151
|
Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover. Nat Ecol Evol 2018; 2:1626-1632. [DOI: 10.1038/s41559-018-0639-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/09/2018] [Indexed: 11/08/2022]
|
152
|
Cui W, Suo F, Cheng J, Han L, Hao W, Guo J, Zhou Z. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microb Biotechnol 2018; 11:930-942. [PMID: 29984489 PMCID: PMC6116739 DOI: 10.1111/1751-7915.13298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nattokinase (NK) is an important serine‐protease with direct fibrinolytic activity involving the prevention of cardiovascular disease as an antithrombotic agent. Dozens of studies have focused on the characterization of intrinsic novel promoters and signal peptides to the secretory production of recombinant proteins in Bacillus subtilis. However, intrinsic genetic elements have several drawbacks, which cannot mediate the production of NK to the desired level. In this study, the genetic elements, which were used to overproduce the recombinant secretory NK, were rationally modified in B. subtilis in a stepwise manner. The first step was to select a suitable signal peptide for the highly efficient secretion of NK. By comparison of the secretory levels mediated by two different signal peptides, which were encoded by the genes of a minor extracellular protease epr (SPepr) and cell‐wall associated protease wapA (SPwapA), respectively, SPwapA was verified as the superior secretory element. Second, P04, which was a synthetic promoter screened from an array of mutants based on the promoter cloned from the operon of a quorum‐sensing associated gene srfA (PsrfA), was paired to SPwapA. The secretory level of NK was obviously augmented by the combination of these two genetic elements. Third, the cis‐acting element CodY‐binding sequence positioned at the 5′UTR was deleted (yielding P08), and thus the secretory level was significantly elevated. The activity of NK, which was defined as fibrinolytic units (FU), reached to a level of 270 FU ml−1. Finally, the superior genetic element composed of P08 and SPwapA was utilized to overproduce NK in the host B. subtilis WB800, which was able to produce the secretory NK at 292 FU ml−1. The strategy established in this study can not only be used to overproduce NK in B. subtilis but also might be a promising pipeline to modify the genetic element for the synthetic secretory system.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jintao Cheng
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
153
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
154
|
Andreev DE, Arnold M, Kiniry SJ, Loughran G, Michel AM, Rachinskii D, Baranov PV. TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the integrated stress response. eLife 2018; 7:32563. [PMID: 29932418 PMCID: PMC6033536 DOI: 10.7554/elife.32563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Translation initiation is the rate-limiting step of protein synthesis that is downregulated during the Integrated Stress Response (ISR). Previously, we demonstrated that most human mRNAs that are resistant to this inhibition possess translated upstream open reading frames (uORFs), and that in some cases a single uORF is sufficient for the resistance. Here we developed a computational model of Initiation Complexes Interference with Elongating Ribosomes (ICIER) to gain insight into the mechanism. We explored the relationship between the flux of scanning ribosomes upstream and downstream of a single uORF depending on uORF features. Paradoxically, our analysis predicts that reducing ribosome flux upstream of certain uORFs increases initiation downstream. The model supports the derepression of downstream translation as a general mechanism of uORF-mediated stress resistance. It predicts that stress resistance can be achieved with long slowly decoded uORFs that do not favor translation reinitiation and that start with initiators of low leakiness.
Collapse
Affiliation(s)
- Dmitry E Andreev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Arnold
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, United States
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Dmitrii Rachinskii
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, United States
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
155
|
Pooggin MM, Ryabova LA. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Front Microbiol 2018; 9:644. [PMID: 29692761 PMCID: PMC5902531 DOI: 10.3389/fmicb.2018.00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms. Viral (pre-)genomic RNAs often contain long 5′-leader sequences with short upstream open reading frames (uORFs) and secondary structure elements, which control both translation initiation and replication. In plants, viral RNA and DNA are targeted by RNA interference (RNAi) generating small RNAs that silence viral gene expression, while viral proteins are recognized by innate immunity and autophagy that restrict viral infection. In this review we focus on plant pararetroviruses of the family Caulimoviridae and describe the mechanisms of uORF- and secondary structure-driven ribosome shunting, leaky scanning and reinitiation after translation of short and long uORFs. We discuss conservation of these mechanisms in different genera of Caulimoviridae, including host genome-integrated endogenous viral elements, as well as in other viral families, and highlight a multipurpose use of the highly-structured leader sequence of plant pararetroviruses in regulation of translation, splicing, packaging, and reverse transcription of pregenomic RNA (pgRNA), and in evasion of RNAi. Furthermore, we illustrate how targeting of several host factors by a pararetroviral effector protein can lead to transactivation of viral polycistronic translation and concomitant suppression of antiviral defenses. Thus, activation of the plant protein kinase target of rapamycin (TOR) by the Cauliflower mosaic virus transactivator/viroplasmin (TAV) promotes reinitiation of translation after long ORFs on viral pgRNA and blocks antiviral autophagy and innate immunity responses, while interaction of TAV with the plant RNAi machinery interferes with antiviral silencing.
Collapse
Affiliation(s)
- Mikhail M Pooggin
- INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
156
|
Shaham G, Tuller T. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation. DNA Res 2018; 25:195-205. [PMID: 29161365 PMCID: PMC6012489 DOI: 10.1093/dnares/dsx049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/04/2017] [Indexed: 11/17/2022] Open
Abstract
Translation initiation in prokaryotes is affected by the mRNA folding and interaction of the ribosome binding site with the ribosomal RNA. The elongation rate is affected, among other factors, by the local biophysical properties of the coding regions, the decoding rates of different codons, and the interactions among ribosomes. Currently, there is no comprehensive biophysical model of translation that enables the prediction of mRNA translation dynamics based only on the transcript sequence and while considering all of these fundamental aspects of translation. In this study, we provide, for the first time, a computational simulative biophysical model of both translation initiation and elongation with all aspects mentioned above. We demonstrate our model performance and advantages focusing on Escherichia coli genes. We further show that the model enables prediction of translation rate, protein levels, and ribosome densities. In addition, our model enables quantifying the effect of silent mutations on translation rate in different parts of the transcript, the relative effect of mutations on translation initiation and elongation, and the effect of mutations on ribosome traffic jams. Thus, unlike previous models, the proposed one provides comprehensive information, facilitating future research in disciplines such as molecular evolution, synthetic biology, and functional genomics. A toolkit to estimate translation dynamics of transcripts is available at: https://www.cs.tau.ac.il/∼tamirtul/transim.
Collapse
Affiliation(s)
- Gilad Shaham
- Department of Biomedical Engineering, The Engineering Faculty, Tel Aviv University, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Engineering Faculty, Tel Aviv University, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
157
|
Wang X, Xue Q, Mao X, Dong Y, Li C, Lin Z. Two I84 family protease inhibitors from Chinese razor clams Sinonovacula constricta expressed in response to environmental challenges. FISH & SHELLFISH IMMUNOLOGY 2018; 75:149-157. [PMID: 29427715 DOI: 10.1016/j.fsi.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Protease inhibitors play critical roles in numerous biological processes including host defense in all multicellular organisms. Eighty three evolutionary families of protease inhibitors are currently accommodated in the MEROPS database and the I84 family currently consists of 3 novel serine protease inhibitors from the eastern oyster Crassostrea virginica. In this study, we identified 2 new I84 family members from the Chinese razor clam Sinonovacula constricta, scSI-1 and scSI-2, using cDNA cloning and sequencing. The scSI-1 cDNA consisted of 494 bp with a 282 bp ORF encoding a 93-amino acid polypeptide that was predicted to have a 19-amino acid signal peptide and a 74-residue mature protein with a calculated molecular mass of 8248.5 Da. The scSI-2 cDNA was 490 bp long with a 273 bp ORF encoding a 90-amino acid polypeptide that was predicted to have an 18-amino acid signal peptide and a 72-residue nature protein with a calculated molecular mass of 7528.4 Da. ScSI-1 and scSI-2 shared high sequence similarity with the 3 known members of I84 family and both expressed primarily in the clam digestive glands. Protease inhibitory activity in the clam plasma also exhibited the signature kinetic characteristics of the I84 members from the oyster. In addition, levels of scSI-1 and scSI-2 gene expression in digestive glands and the protease inhibitory activity in plasma elevated significantly in clams challenged by bacterial injections and Vibrio harveyi was more effective than Staphylococcus epidermidis in inducing the gene expression and plasma protease inhibitory activity. Moreover, drastic changes of salinity and temperature also caused significant changes in the gene expression and plasma activity. These results indicated that scSI-1 and scSI-2 represented 2 new members of the I84 family and they likely play a role in clam host defense against infections and in reactions against physiochemical stressors.
