151
|
Yeh YM, Pan YT, Wang TCV. Cdc42/Rac1 participates in the control of telomerase activity in human nasopharyngeal cancer cells. Cancer Lett 2005; 218:207-13. [PMID: 15670898 DOI: 10.1016/j.canlet.2004.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 01/20/2023]
Abstract
Telomerase, a specialized ribonucleoprotein reverse transcriptase that directs the synthesis of telomeric DNA, is repressed in normal human somatic cells, but is activated in most cancers. Little is known concerning how telomerase activity is activated and maintained in cancer cells. We have previously shown that protein kinase C-zeta (PKC zeta) controls telomerase activity in nasopharyngeal cancer (NPC) cells. Since PKC zeta activity is known to be modulated by Cdc42/Rac1, we investigated the effects of inhibiting Cdc42 and Rac1 on the telomerase activity of NPC-076 cells. Treatment of NPC cells with antisense oligonucleotides against Cdc42 or Rac1 produced an inhibition of telomerase activity. Similarly, transient expression of dominant-negative mutants of Cdc42 or Rac1, but not the wild-type Cdc42 or Rac1, also produced an inhibition of telomerase activity in NPC cells. This inhibition of telomerase activity is not associated with a transcriptional down-regulation of hTERT, the key regulator of telomerase. We suggest that Cdc42/Rac1 participates in the posttranscriptional control of telomerase activity in NPC cells.
Collapse
Affiliation(s)
- Yuan-Ming Yeh
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan, ROC
| | | | | |
Collapse
|
152
|
McKechnie A, Robins RA, Eremin O. Immunological aspects of head and neck cancer: biology, pathophysiology and therapeutic mechanisms. Surgeon 2005; 2:187-207. [PMID: 15570827 DOI: 10.1016/s1479-666x(04)80001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advanced cancer and head and neck cancer, in particular, remains a major clinical challenge with its associated morbidity and inevitable mortality. Local control of early disease is achievable in many solid tumours with current surgical and radiotherapeutic techniques but metastatic disease is associated with poor outcome and prognosis. It is known that, by the time of presentation, many patients will already have occult microscopic metastatic disease, and surgery and radiotherapy will not result in long-term survival. What little effect modern chemotherapeutic agents have on microscopic disease is, however, limited by systemic toxicity and multi-drug resistance. Immune surveillance is postulated to be operative in man. There is evidence, however, that patients with progressive tumour growth have failure of host defences both locally and systemically. Various possible defects and tumour escape mechanisms are discussed in the review. Immunotherapy and, in particular adoptive T cell therapy and DC therapy, show promise as putative tumour-specific therapy with clinical benefits. These techniques are undergoing development and evaluation in phase 1 clinical trials. Preliminary data suggest that the treatments are well tolerated. Unfortunately, there is limited evidence of significant and prolonged improvements in clinical outcome. Further developments of beneficial protocols (adjuvants, mode and frequency of vaccination etc) and multicentre studies of the use of immunotherapy in cancer are now required.
Collapse
Affiliation(s)
- A McKechnie
- Department of Surgery, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
153
|
Luzar B, Poljak M, Marin IJ, Eberlinc A, Klopcic U, Gale N. Human telomerase catalytic subunit gene re-expression is an early event in oral carcinogenesis. Histopathology 2005; 45:13-9. [PMID: 15228439 DOI: 10.1111/j.1365-2559.2004.01892.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Detection of telomerase catalytic subunit (hTERT) mRNA has been used as a surrogate marker for estimation of telomerase activity. The exact role and timing of telomerase re-activation, a key enzyme implicated in cellular immortalization and transformation, in the multistep process of oral carcinogenesis is still unknown. The aim was to test the hypothesis that (i) quantitative rather than qualitative differences exist in the level of hTERT mRNA expression between normal oral mucosa, different grades of oral epithelial abnormalities and squamous cell carcinomas of the oral cavity, and that (ii) hTERT gene re-expression is an important, probably early event in oral carcinogenesis. METHODS AND RESULTS The relative quantity of hTERT mRNA was analysed in 45 frozen oral epithelia representing different morphological stages of oral carcinogenesis classified according to the Ljubljana classification and in 37 oral squamous cell carcinomas, using a commercially available LightCycler Telo TAGGG hTERT Quantification kit. hTERT mRNA was not detected in normal or reactive hyperplastic oral epithelia, but was present in 43% of atypical hyperplasias (premalignant lesions), 60% of intraepithelial carcinomas and 68% of oral squamous cell carcinomas. Statistical analysis revealed two groups of oral epithelial changes, with significant differences in the levels of hTERT mRNA expression: 1, normal and reactive hyperplastic oral epithelium, and 2, atypical hyperplasia, intraepithelial carcinomas and squamous cell carcinomas. CONCLUSION These data suggest that hTERT gene re-expression represents an early event in the multistep process of oral carcinogenesis, already detectable at the stage of precancerous oral epithelial changes. Nevertheless, other genetic aberrations appear to be necessary for progression of oral epithelial abnormalities towards invasive squamous cell carcinoma.
Collapse
Affiliation(s)
- B Luzar
- Institute of Microbiology & Immunology, University of Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
154
|
Liu L, Lai S, Andrews LG, Tollefsbol TO. Genetic and epigenetic modulation of telomerase activity in development and disease. Gene 2004; 340:1-10. [PMID: 15556289 DOI: 10.1016/j.gene.2004.06.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/18/2004] [Accepted: 06/03/2004] [Indexed: 11/22/2022]
Abstract
Telomerase activity is one of the most important factors that have been linked to multiple developmental processes, including cell proliferation, differentiation, aging and senescence. Dysregulation of telomerase has often been found in developmental abnormalities, such as cancer, loss of function in the hematopoietic system, and low success rate of somatic cloning. A comprehensive network of transcription factors has been shown to be involved in the genetic control of telomerase expression and activity. Epigenetic mechanisms have recently been shown to provide an additional level of regulation, and may be responsible for the diverse expression status of telomerase that is manifested in a tissue and cell-type-dependent manner. This article summarizes the recent developments in the field of telomerase research with a focus on the coregulation of the telomerase gene by both genetic and epigenetic pathways. Developmental consequences of aberrant telomerase activity will also be summarized and discussed.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
155
|
Delany ME, Daniels LM. The chicken telomerase reverse transcriptase (chTERT): molecular and cytogenetic characterization with a comparative analysis. Gene 2004; 339:61-9. [PMID: 15363846 DOI: 10.1016/j.gene.2004.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/23/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022]
Abstract
Telomerase activity is essential for maintaining the termini of linear chromosomes. Telomerase consists of both a RNA and a specialized reverse transcriptase. Our objective for this study was to determine the molecular and cytogenetic features of the chicken telomerase reverse transcriptase (chTERT) gene and protein. The TERT mRNA from gastrula stage embryos was found to be 4497 bp in length, translating into a protein of 1346 amino acids (aa). The chTERT protein shares 45% aa identity with human TERT (hTERT). A distinctive feature of chTERT, as compared to human and other vertebrate TERTs, is the larger size of the protein due mainly to a considerably longer N-terminal flexible linker region (144 aa longer than in human). Chicken TERT was mapped to chromosome 2q21 near an interstitial telomere site. Several transcription factor binding motifs in the 5' flanking/promoter region of chTERT were similar to those found associated with hTERT (E-box, Ik1, MAZ, Sp1 sites), whereas several c-Myb sites were found associated with chTERT only and c-Ets-2 and WT1 were associated with hTERT only. Results presented here should promote structure-function studies of chTERT, as well as contribute to the comparative analysis of TERT regulation and function in vertebrates utilizing the telomere clock mechanism to different degrees.
