151
|
Eto A, Muta T, Yamazaki S, Takeshige K. Essential roles for NF-kappa B and a Toll/IL-1 receptor domain-specific signal(s) in the induction of I kappa B-zeta. Biochem Biophys Res Commun 2003; 301:495-501. [PMID: 12565889 DOI: 10.1016/s0006-291x(02)03082-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
I kappa B-zeta, a new negative-regulator of nuclear factor-kappa B (NF-kappa B), is strongly induced by lipopolysaccharide or interleukin-1 beta stimulation, but not by tumor necrosis factor-alpha. Here, we analyzed the mechanisms for transcriptional induction of I kappa B-zeta. I kappa B-zeta mRNA was induced by overexpression of MyD88 or TRAF6, but not TRAF2. Stimulation of macrophages with peptidoglycan or CpG DNA, which activated Toll-like receptor 2 or 9, respectively, also resulted in I kappa B-zeta induction. Thus, activation of the MyD88-dependent signaling pathway, commonly found downstream of different Toll/interleukin-1 receptor (TIR) domains, is sufficient for I kappa B-zeta induction. The induction was inhibited by treatment with various inhibitors of NF-kappa B activation or by overexpressing I kappa B-alpha or beta, indicating essential roles for NF-kappa B in I kappa B-zeta induction. However, overexpression of the NF-kappa B subunits induced I kappa B-alpha, but not I kappa B-zeta. These results indicate the existence of another signal essential for I kappa B-zeta induction, which is specifically mediated by the TIR domain-mediated signaling pathway.
Collapse
Affiliation(s)
- Akiko Eto
- Department of Molecular and Cellular Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
152
|
Antonsson A, Hughes K, Edin S, Grundström T. Regulation of c-Rel nuclear localization by binding of Ca2+/calmodulin. Mol Cell Biol 2003; 23:1418-27. [PMID: 12556500 PMCID: PMC141150 DOI: 10.1128/mcb.23.4.1418-1427.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory I kappa B proteins sequester NF-kappa B/Rel in the cytoplasm. Cellular stimulation results in the degradation of I kappa B and modification of NF-kappa B/Rel proteins, allowing NF-kappa B/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca(2+) binding protein that serves as a key mediator of intracellular Ca(2+) signals. Here we report that two members of the NF-kappa B/Rel family, c-Rel and RelA, interact directly with Ca(2+)-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of I kappa B. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca(2+) signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from I kappa B and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-kappa B/Rel proteins following stimulation.
Collapse
Affiliation(s)
- Asa Antonsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
153
|
Dienz O, Möller A, Strecker A, Stephan N, Krammer PH, Dröge W, Schmitz ML. Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and phospholipase C gamma 1 are required for NF-kappa B activation and lipid raft recruitment of protein kinase C theta induced by T cell costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:365-72. [PMID: 12496421 DOI: 10.4049/jimmunol.170.1.365] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.
Collapse
Affiliation(s)
- Oliver Dienz
- Division of Immunochemistry, German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
154
|
Chiarugi A. Characterization of the molecular events following impairment of NF-kappaB-driven transcription in neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:179-88. [PMID: 12531527 DOI: 10.1016/s0169-328x(02)00558-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor with a pivotal role in neuronal homeostasis. Indeed, NF-kappaB trans-activates several antiapoptotic genes in neurons and inhibition of NF-kappaB transcriptional activity triggers neuronal apoptosis. However, the exact mechanisms by which neurons undergo apoptosis in conditions of NF-kappaB inhibition are poorly understood. To further clarify how NF-kappaB operates in neurons, and to gather information on the molecular events occurring during NF-kappaB inhibition-dependent neuronal apoptosis, this study evaluated the effects of recently identified NF-kappaB inhibitors such as parthenolide, SN50, BAY 11-7082 and helenalin on primary cultures of rat cortical neurons. Data show that NF-kappaB was constitutively activated in neurons, and demonstrate for the first time that drug-dependent NF-kappaB inhibition induced rapid mitochondrial release of cytochrome c, caspase-9 and -3 activation, poly(ADP-ribose) polymerase-1 cleavage, membrane blebbing and nuclear fragmentation, without evidence of procaspase-8 and Bid processing. Interestingly, a burst of Akt activation occurred in neurons exposed to NF-kappaB inhibitors. These events were preceded by selective reduction of mRNAs of NF-kappaB-dependent, antiapoptotic Bcl-2 family members such as Bcl-x(L), Bcl-2 and, in particular, A1/Bfl-1. The present study reports a novel, detailed temporal analysis of the molecular events following impairment of NF-kappaB-driven transcription in neurons and demonstrates that inhibition of constitutive neuronal NF-kappaB activity triggers selective activation of the intrinsic apoptotic program.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
155
|
Avila A, Silverman N, Diaz-Meco MT, Moscat J. The Drosophila atypical protein kinase C-ref(2)p complex constitutes a conserved module for signaling in the toll pathway. Mol Cell Biol 2002; 22:8787-95. [PMID: 12446795 PMCID: PMC139865 DOI: 10.1128/mcb.22.24.8787-8795.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent results showed the critical role of the mammalian p62-atypical protein kinase C (aPKC) complex in the activation of NF-kappaB in response to different stimuli. Here we demonstrate using the RNA interference technique on Schneider cells that the Drosophila aPKC (DaPKC) is required for the stimulation of the Toll-signaling pathway, which activates the NF-kappaB homologues Dif and Dorsal. However, DaPKC does not appear to be important for the other Drosophila NF-kappaB signaling cascade, which activates the NF-kappaB homologue Relish in response to lipopolysaccharides. Interestingly, DaPKC functions downstream of the nuclear translocation of Dorsal or Dif, controlling the transcriptional activity of the Drosomycin promoter. We also show that the Drosophila Ref(2)P protein is the homologue of mammalian p62 as it binds to DaPKC, its overexpression is sufficient to activate the Drosomycin but not the Attacin promoter, and its depletion severely impairs Toll signaling. Collectively, these results demonstrate the conservation of the p62-aPKC complex for the control of innate immunity signal transduction in Drosophila melanogaster.