Collapse
Affiliation(s)
- Xiarong Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Qinggang Xue
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| | - Xiaowei Mao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Chenhua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
158
|
Complex regulation of the TaMyc1 gene expression in wheat grain synthesizing anthocyanin pigments. Mol Biol Rep 2018; 45:327-334. [PMID: 29556921 DOI: 10.1007/s11033-018-4165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 03/11/2018] [Indexed: 01/08/2023]
Abstract
The wheat TaMyc1 gene encodes for transcriptional factor (TF) with bHLH domain. The gene is expressed in purple wheat grains and activates transcription of the anthocyanin biosynthesis structural genes. To reveal the features of TaMyc1 regulation in wheat pericarp transcription start sites (TSS) were identified by 5' RACE mean and translation efficiency was predicted by in silico methods. Three alternative transcript variants of TaMyc1 differing by 5' leader sequence only were identified in purple pericarp. The three transcripts are generated from distinct TATA boxes and thereby are differed by TSS. Two transcripts (TaMyc1a, -b) have identical initiation AUG codons that lead to the TaMYC1 regulatory protein with bHLH domain. However because of different stability of secondary structures predicted in 5' leader the two transcripts might be translated with different efficiency. The third transcript is assumed to be not effectively translated. qRT-PCR and colonies counting were applied to assess contribution each of the transcripts to total TaMyc1 gene transcription level. TaMyc1c has the lowest contribution (ca. 16%), whereas the others two transcripts contribute equally (ca. 42%) to total TaMyc1 expression level. The role of the tree mRNA isoforms transcribed in one tissue is discussed.
Collapse
|
159
|
Täger J, Kohl S, Birch DG, Wheaton DKH, Wissinger B, Reuter P. An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Exp Eye Res 2018; 171:48-53. [PMID: 29499183 DOI: 10.1016/j.exer.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/24/2022]
Abstract
The cyclic nucleotide-gated (CNG) channel - composed of CNGA3 and CNGB3 subunits - mediates the influx of cations in cone photoreceptors after light stimulation and thus is a key element in cone phototransduction. Mutations in CNGA3 and CNGB3 are associated with achromatopsia, a rare autosomal recessive retinal disorder. Here, we demonstrate that the presence of an early nonsense mutation in CNGA3 induces the usage of a downstream alternative translation initiation site giving rise to a short CNGA3 isoform. The expression of this short isoform was verified by Western blot analysis and DAB staining of HEK293 cells and cone photoreceptor-like 661W cells expressing CNGA3-GST fusion constructs. Functionality of the short isoform was confirmed by a cellular calcium influx assay. Furthermore, patients carrying an early nonsense mutation were analyzed for residual cone photoreceptor function in order to identify a potential role of the short isoform to modify the clinical outcome in achromatopsia patients. Yet the results suggest that the short isoform is not able to compensate for the loss of the long isoform leaving the biological role of this variant unclear.
Collapse
Affiliation(s)
- Joachim Täger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
160
|
Lanz ND, Blaszczyk AJ, McCarthy EL, Wang B, Wang RX, Jones BS, Booker SJ. Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli. Biochemistry 2018; 57:1475-1490. [PMID: 29298049 DOI: 10.1021/acs.biochem.7b01205] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The methylation of unactivated carbon and phosphorus centers is a burgeoning area of biological chemistry, especially given that such reactions constitute key steps in the biosynthesis of numerous enzyme cofactors, antibiotics, and other natural products of clinical value. These kinetically challenging reactions are catalyzed exclusively by enzymes in the radical S-adenosylmethionine (SAM) superfamily and have been grouped into four classes (A-D). Class B radical SAM (RS) methylases require a cobalamin cofactor in addition to the [4Fe-4S] cluster that is characteristic of RS enzymes. However, their poor solubility upon overexpression and their generally poor turnover has hampered detailed in vitro studies of these enzymes. It has been suggested that improper folding, possibly caused by insufficient cobalamin during their overproduction in Escherichia coli, leads to formation of inclusion bodies. Herein, we report our efforts to improve the overproduction of class B RS methylases in a soluble form by engineering a strain of E. coli to take in more cobalamin. We cloned five genes ( btuC, btuE, btuD, btuF, and btuB) that encode proteins that are responsible for cobalamin uptake and transport in E. coli and co-expressed these genes with those that encode TsrM, Fom3, PhpK, and ThnK, four class B RS methylases that suffer from poor solubility during overproduction. This strategy markedly enhances the uptake of cobalamin into the cytoplasm and improves the solubility of the target enzymes significantly.
Collapse
|
161
|
Cheng HL, Liu YF, Su CW, Su SC, Chen MK, Yang SF, Lin CW. Functional genetic variant in the Kozak sequence of WW domain-containing oxidoreductase (WWOX) gene is associated with oral cancer risk. Oncotarget 2018; 7:69384-69396. [PMID: 27655721 PMCID: PMC5342485 DOI: 10.18632/oncotarget.12082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/10/2016] [Indexed: 12/11/2022] Open
Abstract
In Taiwan, oral cancer is the fourth leading cancer in males and is associated with exposure to environmental carcinogens. WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, is associated with the development of various cancers. We hypothesized that genetic variants of WWOX influence the susceptibility to oral cancer. Five polymorphisms of WWOX gene from 761 male patients with oral cancer and 1199 male cancer-free individuals were genotyped. We observed that individuals carrying the polymorphic allele of WWOX rs11545028 are more susceptible to oral cancer. Furthermore, patients with advanced-stage oral cancer were associated with a higher frequency of WWOX rs11545028 polymorphisms with the variant genotype TT than did patients with the wild-type gene. An additional integrated in silico analysis confirmed that rs11545028 affects WWOX expression, which significantly correlates with tumor expression and subsequently with tumor development and aggressiveness. In conclusion, genetic variants of WWOX contribute to the occurrence of oral cancer, and the findings regarding these biomarkers provided a prediction model for risk assessment.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
162
|
The Regulation of Translation in Alphavirus-Infected Cells. Viruses 2018; 10:v10020070. [PMID: 29419763 PMCID: PMC5850377 DOI: 10.3390/v10020070] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Sindbis virus (SINV) contains an RNA genome of positive polarity with two open reading frames (ORFs). The first ORF is translated from the genomic RNA (gRNA), rendering the viral non-structural proteins, whereas the second ORF is translated from a subgenomic mRNA (sgRNA), which directs the synthesis of viral structural proteins. SINV infection strongly inhibits host cell translation through a variety of different mechanisms, including the phosphorylation of the eukaryotic initiation factor eIF2α and the redistribution of cellular proteins from the nucleus to the cytoplasm. A number of motifs have been identified in SINV sgRNA, including a hairpin downstream of the AUG initiation codon, which is involved in the translatability of the viral sgRNA when eIF2 is inactivated. Moreover, a 3′-UTR motif containing three stem-loop structures is involved in the enhancement of translation in insect cells, but not in mammalian cells. Accordingly, SINV sgRNA has evolved several structures to efficiently compete for the cellular translational machinery. Mechanistically, sgRNA translation involves scanning of the 5′-UTR following a non-canonical mode and without the requirement for several initiation factors. Indeed, sgRNA-directed polypeptide synthesis occurs even after eIF4G cleavage or inactivation of eIF4A by selective inhibitors. Remarkably, eIF2α phosphorylation does not hamper sgRNA translation during the late phase of SINV infection. SINV sgRNA thus constitutes a unique model of a capped viral mRNA that is efficiently translated in the absence of several canonical initiation factors. The present review will mainly focus in the non-canonical mechanism of translation of SINV sgRNA.