Collapse
Affiliation(s)
- Mary E Delany
- Department of Animal Science, 2131D Meyer Hall, One Shields Avenue, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
156
|
Spiropoulou T, Ferekidou L, Angelopoulou K, Stathopoulou A, Talieri M, Lianidou ES. Effect of antineoplastic agents on the expression of human telomerase reverse transcriptase beta plus transcript in MCF-7 cells. Clin Biochem 2004; 37:299-304. [PMID: 15003732 DOI: 10.1016/j.clinbiochem.2003.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/10/2003] [Accepted: 12/11/2003] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate the effect of antineoplastic agents on the expression of human telomerase reverse transcriptase (hTERT) splice variants in MCF-7 cells. DESIGN AND METHODS We have developed a luminometric hybridization assay for hTERT beta plus transcript. MCF-7 cells were isolated before and after treatment with antineoplastic agents. A combination of nested RT-PCR and the developed luminometric hybridization assay was used for the specific detection of hTERT beta plus transcript in treated and untreated MCF-7 cells. Amplification of all hTERT splicing variants by nested PCR in the same samples was also performed. RESULTS MCF-7 cells treated with taxol and etoposide were found positive for all hTERT splicing variants, while the expression of hTERT beta plus transcript did not differ significantly before and after exposure. MCF-7 cells treated with doxorubicin and 5-fluorouracil did not express any of hTERT splicing variants. In the presence of cisplatin, three splicing variants of hTERT were detected. CONCLUSIONS The developed hybridization assay is highly sensitive and specific for the detection of hTERT beta plus transcript in clinical samples.
Collapse
Affiliation(s)
- Tonia Spiropoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece
| | | | | | | | | | | |
Collapse
|
157
|
Tchirkov A, Chaleteix C, Magnac C, Vasconcelos Y, Davi F, Michel A, Kwiatkowski F, Tournilhac O, Dighiero G, Travade P. hTERT expression and prognosis in B-chronic lymphocytic leukemia. Ann Oncol 2004; 15:1476-80. [PMID: 15367406 DOI: 10.1093/annonc/mdh389] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In B-chronic lymphocytic leukemia (B-CLL), there is a need for molecular markers to predict the evolution of this heterogeneous disease in individual patients. The level of expression of the human telomerase reverse transcriptase (hTERT) gene has been associated with disease aggressiveness in human cancers. The purpose of the present study was to examine the prognostic significance of hTERT expression in B-CLL. PATIENTS AND METHODS We used real-time reverse transcription-PCR to quantitate the amount of hTERT transcripts in mononuclear blood cells from 90 B-CLL patients. In addition, samples were analyzed for somatic mutations in the immunoglobulin V (IgV) genes. RESULTS The expression of hTERT gene was detected in 59% of patients. The level of expression increased with advancing B-CLL stage (P=0.0064). Patients expressing hTERT showed significantly shorter survival than hTERT-negative patients (P=0.000034), irrespective of the disease stage. On average, the level hTERT mRNA expression was seven-fold higher in the poor-prognosis B-CLL group with unmutated IgV than in the Ig-mutated group (P<10(-7)). The level of hTERT expression discriminated the Ig-unmutated from Ig-mutated B-CLL in 89% of cases. CONCLUSION Our data indicate that hTERT expression in B-CLL may serve as a molecular prognostic marker.
Collapse
Affiliation(s)
- A Tchirkov
- Service d'Hématologie Clinique, CHU, Clermont-Ferrand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Liu L, Saldanha SN, Pate MS, Andrews LG, Tollefsbol TO. Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer 2004; 41:26-37. [PMID: 15236314 DOI: 10.1002/gcc.20058] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human telomerase reverse transcriptase (TERT) gene is transcriptionally inactivated in most differentiated cells but is reactivated in the majority of cancer cells. To elucidate how TERT is inactivated during differentiation, we applied all-trans retinoic acid (ATRA) to induce the differentiation of human teratocarcinoma (HT) cells and human acute myeloid leukemia (HL60) cells. We first showed that TERT promoter activity decreased rapidly, which preceded a gradual loss of endogenous telomerase activity following ATRA induction. To elucidate the underlying mechanisms of the reduced TERT promoter activity during differentiation, we performed epigenetic studies on the TERT promoter and found a progressive histone hypoacetylation coupled with a gradual accumulation of methylated cytosines in the TERT promoter. We also observed that the TERT promoter was less methylated in pluripotent HT cells than in multipotent HL60 cells throughout a 12-day differentiation process. This origin-dependent epigenetic change was also confirmed in histone acetylation studies, indicating that the TERT promoter was more resistant to deacetylation in HT cells than in HL60 cells. Taken together, our results demonstrate synergistic involvement of DNA methylation and histone deacetylation in the down-regulation of TERT promoter activity that may be dependent on the origin of the cell types, and they add new insight into the way telomerase activity may be regulated during differentiation.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biology, University of Alabama at Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
159
|
Jeong Seo E, Jung Kim H, Jae Lee C, Tae Kang H, Seong Hwang E. The role of HPV oncoproteins and cellular factors in maintenance of hTERT expression in cervical carcinoma cells. Gynecol Oncol 2004; 94:40-7. [PMID: 15262117 DOI: 10.1016/j.ygyno.2004.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Indexed: 11/29/2022]
Abstract
OBJECTIVE E6 and E7 oncoproteins of high risk type HPV modulate activities of host components in cell cycle regulation. Many of these factors are also involved in the regulation of telomerase activity or the expression of hTERT, the catalytic subunit. Transcription of E6 and E7 is inhibited by the papillomavirus E2 protein, and ectopic expression of E2 in HeLa cells has been shown to cause activation of the p53-growth inhibitory pathway and downregulation of the hTERT gene. In this study, using E2 transduction in HeLa cells, the relative importance of host and viral factors in the maintenance of hTERT and telomerase activity in cervical carcinoma cells was investigated. METHODS Depletion of E6/E7 proteins, concomitant upregulation of p53, p21WAF1, and hypophosphorylated Rb, and downregulation of E2F1, c-Myc, and hTERT were achieved in HeLa cells through SV40-mediated E2 transduction. And, through gene transduction, E6 and E7 proteins were separately re-expressed in HeLa cells that were devoid of these proteins. As well, E2F1, c-Myc, and p53 were ectopically expressed in HeLa cells to ascertain their effect on the level of hTERT expression through RT-PCR, Western blotting, and TRAP assays. RESULTS Continued expression of E2F1 and c-Myc could not prevent hTERT downregulation caused by E2 transduction, but re-expression of either E6 or E7 individually reactivated hTERT expression. Finally, p53 overexpression caused repression of the hTERT gene in the presence of E6 and E7. CONCLUSION HPV E6 plays an important role in the induction and maintenance of high levels of hTERT in cervical carcinoma cells through direct stimulation of hTERT promoter and prevention of the inhibitory effects of p53. E7, but not E2F1, may contribute to high telomerase activity in cancer cells.
Collapse
Affiliation(s)
- Eun Jeong Seo
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, South Korea
| | | | | | | | | |
Collapse
|
160
|
Zou SQ, Qu ZL, Li ZF, Wang X. Hepatitis B virus X gene induces human telomerase reverse transcriptase mRNA expression in cultured normal human cholangiocytes. World J Gastroenterol 2004; 10:2259-62. [PMID: 15259077 PMCID: PMC4724980 DOI: 10.3748/wjg.v10.i15.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the transcriptional regulation of human telomerase reverse transcriptase (hTERT) mRNA in normal human cholangiocytes (HBECs) after hepatitis B virus X (HBx) gene transfection and to elucidate the possible mechanism of HBV infection underlying cholangiocarcinoma.
