Sudan IV-adulterated palm oil induces oxidative stress and represses the expression of Nrf2 and antioxidant genes in male albino rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:400-412. [PMID: 35895948 DOI: 10.1080/26896583.2021.1965851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of Sudan IV dye (S4D) on antioxidant biomarkers using palm oil adulterated with S4D. Thirty male albino rats were grouped into five (n = 6); Normal control, palm oil (PO), PO + S4D (100 mg/kg), PO + S4D (250 mg/kg), and S4D (250 mg/kg) for 21 days. Oxidative stress biomarkers were assessed in the serum, liver, and kidneys. Exposure to S4D (alone and in adulterated PO) occasioned significant depletions in the activities of SOD, CAT, and GPx, as well as GSH levels in the assessed compartments. Contrastingly, the levels of NO and MDA were significantly (p < 0.05) increased in the serum, liver, and kidney of rats exposed to PO + S4D (both doses) and S4D (250 mg/kg) when compared to control rats. Further, the expressions of the genes coding for CAT, GPx-1, GSR, and Nrf-2 were significantly (p < 0.05) down-regulated, relative to β-actin, in groups exposed to S4D compared to the control. Interestingly, these parameters were not significantly different (p > 0.05) in the unadulterated PO-exposed rats compared to the control. These results show that S4D depleted the antioxidant capacities, while potentiating the generation of reactive species and oxidative damage. This study provides useful information on the oxidative mechanisms associated with consumption of S4D-containing consumer products.
Collapse
Affiliation(s)
- Ofem E Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ceaser A Moses
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Emmanuel I Ugwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Joe E Enobong
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Adio J Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Dorcas I Akinloye
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Irene O Sadiku
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Arikpo Iwara
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Eyong Ubana
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| |
Collapse
|
159
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
160
|
Santillán Deiú A, Ondarza PM, Miglioranza KSB, de la Torre FR. Multibiomarker responses and bioaccumulation of fipronil in Prochilodus lineatus exposed to spiked sediments: Oxidative stress and antioxidant defenses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104876. [PMID: 34301349 DOI: 10.1016/j.pestbp.2021.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Fipronil is a current use pesticide, widely used in many crops, commonly adsorbed to sediments of aquatic environments. The purpose of this study was to evaluate the biomarker responses and fipronil distribution pattern in different matrixes (fish, sediment and water) after juveniles P. lineatus exposure at two environmental concentrations (5.5 and 82 μg kg--1) of fipronil-spiked sediments. The levels of oxidized proteins (PO), lipid peroxidation (LPO), and enzymatic activity of superoxide dismutase (SOD), reduced glutathione content (GSH), antioxidant capacity against peroxyls (ACAP) and acetylcholinesterase (AChE) were evaluated in liver, gills and brain. Concentrations of fipronil and its metabolites (f. desulfinyl, f sulphpHide and f. sulfone) were quantified by GC-ECD. F. desulfinyl was the major metabolite found in all matrixes, followed by f. sulphide in sediments, while f. sulfone was mainly accumulated in fish. Fipronil promoted oxidative stress in P. lineatus, as evidenced by the increases in LPO and PO levels and the decrease brain AChE activity. Fish exposed at both concentrations showed significant decrease in antioxidant capacity. Alterations in the antioxidant defenses system was evidenced in all organs. These results suggest that the occurrence of fipronil in aquatic environments can generate oxidative stress at different levels in P. lineatus, showing that this species is highly sensitive to the deleterious effects of fipronil and metabolites.
Collapse
Affiliation(s)
- Antonela Santillán Deiú
- Grupo de Estudios de Contaminación Antrópica de Peces (GECAP), Departamento de Ciencias Básicas e INEDES, Universidad Nacional de Luján (UNLu-CONICET), Rutas 5 y 7, Luján 6700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paola M Ondarza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Universidad Nacional de Mar del Plata, D Funes 3350, Mar del Plata 7600, Argentina
| | - Karina S B Miglioranza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Universidad Nacional de Mar del Plata, D Funes 3350, Mar del Plata 7600, Argentina
| | - Fernando R de la Torre
- Grupo de Estudios de Contaminación Antrópica de Peces (GECAP), Departamento de Ciencias Básicas e INEDES, Universidad Nacional de Luján (UNLu-CONICET), Rutas 5 y 7, Luján 6700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
161
|
The Antioxidative Role of Natural Compounds from a Green Coconut Mesocarp Undeniably Contributes to Control Diabetic Complications as Evidenced by the Associated Genes and Biochemical Indexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9711176. [PMID: 34367469 PMCID: PMC8337112 DOI: 10.1155/2021/9711176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to look into the effects of green coconut mesocarp juice extract (CMJE) on diabetes-related problems in streptozotocin- (STZ-) induced type 2 diabetes, as well as the antioxidative functions of its natural compounds in regulating the associated genes and biochemical markers. CMJE's antioxidative properties were evaluated by the standard antioxidant assays of 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide radical, nitric oxide, and ferrous ions along with the total phenolic and flavonoids content. The α-amylase inhibitory effect was measured by an established method. The antidiabetic effect of CMJE was assayed by fructose-fed STZ-induced diabetic models in albino rats. The obtained results were verified by bioinformatics-based network pharmacological tools: STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba bioinformatics tools. The results showed that GC-MS-characterized compounds from CMJE displayed a very promising antioxidative potential. In an animal model study, CMJE significantly (P < 0.05) decreased blood glucose, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, uric acid, and lipid levels and increased glucose tolerance as well as glucose homeostasis (HOMA-IR and HOMA-b scores). The animal's body weights and relative organ weights were found to be partially restored. Tissue architectures of the pancreas and the kidney were remarkably improved by low doses of CMJE. Compound-protein interactions showed that thymine, catechol, and 5-hydroxymethylfurfural of CMJE interacted with 84 target proteins. Of the top 15 proteins found by Cytoscape 3.6.1, 8, CAT and OGG1 (downregulated) and CASP3, COMT, CYP1B1, DPYD, NQO1, and PTGS1 (upregulated), were dysregulated in diabetes-related kidney disease. The data demonstrate the highly prospective use of CMJE in the regulation of tubulointerstitial tissues of patients with diabetic nephropathy.
Collapse
|
162
|
Maina S, Ryu DH, Cho JY, Jung DS, Park JE, Nho CW, Bakari G, Misinzo G, Jung JH, Yang SH, Kim HY. Exposure to Salinity and Light Spectra Regulates Glucosinolates, Phenolics, and Antioxidant Capacity of Brassica carinata L. Microgreens. Antioxidants (Basel) 2021; 10:1183. [PMID: 34439431 PMCID: PMC8389028 DOI: 10.3390/antiox10081183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts' ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds' ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Da Seul Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Jai-Eok Park
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Gaymary Bakari
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| |
Collapse
|
163
|
Chen X, Mu P, Zhu L, Mao X, Chen S, Zhong H, Deng Y. T-2 Toxin Induces Oxidative Stress at Low Doses via Atf3ΔZip2a/2b-Mediated Ubiquitination and Degradation of Nrf2. Int J Mol Sci 2021; 22:ijms22157936. [PMID: 34360702 PMCID: PMC8348355 DOI: 10.3390/ijms22157936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
T-2 toxin is mainly produced by Fusarium species, which is an extremely toxic mycotoxin to humans and animals. It is well known that T-2 toxin induces oxidative stress, but the molecular mechanism is still unknown. In this study, we found that T-2 toxin significantly promoted reactive oxygen species (ROS) accumulation in MCF-7 cells at low doses which maintains cell viability at least 80%. Further analysis showed that T-2 toxin downregulated the expression of the master regulator of antioxidant defense gene, nuclear factor erythroid 2-related factor (Nrf2), and its targeted antioxidant genes. Overexpression of Nrf2 or its target gene heme oxygenase 1 (HO1) significantly blocked the ROS accumulation in MCF-7 cells under T-2 toxin treatment. Moreover, we found that T-2 toxin downregulated the antioxidant genes via inducing the expression of ATF3ΔZip2a/2b. Importantly, overexpression of ATF3ΔZip2a/2b promoted the ubiquitination and degradation of Nrf2. Altogether, our results demonstrated that T-2 toxin-induced ROS accumulation via ATF3ΔZip2a/2b mediated ubiquitination and degradation of Nrf2, which provided a new insight into the mechanism of T-2 toxin-induced oxidative stress.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lang Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxiao Mao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huali Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-38294890; Fax: +86-20-38604987
| |
Collapse
|
164
|
Effects of elderflower extract enriched with polyphenols on antioxidant defense of salmon leukocytes. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
165
|
Wu X, Xu J, Cai Y, Yang Y, Liu Y, Cao S. Cytoprotection against Oxidative Stress by Methylnissolin-3- O-β-d-glucopyranoside from Astragalus membranaceus Mainly via the Activation of the Nrf2/HO-1 Pathway. Molecules 2021; 26:molecules26133852. [PMID: 34202670 PMCID: PMC8270303 DOI: 10.3390/molecules26133852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Astragalus membranaceus is a famous herb found among medicinal and food plants in East and Southeastern Asia. The Nrf2-ARE assay-guided separation of an extract from Jing liqueur led to the identification of a nontoxic Nrf2 activator, methylnissolin-3-O-β-d-glucopyranoside (MNG, a component of A. membranaceus). Nrf2 activation by MNG has not been reported before. Using Western Blot, RT-qPCR and imaging, we investigated the cytoprotective effect of MNG against hydrogen peroxide-induced oxidative stress. MNG induced the expression of Nrf2, HO-1 and NQO1, accelerated the translocation of Nrf2 into nuclei, and enhanced the phosphorylation of AKT. The MNG-induced expression of Nrf2, HO-1, and NQO1 were abolished by Nrf2 siRNA, while the MNG-induced expression of Nrf2 and HO-1 was abated and the AKT phosphorylation was blocked by LY294002 (a PI3K inhibitor). MNG reduced intracellular ROS generation. However, the protection of MNG against the H2O2 insult was reversed by Nrf2 siRNA with decreased cell viability. The enhancement of Nrf2 and HO-1 by MNG upon H2O2 injury was reduced by LY294002. These data showed that MNG protected EA.hy926 cells against oxidative damage through the Nrf2/HO-1 and at least partially the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
| | - Yousheng Cai
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Yuejun Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
| | - Yuancai Liu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
- Correspondence: (Y.L.); (S.C.); Tel.: +86-71-4876-8056 (Y.L.); +1-808-981-8010 (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
- Correspondence: (Y.L.); (S.C.); Tel.: +86-71-4876-8056 (Y.L.); +1-808-981-8010 (S.C.)