Collapse
Affiliation(s)
- Antonia Avila
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
156
|
Schubert SY, Neeman I, Resnick N. A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J 2002; 16:1931-3. [PMID: 12368228 DOI: 10.1096/fj.02-0147fje] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The activation of Nuclear Factor kappa B (NF-kappaB) in vascular endothelial cells, in response to biochemical or biomechanical stimuli, is associated with vascular pathologies such as atherosclerosis. The present manuscript studies the ability of the natural antioxidant-pomegranate wine (PW), to inhibit tumor necrosis factor alpha (TNF-alpha) or shear stress-mediated-NF-kappaB activation in vascular endothelial cells and compares it to that of red wine (RW) and N-acetyl cysteine (NAC). PW and RW act as potent antioxidants in vascular endothelial cells, inhibiting the oxidation of 2',7'-dichloroflurescin diacetate in TNF-alpha treated cells. PW (as well as RW and NAC) acted as potent inhibitors of NF-kappaB activation (migration into the nucleus and DNA binding activity) in vascular endothelial cells. Nevertheless, PW and NAC failed to inhibit TNF-a induced serine 32/36 phosphorylation and IkappaBalpha degradation. Surprisingly, these antioxidants alone induced enhanced IkappaB serine phosphorylation, which was not accompanied by IkappaBalpha degradation, or NF-kappaB nuclear translocation. This phosphorylation did not involve serine 32/36. Furthermore, we show for the first time that NAC inhibited TNF-alpha mediated phosphorylation of p65 (ser536), whereas PW had no effect on this phosphorylation. Thus, natural antioxidants may serve as potent NF-kappaB inhibitors in vascular endothelial cells, yet act through unique and divergent pathways.
Collapse
Affiliation(s)
- Shay Y Schubert
- The Interdepartmental Program in Biotechnology, Bruce Rappaport Research Institute and the Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
157
|
Casciati A, Ferri A, Cozzolino M, Celsi F, Nencini M, Rotilio G, Carrì MT. Oxidative modulation of nuclear factor-kappaB in human cells expressing mutant fALS-typical superoxide dismutases. J Neurochem 2002; 83:1019-29. [PMID: 12437573 DOI: 10.1046/j.1471-4159.2002.01232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous evidence supports the notion of a redox regulation of protein phosphatase calcineurin that might be relevant for neurodegenerative processes where an imbalance between generation and removal of reactive oxygen species occurs. We have recently observed that calcineurin activity is depressed in human neuroblastoma cells expressing Cu,Zn superoxide dismutase (SOD1) mutant G93A and in brain areas from G93A transgenic mice, and that mutant G93A-SOD1 oxidatively inactivates calcineurin in vitro. We have studied the possibility that, by interfering directly with calcineurin activity, mutant SOD1 can modulate pathways of signal transduction mediated by redox-sensitive transcription factors. In this paper, we report a calcineurin-dependent activation of nuclear factor-kappaB (NF-kappaB) induced by the expression of familial amyotrophic lateral sclerosis (fALS)-SOD1s in human neuroblastoma cell lines. Alteration of the phosphorylation state of IkappaBalpha (the inhibitor of NF-kappaB translocation into the nucleus) and induction of cyclooxygenase 2 are consistent with the up-regulation of this transcription factor in this system. All of these modifications might be relevant to signaling pathways involved in the pathogenesis of fALS.
Collapse
|
158
|
Martin MU, Wesche H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:265-80. [PMID: 12421671 DOI: 10.1016/s0167-4889(02)00320-8] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Toll/interleukin-1 (IL-1) receptor (TIR) family comprises two groups of transmembrane proteins, which share functional and structural properties. The members of the IL-1 receptor (IL-1R) subfamily are characterized by three extracellular immunoglobulin (Ig)-like domains. They form heterodimeric signaling receptor complexes consisting of receptor and accessory proteins. The members of the Toll-like receptor (TLR) subfamily recognize alarm signals that can be derived either from pathogens or the host itself. TLRs possess leucine-rich repeats in their extracellular part. TLRs can form dimeric receptor complexes consisting of two different TLRs or homodimers in the case of TLR4. The TLR4 receptor complex requires supportive molecules for optimal response to its ligand lipopolysaccharide (LPS). A hallmark of the TIR family is the cytoplasmic TIR domain that is indispensable for signal transduction. The TIR domain serves as a scaffold for a series of protein-protein interactions which result in the activation of a unique signaling module consisting of MyD88, interleukin-1 receptor associated kinase (IRAK) family members and Tollip, which is used exclusively by TIR family members. Subsequently, several central signaling pathways are activated in parallel, the activation of NFkappaB being the most prominent event of the inflammatory response. Recent developments indicate that in addition to the common signaling module MyD88/IRAK/Tollip, other molecules can modulate signaling by TLRs, especially of TLR4, resulting in differential biological answers to distinct pathogenic structures. Subtle differences in TLR signaling pathways are now becoming apparent, which reveal how the innate immune system decides at a very early stage the direction in which the adaptive immune response will develop. The creation of pathogen-specific mediator environments by dendritic cells defines whether a cellular or humoral response will be activated in response to the pathogen.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Carrier Proteins/physiology
- Drosophila Proteins
- Humans
- Interleukin-1 Receptor-Associated Kinases
- Interleukin-18/chemistry
- Interleukin-18 Receptor alpha Subunit
- Intracellular Signaling Peptides and Proteins
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/physiology
- Models, Molecular
- Myeloid Differentiation Factor 88
- Protein Kinases/physiology
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/physiology
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/physiology
- Receptors, Interleukin-1/chemistry
- Receptors, Interleukin-1/physiology
- Receptors, Interleukin-18
- Signal Transduction
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
Affiliation(s)
- Michael U Martin
- Institute of Pharmacology OE 5320, Hannover Medical School, Germany.