METHODS: HBECs were cultured in vitro and co-transfected with a eukaryotic expression vector containing the HBx coding region and a cloning vector containing coding sequences of enhanced green fluorescent protein (EGFP) using lipid-mediated gene transfer. The transfection efficiency was determined by the expression of EGFP. The expressions of hTERT mRNA and HBx protein in HBECs were detected by RT-PCR and immunocytochemical stain, respectively.
RESULTS: The transfection efficiencies were about 15% for both HBx gene expression plasmid and empty vector. No hTERT mRNA was expressed in HBECs when transfected with OPTI-MEM medium and empty vector, but a dramatic increase was observed for hTERT mRNA expression in HBECs when transfected with HBx expression vector. HBx protein was only expressed in HBECs when transfected with HBx expression vector.
CONCLUSION: HBx transfection can activate the transcriptional expression of hTERT mRNA. Cis-activation of hTERT mRNA by HBx gene is the primary mechanism underlying the proliferation, differentiation and tumorigenesis of biliary epithelia.
Collapse
Affiliation(s)
- Sheng-Quan Zou
- Department of Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | | | | | | |
Collapse
|
161
|
Liu L, Berletch JB, Green JG, Pate MS, Andrews LG, Tollefsbol TO. Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1003.3.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Human promyelocytic leukemia HL60 cells display high telomerase activity, a phenotype related to their immortal status. All-trans retinoic acid (ATRA) is a clinically effective cytodifferentiating agent. To understand the mechanism underlying ATRA-induced cytodifferentiation, we did a kinetic analysis of the role of ATRA in inhibiting telomerase in HL60 cells. Our studies indicate that telomerase inhibition by ATRA occurred relatively early after treatment of HL60 cells due to a rapid decrease in hTERT gene expression. More importantly, however, we found through monitoring the expression of CD11b, a marker for granulocytic differentiation of HL60 cells, that down-regulation of telomerase preceded the differentiation of HL60 cells. These observations suggest that the hTERT gene may be a primary target of ATRA regulation of cellular differentiation and the antileukemia activity of ATRA may be mediated by its ability to induce the differentiation of the promyelocytic leukemia cells through down-regulation of the hTERT gene.
Collapse
Affiliation(s)
| | | | | | | | | | - Trygve O. Tollefsbol
- 1Department of Biology,
- 2Center for Aging, and
- 3Comprehensive Cancer Center, University of Alabama-Birmingham, Birmingham, Alabama
| |
Collapse
|
162
|
Su CQ, Sham J, Xue HB, Wang XH, Chua D, Cui ZF, Peng LH, Li LF, Jiang LH, Wu MC, Qian QJ. Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol 2004; 130:591-603. [PMID: 15243805 DOI: 10.1007/s00432-004-0577-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/25/2004] [Indexed: 01/28/2023]
Abstract
PURPOSE Telomerase reverse transcriptase (hTERT) is the key determinant of telomerase activity and plays a crucial role in cellular immortalization and oncogenesis. It will be a promising target for cancer gene therapy. We constructed a novel replicative adenovirus CNHK300 in which hTERT promoter with three extra E-boxes downstream of the promoter was introduced and used to regulate adenoviral E1a gene, and studied its properties of selective replication in cancer cells and antitumoral activity. METHODS Luciferase assay was used to detect hTERT promoter activity. The selective replication of CNHK300 in cancer cells was investigated by E1a Western blot and green fluorescent protein (GFP) reporter gene assay. The antitumoral activity of CNHK300 and its toxicity were measured on animal models. RESULTS Luciferase assay showed that introducing extra E-boxes downstream of hTERT promoter is beneficial to decreasing the promoter activity in normal cells without affecting its strong activity in cancer cells. Experiments in vitro and in vivo demonstrated that CNHK300 can selectively target to hTERT-positive cancer cells and replicate in them, resulting in oncolytic or antitumoral effect. CNHK300 is superior to ONYX-015 in terms of selective replication and oncolytic or antitumoral effect. The toxicity assay showed no signs of toxicity to liver cells even at the higher dosage of CNHK300 in vivo. CONCLUSION The hTERT promoter-controlled, replication-competent adenovirus CNHK300 is a promising system for targeted cancer gene therapy.
Collapse
Affiliation(s)
- C-Q Su
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, 225 Changhai Rd, 200438 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Borrás C, Esteve JM, Viña JR, Sastre J, Viña J, Pallardó FV. Glutathione regulates telomerase activity in 3T3 fibroblasts. J Biol Chem 2004; 279:34332-5. [PMID: 15184392 DOI: 10.1074/jbc.m402425200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in telomerase activity have been associated either with cancer, when activity is increased, or with cell cycle arrest when it is decreased. We report that glutathione, a physiological antioxidant present at high intracellular concentrations, regulates telomerase activity in cells in culture. Telomerase activity increases in 3T3 fibroblasts before exponential cell growth. The peak of telomerase activity takes place 24 h after plating and coincides with the maximum levels of glutathione in the cells. When cells are treated with buthionine sulfoximine, which decreases glutathione levels in cells, telomerase activity decreases by 60%, and cell growth is delayed. Glutathione depletion inhibits expression of E2F4 and Id2, which regulate the cell cycle. When glutathione levels are restored after incubation with glutathione monoethylester, telomerase activity and the cell cycle-related proteins return to control values. To discover the effect of glutathione redox status on the telomerase multicomplex structure, we incubated protein extracts from fibroblasts with different glutathione redox buffers. Telomerase activity is maximal under reduced conditions i.e. when the reduced/oxidized glutathione ratio is high. Consequently glutathione concentration parallels telomerase activity. These results underscore the main role of glutathione in the control of telomerase activity and of the cell cycle.
Collapse
Affiliation(s)
- Consuelo Borrás
- Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
164
|
Yuan BF, Hao YH, Tan Z. Universal Sensing Strategy for the Detection of Nucleic Acid Targets by Optical Biosensor Based on Surface Plasmon Resonance. Clin Chem 2004; 50:1057-60. [PMID: 15161721 DOI: 10.1373/clinchem.2003.030783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bi-Feng Yuan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
165
|
Luzar B, Poljak M, Marin IJ, Gale N. Telomerase reactivation is an early event in laryngeal carcinogenesis. Mod Pathol 2004; 16:841-8. [PMID: 13679446 DOI: 10.1097/01.mp.0000086488.36623.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The exact role and timing of reactivation of telomerase, a key enzyme implicated in cellular immortalization and transformation in the multistep process of laryngeal carcinogenesis, is still unknown. We attempted to (1) determine that quantitative differences exist in the levels of telomerase catalytic subunit (hTERT) mRNA expression among different grades of laryngeal epithelial abnormalities classified according to the Ljubljana classification; (2) determine that telomerase reactivation is an important, most probably early event in laryngeal carcinogenesis; and (3) analyze whether the relative quantity of hTERT mRNA can be used as a molecular biomarker in the early detection of precancerous lesions. The relative quantity of hTERT mRNA, expressed as an hTERT index, was analyzed in 140 frozen laryngeal tissue specimens representing different morphological stages of laryngeal carcinogenesis by using a commercially available LightCycler Telo TAGGG hTERT Quantification kit. The presence and relative quantity of hTERT mRNA in laryngeal epithelium increases progressively with the degree of epithelial abnormalities. hTERT mRNA was detectable in 1/15 normal laryngeal epithelia (7%, mean hTERT index 0.02), 3/15 simple hyperplasias (20%, mean hTERT index 0.09), 10/27 abnormal hyperplasias (37%, mean hTERT index 0.18), 9/12 atypical hyperplasias (75%, mean hTERT index 0.74), 8/9 intraepithelial carcinomas (89%, mean hTERT index 1.82), and 53/62 invasive laryngeal squamous cell carcinomas (85%, mean hTERT index 2.51). Statistical analysis revealed two groups of laryngeal epithelial changes with significant differences in the levels of hTERT mRNA expression (P <.0033): (1) normal and reactive hyperplastic laryngeal epithelium (simple and abnormal hyperplasia) and (2) atypical hyperplasia (precancerous lesion), intraepithelial and invasive laryngeal squamous cell carcinoma. The results of the present study suggest that telomerase reactivation is an early event in laryngeal carcinogenesis, detectable already at the stage of precancerous laryngeal epithelial changes. Nevertheless, other genetic abnormalities appear to be necessary for progression of these epithelial abnormalities toward invasive laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Bostjan Luzar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
166
|
Nakatake M, Sasaki N, Murakami-Murofushi K, Yamada O. Transient posttranslational up-regulation of telomerase activity during megakaryocytic differentiation of K562 cells. Biochem Biophys Res Commun 2004; 314:1080-5. [PMID: 14751243 DOI: 10.1016/j.bbrc.2003.12.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomerase is active in immature somatic cells, but not in differentiated cells. However, the mechanism by which telomerase is regulated in relation to cell differentiation is not well understood. In this study, the human erythroid leukemia cell line K562 was induced to differentiate into megakaryocytes by TPA and into erythroid by STI571. The human acute myeloblastic leukemia cell line HL60 was also induced to differentiate into monocytes by TPA. Telomerase activity, the expression of human telomerase reverse transcriptase, hTERT, and the cell cycle were examined. TPA induced a transient increase in telomerase activity during the megakaryocytic differentiation while the message of hTERT decreased gradually throughout the same period. This suggests the existence of a regulatory mechanism other than transcription of hTERT. Cell cycle analysis revealed that cells in G(2)/M phase increased in number in accordance with the changes in telomerase activity. Pretreatment with PKC inhibitors inhibited the megakaryocytic differentiation, transient increase in telomerase activity, and G(2)/M arrest. These results suggest that PKC acts as a transient post-translational activator of telomerase during megakaryocytic differentiation.