| |
Collapse
|
166
|
Dutta MS, Mahapatra P, Ghosh A, Basu S. Estimation of the reducing power and electrochemical behavior of few flavonoids and polyhydroxybenzophenones substantiated by bond dissociation energy: a comparative analysis. Mol Divers 2021; 26:1101-1113. [PMID: 33993440 DOI: 10.1007/s11030-021-10232-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
Oxidative stress that damages cellular components affects various organs including the brain. It is thus believed to play an active role in neurodegenerative diseases, wherein the intrinsic antioxidant enzymes metabolize toxic intermediates. For therapeutic purpose, instead of antioxidant enzymes, small organic compounds as antioxidants may be more effective. Here, reducing power and electrochemical behavior of some flavanols, flavanonols, flavones, flavonols and O-methylated flavonols have been estimated and confirmed by the calculated bond dissociation energy. Compared to other classes, flavonols exhibited increased reducing power that decreased with methylation of the oxygen atom in the B-ring. Gossypetin emerged as the most effective of these flavonols. Generally, compounds with two hydroxyl groups in two consecutive positions of the phenyl ring and an enolic group in the C-ring with more preference for the hydroxyl group in the ortho position with respect to each other in the catechol moiety showed major activity. 5 position of the A-ring showed the least effect on the activity. The present understanding therefore may be applied for identifying compounds to be used as scaffold for designing potent antioxidants.
Collapse
Affiliation(s)
- Madhu Sudan Dutta
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Prithwish Mahapatra
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Ashutosh Ghosh
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
167
|
Tomioka D, Nakatsuji H, Miyagawa S, Sawa Y, Matsusaki M. Development of temperature dependent oxygen releasable nanofilm by modulating oxidation state of myoglobin. Chem Commun (Camb) 2021; 57:5131-5134. [PMID: 33988188 DOI: 10.1039/d1cc01545a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled release of oxygen from myoglobin was achieved by modulating autoxidation of oxymyoglobin using ascorbic acid as a reductant by temperature variation. Long-term storage, prompt release and re-storage of oxygen were also available with this system. Furthermore, 20 nm thick nanofilms composed of oxymyoglobin and type I collagen containing ascorbic acid could successfully show autoxidation of oxymyoglobin in response to environmental temperature. The ultrathin nanofilms will be useful as oxygen-controlled releasable scaffolds for tissue engineering application.
Collapse
Affiliation(s)
- Daisuke Tomioka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hirotaka Nakatsuji
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
168
|
Fusco R, Salinaro AT, Siracusa R, D’Amico R, Impellizzeri D, Scuto M, Ontario ML, Crea R, Cordaro M, Cuzzocrea S, Di Paola R, Calabrese V. Hidrox ® Counteracts Cyclophosphamide-Induced Male Infertility through NRF2 Pathways in a Mouse Model. Antioxidants (Basel) 2021; 10:antiox10050778. [PMID: 34068924 PMCID: PMC8156985 DOI: 10.3390/antiox10050778] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Every year, men use cyclophosphamide to treat various cancers and autoimmune diseases. On the one hand, this chemotherapy often has the beneficial effect of regressing the tumor, but on the other hand, it leads to infertility due to excessive oxidative stress and apoptosis in the testes caused by its metabolite, acrolein. METHODS The objective of this study was to evaluate the beneficial power of a new compound called Hidrox®, containing 40-50% hydroxytyrosol, in counteracting the damage related to fertility induced by cyclophosphamide. The study was conducted using a single intraperitoneal injection of cyclophosphamide at a dose of 200 mg/kg b.w, in distilled water at 10 mL/kg b.w. The treatment was administered via the oral administration of Hidrox® at a dose of 50 mg/kg. RESULTS Our study confirms that the use of cyclophosphamide causes a series of sperm and histological alterations strongly connected with oxidative stress, lipid peroxidation, and apoptosis. CONCLUSION Our results demonstrate for the first time that Hidrox® protects testes from CYP-induced alterations by the modulation of physiological antioxidant defenses.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| | - Roberto Crea
- Oliphenol LLC, 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: (M.C.); (S.C.); Tel.: +39-090-676-5208 (M.C. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
- Correspondence: (M.C.); (S.C.); Tel.: +39-090-676-5208 (M.C. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| |
Collapse
|
169
|
Li S, Lei Z, Zhao M, Hou Y, Wang D, Xu X, Lin X, Li J, Tang S, Yu J, Meng T. Propofol Inhibits Ischemia/Reperfusion-Induced Cardiotoxicity Through the Protein Kinase C/Nuclear Factor Erythroid 2-Related Factor Pathway. Front Pharmacol 2021; 12:655726. [PMID: 34054535 PMCID: PMC8155638 DOI: 10.3389/fphar.2021.655726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Both hydrogen peroxide (H2O2, H) and ischemia/reperfusion (I/R) can damage cardiomyocytes, which was inhibited by propofol (P). The present research was designed to examine whether propofol can reduce myocardial I/R injury by activating protein kinase C (PKC)/nuclear factor erythroid-2-related factor 2 (NRF2) pathway in H9C2 cells and rat Langendorff models. H9C2 cells were disposed of no reagents (C), H2O2 for 24 h (H), propofol for 1 h before H2O2 (H+P), and chelerythrine (CHE, PKC inhibitor) for 1 h before propofol and H2O2 (H+P+CHE). N = 3. The PKC gene of H9C2 was knocked down by siRNA and overexpressed by phorbol 12-myristate 13-acetate (PMA, PKC agonist). The cell viability and the expressions of PKC, NRF2, or heme oxygenase-1(HO-1) were evaluated. Propofol significantly reduced H9C2 cell mortality induced by H2O2, and significantly increased NRF2 nuclear location and HO-1 expression, which were restrained by siRNA knockout of PKC and promoted by PMA. Rat hearts were treated with KrebsHenseleit solution for 120 min (C), with (I/R+P) or without (I/R) propofol for 20 min before stopping perfusion for 30 min and reperfusion for 60 min, and CHE for 10 min before treated with propofol. N = 6. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and creatine kinase-MB (CK-MB) in perfusion fluid and antioxidant enzymes in the myocardium were assessed. I/R, which increased LDH and CK-MB expression and reduced SOD expression, boosted the pathological damage and infarcts of the myocardium after reperfusion. However, propofol restrained all these effects, an activity that was antagonized by CHE. The results suggest that propofol pretreatment protects against I/R injury by activating of PKC/NRF2 pathway.