| | | |
Collapse
|
159
|
Kracht M, Saklatvala J. Transcriptional and post-transcriptional control of gene expression in inflammation. Cytokine 2002; 20:91-106. [PMID: 12453467 DOI: 10.1006/cyto.2002.0895] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Kracht
- Institute of Phamacology, Medical School Hannover, Carl-Neuberg Strasse 1, D-30625, Hannover, Germany.
| | | |
Collapse
|
160
|
Haller D, Russo MP, Sartor RB, Jobin C. IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 2002; 277:38168-78. [PMID: 12140289 DOI: 10.1074/jbc.m205737200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogenic and enteroinvasive bacteria have been shown to trigger the I kappa B/NF-kappa B transcriptional system and proinflammatory gene expression in epithelial cells. In this study, we investigated the molecular mechanism of the commensal Gram-negative Bacteroides vulgatus-induced NF-kappa B signal transduction in intestinal epithelial cells (IEC). We report that B. vulgatus induced interleukin-1 receptor-associated kinase-1 degradation, I kappa B alpha phosphorylation/degradation, RelA and Akt phosphorylation, as well as NF-kappa B DNA binding and NF-kappa B transcriptional activity in rat non-transformed IEC-6 cells. B. vulgatus- but not interleukin-1 beta-mediated NF-kappa B transcriptional activity was inhibited by dominant negative (dn) toll-like receptor 4. Of importance, B. vulgatus induced I kappa B alpha phosphorylation/degradation and IKK alpha/beta and RelA phosphorylation in primary IEC derived from germ-free or mono-associated HLA-B27 transgenic and wild type rats, demonstrating the physiological relevance of non-pathogenic bacterial signaling in IEC. Adenoviral delivery of dn IKK beta or treatment with wortmannin inhibited B. vulgatus-induced endogenous RelA Ser-536 and GST-p65TAD (Ser-529/Ser-536) phosphorylation as well as NF-kappa B transcriptional activity in IEC-6 cells, suggesting a critical role of IKK beta and phosphatidylinositol 3-kinase/Akt in bacteria-induced RelA phosphorylation and NF-kappa B activation. Interestingly, B. vulgatus-induced I kappa B alpha degradation and NF-kappa B transcriptional activity in IEC transwell cultures were inhibited in the presence of lymphocytes. We propose that non-pathogenic B. vulgatus activates the NF-kappa B signaling pathway through both I kappa B degradation and RelA phosphorylation but that immune cells mediate tolerance of IEC to this commensal bacteria.
Collapse
Affiliation(s)
- Dirk Haller
- Department of Medicine and the Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina 27599-7080, USA
| | | | | | | |
Collapse
|
161
|
VanderWaal RP, Spitz DR, Griffith CL, Higashikubo R, Roti Roti JL. Evidence that protein disulfide isomerase (PDI) is involved in DNA-nuclear matrix anchoring. J Cell Biochem 2002; 85:689-702. [PMID: 11968009 DOI: 10.1002/jcb.10169] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA-nuclear matrix (NM) anchoring plays a critical role in the organization of DNA within the nucleus and in functional access to DNA for transcription, replication, and DNA repair. The cellular response to oxidative stress involves both gene expression and DNA repair. We, therefore, determined if changes in the oxidative-reductive environment can affect DNA-NM anchoring. The present study used two approaches to study the effect of the reducing agent DTT on DNA-NM anchoring. First, the relative stringency of the DNA-NM attachment was determined by measuring the ability of NM attached DNA loops to undergo supercoiling changes. Second, the effects of DTT on the association of nuclear proteins with DNA were determined by cisplatin crosslinking. When nucleoids (nuclear matrices with attached DNA loops) were prepared from HeLa cells with 1 mM dithiothreitol (DTT), supercoiled DNA loops unwound more efficiently compared with control in the presence of increasing propidium iodide (PI) concentrations. In addition, the rewinding of DNA supercoils in nucleoids treated with DTT was inhibited. Both effects on DNA supercoiling ability were reversed by diamide suggesting that they are dependent on the oxidation state of the protein thiols. When DTT treated nucleoids were isolated from gamma-irradiated cells, the inhibition of DNA supercoil rewinding was equal to the sum of the inhibition due to DTT and gamma-rays alone. Nucleoids isolated from heat-shocked cells with DTT, showed no inhibition of DNA rewinding, except a small inhibition at high PI concentrations. Nuclear DNA in DTT-treated nuclei was digested faster by DNase I than in untreated nuclei. These results suggest that DTT is altering DNA-NM anchoring by affecting the protein component(s) of the anchoring complex. Extracting NM with increasing concentrations of DTT did not solubilize any protein to a significant extent until measurable NM disintegration occurred. Therefore, we determined if 1 mM DTT affected the ability of 1 mM cisplatin to crosslink proteins to DNA. Isolated nuclei were treated with 1 mM DTT for 30 min or left untreated prior to crosslinking with 1 mM cisplatin for 2 h at 4 degrees C. The ability of capsulation to crosslink DNA to proteins per se, did not appear to be affected by 1 mM DTT because relative amounts of at least four proteins, 69, 60, 40, and 35 kDa, were crosslinked to DNA to the same extent in DTT-treated and untreated nuclei. However, protein disulfide isomerase (PDI) crosslinked to DNA in untreated nuclei, but did not crosslink DNA in nuclei that were treated with 1 mM DTT; 1 mM DTT did not affect the intranuclear localization of PDI. Thus, DTT appears to alter the conformation of PDI, as suggested by the DTT-induced change in DNA association, but not its NM association. These results also imply that DNA-NM anchoring involves the redox state of protein sulfhydryl groups.