Collapse
Affiliation(s)
- M Nakatake
- Department of Biology, Faculty of Science, Ochanomizu University, Japan
| | | | | | | |
Collapse
|
167
|
Goueli BS, Janknecht R. Upregulation of the Catalytic Telomerase Subunit by the Transcription Factor ER81 and Oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 2004; 24:25-35. [PMID: 14673140 PMCID: PMC303367 DOI: 10.1128/mcb.24.1.25-35.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 09/28/2003] [Indexed: 01/10/2023] Open
Abstract
One hallmark of tumor formation is the transcriptional upregulation of human telomerase reverse transcriptase, hTERT, and the resultant induction of telomerase activity. However, little is presently understood about how hTERT is differentially activated in tumor cells versus normal somatic cells. Specifically, it is unclear if oncoproteins can directly elicit hTERT expression. To this end, we now show that three oncoproteins, HER2/Neu, Ras, and Raf, stimulate hTERT promoter activity via the ETS transcription factor ER81 and ERK mitogen-activated protein (MAP) kinases. Mutating ER81 binding sites in the hTERT promoter or suppression of ERK MAP kinase-dependent phosphorylation of ER81 rendered the hTERT promoter unresponsive to HER2/Neu. Further, expression of dominant-negative ER81 or inhibition of HER2/Neu significantly attenuated telomerase activity in HER2/Neu-overexpressing SKBR3 breast cancer cells. Moreover, HER2/Neu, Ras, and Raf collaborated with ER81 to enhance endogenous hTERT gene transcription and telomerase activity in hTERT-negative, nonimmortalized BJ foreskin fibroblasts. Accordingly, hTERT expression was increased in HER2/Neu-positive breast tumors and breast tumor cell lines relative to their HER2/Neu-negative counterparts. Collectively, our data elucidated a mechanism whereby three prominent oncoproteins, HER2/Neu, Ras, and Raf, may facilitate tumor formation by inducing hTERT expression in nonimmortalized cells via the transcription factor ER81.
Collapse
Affiliation(s)
- Basem S Goueli
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
168
|
Shin KH, Kang MK, Dicterow E, Park NH. Hypermethylation of the hTERT promoter inhibits the expression of telomerase activity in normal oral fibroblasts and senescent normal oral keratinocytes. Br J Cancer 2003; 89:1473-8. [PMID: 14562019 PMCID: PMC2394329 DOI: 10.1038/sj.bjc.6601291] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Telomerase activity in human cells closely correlates with the expression of its catalytic subunit, telomerase reverse transcriptase (hTERT). Previously, we reported the lack of telomerase activity in normal human oral fibroblasts (NHOF) and the diminution of telomerase activity during senescence in normal human oral keratinocytes (NHOK). To investigate the underlying mechanisms of telomerase regulation in both cell types, we analysed the expression, promoter activity, and methylation status of the hTERT gene. The expression of hTERT mRNA diminished in senescent NHOK, but was not detected in NHOF at any stage of replication. An exogenous hTERT promoter was active in NHOF and in senescing NHOK, indicating that the lack of hTERT gene expression resulted from alteration of the endogenous hTERT promoter. Since methylation is involved in the silencing of numerous genes, we carried out DNA methylation assays. The assay revealed that the hTERT promoter was hypermethylated in NHOF and was gradually methylated during senescence in NHOK. Treatment of NHOF and senescent NHOK with the demethylating agent 5-aza-2′-deoxycytidine restored the expression of endogenous hTERT mRNA. Our results suggest that hypermethylation of the hTERT promoter plays a critical role in the negative regulation of telomerase activity in normal human oral cells.
Collapse
Affiliation(s)
- K-H Shin
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - M K Kang
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - E Dicterow
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - N-H Park
- School of Dentistry, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- UCLA School of Dentistry, CHS 53-038, 10833 Le Conte Ave. Los Angeles, CA 90095-1668, USA. E-mail:
| |
Collapse
|
169
|
Guilleret I, Benhattar J. Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp Cell Res 2003; 289:326-34. [PMID: 14499633 DOI: 10.1016/s0014-4827(03)00281-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Telomerase is the ribonucleoproteic complex involved in maintaining telomere size. It is expressed in germ and stem cells but not in normal somatic cells. In most tumors, telomerase is reactivated. In humans, telomerase activity is tightly regulated by expression of the hTERT gene. In a previous study, we found a direct correlation between methylation of the hTERT promoter and hTERT gene expression. In order to demonstrate this correlation, demethylation experiments were performed with the demethylating agent 5aza-2'-deoxycytidine (5azadC). Three telomerase-positive tumor cell lines (Lan-1, HeLa, and Co115), presenting a hypermethylated hTERT promoter, were treated with different doses and types of treatment for a long period. Analysis of methylation revealed a final hTERT promoter demethylation up to 95%. Quantification of hTERT mRNA showed that transcription was strongly repressed during drug exposure. In contrast, expression of c-Myc, an activator of hTERT promoter, was barely down-regulated or increased by the treatment. Using a TRAP assay, telomerase activity was semiquantified in all experiments. It strongly decreased or was suppressed after two to four passages. Finally, telomere length was measured by Southern blot. Their averages were not modified, but ranges concentrated around the mean. Thus, it is likely that hTERT promoter hypermethylation would be necessary for its expression.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Cell Division/drug effects
- Cell Division/genetics
- Cellular Senescence/drug effects
- Cellular Senescence/genetics
- DNA Methylation/drug effects
- DNA-Binding Proteins
- Decitabine
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Neoplasms/enzymology
- Neoplasms/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-myc/drug effects
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Telomerase/drug effects
- Telomerase/genetics
- Telomerase/metabolism
- Telomere/drug effects
- Telomere/genetics
- Telomere/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Isabelle Guilleret
- Institut de Pathologie, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
170
|
Wong SCH, Ong LL, Er CPN, Gao S, Yu H, So JBY. Cloning of rat telomerase catalytic subunit functional domains, reconstitution of telomerase activity and enzymatic profile of pig and chicken tissues. Life Sci 2003; 73:2749-60. [PMID: 13679242 DOI: 10.1016/s0024-3205(03)00670-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomerase is a ribonucleoprotein polymerase which adds TTAGGG repeats to telomeric ends. Recent studies reported the reverse transcription enzyme activity mostly from the catalytic subunit (TERT) of the enzyme complex. Both human telomerase catalytic subunit (hTERT) and mouse telomerase catalytic subunit (mTERT) had been previously cloned but not rat telomerase catalytic subunit rTERT. In this study, the rTERT functional domains were cloned and was found that its function resemble to mouse and human telomerase. In addition, chicken and pig telomerase activity profile were studied and its enzyme activity is related to its proliferation capability of individual tissues. However, its catalytic subunit does not like mouse, rat and human cases that the telomerase activity could not reconstituted by the in-vitro transfection of mTERT and hTERT cloned vectors. Here we demonstrated that rTERT is similar to mTERT and hTERT but not pig and chicken telomerase. Further studies are needed to verify the malignancy characteristics because nowadays artificial organs/tissues from these animals are used for the transplantation to human body.