Collapse
Affiliation(s)
- Shengqiang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhao
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yonghao Hou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xingli Xu
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan People's Hospital, Chengdu, China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingxin Li
- Department of Physiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhai Tang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
170
|
Yu X, Tian X, Wang Y, Zhu C. Metal-metal interaction and metal toxicity: a comparison between mammalian and D. melanogaster. Xenobiotica 2021; 51:842-851. [PMID: 33929283 DOI: 10.1080/00498254.2021.1922781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Non-essential heavy metals such as mercury (Hg), arsenic (As), cadmium (Cd), and aluminium (Al) are useless to organisms and have shown extensive toxic effects. Previous studies show that two main molecular mechanisms of metal toxicity are oxidative stress and metal-metal interaction which can disrupt metal homeostasis.2. In this paper, we mainly illustrate metal toxicity and metal-metal interaction through examples in mammalians and D. melanogaster (fruit fly).3. We describe the interference of metal homeostasis by metal-metal interactions in three aspects including replacement, cellular transporter competition, and disruption of the regulation mechanism, and elaborate the mechanisms of metal toxicity to better deal with the challenges of heavy metal pollution and related health problems.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xianhan Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Chunfeng Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
171
|
Qu J, Niu H, Wang J, Wang Q, Li Y. Potential mechanism of lead poisoning to the growth and development of ovarian follicle. Toxicology 2021; 457:152810. [PMID: 33984407 DOI: 10.1016/j.tox.2021.152810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
With the rapid development of economic globalization and industrialization, lead (Pb), one of the most important heavy metals, has been used widely since antiquity for several purposes. In fact, its impact on the health of animals and humans is a significant public health risk all the time. Pb could be accumulated in the body for a long time, causing irreversible damage to the health of animals and humans, including hostile reproductive health. Up to now, although there are some published studies on impeding the normal development of ovarian folliculogenesis of female resulted from Pb exposure, with the damage of structure in uterine tissue, the imbalance of female menstrual status, and the change of hormone levels. The potential mechanism of Pb exposure on female reproduction system, however, remains enigmatic. How to alleviate the damage of Pb toxicity to reproductive function of female has become an urgent problem. Therefore, the aim of the present review is to discuss the information on the growth and development of ovarian follicle of mammalians and the potential toxic mechanism when exposed to Pb. The literatures were collected via various websites and consulting books, reports, etc. In summary, Pb impair folliculogenesis of mammalians, which may be related to the interference to the hypothalamic-pituitary-gonadal (HPG) axis and the production of reactive oxygen species (ROS), in turn impairs various molecules including proteins, lipids and DNA, as well as the disruption of the antioxidant defense system, ionic equilibrium and endoplasmic reticulum homeostasis.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
172
|
Niranjan MK, Koiri RK, Srivastava R. Expression of estrogen receptor alpha in response to stress and estrogen antagonist tamoxifen in the shell gland of Gallus gallus domesticus: involvement of anti-oxidant system and estrogen. Stress 2021; 24:261-272. [PMID: 31885314 DOI: 10.1080/10253890.2019.1710127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animals are frequently exposed to various kinds of environmental stressors and estrogen is known to play important role in stress response besides its crucial role in regulation of cellular proliferation, metabolic activity and reproduction. The study investigates the estrogen antagonist, tamoxifen (TM), mediated estrogen receptor alpha (ERα) expression, to modulate stress induced parameters in chickens. The study further explores the activity of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPX) and malonaldehyde (MDA) in brain, ovary and shell gland during water deprivation (WD) and tamoxifen administration in sexually mature chicken. WD and TM administration both decrease the plasma estradiol while WD increases corticosterone. WD also elevates MDA concentration in the brain, ovary and shell gland while TM lowers it. WD and TM administration lowers the specific activity of SOD in brain and shell gland. In contrast, WD increases the specific activity of catalase, GPx and GR in the brain and shell gland, while TM decreases it. It appears that endogenous estradiol plays a crucial role in expression of antioxidant enzymes and tamoxifen acts as an antioxidant by reducing the oxidative stress in chicken. Abundant expression of ERα has been observed in the shell gland of egg laying birds while stress like water deprivation and TM down-regulates its expression. Thus, it can be concluded that expression of ERα in shell gland plays a predominant role in mediating estrogen action in response to water deprivation stress and tamoxifen.
Collapse
Affiliation(s)
| | - Raj Kumar Koiri
- Department of Zoology, Dr H. S. Gour Vishwavidyalaya, Sagar, India
| | | |
Collapse
|
173
|
García-Rodríguez MDC, Serrano-Reyes G, Hernández-Cortés LM, Altamirano-Lozano M. Antigenotoxic effects of (-)-epigallocatechin-3-gallate (EGCG) and its relationship with the endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct repair (8-OHdG), and apoptosis in mice exposed to chromium(VI). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:331-344. [PMID: 33372577 DOI: 10.1080/15287394.2020.1867275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the relationship between endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct (8-OHdG) repair, and apoptosis in mice treated with chromium(VI) alone and in the presence of the antigenotoxic compound (-)-epigallocatechin-3-gallate (EGCG). Groups of 5 Hsd:ICR male mice were divided and treated as follows: (1) control, vehicle only; (2) EGCG, 8.5 mg/kg by gavage alone; (3) CrO3, 20 mg/kg intraperitoneally alone; and (4) EGCG combined with CrO3, EGCG was administered 4 hr prior to CrO3. Peripheral blood parameters were analyzed before treatment administration (time 0), and 48 hr after exposure. The administration of EGCG increased 8-OHdG levels and superoxide dismutase (SOD) activity. Treatment with CrO3 increased number of micronucleus (MN) presence, elevated apoptotic/necrotic cells frequencies, decreased 8-OHdG levels, diminished total antioxidant capacity (TAC), increased glutathione (GSH) total levels, and lowered SOD activity. Administration of EGCG prior to treatment with CrO3 resulted in lower concentrations of MN, reduced apoptotic and necrotic cell number, and restored TAC and SOD activity to control levels. It is conceivable that the dose of EGCG plays an important role in the genotoxic damage protection pathways. Thus, this study confirms the action of EGCG as an antigenotoxic agent against chromium(VI)-induced oxidative insults and demonstrates potential protective pathways for EGCG actions to counteract genotoxic damage induced by this metal.