Collapse
|
163
|
Zeng SY, Liu HH, Shi TQ, Song P, Ren LJ, Huang H, Ji XJ. Recent Advances in Metabolic Engineering ofYarrowia lipolyticafor Lipid Overproduction. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Si-Yu Zeng
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Hu-Hu Liu
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
- School of Pharmaceutical Sciences; Nanjing Tech University; No.30 South Puzhu Road Nanjing 211816 P. R. of China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No.5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
| |
Collapse
|
164
|
Poddar S, Loh PS, Ooi ZH, Osman F, Eul J, Patzel V. RNA Structure Design Improves Activity and Specificity of trans-Splicing-Triggered Cell Death in a Suicide Gene Therapy Approach. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:41-56. [PMID: 29858076 PMCID: PMC5849863 DOI: 10.1016/j.omtn.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 01/20/2023]
Abstract
Spliceosome-mediated RNA trans-splicing enables correction or labeling of pre-mRNA, but therapeutic applications are hampered by issues related to the activity and target specificity of trans-splicing RNA (tsRNA). We employed computational RNA structure design to improve both on-target activity and specificity of tsRNA in a herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy approach targeting alpha fetoprotein (AFP), a marker of hepatocellular carcinoma (HCC) or human papillomavirus type 16 (HPV-16) pre-mRNA. While unstructured, mismatched target binding domains significantly improved 3′ exon replacement (3’ER), 5′ exon replacement (5’ER) correlated with the thermodynamic stability of the tsRNA 3′ end. Alternative on-target trans-splicing was found to be a prevalent event. The specificity of trans-splicing with the intended target splice site was improved 10-fold by designing tsRNA that harbors secondary target binding domains shielding alternative on-target and blinding off-target splicing events. Such rationally designed suicide RNAs efficiently triggered death of HPV-16-transduced or hepatoblastoma-derived human tissue culture cells without evidence for off-target cell killing. Highest cell death activities were observed with novel dual-targeting tsRNAs programmed for trans-splicing toward AFP and a second HCC pre-mRNA biomarker. Our observations suggest trans-splicing represents a promising approach to suicide gene therapy.
Collapse
Affiliation(s)
- Sushmita Poddar
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Pei She Loh
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Zi Hao Ooi
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Farhana Osman
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Joachim Eul
- INEIDFO GmbH, Weserstrasse 23, 12045 Berlin, Germany
| | - Volker Patzel
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore; Department of Medicine, Division of Infectious Diseases, University of Cambridge, Addenbrooke's Hospital, Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
165
|
Hirschberger K, Jarzebinska A, Kessel E, Kretzschmann V, Aneja MK, Dohmen C, Herrmann-Janson A, Wagner E, Plank C, Rudolph C. Exploring Cytotoxic mRNAs as a Novel Class of Anti-cancer Biotherapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:141-151. [PMID: 29687033 PMCID: PMC5908148 DOI: 10.1016/j.omtm.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
Abstract
New treatments to overcome the obstacles of conventional anti-cancer therapy are a permanent subject of investigation. One promising approach is the application of toxins linked to cell-specific ligands, so-called immunotoxins. Another attractive option is the employment of toxin-encoding plasmids. However, immunotoxins cause hepatoxicity, and DNA therapeutics, among other disadvantages, bear the risk of insertional mutagenesis. As an alternative, this study examined chemically modified mRNAs coding for diphtheria toxin, subtilase cytotoxin, and abrin-a for their ability to reduce cancer cell growth both in vitro and in vivo. The plant toxin abrin-a was the most promising candidate among the three tested toxins and was further investigated. Its expression was demonstrated by western blot. Experiments with firefly luciferase in reticulocyte lysates and co-transfection experiments with EGFP demonstrated the capability of abrin-a to inhibit protein synthesis. Its cytotoxic effect was quantified employing viability assays and propidium iodide staining. By studying caspase-3/7 activation, Annexin V-binding, and chromatin condensation with Hoechst33258 staining, apoptotic cell death could be confirmed. In mice, repeated intratumoral injections of complexed abrin-a mRNA resulted in a significant reduction (89%) of KB tumor size compared to a non-translatable control mRNA.
Collapse
Affiliation(s)
| | - Anita Jarzebinska
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | | | | | | | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Christian Plank
- Ethris GmbH, Planegg 82152, Germany
- Institute of Molecular Immunology-Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Carsten Rudolph
- Ethris GmbH, Planegg 82152, Germany
- Department of Pediatrics, Ludwig-Maximilians University, Munich 80337, Germany
- Corresponding author: Carsten Rudolph, Ethris GmbH, Planegg 82152, Germany.
| |
Collapse
|
166
|
The gene fmt, encoding tRNA fMet-formyl transferase, is essential for normal growth of M. bovis, but not for viability. Sci Rep 2017; 7:15161. [PMID: 29123253 PMCID: PMC5680289 DOI: 10.1038/s41598-017-15618-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022] Open
Abstract
Mycobacterium tuberculosis is a major health threat, necessitating novel drug targets. Protein synthesis in bacteria uses initiator tRNAi charged with formylated methionine residue. Deletion of the formylase gene, tRNAfMet-formyl transferase (fmt), causes severe growth-retardation in E. coli and in S. pneumoniae, but not in P. aeruginosa or S. aureus. fmt was predicted to be essential in M. tuberculosis by transposon library analysis, but this was never formally tested in any mycobacteria. We performed a targeted deletion of fmt in M. smegmatis as well as Mtb-complex (M. bovis). In both cases, we created a mero-diploid strain, deleted the native gene by two-step allelic exchange or specialized-phage transduction, and then removed the complementing gene to create full deletion mutants. In M. smegmatis a full deletion strain could be easily created. In contrast, in M. bovis-BCG, a full deletion strain could only be created after incubation of 6 weeks, with a generation time ~2 times longer than for wt bacteria. Our results confirm the importance of this gene in pathogenic mycobacteria, but as the deletion mutant is viable, validity of fmt as a drug target remains unclear. Our results also refute the previous reports that fmt is essential in M. tuberculosis-complex.