Collapse
Affiliation(s)
- Stephen C H Wong
- National University Medical Institutes, National University of Singapore, Block MD11, 10 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
171
|
Goueli BS, Janknecht R. Regulation of telomerase reverse transcriptase gene activity by upstream stimulatory factor. Oncogene 2003; 22:8042-7. [PMID: 12970752 DOI: 10.1038/sj.onc.1206847] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upregulation of human telomerase reverse transcriptase (hTERT) transcription accounts for the immortalization of greater than 85% of all human tumor cells. However, the mechanism whereby hTERT expression is activated remains unresolved. Specifically, recent data challenging the role of Myc/Max in E-box-dependent activation of hTERT expression suggests that other E-box-binding proteins regulate hTERT transcription. Indeed, we now demonstrate that two such proteins, upstream stimulatory factor (USF) 1 and 2, readily associate with two E-boxes in the hTERT promoter in vitro and in vivo primarily as heterodimers, whereas Myc/Max does not. The avid binding of USF1/2 heterodimers to these E-boxes occurs in both hTERT-positive and -negative cells. In contrast, USF1/2 activates the hTERT promoter exclusively in hTERT-positive cells in a manner that is enhanced by the coactivator p300 and attenuated upon inhibiting p38-MAP kinase, a known modulator of USF activity. Collectively, our data indicate that USF binding to the hTERT promoter may be transcriptionally neutral, or even repressive, in nonimmortalized hTERT-negative somatic cells, but stimulatory in hTERT-positive cells where USF1/2 contributes to the acquisition and maintenance of immortality.
Collapse
Affiliation(s)
- Basem S Goueli
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
172
|
Xu SF, Peng ZH, Li DP, Qiu GQ, Zhang F. Refinement of heterozygosity loss on chromosome 5p15 in sporadic colorectal cancer. World J Gastroenterol 2003; 9:1713-8. [PMID: 12918106 PMCID: PMC4611529 DOI: 10.3748/wjg.v9.i8.1713] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To refine the loss of heterozygosity on chromosome 5p15 and to identify the new tumor suppressor gene (s) in colorectal tumorigenesis.
METHODS: Sixteen polymorphic microsatellite markers were analyzed on chromosome 5 and another 6 markers were applied on chromosome 5p15 in 83 cases of colorectal and normal DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.1 and Genotype 2.1 software were used for LOH scanning and analysis.
RESULTS: We observed 2 distinct regions of frequent allelic deletions on Chromosome 5, at D5S416 on 5p15 and D5S428-D5S410 on 5q. Another 6 polymorphric microsatellite markers were applied to 5p15 and the minimal region of frequent loss of heterozygosity was established on 5p15 spanning the D5S416 locus.
CONCLUSION: Through our detailed deletion mapping studies, we have found a critical and precise location of 5p deletions, 5p15.2-5p15.3, which must contain one or more unknown tumor suppressor gene (s) of colorectal cancer.
Collapse
Affiliation(s)
- Shi-Feng Xu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
173
|
Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, Spits H, Luiten RM. Telomerase levels control the lifespan of human T lymphocytes. Blood 2003; 102:849-57. [PMID: 12689947 DOI: 10.1182/blood-2002-07-2015] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human CD8+ T lymphocytes can be achieved by ectopic expression of the human telomerase reverse transcriptase (hTERT) gene, which encodes for the catalytic component of the telomerase complex. To study the role of endogenous hTERT in the lifespan of human T cells, we blocked endogenous hTERT expression by ectopic expression of dominant-negative (DN) hTERT. Cells expressing DN-hTERT had a decreased lifespan and showed cytogenetic abnormalities, including chromosome ends without detectable telomeric DNA as well as chromosome fusions. These results indicate that while endogenous hTERT cannot prevent overall telomere shortening, it has a major influence on the longevity of human T cells. Furthermore, we show that up-regulation of hTERT in T cells upon activation decreases over time in culture. Long-term-cultured T cells also show a decreased expression of c-myc upon activation, resulting in less c-myc-induced transcription of hTERT. Moreover, memory T cells, which have expanded in vivo upon antigen encounter, expressed a lower level of hTERT upon activation than naive cells from the same donor. The observed inverse correlation between telomerase levels and replicative history suggests that telomerase levels in T cells are limiting and increasingly insufficient to sustain their proliferation.
Collapse
Affiliation(s)
- Alexander Roth
- Terry Fox Laboratory, British Columbia Cancer Agency and University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Huang HS, Chiou JF, Fong Y, Hou CC, Lu YC, Wang JY, Shih JW, Pan YR, Lin JJ. Activation of human telomerase reverse transcriptase expression by some new symmetrical bis-substituted derivatives of the anthraquinone. J Med Chem 2003; 46:3300-7. [PMID: 12852760 DOI: 10.1021/jm020492l] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a part of our program aimed at exploring the biological activity of symmetrical substitution of side chains into the anthracene-9,10-dione chromophore, we have synthesized a series of 1,5-bisthioanthraquinones 2 and 1,5-bisacyloxyanthraquinones 3 that are related to the antitumor agent mitoxantrone. Since the telomerase enzyme is a novel target for potential anticancer therapy and stem cell expansion, we explore the biological effects of these compounds by evaluating their effects on telomerase activity and telomerase expression. Telomerase is required for telomere maintenance and is active in most human cancers and in germinal cells but not in most of the normal human somatic tissues. We found that most of the 1,5-disubstituted anthraquinones did not exhibit inhibitory activity at the concentration ranging from 20 to 30 microM. To facilitate the analysis of the expression of telomerase, we used cancer and normal cell lines that carry secreted alkaline phosphatase (SEAP) gene under the control of human telomerase reverse transcriptase (hTERT). The effects of these compounds on the expression of telomerease were analyzed using the cell-based reporter systems. While most of these compounds did not appear to selectively repress the expression of hTERT in cancer cells, compounds 3a, 3d, and 3i activated hTERT expression in normal cells. The effects of these three compounds on hTERT expression appear to be specific because they did not increase the expression of a CMV promoter-driven SEAP. Thus, in addition to anticancer functions, our finding raises the possibility that these compounds might also have a role in cell immortalization. The application of these anthraquinone derivatives in stem cell research and tissue engineering is also discussed.