Collapse
Affiliation(s)
- María Del Carmen García-Rodríguez
- Unidad De Investigación En Genética Y Toxicología Ambiental (UNIGEN), Facultad De Estudios Superiores "Zaragoza", Universidad Nacional Autónoma De México (UNAM), CDMX, Mexico
| | - Gabriela Serrano-Reyes
- Unidad De Investigación En Genética Y Toxicología Ambiental (UNIGEN), Facultad De Estudios Superiores "Zaragoza", Universidad Nacional Autónoma De México (UNAM), CDMX, Mexico
| | - Lourdes Montserrat Hernández-Cortés
- Unidad De Investigación En Genética Y Toxicología Ambiental (UNIGEN), Facultad De Estudios Superiores "Zaragoza", Universidad Nacional Autónoma De México (UNAM), CDMX, Mexico
| | - Mario Altamirano-Lozano
- Unidad De Investigación En Genética Y Toxicología Ambiental (UNIGEN), Facultad De Estudios Superiores "Zaragoza", Universidad Nacional Autónoma De México (UNAM), CDMX, Mexico
| |
Collapse
|
174
|
Liu M, Zheng B, Liu P, Zhang J, Chu X, Dong C, Shi J, Liang Y, Chu L, Liu Y, Han X. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide‑induced acute liver injury. Mol Med Rep 2021; 23:438. [PMID: 33846815 PMCID: PMC8060806 DOI: 10.3892/mmr.2021.12077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO)-induced hepatotoxicity limits the therapeutic effect of acute myelogenous leukemia treatment. Magnesium isoglycyrrhizinate (MgIG) is a natural compound extracted from licorice and a hepatoprotective drug used in liver injury. It exhibits anti-oxidant, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to identify the protective action and underlying mechanism of MgIG against ATO-induced hepatotoxicity. A total of 50 mice were randomly divided into five groups (n=10/group): Control; ATO; MgIG and high- and low-dose MgIG + ATO. Following continuous administration of ATO for 7 days, the relative weight of the liver, liver enzyme, histological data, antioxidant enzymes, pro-inflammatory cytokines, cell apoptosis and changes in Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) signaling pathway were observed. MgIG decreased liver injury, decreased the liver weight and liver index, inhibited oxidative stress and decreased the activity of glutathione, superoxide dismutase and catalase, production of reactive oxygen species and levels of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α. Western blotting showed a decrease in Bax and caspase-3. There was decreased cleaved caspase-3 expression and increased Bcl-2 expression. MgIG notably activated ATO-mediated expression of Keap1 and Nrf2 in liver tissue. MgIG administration was an effective treatment to protect the liver from ATO-induced toxicity. MgIG maintained the level of Nrf2 in the liver and protected the antioxidative defense system to attenuate oxidative stress and prevent ATO-induced liver injury.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Bin Zheng
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Panpan Liu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jianping Zhang
- Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunhui Dong
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Shi
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yingran Liang
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yanshuang Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
175
|
Liu Y, Wang H, Zhang M, Wang J, Zhang Z, Wang Y, Sun Y, Zhang Z. Protective effect of selenomethionine on T-2 toxin-induced liver injury in New Zealand rabbits. BMC Vet Res 2021; 17:153. [PMID: 33836763 PMCID: PMC8033731 DOI: 10.1186/s12917-021-02866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background T-2 toxin is a mycotoxin produced by Fusarium species that is highly toxic to animals. Recent studies have indicated that Selenomethionine (SeMet) have protective effect against mycotoxins-induced toxicity. The aim of the present study was to investigate the protective effect of SeMet on T-2-toxin-induced liver injury in rabbit and explore its molecular mechanism. Fifty rabbits (30 d, 0.5 ± 0.1 kg) were randomly divided into 5 groups: control group, T-2 toxin group, low, medium and high dose SeMet treatment group. The SeMet-treated group was orally pretreated with SeMet (containing selenium 0.2 mg/kg, 0.4 mg/kg and 0.6 mg/kg) for 21 days. On the 17th day, T-2 toxin group and SeMet-treated group were orally administered with T-2 toxin (0.4 mg/kg body weight) for 5 consecutive days. Results The results showed that low-dose SeMet significantly improved T-2 toxin-induced liver injury. We found that low-dose SeMet can reduce the level of oxidative stress and the number of hepatocyte apoptosis. Moreover, the levels of Bax, caspase-3 and caspase-9 were significantly reduced and the levels of Bcl-2 were increased. Conclusions Therefore, we confirmed that low-dose SeMet may protect rabbit hepatocytes from T-2 toxin by inhibiting the mitochondrial-caspase apoptosis pathway.
Collapse
Affiliation(s)
- Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhixiang Zhang
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.,Engineering Research Center for Mutton Sheep Breeding of Henan Province, Luoyang, 471000, Henan, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
176
|
Ijaz MU, Shahzadi S, Samad A, Ehsan N, Ahmed H, Tahir A, Rehman H, Anwar H. Dose-Dependent Effect of Polystyrene Microplastics on the Testicular Tissues of the Male Sprague Dawley Rats. Dose Response 2021; 19:15593258211019882. [PMID: 34158809 PMCID: PMC8182192 DOI: 10.1177/15593258211019882] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Due to the continuous increase in polystyrene microplastics (PS MPs) incorporation in the environment, growing number of adverse effects on living organisms and ecosystem have become a global concern. Therefore, current study was planned to elucidate the impacts of 5 different concentrations control, 2, 20, 200, and 2000 μgL-1 of PS MPs on testicular tissues of rats. PS MPs significantly reduced the activities of antioxidant enzymes (catalase, superoxide dismutase and peroxidase) as well as total protein contents, while elevated the level of lipid peroxidation and reactive oxygen species. Moreover, expressions of steroidogenic enzymes (3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein) as well as the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) in plasma, intra-testicular testosterone and plasma testosterone were reduced and a significant (P < 0.05) reduction was noticed in the sperm count, motility and viability. Furthermore, PS MPs significantly up-regulated the expressions of Bax and caspase-3, while down-regulated the Bcl-2 expression. The histomorphological assessment revealed significant damages in the testicles as well as decrease in the number of germ cells (spermatogenic, spermatocytes and spermatids). Collectively, PS MPs generated oxidative stress (OS) and caused potential damage to the testicles of rats in a dose-dependent manner.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of
Agriculture, Faisalabad, Pakistan
| | - Sabahat Shahzadi
- Department of Zoology, Wildlife and Fisheries, University of
Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, University of
Agriculture, Faisalabad, Pakistan
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of
Agriculture, Faisalabad, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa,
Pakistan
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of
Agriculture, Faisalabad, Pakistan
| | - Humaira Rehman
- Reproductive Physiology Laboratory, Department of Animal Sciences,
Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad,
Pakistan
| |
Collapse
|
177
|
Zhao X, Wu Y. Correlations of Silent Information Regulator of Transcription 1 (SIRT1) Expression, Inflammatory Factors, and Oxidative Stress with Pulmonary Function in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD). Med Sci Monit 2021; 27:e929046. [PMID: 33762567 PMCID: PMC8008970 DOI: 10.12659/msm.929046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to investigate the correlations of silent information regulator of transcription 1 (SIRT1) expression, inflammatory factors, and oxidative stress with pulmonary function in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Material/Methods Bronchoalveolar lavage fluid (BALF) was collected from 188 patients with COPD (83 in stable phase and 105 in acute exacerbation phase) and 56 healthy controls. Subsequently, the SIRT1 expression levels, the IL-6 and IL-8 levels (the representatives of inflammatory factors), and the MDA and SOD levels (indicative of oxidative stress) were detected via enzyme-linked immunosorbent assay. Correlations of SIRT1 expression, inflammatory factors, and oxidative stress with pulmonary function parameters [forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) and FEV1] were measured via Spearman’s correlation analysis. Results The levels of inflammatory factors and oxidative stress were elevated and SIRT1 expression remarkably declined in patients with AECOPD compared with those in healthy controls and stable COPD patients (P<0.05). Spearman’s correlation analysis revealed that SIRT1 expression, interleukin (IL)-6, and IL-8 were strongly associated with pulmonary function parameters (FEV1/FVC and FEV1) in patients with AECOPD (P<0.001), while no such obvious correlation was observed in stable COPD patients. Conclusions Oxidative stress and expression levels of inflammatory factors are evidently elevated and SIRT1 expression declines in patients with AECOPD. Moreover, SIRT1 expression is positively associated with pulmonary function parameters, while IL-6 and IL-8 exhibit negative correlations with pulmonary function parameters.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Integrated Chinese and Western Medicine, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Yueqin Wu
- Department of Integrated Chinese and Western Medicine, Tianjin First Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
178
|
The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants (Basel) 2021; 10:antiox10030480. [PMID: 33803588 PMCID: PMC8003070 DOI: 10.3390/antiox10030480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetes is a complex metabolic disorder resulting either from insulin resistance or an impaired insulin secretion. Prolonged elevated blood glucose concentration, the key clinical sign of diabetes, initiates an enhancement of reactive oxygen species derived from glucose autoxidation and glycosylation of proteins. Consequently, chronic oxidative stress overwhelms cellular endogenous antioxidant defenses and leads to the acute and long-standing structural and functional changes of macromolecules resulting in impaired cellular functioning, cell death and organ dysfunction. The oxidative stress provoked chain of pathological events over time cause diabetic complications such as nephropathy, peripheral neuropathy, cardiomyopathy, retinopathy, hypertension, and liver disease. Under diabetic conditions, accompanying genome/epigenome and metabolite markers alterations may also affect glucose homeostasis, pancreatic β-cells, muscle, liver, and adipose tissue. By providing deeper genetic/epigenetic insight of direct or indirect dietary effects, nutrigenomics offers a promising opportunity to improve the quality of life of diabetic patients. Natural plant extracts, or their naturally occurring compounds, were shown to be very proficient in the prevention and treatment of different pathologies associated with oxidative stress including diabetes and its complications. Considering that food intake is one of the crucial components in diabetes’ prevalence, progression and complications, this review summarizes the effect of the major plant secondary metabolite and phytoconstituents on the antioxidant enzymes activity and gene expression under diabetic conditions.