Collapse
|
167
|
Roy SW. Genomic and Transcriptomic Analysis Reveals Spliced Leader Trans-Splicing in Cryptomonads. Genome Biol Evol 2017; 9:468-473. [PMID: 28391323 PMCID: PMC5619915 DOI: 10.1093/gbe/evx012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
Spliced leader trans-splicing (SLTS) is a poorly understood mechanism that is found in a diversity of eukaryotic lineages. In SLTS, a short RNA sequence is added near the 5′ ends of the transcripts of protein-coding genes by a modified spliceosomal reaction. Available data suggest that SLTS has evolved many times, and might be more likely to evolve in animals. That SLTS might be more likely to evolve in the context of the generally complex transcriptomes characteristic of animals suggests the possibility that SLTS functions in gene regulation or transcriptome diversification, however no general novel function for SLTS is known. Here, I report SLTS in a lineage of cellularly complex unicellular eukaryotes. Cryptomonads are a group of eukaryotic algae that acquired photosynthetic capacity by secondary endosymbiosis of a red alga, and that retain a reduced copy of the nucleus of the engulfed alga. I estimate that at least one-fifth of genes in the model cryptomonad Guillardia theta and its relative Hanusia phi undergo SLTS. I show that hundreds of genes in G. theta generate alternative transcripts by SLTS at alternative sites, however I find little evidence for alternative protein production by alternative SLTS splicing. Interestingly, I find no evidence for substantial operon structure in the G. theta genome, in contrast to previous findings in other lineages with SLTS. These results extend SLTS to another major group of eukaryotes, and heighten the mystery of the evolution of SLTS and its association with cellular and transcriptomic complexity.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, CA
| |
Collapse
|
168
|
Gao F, Simon AE. Differential use of 3'CITEs by the subgenomic RNA of Pea enation mosaic virus 2. Virology 2017; 510:194-204. [PMID: 28750323 PMCID: PMC5891822 DOI: 10.1016/j.virol.2017.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022]
Abstract
The genomic RNA (gRNA) of Pea enation mosaic virus 2 (PEMV2) is the template for p33 and -1 frameshift product p94. The PEMV2 subgenomic RNA (sgRNA) encodes two overlapping ORFs, p26 and p27, which are required for movement and stability of the gRNA. Efficient translation of p33 requires two of three 3' proximal cap-independent translation enhancers (3'CITEs): the kl-TSS, which binds ribosomes and engages in a long-distance interaction with the 5'end; and the adjacent eIF4E-binding PTE. Unlike the gRNA, all three 3'CITEs were required for efficient translation of the sgRNA, which included the ribosome-binding 3'TSS. A hairpin in the 5' proximal coding region of p26/p27 supported translation by the 3'CITEs by engaging in a long-distance RNA:RNA interaction with the kl-TSS. These results strongly suggest that the 5' ends of PEMV2 gRNA and sgRNA connect with the 3'UTR through similar long-distance interactions while having different requirements for 3'CITEs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
169
|
Vogel P, Hanswillemenke A, Stafforst T. Switching Protein Localization by Site-Directed RNA Editing under Control of Light. ACS Synth Biol 2017; 6:1642-1649. [PMID: 28562030 PMCID: PMC5600885 DOI: 10.1021/acssynbio.7b00113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site directed RNA editing is an engineered tool for the posttranscriptional manipulation of RNA and proteins. Here, we demonstrate the inclusion of additional N- and C-terminal protein domains in an RNA editing-dependent manner to switch between protein isoforms in mammalian cell culture. By inclusion of localization signals, a switch of the subcellular protein localization was achieved. This included the shift from the cytoplasm to the outer-membrane, which typically is inaccessible at the protein-level. Furthermore, the strategy allows to implement photocaging to achieve spatiotemporal control of isoform switching. The strategy does not require substantial genetic engineering, and might well complement current optogenetic and optochemical approaches.
Collapse
Affiliation(s)
- Paul Vogel
- University of Tübingen, Interfaculty Institute of Biochemistry, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred Hanswillemenke
- University of Tübingen, Interfaculty Institute of Biochemistry, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Thorsten Stafforst
- University of Tübingen, Interfaculty Institute of Biochemistry, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
170
|
Rizza S, Filomeni G. Chronicles of a reductase: Biochemistry, genetics and physio-pathological role of GSNOR. Free Radic Biol Med 2017; 110:19-30. [PMID: 28533171 DOI: 10.1016/j.freeradbiomed.2017.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
S-nitrosylation is a major redox posttranslational modification involved in cell signaling. The steady state concentration of S-nitrosylated proteins depends on the balance between the relative ability to generate nitric oxide (NO) via NO synthase and to reduce nitrosothiols by denitrosylases. Numerous works have been published in last decades regarding the role of NO and S-nitrosylation in the regulation of protein structure and function, and in driving cellular activities in vertebrates. Notwithstanding an increasing number of observations indicates that impairment of denitrosylation equally affects cellular homeostasis, there is still no report providing comprehensive knowledge on the impact that denitrosylation has on maintaining correct physiological processes and organ activities. Among denitrosylases, S-nitrosoglutathione reductase (GSNOR) represents the prototype enzyme to disclose how denitrosylation plays a crucial role in tuning NO-bioactivity and how much it deeply impacts on cell homeostasis and human patho-physiology. In this review we attempt to illustrate the history of GSNOR discovery and provide the evidence so far reported in support of GSNOR implications in development and human disease.
Collapse
Affiliation(s)
- Salvatore Rizza
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
171
|
Giess A, Jonckheere V, Ndah E, Chyżyńska K, Van Damme P, Valen E. Ribosome signatures aid bacterial translation initiation site identification. BMC Biol 2017; 15:76. [PMID: 28854918 PMCID: PMC5576327 DOI: 10.1186/s12915-017-0416-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While methods for annotation of genes are increasingly reliable, the exact identification of translation initiation sites remains a challenging problem. Since the N-termini of proteins often contain regulatory and targeting information, developing a robust method for start site identification is crucial. Ribosome profiling reads show distinct patterns of read length distributions around translation initiation sites. These patterns are typically lost in standard ribosome profiling analysis pipelines, when reads from footprints are adjusted to determine the specific codon being translated. RESULTS Utilising these signatures in combination with nucleotide sequence information, we build a model capable of predicting translation initiation sites and demonstrate its high accuracy using N-terminal proteomics. Applying this to prokaryotic translatomes, we re-annotate translation initiation sites and provide evidence of N-terminal truncations and extensions of previously annotated coding sequences. These re-annotations are supported by the presence of structural and sequence-based features next to N-terminal peptide evidence. Finally, our model identifies 61 novel genes previously undiscovered in the Salmonella enterica genome. CONCLUSIONS Signatures within ribosome profiling read length distributions can be used in combination with nucleotide sequence information to provide accurate genome-wide identification of translation initiation sites.
Collapse
Affiliation(s)
- Adam Giess
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, 5020, Norway
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium
| | - Elvis Ndah
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium.,Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Katarzyna Chyżyńska
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, 5020, Norway
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium. .,Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium.
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, 5020, Norway. .,Sars International Centre for Marine Molecular Biology, University of Bergen, 5008, Bergen, Norway.
| |
Collapse
|
172
|
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 2017; 45:3615-3626. [PMID: 28334756 PMCID: PMC5397182 DOI: 10.1093/nar/gkx070] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems.
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jeff Glasgow
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Paul R Jaschke
- Department of Bioengineering, Stanford, CA 94305, USA.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lukmaan A Bawazer
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Matthew S Munson
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Drew Endy
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| |
Collapse
|
173
|
Kondratov O, Marsic D, Crosson SM, Mendez-Gomez HR, Moskalenko O, Mietzsch M, Heilbronn R, Allison JR, Green KB, Agbandje-McKenna M, Zolotukhin S. Direct Head-to-Head Evaluation of Recombinant Adeno-associated Viral Vectors Manufactured in Human versus Insect Cells. Mol Ther 2017; 25:2661-2675. [PMID: 28890324 DOI: 10.1016/j.ymthe.2017.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022] Open
Abstract
The major drawback of the Baculovirus/Sf9 system for recombinant adeno-associated viral (rAAV) manufacturing is that most of the Bac-derived rAAV vector serotypes, with few exceptions, demonstrate altered capsid compositions and lower biological potencies. Here, we describe a new insect cell-based production platform utilizing attenuated Kozak sequence and a leaky ribosome scanning to achieve a serotype-specific modulation of AAV capsid proteins stoichiometry. By way of example, rAAV5 and rAAV9 were produced and comprehensively characterized side by side with HEK293-derived vectors. A mass spectrometry analysis documented a 3-fold increase in both viral protein (VP)1 and VP2 capsid protein content compared with human cell-derived vectors. Furthermore, we conducted an extensive analysis of encapsidated single-stranded viral DNA using next-generation sequencing and show a 6-fold reduction in collaterally packaged contaminating DNA for rAAV5 produced in insect cells. Consequently, the re-designed rAAVs demonstrated significantly higher biological potencies, even in a comparison with HEK293-manufactured rAAVs mediating, in the case of rAAV5, 4-fold higher transduction of brain tissues in mice. Thus, the described system yields rAAV vectors of superior infectivity and higher genetic identity providing a scalable platform for good manufacturing practice (GMP)-grade vector production.