Collapse
Affiliation(s)
- Hsu-Shan Huang
- School of Pharmacy, National Defense Medical Center, 161 Section 6, Minchuan E. Road, Neihu, 114, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Lopatina NG, Poole JC, Saldanha SN, Hansen NJ, Key JS, Pita MA, Andrews LG, Tollefsbol TO. Control mechanisms in the regulation of telomerase reverse transcriptase expression in differentiating human teratocarcinoma cells. Biochem Biophys Res Commun 2003; 306:650-9. [PMID: 12810068 DOI: 10.1016/s0006-291x(03)01033-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Telomerase is active in about 90% of cancers and contributes to the immortality of cancer cells by maintaining the lengths of the ends of chromosomes. Undifferentiated embryonic human teratocarcinoma (HT) cells were found to express high levels of hTERT, the catalytic subunit of telomerase, and the hTERT promoter was unmethylated in these cells. Retinoic acid (RA)-induced differentiation led to hTERT gene silencing and increased methylation of the hTERT promoter. Treatment with trichostatin A, a histone deacetylase inhibitor, resulted in hTERT reactivation only in very early differentiating HT cells. After methylation patterns had been established within the hTERT promoter region in late differentiating cells, 5-azacytidine, a common demethylating agent, activated the hTERT gene but trichostatin A had no effect on hTERT transcription. These studies suggest that histone deacetylation is involved in early hTERT gene down-regulation and that DNA methylation may maintain silencing of the hTERT gene in these cells.
Collapse
Affiliation(s)
- Nadejda G Lopatina
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24:1167-76. [PMID: 12807729 DOI: 10.1093/carcin/bgg085] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several transcription factors, including oncogene products (e.g. c-Myc) and tumor suppressor gene products (e.g. WT1 and p53), are able to control hTERT transcription when over-expressed, although it remains to be determined whether a cancer-associated alteration of these factors is primarily responsible for the hTERT activation during carcinogenic processes. Microcell-mediated chromosome transfer experiments have provided evidence for endogenous factors that function to repress the telomerase activity in normal cells and are inactivated in cancer cells. At least one of those endogenous telomerase repressors, which is encoded by a putative tumor suppressor gene on chromosome 3p, acts through transcriptional repression of the hTERT gene. The hTERT gene is also a target site for viruses frequently associated with human cancers, such as human papillomavirus (HPV) and hepatitis B virus (HBV). HPV E6 protein contributes to keratinocyte immortalization and carcinogenesis through trans-activation of the hTERT gene transcription. In at least some hepatocellular carcinomas, the hTERT gene is a non-random integration site of HBV genome, which activates in cis the hTERT transcription. Thus, a variety of cellular and viral oncogenic mechanisms converge on transcriptional control of the hTERT gene. Regulation of chromatin structure through the modification of nucleosomal histones may mediate the action of these cellular and viral mechanisms. Further elucidation of the hTERT transcriptional regulation, including identification and characterization of the endogenous repressor proteins, should lead to better understanding of the complex regulation of human telomerase in normal and cancer cells and may open up new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Izumi Horikawa
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 5046, MSC-4264, Bethesda, MD 20892, USA.
| | | |
Collapse
|
177
|
Holzmann K, Berger W, Mejri D, Cerni C, Sasgary S. Detection and quantification of transcripts for the catalytic subunit TERT and the RNA component of telomerase in rat tissue. Anal Biochem 2003; 317:120-3. [PMID: 12729609 DOI: 10.1016/s0003-2697(03)00091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Klaus Holzmann
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.
| | | | | | | | | |
Collapse
|
178
|
Abstract
A number of different approaches have been developed to inhibit telomerase activity in human cancer cells. Different components and types of inhibitors targeting various regulatory levels have been regarded as useful for telomerase inhibition. Most methods, however, rely on successive telomere shortening. This process is very slow and causes a long time lag between the onset of inhibition and the occurrence of senescence or apoptosis as a reversal of the immortal phenotype. Many telomerase inhibitors seem to be most efficient when combined with conventional chemotherapeutics. There are some promising approaches that seem to circumvent the slow way of telomere shortening and induce fast apoptosis in treated tumor cells. It has been demonstrated that telomerase may be involved in triggering apoptosis, but the underlying molecular mechanism remains unclear.
Collapse
|
179
|
Zhang X, Chen Z, Chen Y, Tong T. Delivering antisense telomerase RNA by a hybrid adenovirus/ adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells. Oncogene 2003; 22:2405-16. [PMID: 12717417 DOI: 10.1038/sj.onc.1206317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activated telomerase is frequently detected in cancer cells and is able to maintain and stabilize the integrity of telomeres; it also contributes to unlimited divisions in cancer cells. Recently, a new generation of selective anticancer strategies is under development targeting the blockage of telomerase activity either at the protein level or telomerase RNA. Here, we report suppression of the malignant phenotype by the expression of the full-length antisense human telomerase RNA (hTR) delivered by a novel hybrid vector recombining adenovirus and adeno-associated virus (vAd-AAV). The hybrid vector vAd-AAV retained the unique traits from two parental viruses, such as high efficiency of gene transfer in mammalian cells and the ability to integrate into the genomic DNA of host cells. The stable expression of antisense hTR in MCF-7 cells significantly suppressed telomerase activity and progressively shortened telomere length for 30 population doublings (PD30). Expression of antisense hTR leads to a telomere-based growth arrest and the induction of spontaneous apoptosis. Antisense hTR decreased soft agar colony formation and reduced the cell proliferation, leading to exit from the cell cycle at G1 at PD15. The expression of antisense hTR also sensitized MCF-7 cells to apoptosis induced by sodium butyrate or serum starvation. Our study demonstrates that delivering antisense hTR by the hybrid Ad/AAV vector is an effective antineoplastic gene therapeutic strategy, which significantly suppresses the malignant phenotype and enhances apoptosis of human breast cancer cells.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, Peking University, Health Science Center, Beijing 100083, China
| | | | | | | |
Collapse
|
180
|
Sheng WY, Chien YL, Wang TCV. The dual role of protein kinase C in the regulation of telomerase activity in human lymphocytes. FEBS Lett 2003; 540:91-5. [PMID: 12681489 DOI: 10.1016/s0014-5793(03)00230-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein kinase C (PKC) has been implicated to play an essential function in the upregulation of telomerase activity in activated T cells, yet its role in the regulation of telomerase activity remains largely unknown. In this work, we present evidence that PKC activity is required both for the induction of hTERT expression and for the post-transcriptional control of telomerase enzyme activity in T lymphocytes. Of the several PKC isoforms present in lymphocytes, only the level of PKC-zeta was greatly increased during T cell activation, implicating that PKC-zeta may be required for the post-transcriptional control of telomerase enzyme activity in T lymphocytes.
Collapse
Affiliation(s)
- Wei-Yun Sheng
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| | | | | |
Collapse
|
181
|
Saldanha SN, Andrews LG, Tollefsbol TO. Analysis of telomerase activity and detection of its catalytic subunit, hTERT. Anal Biochem 2003; 315:1-21. [PMID: 12672407 DOI: 10.1016/s0003-2697(02)00663-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of the enzyme telomerase and its subunits has led to major advances in understanding the mechanisms of cellular proliferation, immortalization, aging, and neoplastic transformation. The expression of telomerase in more than 85% of tumors provides an excellent tool for the diagnosis, prognosis, and treatment of cancer. However, the techniques employed in its detection appear to play a significant role in the interpretation of the results. The telomeric repeat amplification protocol (TRAP assay) has been the standard assay in the detection of telomerase activity and many variations of this technique have been reported. Recent advances in the development of the TRAP assay and the incorporation of techniques that provide a quantitative and qualitative estimate of telomerase activity are assessed in this review. In addition to histological and cytological examination of tissues, distribution patterns of the catalytic subunit of telomerase, hTERT, are frequently used in the prognosis of tumors. The methods involved in the detection of hTERT as a biomarker of cellular transformation are also analyzed.