Collapse
Affiliation(s)
- Robert P VanderWaal
- Washington University School of Medicine, Division of Radiation and Cancer Biology, Department of Radiation Oncology, St. Louis, Missouri 63108, USA
| | | | | | | | | |
Collapse
|
162
|
Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 2002; 64:963-70. [PMID: 12213593 DOI: 10.1016/s0006-2952(02)01161-9] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is well known for its role in inflammation, immune response, control of cell division and apoptosis. The function of NF-kappaB is primarily regulated by IkappaB family members, which ensure cytoplasmic localisation of the transcription factor in the resting state. Upon stimulus-induced IkappaB degradation, the NF-kappaB complexes move to the nucleus and activate NF-kappaB-dependent transcription. Over the years, a second regulatory mechanism, independent of IkappaB, has become generally accepted. Changes in NF-kappaB transcriptional activity have been assigned to phosphorylation of the p65 subunit by a large variety of kinases in response to different stimuli. Here, we give an overview of the kinases and signalling pathways mediating this process and comment on the players involved in tumour necrosis factor-induced regulation of NF-kappaB transcriptional activity. Additionally, we describe how other posttranslational modifications, such as acetylation and methylation of transcription factors or of the chromatin environment, may also affect NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Linda Vermeulen
- Department of Molecular Biology, University of Gent-VIB, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
163
|
Abstract
Oxidative stress has been implicated in the pathogenesis of several inflammatory lung disorders. Oxidants and inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha) activate transcription factors such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) leading to the expression of pro-inflammatory genes. The expression of many genes, including those encoding pro-inflammatory mediators involves the remodelling of the chromatin structure provided by histone proteins. Histone acetylation causes the unwinding of chromatin structure therefore allowing transcription factor access to promoter sites. Nuclear histone acetylation is a reversible process, and is regulated by a group of acetyltransferases (HATs) which promote acetylation, and deacetylases (HDACs) which promote deacetylation. In addition, several co-activators, transcription factors and nuclear proteins also have histone acetyltransferase activity. Both TNF-alpha and the oxidant, hydrogen peroxide (H2O2) alter histone acetylation/deacetylation, and the activation of NF-kappaB and AP-1, leading to the release of the pro-inflammatory cytokine interleukin-8 (IL-8) in human alveolar epithelial cells (A549). Pharmacological inhibition of HDAC leads to the increased HAT activity, AP-1 and NF-kappaB activation, and IL-8 release by H2O2 or TNF-alpha treatments. This suggests that the remodelling of chromatin by histone acetylation plays a role in the oxidant-mediated pro-inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Irfan Rahman
- ELEGI & Colt Research Laboratory, MRC Centre for Inflammation Research, Medical School, University of Edinburgh, Wilkie Building, Teviot Place, Edinburgh, UK.
| |
Collapse
|
164
|
Kunz M, Bloss G, Gillitzer R, Gross G, Goebeler M, Rapp UR, Ludwig S. Hypoxia/reoxygenation induction of monocyte chemoattractant protein-1 in melanoma cells: involvement of nuclear factor-kappaB, stimulatory protein-1 transcription factors and mitogen-activated protein kinase pathways. Biochem J 2002; 366:299-306. [PMID: 12020348 PMCID: PMC1222766 DOI: 10.1042/bj20011749] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Revised: 04/26/2002] [Accepted: 05/21/2002] [Indexed: 12/11/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) expression is found in malignant melanoma and melanoma metastases. Since areas of hypoxia/reoxygenation (H/R) are a common feature of malignant tumours and metastases, we addressed the question whether melanoma cells produce MCP-1 upon exposure to H/R. In the present study, we show that melanoma cells up-regulate MCP-1 mRNA and protein under H/R. By means of reporter gene analysis, we further demonstrate that H/R induces transcriptional activation of the MCP-1 promoter carrying a stimulatory protein-1 (SP1) and two nuclear factor-kappaB (NF-kappaB) binding motifs. Accordingly, H/R-stimulated melanoma cells showed enhanced binding activity of both transcription factors NF-kappaB and SP1 in electrophoretic mobility-shift assay. A common upstream activator of NF-kappaB, inhibitory kappaBalpha kinase, was not significantly activated under H/R conditions. Further analysis of upstream signalling events revealed that members of the mitogen-activated protein kinases family, namely extracellular signal-regulated protein kinase, c-Jun N-terminal kinase/ stress-activated protein kinase and p38 stress kinase, may be involved in MCP-1 transcriptional regulation under H/R. In summary, we conclude that H/R induces MCP-1 production in melanoma cells via the co-operative action of both transcription factors NF-kappaB and SP1, and involves mitogen-activated protein kinase signalling pathways. Functionally, H/R-induced MCP-1 production may contribute to tumour progression by committing selective pressure on tumour cells via chemoattraction and activation of tumour-infiltrating monocytes/macrophages.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, University of Rostock, Augustenstr. 80-84, 18055 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