Collapse
|
179
|
Shafeeq S, Mahboob T. 2,4-Dichlorophenoxyacetic acid induced hepatic and renal toxicological perturbations in rat model: Attenuation by selenium supplementation. Toxicol Ind Health 2021; 37:152-163. [PMID: 33689533 DOI: 10.1177/0748233720983167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a commercially used herbicide to manage broadleaf weeds that have various toxicological and ecological effects. In view of ever-escalating use of 2,4-D, risk assessment becomes mandatory to ensure the safety of both human health and the ecosystem. Oxidative injury has been expected as a possible mechanism implicated in 2,4-D toxicity. The present study was planned and conducted to explore the antioxidant potential of selenium (Se) supplementation to moderate the 2,4-D hepatic and renal toxicity in a rat model. The rats were randomly assigned to four equal groups and treated via oral gavage for a period of 4 weeks. Group I: received deionized water as a vehicle, group II: received 2,4-D (150 mg-1 kg-1 day-1), group III: received Se supplement (1 mg-1 kg-1 day-1), and group IV: received 2,4-D (150 mg-1 kg-1 day-1) and Se supplement (1 mg-1 kg-1 day-1) simultaneously. After 4 weeks of administration, 2,4-D induced toxicity was observed, as manifested by disrupted levels of plasma urea, creatinine, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Further, 2,4-D caused a considerable increase in tissue malondialdehyde (MDA) levels and decreased activity of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione reductase. Se supplementation exhibited its antioxidant properties by significantly improving urea, creatinine, ALP, AST, and ALT, and MDA levels and antioxidant enzyme activities. In conclusion, the results suggest that 2,4-D induced hepatic and renal toxicities were attenuated by Se supplementation probably owing to its antioxidant properties.
Collapse
Affiliation(s)
- Sehrish Shafeeq
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| | - Tabassum Mahboob
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
180
|
Khovarnagh N, Seyedalipour B. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharm J 2021; 29:280-289. [PMID: 33981177 PMCID: PMC8084716 DOI: 10.1016/j.jsps.2021.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/06/2021] [Indexed: 01/24/2023] Open
Abstract
The present study was conducted to investigate the protective effects of N-Acetyl-L-cysteine (NAC) and S-methyl- L-cysteine (SMC) against hepatic oxidative stress and brain damage induced by acetamiprid (ACP) in rats, which were evaluated by histopathological changes, measuring serum biomarkers and antioxidant defense systems. In this study, 42 rats were randomly divided into 6 groups and administered by intraperitoneally for one week: the control group, the sham group (normal saline), ACP alone (5 mg/kg) (group1), NAC alone (160 mg/kg) (group2), ACP + SMC (100 mg/kg) (group3), ACP + NAC (group 4) and ACP + NAC + SMC (group 5). Our results showed that acetamiprid induces liver injures including infiltration of inflammatory cells, congestion and altered histo-architecture and brain damages including gliosis, hyperemia and necrosis. The biochemical analyses showed that acetamiprid significantly altered the structural and biochemical profiles of liver which may be due to the loss of integrity of cell membranes. Furthermore, antioxidant parameters results of ACP group revealed that glutathione (GSH) and total antioxidant capacity (TAC) levels decreased significantly, while lipid peroxidation (LPO) content and glutathione-S-transferase (GST) and catalase (CAT) activities increased in both tissues (P < 0.05), suggesting tissue oxidative damage, which was also confirmed histopathological. Conversely, administration of NAC and SMC ameliorated LPO, GSH content and antioxidant enzymes system considerably (P < 0.05) in both tissues. Moreover, NAC and SMC administration also improved liver and brain malfunction. These results indicate that both NAC and in to a lesser amount SMC have a potent antioxidant protection in both tissues of rat against ACP-induced oxidative stress.
Collapse
|
181
|
Holmgren M, Sheets L. Using the Zebrafish Lateral Line to Understand the Roles of Mitochondria in Sensorineural Hearing Loss. Front Cell Dev Biol 2021; 8:628712. [PMID: 33614633 PMCID: PMC7892962 DOI: 10.3389/fcell.2020.628712] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Hair cells are the mechanosensory receptors of the inner ear and can be damaged by noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural hearing loss. Hair cells have high energy demands and rely on mitochondria to produce ATP as well as contribute to intracellular calcium homeostasis. In addition to generating ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress, and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and functionally analogous to cochlear hair cells but are optically and pharmacologically accessible within an intact specimen, making the zebrafish a good model in which to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of zebrafish embryos allows for the study of mutations implicated in human deafness, as well as the generation of transgenic models to visualize mitochondrial calcium transients and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have shown that variations in mitochondrial activity can predict hair-cell susceptibility to damage by aminoglycosides or noise exposure. In addition, antioxidants have been shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this review, we discuss the tools and findings of recent investigations into zebrafish hair-cell mitochondria and their involvement in cellular processes, both under homeostatic conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a valuable model in which to study the roles of mitochondria in hair-cell pathologies and to develop therapeutic strategies to prevent sensorineural hearing loss in humans.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
182
|
Han J, Park JS, Park Y, Lee J, Shin HH, Lee KW. Effects of paralytic shellfish poisoning toxin-producing dinoflagellate Gymnodinium catenatum on the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2021; 163:111937. [PMID: 33341583 DOI: 10.1016/j.marpolbul.2020.111937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
To understand how the marine copepod Tigriopus japonicus responds to the toxic marine dinoflagellate Gymnodinium catenatum, we assessed acute toxicity and investigated swimming behavior parameters (e.g., swimming speed, swimming path trajectory, and swimming distance) in response to G. catenatum exposure. In addition, the mRNA expression levels of detoxification-related genes (e.g., phase I cytochrome P450 [CYP] and phase II glutathione-S transferase [GST]) were measured in G. catenatum-exposed copepods. No significant change in survival was observed in response to G. catenatum, but swimming speed was significantly decreased (P < 0.05) at a high concentration of G. catenatum (600 cells/mL). Furthermore, the swimming distance was significantly decreased (P < 0.05) compared to that of the control at 600 cells/mL G. catenatum, while no significant change in swimming path trajectory was observed, suggesting that G. catenatum potentially has adverse effects on the swimming behavior of T. japonicus. In addition, the transcriptional regulation of T. japonicus CYPs and -GSTs were significantly upregulated and downregulated (P < 0.05), respectively, in response to G. catenatum. In particular, certain genes (e.g., CYPs [CYP307E1, CYP3041A1, and CYP3024A2] and GSTs [GST-kappa, GST-mu5, and GST-omega]) were significantly induced (P < 0.05) by G. catenatum, suggesting that these genes likely play a critical role in detoxification mechanisms and might be useful as potential molecular biomarkers in response to G. catenatum exposure. Overall, these results elucidate the potential impacts of the dinoflagellate G. catenatum on the swimming behavior and detoxification system of the marine copepod T. japonicus.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Yeun Park
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jihoon Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Hyun Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kyun-Woo Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea.
| |
Collapse
|
183
|
Muñoz-Peñuela M, Lo Nostro FL, Dal'Olio Gomes A, Tolussi CE, Branco GS, Pinheiro JPS, Godoi FGAD, Moreira RG. Diclofenac and caffeine inhibit hepatic antioxidant enzymes in the freshwater fish Astyanax altiparanae (Teleostei: Characiformes). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108910. [PMID: 33045363 DOI: 10.1016/j.cbpc.2020.108910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
Although concentrations of pharmaceutical compounds in aquatic ecosystems are low, they can cause toxic effects on organisms. The aim of this study was to evaluate the effects of diclofenac (DCF), a non-steroidal anti-inflammatory drug, and caffeine (CAF), a central nervous system stimulant, both alone or combined, in Astyanax altiparanae males under acute exposure (96 h), measuring neurotoxicity biomarkers, antioxidant response and damage at biochemical and cellular levels. DCF concentration in water, separated and combined, was 3.08 mg L-1 and that of CAF was 9.59 mg L-1. To assess neurotoxicity, brain and muscle acetylcholinesterase (AChE) activities were measured. To evaluate oxidative stress, the enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST), as well as lipoperoxidation (LPO), were analyzed in liver and gills. Activity of hepatic cyclooxygenase (COX) was also evaluated. Genotoxicity was assessed in blood using comet assay and micronucleus test, as well as nuclear abnormalities. DCF and CAF, alone or combined, had neither effect on AChE activity, nor in the activity of SOD, CAT, GPx and GST in gills. In liver, DCF inhibited SOD and GPx activity, CAF inhibited CAT activity, the mixture inhibited SOD and GST activity; although only fish exposed to CAF showed increased hepatic LPO. Under these experimental conditions, no effect on COX activity was observed, nor cytotoxic and genotoxic damage. The most pronounced effects were caused by the drugs separately, since both compounds altered the enzymes, but only CAF triggered LPO, showing more harmful effects.