Collapse
Affiliation(s)
- Oleksandr Kondratov
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Damien Marsic
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Hector R Mendez-Gomez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Oleksandr Moskalenko
- UFIT Research Computing, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA; Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany
| | | | - Kari B Green
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
174
|
Wang D, Chen J, Zhang H, Zhang F, Yang L, Mou Y. Role of Different CD40 Polymorphisms in Graves' Disease and Hashimoto's Thyroiditis. Immunol Invest 2017; 46:544-551. [PMID: 28742400 DOI: 10.1080/08820139.2017.1319382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genome-wide association studies have led to the discovery of several susceptibility genes related to autoimmune thyroid diseases (AITDs). However, controversial results have been reported regarding the role of single-nucleotide polymorphism (SNP) of CD40 in the disease susceptibility. The objective of this study was to identify the relationship of the polymorphisms of three sites of CD40 with the susceptibility to AITD in the Chinese population. We genotyped three polymorphisms of CD40: C/T -1 SNP, 58038T site of the third exon and C64610G site of the ninth exon in 196 GD cases, 121 HT cases and 122 control subjects. The three putative polymorphism sites were amplified by PCR for sequencing and analysis. The genotype frequencies of CD40 -1 C/C genotype and C allele were significantly higher in the GD group than those in normal control. For the C64610G polymorphism, the C/G genotype was significantly more frequent in HT group than in control group, and the G allele frequencies in the GD and HT group were both higher than those in control group. These results indicated that there exist different susceptibility loci for AITD within CD40, each contributing a different effect in the onset and development of AITDs.
Collapse
Affiliation(s)
- Dongguo Wang
- a Department of Clinical Lab Medicine , Taizhou Municipal Hospital, Taizhou University , Taizhou , Zhejiang , China
| | - Jiayu Chen
- b Department of Laboratory Medicine , School of Medicine, Taizhou University , Taizhou , Zhejiang , China
| | - Huanyuan Zhang
- c Department of Pathology , Taizhou Municipal Hospital, Taizhou University , Taizhou , Zhejiang , China
| | - Fangfang Zhang
- c Department of Pathology , Taizhou Municipal Hospital, Taizhou University , Taizhou , Zhejiang , China
| | - Linjun Yang
- d Department of Thyroid-Breast Surgery , Taizhou Municipal Hospital, Taizhou University , Taizhou , Zhejiang , China
| | - Yonghua Mou
- e Department of Hepatobiliary Surgery , Taizhou Municipal Hospital, Taizhou University , Taizhou , Zhejiang , China
| |
Collapse
|
175
|
Rangel-Chavez C, Galan-Vasquez E, Martinez-Antonio A. Consensus architecture of promoters and transcription units in Escherichia coli: design principles for synthetic biology. MOLECULAR BIOSYSTEMS 2017; 13:665-676. [PMID: 28256660 DOI: 10.1039/c6mb00789a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genetic information in genomes is ordered, arranged in such a way that it constitutes a code, the so-called cis regulatory code. The regulatory machinery of the cell, termed trans-factors, decodes and expresses this information. In this way, genomes maintain a potential repertoire of genetic programs, parts of which are executed depending on the presence of active regulators in each condition. These genetic programs, executed by the regulatory machinery, have functional units in the genome delimited by punctuation-like marks. In genetic terms, these informational phrases correspond to transcription units, which are the minimal genetic information expressed consistently from initiation to termination marks. Between the start and final punctuation marks, additional marks are present that are read by the transcriptional and translational machineries. In this work, we look at all the experimentally described and predicted genetic elements in the bacterium Escherichia coli K-12 MG1655 and define a comprehensive architectural organization of transcription units to reveal the natural genome-design and to guide the construction of synthetic genetic programs.
Collapse
Affiliation(s)
- Cynthia Rangel-Chavez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Campus Irapuato, Km. 9.6 Libramiento Norte Carr, Irapuato-León 36821, Irapuato Gto, Mexico.
| | - Edgardo Galan-Vasquez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Campus Irapuato, Km. 9.6 Libramiento Norte Carr, Irapuato-León 36821, Irapuato Gto, Mexico.
| | - Agustino Martinez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Campus Irapuato, Km. 9.6 Libramiento Norte Carr, Irapuato-León 36821, Irapuato Gto, Mexico.
| |
Collapse
|
176
|
Schneider C, Bronstein L, Diemer J, Koeppl H, Suess B. ROC'n'Ribo: Characterizing a Riboswitching Expression System by Modeling Single-Cell Data. ACS Synth Biol 2017; 6:1211-1224. [PMID: 28591515 DOI: 10.1021/acssynbio.6b00322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA-engineered systems offer simple and versatile control over gene expression in many organisms. In particular, the design and implementation of riboswitches presents a unique opportunity to manipulate any reporter device in cis, executing tight temporal and spatial control at low metabolic costs. Assembled to higher order genetic circuits, such riboswitch-regulated devices may efficiently process logical operations. Here, we propose a hierarchical stochastic modeling approach to characterize an in silico repressor gate based on neomycin- and tetracycline-sensitive riboswitches. The model was calibrated on rich, transient in vivo single-cell data to account for cell-to-cell variability. To capture the effect of this variability on gate performance we employed the well-known ROC-analysis and derived a novel performance indicator for logic gates. Introduction of such a performance measure is necessary, since we aimed to assess the correct functionality of the gate at the single-cell level-a prerequisite for its further adaption to a genetic circuitry. Our results may be applied to other genetic devices to analyze their efficiency and ensure their correct performance in the light of cell-to-cell variability.
Collapse
Affiliation(s)
- Christopher Schneider
- Department
of Biology, Synthetic Genetic Circuits, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Leo Bronstein
- Department
of Electrical Engineering and Information Technology, Bioinspired
Communications, TU Darmstadt, Rundeturmstrasse 12, 64283 Darmstadt, Germany
| | - Jascha Diemer
- Department
of Electrical Engineering and Information Technology, Bioinspired
Communications, TU Darmstadt, Rundeturmstrasse 12, 64283 Darmstadt, Germany
| | - Heinz Koeppl
- Department
of Electrical Engineering and Information Technology, Bioinspired
Communications, TU Darmstadt, Rundeturmstrasse 12, 64283 Darmstadt, Germany
| | - Beatrix Suess
- Department
of Biology, Synthetic Genetic Circuits, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
177
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
178
|
Reséndiz-Cardiel G, Arroyo R, Ortega-López J. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris. Protein Expr Purif 2017; 134:104-113. [DOI: 10.1016/j.pep.2017.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 01/11/2023]
|
179
|
Liu TY, Huang HH, Wheeler D, Xu Y, Wells JA, Song YS, Wiita AP. Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 2017; 4:636-644.e9. [PMID: 28578850 DOI: 10.1016/j.cels.2017.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/17/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Ribosome profiling is a widespread tool for studying translational dynamics in human cells. Its central assumption is that ribosome footprint density on a transcript quantitatively reflects protein synthesis. Here, we test this assumption using pulsed-SILAC (pSILAC) high-accuracy targeted proteomics. We focus on multiple myeloma cells exposed to bortezomib, a first-line chemotherapy and proteasome inhibitor. In the absence of drug effects, we found that direct measurement of protein synthesis by pSILAC correlated well with indirect measurement of synthesis from ribosome footprint density. This correlation, however, broke down under bortezomib-induced stress. By developing a statistical model integrating longitudinal proteomic and mRNA-sequencing measurements, we found that proteomics could directly detect global alterations in translational rate caused by bortezomib; these changes are not detectable by ribosomal profiling alone. Further, by incorporating pSILAC data into a gene expression model, we predict cell-stress specific proteome remodeling events. These results demonstrate that pSILAC provides an important complement to ribosome profiling in measuring proteome dynamics.