165
|
Sánchez-Pérez I, Benitah SA, Martínez-Gomariz M, Lacal JC, Perona R. Cell stress and MEKK1-mediated c-Jun activation modulate NFkappaB activity and cell viability. Mol Biol Cell 2002; 13:2933-45. [PMID: 12181357 PMCID: PMC117953 DOI: 10.1091/mbc.e02-01-0022] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemotherapeutic agents such as cisplatin induce persistent activation of N-terminal c-Jun Kinase, which in turn mediates induction of apoptosis. By using a common MAPK Kinase, MEKK1, cisplatin also activates the survival transcription factor NFkappaB. We have found a cross-talk between c-Jun expression and NFkappaB transcriptional activation in response to cisplatin. Fibroblast derived from c-jun knock out mice are more resistant to cisplatin-induced cell death, and this survival advantage is mediated by upregulation of NFkappaB-dependent transcription and expression of MIAP3. This process can be reverted by ectopic expression of c-Jun in c-jun(-/-) fibroblasts, which decreases p65 transcriptional activity back to normal levels. Negative regulation of NFkappaB-dependent transcription by c-jun contributes to cisplatin-induced cell death, which suggests that inhibition of NFkappaB may potentiate the antineoplastic effect of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Isabel Sánchez-Pérez
- Instituto de Investigaciones Biomédicas Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
166
|
San-Antonio B, Iñiguez MA, Fresno M. Protein kinase Czeta phosphorylates nuclear factor of activated T cells and regulates its transactivating activity. J Biol Chem 2002; 277:27073-80. [PMID: 12021260 DOI: 10.1074/jbc.m106983200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although several isoforms of protein kinase C (PKC) have been implicated in T lymphocyte activation events, little is known about their mode of action. To address the role of PKCzeta in T cell activation, we have generated Jurkat T cell transfectants expressing either the wild type (J-PKCzeta) or "kinase-dead" mutant (J-PKCzeta(mut)) versions of this protein. Expression of PKCzeta but not PKCzeta(mut) increased transcriptional activation mediated by the NF-kappaB or nuclear factor of activated T cells (NFAT). PKCzeta cooperates with calcium ionophore and with NFAT1 or NFAT2 proteins to enhance transcriptional activation of a NFAT reporter construct. However, neither NFAT nuclear translocation nor DNA binding were in J-PKCzeta cells. Our results show that PKCzeta enhanced transcriptional activity mediated by Gal4-NFAT1 fusion proteins containing the N-terminal transactivation domain of human NFAT1. Interestingly, PKCzeta synergizes with calcineurin to induce transcriptional activation driven by the NFAT1 transactivation domain. Co-precipitation experiments showed physical interaction between PKCzeta and NFAT1 or NFAT2 isoforms. Even more, PKCzeta was able to phosphorylate recombinant glutathione S-transferase-NFAT1 (1-385) protein. These data reveal a new role of PKCzeta in T cells through the control of NFAT function by modulating the activity of its transactivation domain.
Collapse
Affiliation(s)
- Belén San-Antonio
- Centro de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
167
|
Knuefermann P, Chen P, Misra A, Shi SP, Abdellatif M, Sivasubramanian N. Myotrophin/V-1, a protein up-regulated in the failing human heart and in postnatal cerebellum, converts NFkappa B p50-p65 heterodimers to p50-p50 and p65-p65 homodimers. J Biol Chem 2002; 277:23888-97. [PMID: 11971907 DOI: 10.1074/jbc.m202937200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotrophin/V-1 is a cytosolic protein found at elevated levels in failing human hearts and in postnatal cerebellum. We have previously shown that it disrupts nuclear factor of kappaB (NFkappaB)-DNA complexes in vitro. In this study, we demonstrated that in HeLa cells native myotrophin/V-1 is predominantly present in the cytoplasm and translocates to the nucleus during sustained NFkappaB activation. Three-dimensional alignment studies indicate that myotrophin/V-1 resembles a truncated IkappaBalpha without the signal response domain (SRD) and PEST domains. Co-immunoprecipitation studies reveal that myotrophin/V-1 interacts with NFkappaB proteins in vitro; however, it remains physically associated only with p65 and c-Rel proteins in vivo during NFkappaB activation. In vitro studies indicate that myotrophin/V-1 can promote the formation of p50-p50 homodimers from monomeric p50 proteins and can convert the preformed p50-p65 heterodimers into p50-p50 and p65-p65 homodimers. Furthermore, adenovirus-mediated overexpression of myotrophin/V-1 resulted in elevated levels of both p50-p50 and p65-p65 homodimers exceeding the levels of p50-p65 heterodimers compared with Adbetagal-infected cells, where the levels of p50-p65 heterodimers exceeded the levels of p50-p50 and p65-p65 homodimers. Thus, overexpression of myotrophin/V-1 during NFkappaB activation resulted in a qualitative shift by quantitatively reducing the level of transactivating heterodimers while elevating the levels of repressive p50-p50 homodimers. Correspondingly, overexpression of myotrophin/V-1 resulted in significantly reduced kappaB-luciferase reporter activity. Because myotrophin/V-1 is found at elevated levels during NFkappaB activation in postnatal cerebellum and in failing human hearts, this study cumulatively suggests that myotrophin/V-1 is a regulatory protein for modulating the levels of activated NFkappaB dimers during this period.