Collapse
Affiliation(s)
- Marcela Muñoz-Peñuela
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil.
| | - Fabiana Laura Lo Nostro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática y IBBEA, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Aline Dal'Olio Gomes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | | | - Giovana Souza Branco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - João Paulo Silva Pinheiro
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - Filipe Guilherme Andrade de Godoi
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
184
|
Ferreira AL, Favero GC, Boaventura TP, de Freitas Souza C, Ferreira NS, Descovi SN, Baldisserotto B, Heinzmann BM, Luz RK. Essential oil of Ocimum gratissimum (Linnaeus, 1753): efficacy for anesthesia and transport of Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:135-152. [PMID: 33196935 DOI: 10.1007/s10695-020-00900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the essential oil of Ocimum gratissimum L. (EOOG) for anesthesia and in the transport of Oreochromis niloticus. Experiment I determined the time of anesthesia induction and recovery during anesthesia of O. niloticus exposed to different concentrations of EOOG (0, 30, 90, 150, and 300 mg L-1). Based on data from Experiment I, Experiment II evaluated the effect of 0, 30, and 90 mg L-1 EOOG on blood parameters and oxidative stress immediately after anesthesia induction and 1 h after recovery. Experiment III evaluated the effect of 0, 5, and 10 mg L-1 EOOG on blood variables immediately after 4.5 h of transport of juveniles. Concentrations between 90 and 150 mg L-1 EOOG were efficient for anesthesia and recovery. The use of 90 mg L-1 of EOOG prevented an increase in plasma glucose. Other changes in blood parameters and oxidative stress are discussed. The use of 10 mg L-1 EOOG in transport increased plasma glucose and decreased hematocrit values immediately after transport. It is concluded that the use of 90 and 150 mg L-1 EOOG causes anesthesia and recovery in O. niloticus within the time intervals considered ideal. The use of 90 mg L-1 EOOG favored stable plasma glucose soon after anesthesia induction and 1 h after recovery, but caused changes in the antioxidant defense system by increasing hepatic and kidney ROS. The transport of 12 g O. niloticus for 4.5 h can be performed with concentration of 5 mg L-1 of EOOG.
Collapse
Affiliation(s)
- Andre Lima Ferreira
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Gisele Cristina Favero
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Túlio Pacheco Boaventura
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Carine de Freitas Souza
- Departamento de Fisiologia e Farmacologia, Laboratório de Fisiologia de Peixes, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, CEP 97105-900, Brazil
| | - Nathália Soares Ferreira
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Sharine Nunes Descovi
- Departamento de Fisiologia e Farmacologia, Laboratório de Fisiologia de Peixes, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, CEP 97105-900, Brazil
| | - Bernardo Baldisserotto
- Departamento de Fisiologia e Farmacologia, Laboratório de Fisiologia de Peixes, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, CEP 97105-900, Brazil
| | - Berta Maria Heinzmann
- Departamento de Farmácia Industrial, Laboratório de Extrativos Vegetais, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, CEP 97105-900, Brazil
| | - Ronald Kennedy Luz
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 30161-970, Brazil.
- Laboratório de Aquacultura da Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 30161-970, Brazil.
| |
Collapse
|
185
|
Relationship between Apelin/APJ Signaling, Oxidative Stress, and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/8866725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apelin, a peptide hormone, is an endogenous ligand for G protein-coupled receptor and has been shown to be widely expressed in human and animal tissues, such as the central nervous system and adipose tissue. Recent studies indicate that the apelin/APJ system is involved in the regulation of multiple physiological and pathological processes, and it is associated with cardiovascular diseases, metabolic disorders, neurological diseases, ischemia-reperfusion injury, aging, eclampsia, deafness, and tumors. The occurrence and development of these diseases are closely related to the local inflammatory response. Oxidative stress is that the balance between oxidation and antioxidant is broken, and reactive oxygen species are produced in large quantities, causing cell or molecular damage, which leads to vascular damage and a series of inflammatory reactions. Hence, this article reviewed recent advances in the relationship between apelin/APJ and oxidative stress, and inflammation-related diseases, and highlights them as potential therapeutic targets for oxidative stress-related inflammatory diseases.
Collapse
|
186
|
Xu X, Song Z, Li Z, Liu X, Feng Y, Wang W, Sun G, Yang J. Establishment and characterization of a gill cell line from pearl gentian grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀) and its application in cadmium toxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111614. [PMID: 33396134 DOI: 10.1016/j.ecoenv.2020.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
A novel gill cell line from pearl gentian grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀, PGGG cell line) was established, its application in cadmium (Cd) toxicology was demonstrated in this study. Primary cultures and PGGG subcultures were carried out at 25 °C in Dulbecco's Modified Eagle medium/F12 medium (1:1; pH 7.2) supplemented with 15% fetal bovine serum (FBS). Primary PGGG cells were spindle-shaped, proliferated into a confluent monolayer within two weeks and were continuously subcultured over passage 60. The growth of cells at passages 20, 40, and 60 was examined. Chromosome analysis revealed that the chromosomal number of normal PGGG cells was 48, but the number of cells with the normal chromosomes number decreased during the passaging process. Cadmium is one of the most toxic metals in aquatic systems and has been associated with multiple animal and human health problems. To interpret the cytotoxicity and related mechanisms of cadmium, PGGG cells were used as an in vitro model. After treatment with cadmium at concentrations ranging from 1 µM to 500 µM, PGGG cells demonstrated dose- and time-dependent cytotoxicity, manifested as morphological abnormalities and a viability decline. Further, it was found that the reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated following cadmium exposure, and related genes involved in the antioxidant system, including those encoding catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and Kelch-like- ECH-associated protein 1 (Keap1), were regulated differently. In addition, PGGG cells treated with cadmium had the typical features associated with apoptosis, including phosphatidylserine (PS) externalization; upregulated expression of caspase-3, -8, and -9; and apoptotic body formation. In general, the PGGG cell line may serve as a useful tool for studying the toxic mechanisms of cadmium or other toxicants or for toxicity testing and environment monitoring.
Collapse
Affiliation(s)
- Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zhan Song
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
187
|
Xu Z, Zhang C, Wang X, Liu D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS APPLIED BIO MATERIALS 2021; 4:3985-3999. [DOI: 10.1021/acsabm.0c01485] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiwen Xu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
188
|
Zhou C, Ma Q, Li S, Zhu M, Xia Z, Yu W. Toxicological effects of single and joint sulfamethazine and cadmium stress in soil on pakchoi (Brassica chinensis L.). CHEMOSPHERE 2021; 263:128296. [PMID: 33297238 DOI: 10.1016/j.chemosphere.2020.128296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
The combined pollution of heavy metals and antibiotics in soil has attracted increasing attention due to their negative effects on plant growth. The aims of this study were to evaluate the phytotoxicity of single and combined sulfamethazine (SMT) and cadmium (Cd), selected as target pollutants in soil, on growth and physiological response of pakchoi (Brassica chinensis L.). Results revealed that the soil spiked with 10 mg kg-1 Cd inhibited the pakchoi growth regardless of SMT addition. The combined effect of SMT and Cd stress on uptake of SMT or Cd by pakchoi were concerned with their combined concentration. The combined influence of high concentrations SMT and Cd (1 and 10 mg kg-1) exposure on the Cd content of pakchoi showed antagonistic effects and synergistic effects, respectively. Besides, oxidative substances and enzyme activity of pakchoi tissue were affected by Cd and SMT exposure in the soil, particularly by their joint stress. This mainly expressed as the increase of malondialdehyde (MDA), H2O2 content and antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)), which could be ascribed to the induction of Cd and SMT stress. Additionally, the SMT-Cd combined stress caused more reduction in nutrients (vitamin C and sugar) of pakchoi than the correspondingly single Cd stress. In conclusion, the SMT and Cd in soil lead to their accumulation and oxidative damage in pakchoi, which disturb the antioxidant defense system and ultimately adversely affect growth and quality of pakchoi.