Collapse
Affiliation(s)
- Tzu-Yu Liu
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA; Departments of Mathematics and Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hector H Huang
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Diamond Wheeler
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yichen Xu
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA; Departments of Mathematics and Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA.
| |
Collapse
|
180
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
181
|
Mynampati BK, Muthukumarappa T, Ghosh S, Ram J. A silent mutation in human alpha-A crystallin gene in patients with age-related nuclear or cortical cataract. Bosn J Basic Med Sci 2017; 17:114-119. [PMID: 28146420 DOI: 10.17305/bjbms.2017.1745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022] Open
Abstract
A cataract is a complex multifactorial disease that results from alterations in the cellular architecture, i.e. lens proteins. Genes associated with the development of lens include crystallin genes. Although crystallins are highly conserved proteins among vertebrates, a significant number of polymorphisms exist in human population. In this study, we screened for polymorphisms in crystallin alpha A (CRYAA) and alpha B (CRYAB) genes in 200 patients over 40 years of age, diagnosed with age-related cataract (ARC; nuclear and cortical cataracts). Genomic DNA was extracted from the peripheral blood. The coding regions of the CRYAA and CRYAB gene were amplified using polymerase chain reaction and subjected to restriction digestion. Restriction fragment length polymorphism (RFLP) was performed using known restriction enzymes for CRYAA and CRYAB genes. Denaturing high performance liquid chromatography and direct sequencing were performed to detect sequence variation in CRYAA gene. In silico analysis of secondary CRYAA mRNA structure was performed using CLC RNA Workbench. RFLP analysis did not show any changes in the restriction sites of CRYAA and CRYAB genes. In 6 patients (4 patients with nuclear cataract and 2 with cortical cataract), sequence analysis of the exon 1 in the CRYAA gene showed a silent single nucleotide polymorphism [D2D] (CRYAA: C to T transition). One of the patients with nuclear cataract was homozygous for this allele. The in silico analysis revealed that D2D mutation results in a compact CRYAA mRNA secondary structure, while the wild type CRYAA mRNA has a weak or loose secondary structure. D2D mutation in the CRYAA gene may be an additional risk factor for progression of ARC.
Collapse
Affiliation(s)
- Bharani K Mynampati
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India; Department of Ophthalmology, University of Florida, Jacksonville, Florida.
| | | | | | | |
Collapse
|
182
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
183
|
Liang H, Chen X, Yin Q, Ruan D, Zhao X, Zhang C, McNutt MA, Yin Y. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun 2017; 8:14771. [PMID: 28332494 PMCID: PMC5376652 DOI: 10.1038/ncomms14771] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
PTEN is a critical tumour suppressor that is frequently mutated in human cancer. We have previously identified a CUG initiated PTEN isoform designated PTENα, which functions in mitochondrial bioenergetics. Here we report the identification of another N-terminal extended PTEN isoform, designated PTENβ. PTENβ translation is initiated from an AUU codon upstream of and in-frame with the AUG initiation sequence for canonical PTEN. We show that the Kozak context and a downstream hairpin structure are critical for this alternative initiation. PTENβ localizes predominantly in the nucleolus, and physically associates with and dephosphorylates nucleolin, which is a multifunctional nucleolar phosphoprotein. Disruption of PTENβ alters rDNA transcription and promotes ribosomal biogenesis, and this effect can be reversed by re-introduction of PTENβ. Our data show that PTENβ regulates pre-rRNA synthesis and cellular proliferation. These results demonstrate the complexity of the PTEN protein family and the diversity of its functions.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cong Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Michael A. McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
184
|
Castelain S, Descamps V, Brochot E, Helle F, Duverlie G, Nguyen-Khac E, François C. High association of T1858-G1896 precore mutations with impaired base pairing and high hepatitis B virus DNA levels in HBeAg-negative chronically infected patients. Arch Virol 2017; 162:1913-1920. [PMID: 28289975 DOI: 10.1007/s00705-017-3312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
The progression of liver disease in hepatitis B virus (HBV) infection is fostered by active virus replication. Mutations in the basal core promoter (BCP) and precore (PC) regions of the HBV genome are known to have an impact on viral replication. The aim of the present study was to assess the correlation of mutation profiles in the BCP and PC regions with the viral load in HBeAg-negative chronically infected patients. The HBV genotype, BCP/PC mutations, serum HBV DNA levels, and associated serological markers were analyzed in 92 HBeAg-negative chronically infected patients. Sequence analysis of the BCP and PC regions revealed variability of 19% and 24.1%, respectively. This variability was primarily associated with five critical positions (1753, 1762, 1764, 1896 and 1899). An elevated HBV viral load (>20,000 IU/ml) was classically correlated with F2-F4 liver fibrosis, elevated serum alanine aminotransferase levels, 1762/1764 and 1753 combination mutations, and surprisingly, with an 1858T-1896G double mutation that impairs base pairing at the base of the bulge in the ε encapsidation signal. An analysis of covariance confirmed the independent nature of the relationship between the 1858T-1896G double mutation and the HBV viral load. In conclusion, independently of conventional parameters, this study demonstrates that a high serum HBV DNA level was also associated with PC 1858-1896 mutations. These BCP/PC mutations may have important clinical implications as predictive factors for HBV DNA increase.
Collapse
Affiliation(s)
- Sandrine Castelain
- Virology Department, Centre de Biologie Humaine, Centre Hospitalo-Universitaire Amiens Picardie, 80054, Amiens Cedex, France. .,EA4294, Université de Picardie Jules Verne, Amiens, France.
| | - Véronique Descamps
- Virology Department, Centre de Biologie Humaine, Centre Hospitalo-Universitaire Amiens Picardie, 80054, Amiens Cedex, France.,EA4294, Université de Picardie Jules Verne, Amiens, France
| | - Etienne Brochot
- Virology Department, Centre de Biologie Humaine, Centre Hospitalo-Universitaire Amiens Picardie, 80054, Amiens Cedex, France.,EA4294, Université de Picardie Jules Verne, Amiens, France
| | - François Helle
- EA4294, Université de Picardie Jules Verne, Amiens, France
| | - Gilles Duverlie
- Virology Department, Centre de Biologie Humaine, Centre Hospitalo-Universitaire Amiens Picardie, 80054, Amiens Cedex, France.,EA4294, Université de Picardie Jules Verne, Amiens, France
| | - Eric Nguyen-Khac
- Hepatology Department, Centre Hospitalo-Universitaire Amiens Picardie, Amiens, France
| | - Catherine François
- Virology Department, Centre de Biologie Humaine, Centre Hospitalo-Universitaire Amiens Picardie, 80054, Amiens Cedex, France.,EA4294, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
185
|
Xue Q, Beguel JP, Gauthier J, La Peyre J. Identification of cvSI-3 and evidence for the wide distribution and active evolution of the I84 family of protease inhibitors in mollusks. FISH & SHELLFISH IMMUNOLOGY 2017; 62:332-340. [PMID: 28159692 DOI: 10.1016/j.fsi.2017.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Protease inhibitors are an extremely diverse group of proteins that control the proteolytic activities of proteases and play a crucial role in biological processes including host defenses. The I84 family of protease inhibitors in the MEROPS database currently consists of cvSI-1 and cvSI-2, two novel serine protease inhibitors purified and characterized from the eastern oyster Crassostrea virginica plasma and believed to play a role in host defense and disease resistance. In the present study, a third member of I84 family, named cvSI-3, was identified from C. virginica by cDNA cloning and sequencing. The full cvSI-3 cDNA was composed of 342 bp including a 255 bp open reading frame (ORF) that encodes an 84-amino acid peptide. The mature cvSI-3 molecule was predicted to have 68 amino acid residues after removal of a 16-amino acid signal peptide, with a calculated molecular mass of 7724.5 Da and a theoretical isoelectric point (pI) of 6.28. CvSI-3 amino acid sequence shared 41% identity with cvSI-2 and 37% identity with cvSI-1, which included 12 conserved cysteines. Quantitative real-time PCR determined that cvSI-3 gene expressed primarily in oyster digestive glands. Real-time PCR also detected that cvSI-1, cvSI-2 and cvSI-3 expression levels in digestive glands varied significantly, with cvSI-2 showing the highest expression level and cvSI-3 the lowest. Additionally, a significant correlation was detected between cvSI-2 and cvSI-3 mRNAs levels. Searches into sequence databases using cvSI-1, cvSI-2 and cvSI-3 as queries retrieved ESTs suggesting the possible existence of at least 9 more I84 family members in eastern oysters and of I84 family protease inhibitors in various bivalve and gastropod species. Moreover, orthologs of all C. virginica I84 family members or potential member genes were found to be present in the C. gigas genome, and their distributions among species provided important information about the evolution of the I84 family of protease inhibitors. It appears that the I84 family of protease inhibitors is widely distributed and actively evolving in the Phylum Mollusca.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resources and College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Jean-Phillipe Beguel
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Julie Gauthier
- Loyola University, Department of Biological Sciences, New Orleans, LA 70118, USA
| | - Jerome La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
186
|
The ins and outs of eukaryotic viruses: Knowledge base and ontology of a viral infection. PLoS One 2017; 12:e0171746. [PMID: 28207819 PMCID: PMC5313201 DOI: 10.1371/journal.pone.0171746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
Viruses are genetically diverse, infect a wide range of tissues and host cells and follow unique processes for replicating themselves. All these processes were investigated and indexed in ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted. The virus life-cycle is classically described by schematic pictures. Using this ontology, it can be represented by a combination of successive terms: “entry”, “latency”, “transcription”, “replication” and “exit”. Each of these parts is broken down into discrete steps. For example Zika virus “entry” is broken down in successive steps: “Attachment”, “Apoptotic mimicry”, “Viral endocytosis/ macropinocytosis”, “Fusion with host endosomal membrane”, “Viral factory”. To demonstrate the utility of a standard ontology for virus biology, this work was completed by annotating virus data in the ViralZone, UniProtKB and Gene Ontology databases.