Collapse
Affiliation(s)
- Sabita N Saldanha
- Department of Biology, University of Alabama at Birmingham, 35294-1170, USA
| | | | | |
Collapse
|
182
|
Tchirkov A, Rolhion C, Kémény JL, Irthum B, Puget S, Khalil T, Chinot O, Kwiatkowski F, Périssel B, Vago P, Verrelle P. Clinical implications of quantitative real-time RT-PCR analysis of hTERT gene expression in human gliomas. Br J Cancer 2003; 88:516-20. [PMID: 12592364 PMCID: PMC2377176 DOI: 10.1038/sj.bjc.6600754] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of telomerase activity in a glioma may be a predictor of its malignant potential. Activation of telomerase is regulated at the transcriptional level of the human telomerase reverse transcriptase (hTERT). Here, we evaluated whether the amount of hTERT mRNA provides a molecular marker of glioma malignancy that would have clinical utility. We used a real-time RT-PCR to assess the number of hTERT transcripts in primary tumour samples derived from 70 glioma patients. Results were standardised by quantifying the number of ABL transcripts as internal control and expressed as hTERT/ABL ratio. The percentage of patients with detectable hTERT mRNA markedly increased with enhanced malignancy: low-grade gliomas expressed hTERT in one out of 14 cases (7.1%), anaplastic gliomas in four out of 13 cases (30.8%) and glioblastoma multiforme (GBM) tumours in 30 out of 43 cases (69.8%). The mean hTERT/ABL ratio was significantly higher in GBMs than in non-GBMs. Subdividing hTERT/ABL ratios as low (< pr = 25%) and high (>25%), we found that the overall survival among hTERT-positive GBMs was significantly worse in high hTERT expressors than in low hTERT expressors (P=0.0082). We conclude that the amount of hTERT mRNA may represent a diagnostic and prognostic indicator for GBM patients.
Collapse
Affiliation(s)
- A Tchirkov
- Département de Radiothérapie, Centre Jean Perrin, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Chen Z, Corey DR. Telomerase inhibitors: a new option for chemotherapy. Adv Cancer Res 2003. [DOI: 10.1016/s0065-230x(03)87294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
184
|
Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 2002; 101:335-41. [PMID: 12209957 DOI: 10.1002/ijc.10593] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic process involved in embryonic development, differentiation and aging. It is 1 of the mechanisms resulting in gene silencing in carcinogenesis, especially in tumor suppressor genes (e.g., p16, Rb). Telomerase, the DNA polymerase adding TTAGGG repeats to the chromosome end, is involved in the regulation of the replicative life span by maintaining telomere length. This enzyme is activated in germ and stem cells, repressed in normal somatic cells and reactivated in a large majority of tumor cells. The promoter region of the hTERT gene, encoding for the catalytic subunit of human telomerase, has been located in a CpG island and may therefore be regulated at least in part by DNA methylation. We analyzed the methylation status of 27 CpG sites within the hTERT promoter core region by methylation-sensitive single-strand conformation analysis (MS-SSCA) and direct sequencing using bisulfite-modified DNA in 56 human tumor cell lines, as well as tumor and normal tissues from different organs. A positive correlation was observed among hypermethylation of the hTERT promoter, hTERT mRNA expression and telomerase activity (p < 0.00001). Furthermore, this correlation was confirmed in normal tissues where hypermethylation of the hTERT promoter was found exclusively in hTERT-expressing telomerase-positive samples and was absent in telomerase-negative samples (p < 0.00002). Since tumor tissues contain also nonneoplastic stromal elements, we performed microdissection to allow confirmation that the hTERT promoter methylation truly occurred in tumor cells. Our results suggest that methylation may be involved in the regulation of hTERT gene expression. To our knowledge, this is the first gene in which methylation of its promoter sequence has been found to be positively correlated with gene expression.
Collapse
Affiliation(s)
- Isabelle Guilleret
- Institut de Pathologie and Institut de Médecine Légale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
185
|
Abstract
The telomere is a special functional complex at the end of linear eukaryotic chromosomes, consisting of tandem repeat DNA sequences and associated proteins. It is essential for maintaining the integrity and stability of linear eukaryotic genomes. Telomere length regulation and maintenance contribute to normal human cellular aging and human diseases. The synthesis of telomeres is mainly achieved by the cellular reverse transcriptase telomerase, an RNA-dependent DNA polymerase that adds telomeric DNA to telomeres. Expression of telomerase is usually required for cell immortalization and long-term tumor growth. In humans, telomerase activity is tightly regulated during development and oncogenesis. The modulation of telomerase activity may therefore have important implications in antiaging and anticancer therapy. This review describes the currently known components of the telomerase complex and attempts to provide an update on the molecular mechanisms of human telomerase regulation.
Collapse
Affiliation(s)
- Yu-Sheng Cong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA.
| | | | | |
Collapse
|
186
|
Lee D, Kim HZ, Jeong KW, Shim YS, Horikawa I, Barrett JC, Choe J. Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J Biol Chem 2002; 277:27748-56. [PMID: 12019268 DOI: 10.1074/jbc.m203706200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene is a critical step in transformation and differentiation. Human papillomavirus E2 protein inhibits cell growth in HPV-infected cells and triggers apoptosis in HeLa cells. Because E2 induces cell growth suppression and senescence, we hypothesize that the protein may modulate cellular gene expression related to these processes. In this report, we demonstrate that E2 inhibits the hTERT promoter. The mapping of the E2-responsive region of hTERT reveals that Sp1 is important for E2-mediated repression of this promoter in 293T cells. Site-directed mutagenesis data on the hTERT promoter show that E2 does not abolish E-Box-mediated transcription and represses promoter activity via the Sp1 binding site. Furthermore, chromatin immunoprecipitation assays indicate that E2 is actively recruited to the hTERT promoter region. Our findings provide novel insights into the biological function of human papillomavirus E2.
Collapse
Affiliation(s)
- Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
187
|
Horikawa I, Cable PL, Mazur SJ, Appella E, Afshari CA, Barrett JC. Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell 2002; 13:2585-97. [PMID: 12181331 PMCID: PMC117927 DOI: 10.1091/mbc.e01-11-0107] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 04/01/2002] [Accepted: 05/01/2002] [Indexed: 01/02/2023] Open
Abstract
Regulation of the hTERT gene encoding the telomerase catalytic subunit plays an important role in human cell senescence, immortalization, and carcinogenesis. By examining the activity of various deleted or mutated hTERT promoter fragments, we show that an E-box element downstream of the transcription initiation site is critical to differential hTERT transcription between the telomerase/hTERT-positive renal cell carcinoma cell line (RCC23) and its telomerase/hTERT-negative counterpart containing a transferred, normal chromosome 3 (RCC23+3). This E-box element mediated repression of hTERT transcription in RCC23+3 but not in RCC23. A copy number-dependent enhancement of the repression suggested active repression, rather than loss of activation, in RCC23+3. Endogenous expression levels of c-Myc or Mad1, which could activate or repress hTERT transcription when overexpressed, did not account for the differential hTERT transcription. Gel mobility shift assays identified the upstream stimulatory factors (USFs) as a major E-box-binding protein complex in both RCC23 and RCC23+3 and, importantly, detected an RCC23+3-specific, E-box-binding factor that was distinct from the USF and Myc/Mad families. The E-box-mediated repression was also active in normal human fibroblasts and epithelial cells and inactive in some, but not all, telomerase/hTERT-positive cancer cells. These findings provide evidence for an endogenous, repressive mechanism that actively functions in telomerase/hTERT-negative normal cells and becomes defective during carcinogenic processes, e.g., by an inactivation of the telomerase repressor gene on chromosome 3.