Collapse
Affiliation(s)
- Changrui Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Ma
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shuailin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mengmeng Zhu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqing Xia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wantai Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
189
|
|
190
|
Ma T, Wang X, Li L, Sun B, Zhu Y, Xia T. Electronic cigarette aerosols induce oxidative stress-dependent cell death and NF-κB mediated acute lung inflammation in mice. Arch Toxicol 2021; 95:195-205. [PMID: 33159582 PMCID: PMC7855759 DOI: 10.1007/s00204-020-02920-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Electronic cigarette (e-cigarette) use has been linked to recent acute lung injury case clusters in over 2000 patients and dozens of deaths in the United States, however, the mechanism leading to lung injury is not certain although ultrafine particles, heavy metals, volatile organic compounds, and other harmful ingredients have been implicated. To systematically evaluate e-cigarette toxicity, we generated e-cigarette aerosols by varying the puff numbers (20-480), nicotine contents (0-24 mg/mL), and collected e-cigarette samples through an impinger system for biological assays. The calculated samples' concentration ranged from 1.96 to 47.06 mg/mL. THP-1 monocyte-differentiated macrophages, BEAS-2B bronchial epithelial cells, wild-type C57BL/6 mice, and NF-κB-luc transgenic mice were used to test the effects of these samples. E-cigarette samples showed cytotoxicity to THP-1 cells and BEAS-2B in vitro, leading to increased oxidative stress, inflammatory cytokine production with or without nicotine, and cell death. Furthermore, aerosol generated from PG is more toxic than VG. The toxicity of e-cigarette samples is at least partially due to the reactive oxygen species and aldehydes, which are generated during the aerosolization processes by the e-cigarette device. After NF-κB-luc mice exposed with e-cigarette samples by oropharyngeal aspiration, NF-κB expressions were observed in a dose-response fashion with or without nicotine. In addition, the e-cigarette samples induced neutrophil infiltration, IL-1β production, oxidative stress marker heme oxygenase-1 expression in wild-type C57BL/6 mice. These results suggested that oxidative stress, pro-inflammatory NF-κB pathway activation, and cell death are involved in e-cigarette aerosol-induced acute lung inflammation.
Collapse
Affiliation(s)
- Tiancong Ma
- Division of Nanomedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1772, USA
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1772, USA
| | - Xiang Wang
- Division of Nanomedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1772, USA
| | - Liqiao Li
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1772, USA
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1772, USA.
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1772, USA.
| |
Collapse
|
191
|
Otuechere CA, Adewuyi A, Bankole O. Green synthesized hydroxamic acid administered in high dose disrupts the antioxidant balance in the hepatic and splenic tissues of albino rats. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Background
Hydroxamic acids are currently being used in diverse biological activities. We investigated the effect of hydroxamic acid, synthesized from Cyperus esculentus seeds, on the antioxidant status of the liver, spleen, and kidney of Wistar rats.
Methods
Twenty male rats were randomly divided into three treatment groups using hydroxamic acid at doses of 5, 15, and 50 mg/kg and a control group using distilled water. Rats were sacrificed 24 h after a seven-day repeated oral dosing. After that, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and the levels of glutathione (GSH) and malondialdehyde (MDA) were investigated in the organs.
Results
Our data showed that MDA levels remained unaltered in the liver, spleen, and kidney. However, it was found that hydroxamic acid at the dose of 50 mg/kg significantly increased SOD activity but depleted CAT, GPx activities and GSH levels in the liver when compared to the control groups. In splenic tissue, SOD activity and GSH levels were significantly diminished. Contrarily, in the kidney, treatment of rats with 50 mg/kg hydroxamic acid did not affect SOD activity, but GPx activity was increased while GST activity was decreased when compared to the controls.
Conclusion
Overall, hydroxamic acid may enhance antioxidant enzyme activities in the liver and kidney. However, caution is required at higher doses to forestall oxidative stress in the hepatic and splenic tissues.
Collapse
|
192
|
Sajjaboontawee N, Supasitthumrong T, Tunvirachaisakul C, Nantachai K, Snabboon T, Reiche EMV, Simão ANC, Maes M. Lower thiol, glutathione, and glutathione peroxidase levels in prostate cancer: a meta-analysis study. Aging Male 2020; 23:1533-1544. [PMID: 33325316 DOI: 10.1080/13685538.2020.1858048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Lowered thiol (-SH) groups and glutathione (GSH) metabolism may be associated with prostate cancer (PCa) and benign prostatic hyperplasia (BPH). The objectives of this study were to systematically review and meta-analyze the associations among -SH groups, GSH, GSH peroxidase (GPx), GSH reductase (GR), and GSH transferase (GST) and PCa/BPH. METHODS Four electronic databases were searched for studies that reported -SH and GSH variables in PCa/BPH and healthy controls (HC) and the data were meta-analyzed by calculating Hedges's g with 95% confidence intervals. RESULTS Twenty studies were included in this meta-analysis. Total -SH (g = -1.750, -2.341/-1.159), GPx (g = -0.789, -1.234/-0.344), GSH (g = -2.219, -4.132/-0.305), and the combination of -SH, GPx, and GSH (g = -1.271, -1.271/-0.800) were significantly lower in PCa patients than in HC. -SH (g = -1.752, -3.123/-0.381) and the combination of -SH, GPx, and GSH (g = -0.813, -1.298/-0.327) were significantly lower in BPH patients than in HC. GPx was significantly lower in PCa than in BPH patients (g = -0.455, -0.896/-0.014). Heterogeneity levels were very high, but Egger's test showed that none of the biomarkers showed significant publication bias. CONCLUSION Thiol/GPx antioxidant defenses are significantly attenuated in patients with PCa while patients with BPH occupy an intermediate risk group position between PCa patients and HC.
Collapse
Affiliation(s)
| | | | | | - Kanyapak Nantachai
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Thiti Snabboon
- Faculty of Medicine, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Andréa Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
193
|
Hassan AT, Kwong RWM. The neurophysiological effects of iron in early life stages of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115625. [PMID: 33254686 DOI: 10.1016/j.envpol.2020.115625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Trace metal/ion homeostasis, neurophysiological performance, and molecular responses to iron (Fe) exposure were investigated in the model organism zebrafish (Danio rerio). The findings demonstrated that exposure to a sublethal concentration of ferric iron (Fe3+) increased Fe contents in both the whole body and head region of developing zebrafish. Among the various trace metals and major ion examined, a dysregulation in manganese, zinc, nickel, and calcium balance was also observed in Fe-exposed larvae. Further biochemical assay and in-vivo imaging revealed that Fe exposure resulted in possible oxidative stress-induced damage, and an increased generation of reactive oxygen species in specific regions of the larvae. Using a droplet digital PCR (ddPCR) technology, it was found that the expression levels of various oxidative stress-responsive genes were temporally modulated by Fe exposure. Additionally, Fe-exposed larvae exhibited an impairment in escape response and a decrease in swimming activity. These larvae also appeared to exhibit a reduced anxiety-like behaviour. Together, our research suggested that larvae experiencing an increased Fe loading exhibited a dysregulation in metal homeostasis and a decrease in neurophysiological performance. These results suggested that neurophysiological assessments are sensitive methods to evaluate Fe toxicity in developing fish.
Collapse
Affiliation(s)
- Ayaat T Hassan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
194
|
Vitale GA, Coppola D, Palma Esposito F, Buonocore C, Ausuri J, Tortorella E, de Pascale D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives. Antioxidants (Basel) 2020; 9:E1183. [PMID: 33256101 PMCID: PMC7760651 DOI: 10.3390/antiox9121183] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| | - Carmine Buonocore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Janardhan Ausuri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Emiliana Tortorella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| |
Collapse
|
195
|
Determination of Oxidative Stress Markers in the Aqueous Humor and Corneal Tissues of Patients With Congenital Hereditary Endothelial Dystrophy. Cornea 2020; 40:491-496. [PMID: 33177409 DOI: 10.1097/ico.0000000000002568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study is to determine the presence of oxidative stress markers in the aqueous humor (AH) and corneal tissues of patients with congenital hereditary endothelial dystrophy (CHED). METHODS Interventional prospective study was undertaken to quantify levels of ascorbic acid and glutathione in the AH of patients with CHED. AH was collected from patients undergoing keratoplasty and levels of ascorbic acid and glutathione were determined using biochemical assays and measured spectrophotometrically. AH collected from pediatric patients with cataract were used as control. Corneal sections of patients who underwent penetrating keratoplasty were obtained, and presence of glutathione peroxidase 1, catalase, and superoxide dismutase was determined by immunohistochemistry. Tissue sections obtained from cadaveric corneas unsuitable for clinical transplant were used as control. RESULTS Significantly increased ascorbic acid levels were determined in patients with CHED (605.6 ± 158.9 μM) compared with those in controls (190.5 ± 74.72 μM). However, a trend toward reduced level of glutathione was detected in patients with CHED compared with that in the controls. Increased glutathione peroxidase 1 staining and reduced expression of catalase was detected in corneal tissues of patients with CHED compared with those in control corneal tissues. There was no apparent changes observed in the expression of superoxide dismutase in the corneal sections obtained from patients with CHED. CONCLUSIONS To the best of our knowledge, this is the first study to determine the levels of ascorbic acid and glutathione in AH of patients with CHED. Our data suggest the presence of oxidative stress in CHED that might be responsible for the pathological changes in patients with CHED.