Collapse
Affiliation(s)
- Pascal Knuefermann
- Winters Center For Heart Failure Research, Molecular Cardiology Unit, Cardiology Section of Department of Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
168
|
Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, Spano P. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem 2002; 277:20717-23. [PMID: 11912207 DOI: 10.1074/jbc.m201014200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nuclear transcription factors NF-kappaB/Rel have been shown to function as key regulators of either cell death or survival in neuronal cells. Here, we investigated whether selective activation of diverse NF-kappaB/Rel family members might lead to distinct effects on neuron viability. In both cultured rat cerebellar granule cells and mouse hippocampal slices, we examined NF-kappaB/Rel activation induced by two opposing modulators of cell viability: 1) interleukin-1beta (IL-1beta), which promotes neuron survival and 2) glutamate, which can elicit toxicity. IL-1beta produced a prolonged stimulation of NF-kappaB/Rel factors by inducing both IkappaBalpha and IkappaBbeta degradation. Glutamate produced a delayed and transient activation of NF-kappaB/Rel, which was associated with a brief loss of IkappaBalpha. Moreover, IL-1beta activated the p50, p65, and c-Rel subunits of NF-kappaB/Rel, whereas glutamate activated only the p50 and p65 proteins. The inhibition of NF-kappaB/Rel protein expression by antisense oligonucleotides in cerebellar granule cells showed that p65 was involved in glutamate-mediated cell death, whereas c-Rel was essential for IL-1beta-preserved cell survival. Furthermore, the depletion of c-Rel in cultured neurons as well as in the hippocampus from the c-Rel(-/-) mouse converted the IL-1beta effect into toxicity. These findings suggest that, within a single neuron, the balance between cell death and survival in response to external stimuli may rely on the activation of distinct NF-kappaB/Rel proteins.
Collapse
Affiliation(s)
- Marina Pizzi
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
169
|
Mifflin RC, Saada JI, Di Mari JF, Adegboyega PA, Valentich JD, Powell DW. Regulation of COX-2 expression in human intestinal myofibroblasts: mechanisms of IL-1-mediated induction. Am J Physiol Cell Physiol 2002; 282:C824-34. [PMID: 11880271 DOI: 10.1152/ajpcell.00388.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated mucosal interleukin-1 (IL-1) levels are frequently seen during acute and chronic intestinal inflammation, and IL-1 neutralization lessens the severity of inflammation. One major effect of IL-1 is the increased release of eicosanoid mediators via induction of cyclooxygenase-2 (COX-2). One site of COX-2-derived prostaglandin synthesis during acute and chronic intestinal inflammation is the intestinal myofibroblast. COX-2 expression has also been documented in these cells in colonic neoplasms. Thus an understanding of the regulation of COX-2 expression in human intestinal myofibroblasts is important. As an initial step toward this goal we have characterized IL-1alpha signaling pathways that induce COX-2 expression in cultured human intestinal myofibroblasts. IL-1 treatment resulted in a dramatic transcriptional induction of COX-2 gene expression. Activation of nuclear factor-kappaB (NF-kappaB), extracellular signal-regulated protein kinase (ERK), p38, and protein kinase C (PKC) signaling pathways was each necessary for optimal COX-2 induction. In contrast to what occurs in other cell types, including other myofibroblasts such as renal mesangial cells, PKC inhibition did not prevent IL-1-induced NF-kappaB or mitogen activated protein kinase/ stress-activated protein kinase activation, suggesting a novel role for PKC isoforms during this process. The stimulatory effects of PKC, NF-kappaB, ERK-1/2, and presumably c-Jun NH(2)-terminal kinase activation were exerted at the transcriptional level, whereas p38 activation resulted in increased stability of the COX-2 message. We conclude that, in intestinal myofibroblasts, IL-1-mediated induction of COX-2 expression is a complex process that requires input from multiple signaling pathways. Each parallel pathway acts in relative autonomy, the sum of their actions culminating in a dramatic increase in COX-2 transcription and message stability.
Collapse
Affiliation(s)
- Randy C Mifflin
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
170
|
Bremner P, Heinrich M. Natural products as targeted modulators of the nuclear factor-kappaB pathway. J Pharm Pharmacol 2002; 54:453-72. [PMID: 11999122 DOI: 10.1211/0022357021778637] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of plant extracts to alleviate inflammatory diseases is centuries old and continues to this day. This review assesses the current understanding of the use of such plants and natural products isolated from them in terms of their action against the ubiquitous transcription factor, nuclear factor kappa B (NF-kappaB). As an activator of many pro-inflammatory cytokines and inflammatory processes the modulation of the NF-kappaB transduction pathway is a principal target to alleviate the symptoms of such diseases as arthritis, inflammatory bowel disease and asthma. Two pathways of NF-kappaB activation will first be summarised, leading to the IKK (IkappaB kinase) complex, that subsequently initiates phosphorylation of the NF-kappaB inhibitory protein (IKB). Natural products and some extracts are reviewed and assessed for their activity and potency as NF-kappaB inhibitors. A large number of compounds are currently known as NF-kappaB modulators and include the isoprenoids, most notably kaurene diterpenoids and members of the sesquiterpene lactones class, several phenolics including curcumin and flavonoids such as silybin. Additional data on cellular toxicity are also highlighted as an exclusion principle for pursuing such compounds in clinical development. In addition, where enough data exists some conclusions on structure-activity relationship are provided.