Collapse
|
187
|
Nunes Pinto CL, Nobre CN, Zárate LE. Transductive learning as an alternative to translation initiation site identification. BMC Bioinformatics 2017; 18:81. [PMID: 28152994 PMCID: PMC5290616 DOI: 10.1186/s12859-017-1502-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/28/2017] [Indexed: 11/23/2022] Open
Abstract
Background The correct protein coding region identification is an important and latent problem in the molecular biology field. This problem becomes a challenge due to the lack of deep knowledge about the biological systems and unfamiliarity of conservative characteristics in the messenger RNA (mRNA). Therefore, it is fundamental to research for computational methods aiming to help the patterns discovery for identification of the Translation Initiation Sites (TIS). In the field of Bioinformatics, machine learning methods have been widely applied based on the inductive inference, as Inductive Support Vector Machine (ISVM). On the other hand, not so much attention has been given to transductive inference-based machine learning methods such as Transductive Support Vector Machine (TSVM). The transductive inference performs well for problems in which the amount of unlabeled sequences is considerably greater than the labeled ones. Similarly, the problem of predicting the TIS may take advantage of transductive methods due to the fact that the amount of new sequences grows rapidly with the progress of Genome Project that allows the study of new organisms. Consequently, this work aims to investigate the transductive learning towards TIS identification and compare the results with those obtained in inductive method. Results The transductive inference presents better results both in F-measure and in sensitivity in comparison with the inductive method for predicting the TIS. Additionally, it presents the least failure rate for identifying the TIS, presenting a smaller number of False Negatives (FN) than the ISVM. The ISVM and TSVM methods were validated with the molecules from the most representative organisms contained in the RefSeq database: Rattus norvegicus, Mus musculus, Homo sapiens, Drosophila melanogaster and Arabidopsis thaliana. The transductive method presented F-measure and sensitivity higher than 90% and also higher than the results obtained with ISVM. The ISVM and TSVM approaches were implemented in the TransduTIS tool, TransduTIS-I and TransduTIS-T respectively, available in a web interface. These approaches were compared with the TISHunter, TIS Miner, NetStart tools, presenting satisfactory results. Conclusions In relation to precision, the results are similar for the ISVM and TSVM classifiers. However, the results show that the application of TSVM approach ensured an improvement, specially for F-measure and sensitivity. Moreover, it was possible to identify a potential for the application of TSVM, which is for organisms in the initial study phase with few identified sequences in the databases. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1502-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Cristiane Neri Nobre
- Pontifical Catholic University of Minas Gerais - PUC-MG, 255, Walter Ianni Street, Belo Horizonte, 31980-110, Brazil
| | - Luis Enrique Zárate
- Pontifical Catholic University of Minas Gerais - PUC-MG, 255, Walter Ianni Street, Belo Horizonte, 31980-110, Brazil
| |
Collapse
|
188
|
|
189
|
Ghavim M, Abnous K, Arasteh F, Taghavi S, Nabavinia MS, Alibolandi M, Ramezani M. High level expression of recombinant human growth hormone in Escherichia coli: crucial role of translation initiation region. Res Pharm Sci 2017; 12:168-175. [PMID: 28515770 PMCID: PMC5385732 DOI: 10.4103/1735-5362.202462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For high-throughput production of recombinant protein in Escherichia coli (E. coli), besides important parameters such as efficient vector with strong promoter and compatible host, other important issues including codon usage, rare codons, and GC content specially at N-terminal region should be considered. In the current study, the effect of decreasing the percentage of GC nucleotides and optimizing codon usage at N-terminal region of human growth hormone (hGH) cDNA on the level of its expression in E. coli were investigated. Mutation in cDNA of hGH was performed through site-directed mutagenesis using PCR. Then, the mutant genes were amplified and cloned into the expression vector, pET-28a. The new constructs were transformed into the BL21(DE3) strain of E. coli and chemically induced for hGH expression. At the final stage, expressed proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), scanning gel densitometry, and western blot. SDS-PAGE scanning gel densitometry assay and western blot analysis revealed higher expression level of hGH by using the two new expressions constructs (mutant genes vectors with decreasing GC content and optimized-codon usage at N-terminal of cDNA) in comparison with wild gene expression vector. Obtained results demonstrated that decreasing the GC nucleotide content and optimization of codon usage at N-terminal of the hGH cDNA could significantly enhance the expression of the target protein in E. coli. Our results highlight the important role of both 5´ region of the heterologous genes in terms of codon usage and also GC content on non-host protein expression in E. coli.
Collapse
Affiliation(s)
- Mahsa Ghavim
- Damghan Branch, Islamic Azad University, Damghan, I.R. Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Fatemeh Arasteh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Maryam Sadat Nabavinia
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
190
|
Affiliation(s)
- Naoko ABE
- Department of Chemistry, Graduate School of Science, Nagoya University
| | - Hiroshi ABE
- Department of Chemistry, Graduate School of Science, Nagoya University
| |
Collapse
|
191
|
Cui W, Cheng J, Miao S, Zhou L, Liu Z, Guo J, Zhou Z. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property. Appl Microbiol Biotechnol 2016; 101:2107-2120. [DOI: 10.1007/s00253-016-7988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/29/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
|
192
|
Long Noncoding RNA Identification: Comparing Machine Learning Based Tools for Long Noncoding Transcripts Discrimination. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8496165. [PMID: 28042575 PMCID: PMC5153550 DOI: 10.1155/2016/8496165] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and obtaining a more reliable result.