Collapse
|
196
|
Singh N. Antioxidant metal oxide nanozymes: role in cellular redox homeostasis and therapeutics. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Nanomaterials with enzyme-like activity, generally referred to as ‘nanozymes’, find myriad potential in various biomedical fields. More importantly, the nanoparticles that can functionally mimic the activity of cellular antioxidant enzymes attract tremendous interest owing to their possible therapeutic candidature in oxidative stress-mediated disorders. Oxidative stress culminating due to excess reactive oxygen species (ROS) level and dysregulated cellular antioxidant machinery is implicated in the development and progression of various pathophysiological disorders such as cancer, diabetes, cardiovascular and neurodegenerative diseases. Moreover, the optimum essentiality of ROS due to its pivotal role in cell signaling evokes the requirement of novel artificial antioxidant enzymes that can circumvent the detrimental effects of enhanced ROS levels without perturbing the basal redox status of cells. In recent years, the fast emanating artificial enzymes, i.e. nanozymes with antioxidant enzyme-like activity, has made tremendous progress with their broad applications in therapeutics, diagnostic medicine, bio-sensing, and immunoassay. Among various antioxidant nanoparticles reported till-date, the metal oxide nanozymes have emerged as the most efficient and successful candidates in mimicking the activity of first-line defense antioxidant enzymes, i.e. superoxide dismutase, catalase, and glutathione peroxidase. This review intends to exclusively highlight the development of representative metal oxide-based antioxidant nanozymes capable of maintaining the cellular redox homeostasis and their potential therapeutic significance.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
197
|
Gür F, Cengiz M, Gür B. Alternations in nuclear factor kappa beta activity (NF-kB) in the rat brain due to long-term use of atomoxetine for treating ADHD: In vivo and in silico studies. Biochem Biophys Res Commun 2020; 534:927-932. [PMID: 33143874 DOI: 10.1016/j.bbrc.2020.10.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/01/2022]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is the most common psychiatric disorder reported particularly in children. Long-term use of antipsychotic drugs used in the treatment of ADHD has been shown to exert toxic effects on the brain. However, not enough research has been carried out on the neurotoxic effects of these drugs on the brain tissue. Atomoxetine (ATX) is the most widely used antipsychotic drug that has gained approval for ADHD treatment. The present study aims to determine the damage induced by long-term use of three different doses of ATX in the brain tissue of experimental rats. 24 rats were divided into Control group (0.5 mL saline), Group 2 (0.5 mg/mL ATX), Group 3 (1.0 mg/mL ATX), and Group 4 (2.0 mg/mL ATX), each group having 6 members. Their brain tissues were taken for stereological, histological, and nuclear factor kappa-B (NF-kB) protein expression analysis. ATX was determined to have caused a few alterations in the brain tissue, such as disruption in the endothelial epithelium of capillaries, a couple of large astrocyte nuclei, and mitotic astrocytes. Moreover, a significant difference was observed in Group 4 compared to Control Group in terms of astrocyte counts in the brain sections. As for Groups 3 and 4, there were differences in terms of oligodendrocyte counts in the incisions cultivated from the brain tissues of the animals. On the other hand, NF-kB positive astrocytes of Groups 3 and 4 differed significantly from those of Control and Group 2. The results of molecular dockings of the present study are in line with the in-vivo results. Therefore, it was concluded that the higher the dose of ATX was, the more damage the brain tissue sustained.
Collapse
Affiliation(s)
- Fatma Gür
- Department of Medical Services and Techniques, Health Services Vocational School, Ataturk University, 25240, Erzurum, Turkey.
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, 56100, Siirt, Turkey
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, 76000, Iğdır, Turkey
| |
Collapse
|
198
|
González-Ruiz R, Peregrino-Uriarte AB, Valenzuela-Soto EM, Cinco-Moroyoqui FJ, Martínez-Téllez MA, Yepiz-Plascencia G. Mitochondrial manganese superoxide dismutase knock-down increases oxidative stress and caspase-3 activity in the white shrimp Litopenaeus vannamei exposed to high temperature, hypoxia, and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110826. [PMID: 33130328 DOI: 10.1016/j.cbpa.2020.110826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/02/2023]
Abstract
Shrimp are increasingly exposed to warmer temperatures and lower oxygen concentrations in their habitat due to climate change. These conditions may lead to oxidative stress and apoptosis. We studied the effects of high temperature, hypoxia, reoxygenation, and the combination of these factors on lipid peroxidation, protein carbonylation, and caspase-3 activity in gills of white shrimp Litopenaeus vannamei. Silencing of mitochondrial manganese superoxide dismutase (mMnSOD) was used to determine the role of this enzyme in response to the abiotic stressors described above, to avoid oxidative damage and apoptosis. In addition, mMnSOD gene expression and mitochondrial SOD activity were evaluated to determine the efficiency of silencing this enzyme. The results showed that there was no effect of the abiotic stress conditions on the thiobarbituric acid reactive substances (TBARS), but protein carbonylation increased in all the oxidative stress treatments and caspase-3 activity decreased in hypoxia at 28 °C. On the other hand, mMnSOD-silenced shrimp experienced higher oxidative stress, since TBARS, carbonylated proteins and caspase-3 activity increased in some silenced treatments. Unexpectedly, mitochondrial SOD activity increased in some of the silenced treatments as well. Altogether, these results suggest that mMnSOD has a key role in shrimp for the prevention of oxidative damage development and induction of apoptosis in response to hypoxia, reoxygenation, high temperature, and their interactions, as conditions derived from climate change.
Collapse
Affiliation(s)
- Ricardo González-Ruiz
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, CP 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, CP 83304, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, CP 83304, Mexico
| | - Francisco J Cinco-Moroyoqui
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas and Boulevard Rosales, Hermosillo, Sonora, CP 83000, Mexico
| | - Miguel A Martínez-Téllez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, CP 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, CP 83304, Mexico.
| |
Collapse
|
199
|
Xu J, Xia X, Zhang G, Wu H, Qu Y, Xia L, Han X. Two heteronuclear ZnII/CdII-DyIII complexes based on open-chain ether schiff base ligand: Synthesis, structures, fluorescence and antioxidation activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
200
|
Jiang X, Song B, Wang S, Ran L, Lu P, Hu D. Oxidative Stress and Enantioselective Degradation of Dufulin on Tubifex. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2136-2146. [PMID: 33464618 DOI: 10.1002/etc.4834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
Dufulin is a new type of chiral antiplant virus agent independently developed in China. The present study was conducted to determine the effects of different concentrations of rac-dufulin and dufulin enantiomers (1, 5, and 10 mg/L) on oxidative stress in Tubifex after exposure for 3, 7, and 14 d. Results showed that rac-dufulin and individual enantiomers had no significant effects on total protein content and glutathione reductase activities. Increased superoxide dismutase demonstrated the generation of superoxide anion radical. The increase in glutathione S-transferase may be due to detoxification mechanisms. The different changes in catalase activities could be due to oxidative stress. The increase in malondialdehyde may be due to the accumulation and toxicity of contaminations. The degradation behavior of dufulin enantiomers was studied through spiked-water and spiked-soil tests. The degradation rate of S-(+)-dufulin was faster than that of R-(-)-dufulin. The present study demonstrated the occurrence of enantioselectivity in the degradation and oxidative stress of dufulin to Tubifex. In spiked soil, the concentrations of dufulin enantiomers in underlying soil were significantly higher than those in overlying water; but after 5 d of degradation, the bioturbation of Tubifex could facilitate part of dufulin diffusing from the underlying soil into the overlying water and altered the partitioning of dufulin. The present study provided a basis for conducting environmental safety risk assessments and rationally using dufulin as a chiral pesticide. Environ Toxicol Chem 2020;39:2136-2146. © 2020 SETAC.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Bangyan Song
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Shouyi Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lulu Ran
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Ping Lu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Deyu Hu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|