Collapse
Affiliation(s)
- Paul Bremner
- Centre for Pharmacognosy and Phytotherapy, School of Pharmacy, London, UK.
| | | |
Collapse
|
171
|
Nelson G, Paraoan L, Spiller DG, Wilde GJC, Browne MA, Djali PK, Unitt JF, Sullivan E, Floettmann E, White MRH. Multi-parameter analysis of the kinetics of NF-κB signalling and transcription in single living cells. J Cell Sci 2002; 115:1137-48. [PMID: 11884514 DOI: 10.1242/jcs.115.6.1137] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the NF-κB transcription factor family normally reside in the cytoplasm of cells in a complex with IκB inhibitor proteins. Stimulation with TNFα leads to proteosomal degradation of the IκB proteins and nuclear translocation of the NF-κB proteins. Expression of p65 and IκBα fused to fluorescent proteins was used to measure the dynamics of these processes in transfected HeLa cells. Simultaneous visualisation of p65-dsRed translocation and IκBα-EGFP degradation indicated that in the presence of dual fluorescent fusion protein expression,the half-time of IκBα-EGFP degradation was reduced and that of p65 translocation was significantly increased when compared with cells expressing the single fluorescent fusion proteins. These results suggest that the ratio of IκBα and p65 determine the kinetics of transcription factor translocation into the nucleus and indicate that the complex of p65 and IκBα is the true substrate for TNFα stimulation in mammalian cells.
When cells were treated with the CRM-1-dependent nuclear export inhibitor,leptomycin B (LMB), there was nuclear accumulation of IκBα-EGFP and p65-dsRed, with IκBα-EGFP accumulating more rapidly. No NF-κB-dependent transcriptional activation was seen in response to LMB treatment. Following 1 hour treatment with LMB, significant IκBα-EGFP nuclear accumulation, but low levels of p65-dsRed nuclear accumulation, was observed. When these cells were stimulated with TNFα, degradation of IκBα-EGFP was observed in both the cytoplasm and nucleus. A normal transient transcription response was observed in the same cells using luminescence imaging of NF-κB-dependent transcription. These observations suggest that both normal activation and post-induction repression of NF-κB-dependent transcription occur even when nuclear export of NF-κB is inhibited. The results provide functional evidence that other factors, such as modification of p65 by phosphorylation, or interaction with other proteins such as transcriptional co-activators/co-repressors, may critically modulate the kinetics of transcription through this signalling pathway.
Collapse
Affiliation(s)
- Glyn Nelson
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Murphy P, Sharp A, Shin J, Gavrilyuk V, Dello Russo C, Weinberg G, Sharp FR, Lu A, Heneka MT, Feinstein DL. Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. J Neurosci Res 2002; 67:461-70. [PMID: 11835313 DOI: 10.1002/jnr.10139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The production of nitric oxide by the inflammatory isoform of nitric oxide synthase (NOS2) in brain glial cells is thought to contribute to the causes and development of neurological diseases and trauma. We previously demonstrated that activation of a heat shock response (HSR) by hyperthermia reduced NOS2 expression in vitro, and in vivo attenuated the clinical and histological symptoms of the demyelinating disease experimental autoimmune encephalomyelitis (EAE; Heneka et al. [2001] J. Neurochem. 77:568-579). Benzoquinoid ansamycins are fungal-derived antibiotics with tyrosine kinase inhibitory properties, and which also induce a HSR by allowing activation of HS transcription factor HSF1. We now show that two members of this class of drugs (geldanamycin and 17-allylamino-17-demethoxygeldanamycin) also induce a HSR in primary rat astrocytes and rat C6 glioma cells. Both drugs dose-dependently reduced nitrite accumulation, NOS2 steady-state mRNA levels, and the cytokine-dependent activation of a rat 2.2-kB NOS2 promoter construct stably expressed in C6 cells. These inhibitory effects were partially reversed by quercetin, a bioflavonoid which prevents HSF1 binding to DNA and thus attenuates the HSR. Ansamycins increased mRNA levels of the inhibitory IkappaBalpha protein, suggesting that inhibition of NFkappaB activation could contribute to their suppressive effects. Finally, in C57BL/6 mice actively immunized to develop EAE, a single injection of geldanamycin at 3 days after immunization reduced disease onset by over 50%. These results indicate that ansamycins can exert potent anti-inflammatory effects on brain glial cells which may provide therapeutic benefit in neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Antibiotics, Antineoplastic/pharmacology
- Astrocytes/drug effects
- Astrocytes/enzymology
- Benzoquinones
- DNA-Binding Proteins/genetics
- Dose-Response Relationship, Drug
- Encephalitis/drug therapy
- Encephalitis/enzymology
- Encephalitis/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- HSP70 Heat-Shock Proteins/drug effects
- HSP70 Heat-Shock Proteins/metabolism
- Heat-Shock Response/drug effects
- Heat-Shock Response/physiology
- I-kappa B Proteins
- Interferon-gamma/pharmacology
- Lactams, Macrocyclic
- Lipopolysaccharides/pharmacology
- NF-KappaB Inhibitor alpha
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Protein-Tyrosine Kinases/drug effects
- Protein-Tyrosine Kinases/metabolism
- Quercetin/pharmacology
- Quinones/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rifabutin/analogs & derivatives
- Rifabutin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Patricia Murphy
- Department of Anesthesiology, University of Illinois, 1819 West Polk Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Müller M, Morotti A, Ponzetto C. Activation of NF-kappaB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol 2002; 22:1060-72. [PMID: 11809798 PMCID: PMC134627 DOI: 10.1128/mcb.22.4.1060-1072.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, Met, regulate a number of biological functions in epithelial and nonepithelial cells, such as survival, motility, proliferation, and tubular morphogenesis. The transcription factor NF-kappaB is activated in response to a wide variety of stimuli, including growth factors, and is involved in biological responses in part overlapping with those triggered by HGF. In this work we used the liver-derived MLP29 cell line to study the possible involvement of NF-kappaB in HGF/Met signaling. HGF stimulates NF-kappaB DNA binding and transcriptional activation via the canonical IkappaB phosphorylation-degradation cycle and via the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase cascades. Phosphatidylinositol 3-kinase is not involved in Met-mediated NF-kappaB activation. Blockage of NF-kappaB activation in MLP29 cells by forced expression of the NF-kappaB super-repressor IkappaB(alpha)2A does not interfere with HGF-induced scatter but inhibits proliferation and tubulogenesis. Surprisingly, in the same cells NF-kappaB appears to be dispensable for the antiapoptotic function of HGF.