Collapse
|
193
|
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2016; 27:283-297. [DOI: 10.1080/13543776.2017.1254194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. S. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C. S. Silva Teixeira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - P. A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - N. M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
194
|
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Comput Struct Biotechnol J 2016; 14:404-410. [PMID: 27872686 PMCID: PMC5107644 DOI: 10.1016/j.csbj.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Area of Neuroscience, SISSA, Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
195
|
Tatarinova TV, Chekalin E, Nikolsky Y, Bruskin S, Chebotarov D, McNally KL, Alexandrov N. Nucleotide diversity analysis highlights functionally important genomic regions. Sci Rep 2016; 6:35730. [PMID: 27774999 PMCID: PMC5075931 DOI: 10.1038/srep35730] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
We analyzed functionality and relative distribution of genetic variants across the complete Oryza sativa genome, using the 40 million single nucleotide polymorphisms (SNPs) dataset from the 3,000 Rice Genomes Project (http://snp-seek.irri.org), the largest and highest density SNP collection for any higher plant. We have shown that the DNA-binding transcription factors (TFs) are the most conserved group of genes, whereas kinases and membrane-localized transporters are the most variable ones. TFs may be conserved because they belong to some of the most connected regulatory hubs that modulate transcription of vast downstream gene networks, whereas signaling kinases and transporters need to adapt rapidly to changing environmental conditions. In general, the observed profound patterns of nucleotide variability reveal functionally important genomic regions. As expected, nucleotide diversity is much higher in intergenic regions than within gene bodies (regions spanning gene models), and protein-coding sequences are more conserved than untranslated gene regions. We have observed a sharp decline in nucleotide diversity that begins at about 250 nucleotides upstream of the transcription start and reaches minimal diversity exactly at the transcription start. We found the transcription termination sites to have remarkably symmetrical patterns of SNP density, implying presence of functional sites near transcription termination. Also, nucleotide diversity was significantly lower near 3′ UTRs, the area rich with regulatory regions.
Collapse
Affiliation(s)
- Tatiana V Tatarinova
- Center for Personalized Medicine and Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Yuri Nikolsky
- Vavilov Institute of General Genetics, Moscow, Russia.,F1 Genomics, San Diego, CA, USA.,School of Systems Biology, George Mason University, VA, USA
| | | | - Dmitry Chebotarov
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Kenneth L McNally
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | | |
Collapse
|
196
|
Yan ZF, Lin P, Tian FH, Kook M, Yi TH, Li CT. Molecular characteristics and extracellular expression analysis of farnesyl pyrophosphate synthetase gene in Inonotus obliquus. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0348-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
197
|
Gao C, Wang J, Li C, Zhang W, Liu G. A Functional Polymorphism (rs10817938) in the XPA Promoter Region Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma in a Chinese Han Population. PLoS One 2016; 11:e0160801. [PMID: 27622501 PMCID: PMC5021261 DOI: 10.1371/journal.pone.0160801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/25/2016] [Indexed: 01/23/2023] Open
Abstract
Single nucleotide polymorphisms of XPA gene have been studied in several cancers such as rs10817938, rs2808668. However, the role of XPA polymorphisms in patients with oral squamous cell carcinoma (OSCC) remains unclear. Thus, we analyzed the association of XPA polymorphisms with OSCC risk, clinicopathological characteristics and prognosis in the present study. TaqMan genotyping was used to evaluate the frequency of rs10817938, rs2808668 polymorphisms in OSCC patients. The prognostic significance of these polymorphisms was evaluated using Kaplan-Meier curves, Log-Rank analyses, and the Cox proportional hazard model. Luciferase reporter assay, RT-PCR and western blot were used to determine whether rs10817938 could influence transcription activity and XPA expression. The results showed that individuals carrying TC and CC genotypes had significantly greater risk of developing OSCC (OR = 1.42, 95% CI 1.04-1.93; OR = 2.75, 95% CI 1.32-5.71, respectively) when compared with wild-type TT genotype at rs10817938. OSCC patients with C allele at rs10817938 were more susceptible to lymph metastases, poor pathological differentiation and late TNM stage (OR = 1.67, 95% CI 1.17-2.37; OR = 1.64, 95% CI 1.18-2.28; OR = 1.54, 95% CI 1.11-2.14; respectively). A significant gene-environment interaction between smoking and CC genotype at rs10817938 was observed (COR = 3.60, 95% CI 1.20-10.9) and data also showed that OSCC patients with CC genotype and C allele had worse survival (p<0.001 for both). The T to C substitution at rs10817938 significantly decreased transcription activity of XPA gene, XPA mRNA and protein were also decreased in individuals with C allele at rs10817938. In addition, no significant association of rs2808668 polymorphism with OSCC risk, prognosis could be observed. In conclusion, the present study showed that XPA rs10817938 polymorphism is a functional SNP in vitro and in vivo and a biomarker for poor prognosis in OSCC patients.
Collapse
Affiliation(s)
- Chunhai Gao
- Department of Clinical Laboratory, Linyi People’s Hospital, Linyi, Shandong, P.R.China
| | - Jinzhu Wang
- Department of Clinical Laboratory, Linyi People’s Hospital, Linyi, Shandong, P.R.China
| | - Chong Li
- Jinan Stomatological Hospital, Jinan, Shandong, P.R.China
| | - Wei Zhang
- Department of Rehabilitation, Linyi People’s Hospital, Linyi, Shandong, P.R.China
| | - Guoxia Liu
- Jinan Stomatological Hospital, Jinan, Shandong, P.R.China
- * E-mail:
| |
Collapse
|
198
|
Liu Y, Yang H, Li L, Chen S, Zuo F, Chen L. A novel VHLα isoform inhibits Warburg effect via modulation of PKM splicing. Tumour Biol 2016; 37:13649-13657. [PMID: 27473082 DOI: 10.1007/s13277-016-5191-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) is the most frequently mutated gene in clear cell renal carcinoma. Here, we identified a novel translational variant of VHL, termed VHLα, initiated from an alternative translational start site upstream and in frame with the ATG start codon. We showed that VHLα interacts with and regulates heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), which consequently modulates pyruvate kinase transcript splicing and reprograms cellular glucose metabolism. Our study demonstrated that a novel VHL isoform may function as a tumor suppressor through inhibiting the Warburg effect.
Collapse
Affiliation(s)
- Yanbin Liu
- Collaborative Innovation Center of Cancer Medicine, National Institute of Biological Sciences, Beijing, Beijing, 102206, China.
| | - Haixia Yang
- National Institute of Biological Sciences, Beijing, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, Beijing, 102206, China
| | - Feifei Zuo
- National Institute of Biological Sciences, Beijing, Beijing, 102206, China
| | - Liang Chen
- Collaborative Innovation Center of Cancer Medicine, National Institute of Biological Sciences, Beijing, Beijing, 102206, China.
| |
Collapse
|
199
|
Ma J, Zhang Z, Yao Q, Su C, Yin X, Wang X. Regulation of Rev expression by the equine infectious anaemia virus tat-rev mRNA Kozak sequence and its potential influence on viral replication. J Gen Virol 2016; 97:2421-2426. [PMID: 27411804 DOI: 10.1099/jgv.0.000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rev, an important accessory protein of equine infectious anaemia virus (EIAV), induces the nuclear export of incompletely spliced viral mRNAs. Rev is translated from the tat-rev mRNA through leaky scanning of the tat CUG. In this study, the function of the Kozak sequence at the beginning of the rev ORF was investigated. Deletion or attenuation of the Kozak sequence resulted in expression of an N-terminal 11 aa-truncated Rev in addition to WT Rev. Truncated Rev displayed weaker promotion of Gag expression and processing than WT Rev. Furthermore, EIAV rescued from an infectious molecular clone (pEIAVUK3) with Kozak attenuation exhibited decreased viral replication in host cells in vitro. These results provide a new understanding of the relationship between EIAV Rev expression and viral replication.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Zeli Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qiucheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Chao Su
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
200
|
Mallarino R, Linden TA, Linnen CR, Hoekstra HE. The role of isoforms in the evolution of cryptic coloration inPeromyscusmice. Mol Ecol 2016; 26:245-258. [DOI: 10.1111/mec.13663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Ricardo Mallarino
- Departments of Organismic & Evolutionary Biology and Molecular & Cellular Biology; Museum of Comparative Zoology; Howard Hughes Medical Institute; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Tess A. Linden
- Departments of Organismic & Evolutionary Biology and Molecular & Cellular Biology; Museum of Comparative Zoology; Howard Hughes Medical Institute; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Catherine R. Linnen
- Department of Biology; University of Kentucky; 675 Rose Street Lexington KY 40506 USA
| | - Hopi E. Hoekstra
- Departments of Organismic & Evolutionary Biology and Molecular & Cellular Biology; Museum of Comparative Zoology; Howard Hughes Medical Institute; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|