Collapse
Affiliation(s)
- Izumi Horikawa
- Laboratory of Biosystems and Cancer, Cancer and Aging Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
188
|
Heller-Uszynska K, Schnippenkoetter W, Kilian A. Cloning and characterization of rice (Oryza sativa L) telomerase reverse transcriptase, which reveals complex splicing patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:75-86. [PMID: 12100484 DOI: 10.1046/j.1365-313x.2001.01337.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant chromosomes terminate in telomeres as in other eukaryotes. Telomeres are vital to genome stability and their malfunctioning is lethal. One of the core components of the telomere complex is telomerase. The enzyme activity depends on RNA (TER) and reverse transcriptase (TERT) subunits. We describe here the isolation, sequencing and characterization of the telomerase reverse transcriptase catalytic subunit from the monocot plant Oryza sativa L. (OsTERT). A single copy of this gene is present in the rice genome. The protein predicted from the OsTERT sequence has all the signature motifs of the TERT family members. Our data indicate that rice telomerase activity is developmentally regulated and is high in in vitro tissue and cell culture. However, steady-state transcript levels of the TERT gene do not seem to correlate with enzyme activity. Northern and RT-PCR analyses of the OsTERT gene transcript profile show multiple differentially spliced transcripts in both telomerase-positive and telomerase-negative tissues. Based on quantitative analysis of these transcripts, we speculate that the overall balance between the quantities of particular alternatively spliced transcripts may determine whether the TERT protein(s) is active or not. The diversity of splicing variants detected suggests that, as recently discovered for mammalian TERT proteins, rice TERT protein variants may perform functions other than telomere maintenance.
Collapse
Affiliation(s)
- Katarzyna Heller-Uszynska
- CAMBIA: Center for the Application of Molecular Biology to International Agriculture, GPO Box 3200, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
189
|
Pendino F, Sahraoui T, Lanotte M, Ségal-Bendirdjian E. A novel mechanism of retinoic acid resistance in acute promyelocytic leukemia cells through a defective pathway in telomerase regulation. Leukemia 2002; 16:826-32. [PMID: 11986943 DOI: 10.1038/sj.leu.2402470] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human telomerase, a cellular reverse transcriptase specifically activated in most malignant tumors and usually inactive in normal somatic cells, plays an important role in immortalization and tumorigenesis. Early reports have indicated that terminal differentiation of various cells is associated with a rapid inhibition of telomerase activity, preceded by a down-regulation of telomerase reverse transcriptase (hTERT) mRNA. Recently, we have shown that telomerase can be repressed by all-trans retinoic acid (ATRA) independently of terminal maturation during long-term ATRA treatment of the maturation-resistant promyelocytic leukemia cell line (NB4-R1), leading to shortening of telomeres and cell death, events overcome by ectopic hTERT expression. Here, we report the isolation of a variant of NB4-R1 cells (NB4-R1(SFD)), which bypasses this death step, because of a re-activated telomerase, despite the continuous presence of ATRA. While unresponsive to a long-term maturation independent regulation of telomerase by ATRA, these cells retain a functional pathway of telomerase down-regulation associated with retinoid-induced maturation. These findings reinforce the notion that two distinct pathways of telomerase regulation by retinoids co-exist in APL cells. Noteworthy, we show that the slow developing mechanism, that causes death of maturation-resistant cells, is subjected to a new type of retinoid-resistance as yet not understood.
Collapse
Affiliation(s)
- F Pendino
- INSERM U496, Centre G Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | | | | |
Collapse
|
190
|
Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E. Natural and pharmacological regulation of telomerase. Nucleic Acids Res 2002; 30:839-65. [PMID: 11842096 PMCID: PMC100331 DOI: 10.1093/nar/30.4.839] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/29/2001] [Accepted: 11/29/2001] [Indexed: 01/14/2023] Open
Abstract
The extremities of eukaryotic chromosomes are called telomeres. They have a structure unlike the bulk of the chromosome, which allows the cell DNA repair machinery to distinguish them from 'broken' DNA ends. But these specialised structures present a problem when it comes to replicating the DNA. Indeed, telomeric DNA progressively erodes with each round of cell division in cells that do not express telomerase, a specialised reverse transcriptase necessary to fully duplicate the telomeric DNA. Telomerase is expressed in tumour cells but not in most somatic cells and thus telomeres and telomerase may be proposed as attractive targets for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
191
|
Leem SH, Londoño-Vallejo JA, Kim JH, Bui H, Tubacher E, Solomon G, Park JE, Horikawa I, Kouprina N, Barrett JC, Larionov V. The human telomerase gene: complete genomic sequence and analysis of tandem repeat polymorphisms in intronic regions. Oncogene 2002; 21:769-77. [PMID: 11850805 DOI: 10.1038/sj.onc.1205122] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2001] [Revised: 10/12/2001] [Accepted: 10/29/2001] [Indexed: 11/09/2022]
Abstract
In this work, the full-length hTERT gene was isolated and the sequence of the previously unknown region in intron 6 as well as that of upstream and downstream hTERT regions was determined. We have shown that intron 6 includes a variable number of tandem repeats (VNTR) of a 38 bp sequence, (hTERT-VNTR 6-1). Eight alleles of hTERT-VNTR 6-1 were identified among 103 unrelated individuals, ranging from 27 to 47 repeats. hTERT-VNTR 2-2 is another new 61 bp minisatellite repeat found in intron 2 of hTERT. At least four alleles of hTERT-VNTR 2-2 can be distinguished. Previous studies have described polymorphisms for minisatellites hTERT-VNTR 2-1, a 42 bp repeat in intron 2, and hTERT-VNTR 6-2, a 36 bp repeat in intron 6. These, together with another minisatellite found in intron 12, add up to five such structures within the hTERT gene. The segregation of hTERT minisatellites was analysed in families, revealing that the VNTRs are transmitted through meiosis following a Mendelian inheritance. Minisatellites in hTERT were also analysed in matching normal and cancer tissues from patients with tumors; in one patient with a kidney tumor, the two VNTRs in intron 6 had undergone concomitant rearrangements. This observation suggests that chromosomal rearrangements implicating these VNTRs may be associated with the activation of telomerase expression in cancer cells.
Collapse
Affiliation(s)
- Sun-Hee Leem
- Department of Biology, Dong-A University, Pusan 604-714, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
In the decade since the telomere hypothesis of cellular aging was proposed, the two essential genes for human telomerase were cloned and characterized, allowing experimental proof of the causal relationships between telomere loss and replicative senescence, and telomerase activation and immortalization. These relationships were established using a variety of cultured human cell types from both normal and tumor tissues, and were largely confirmed in the telomerase knockout mouse. Taken together, the data provide strong support for the potential utility of telomerase detection and inhibition for cancer, and telomerase activation for degenerative diseases. The specificity of the promoter for the telomerase catalytic gene and the antigenicity of the protein product, hTERT, provide additional strategies for killing telomerase-positive tumor cells. Unfortunately, the strong link between telomerase and cancer has led some to confuse telomerase activation with cancer, and others to overstate the cancer risk of telomerase activation therapies for degenerative diseases. This review clarifies the difference between telomerase, which does not cause growth deregulation, and oncogenes, which do. It also addresses the concept of telomerase repression as a tumor suppressor mechanism early in life, with detrimental tissue degeneration and tumor-promoting consequences late in life. This extended view of the telomere hypothesis helps explain how telomerase inhibition can be therapeutic in cancer patients, while controlled telomerase activation for degenerative diseases may actually reduce, rather than increase, the frequency of age-related tumorigenesis.
Collapse
|