Collapse
Affiliation(s)
- Markus Müller
- Department of Anatomy and Pharmacology, University of Turin, 10126 Turin, Italy
| | | | | |
Collapse
|
174
|
Affiliation(s)
- Thomas Force
- From the Molecular Cardiology Research Institute, New England Medical Center and the Department of Medicine, Tufts University School of Medicine, Boston, Mass
| | - Syed Haq
- From the Molecular Cardiology Research Institute, New England Medical Center and the Department of Medicine, Tufts University School of Medicine, Boston, Mass
| | - Heiko Kilter
- From the Molecular Cardiology Research Institute, New England Medical Center and the Department of Medicine, Tufts University School of Medicine, Boston, Mass
| | - Ashour Michael
- From the Molecular Cardiology Research Institute, New England Medical Center and the Department of Medicine, Tufts University School of Medicine, Boston, Mass
| |
Collapse
|
175
|
Ferraris JD, Williams CK, Persaud P, Zhang Z, Chen Y, Burg MB. Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration. Proc Natl Acad Sci U S A 2002; 99:739-44. [PMID: 11792870 PMCID: PMC117375 DOI: 10.1073/pnas.241637298] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypertonicity-induced binding of the transcription factor TonEBP/OREBP to its cognate DNA element, ORE/TonE, is associated with increased transcription of several osmotically regulated genes. Previously, it was found that hypertonicity rapidly causes nuclear translocation and phosphorylation of TonEBP/OREBP and, more slowly, increases TonEBP/OREBP abundance. Also, the C terminus of TonEBP/OREBP was found to contain a transactivation domain (TAD). We have now tested for tonicity dependence of the TAD activity of the 983 C-terminal amino acids of TonEBP/OREBP. HepG2 cells were cotransfected with a reporter construct and one of several TAD expression vector constructs. The reporter construct contained GAL4 DNA binding elements, a minimal promoter, and the Photinus luciferase gene. TAD expression vectors generate chimeras comprised of the GAL4 DNA binding domain fused to (i) the 983 C-terminal amino acids of TonEBP/OREBP, (ii) 17 glutamine residues, (iii) the TAD of c-Jun, or (iv) no TAD. All TAD-containing chimeras were functional at normal extracellular osmolality (300 mosmol/kg), but the activity only of the chimera containing the 983 C-terminal amino acids of TonEBP/OREBP varied with extracellular NaCl concentration, decreasing by >80% at 200 mosmol/kg and increasing 8-fold at 500 mosmol/kg. The chimera containing the 983 C-terminal amino acids of TonEBP/OREBP was constitutively localized to the nucleus and showed tonicity-dependent posttranslational modification consistent with phosphorylation. The activity at 500 mosmol/kg was reduced by herbimycin, a tyrosine kinase inhibitor and by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, a protein kinase CK2 inhibitor. Thus, the 983 C-terminal amino acids of TonEBP/OREBP contain a TAD that is regulated osmotically, apparently by tonicity-dependent phosphorylation.
Collapse
Affiliation(s)
- Joan D Ferraris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
176
|
Haddad JJ, Land SC. Amiloride blockades lipopolysaccharide-induced proinflammatory cytokine biosynthesis in an IkappaB-alpha/NF-kappaB-dependent mechanism. Evidence for the amplification of an antiinflammatory pathway in the alveolar epithelium. Am J Respir Cell Mol Biol 2002; 26:114-26. [PMID: 11751211 DOI: 10.1165/ajrcmb.26.1.4657] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been previously reported that amiloride suppresses inflammatory cytokine biosynthesis. However, the molecular mechanism involved has yet to be ascertained. Therefore, the immunoregulatory potential mediated by amiloride and the underlying signaling transduction pathway was investigated. Exposure of alveolar epithelial cells to amiloride or its analog, 5-(N,N-hexamethylene)-amiloride (HMA), reduced, in a dose-dependent manner, lipopolysaccharide (LPS)-induced secretion of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. This inhibitory effect was associated with the augmentation of a counter antiinflammatory response, mediated by IL-6 and IL-10. Analysis of the mechanism implicated revealed the involvement of an inhibitory kappaB (IkappaB-alpha)/nuclear factor kappaB (NF- kappaB)-sensitive pathway. Amiloride and HMA suppressed the phosphorylation of IkappaB-alpha mediated by LPS, thereby allowing its cytosolic accumulation. Furthermore, both inhibitors interfered with the nuclear translocation of selective NF-kappaB subunits, an effect associated with blockading the DNA-binding activity of NF-kappaB. Recombinant IL-10 blockaded LPS-induced biosynthesis of IL-1beta and TNF-alpha and reduced NF-kappaB activation. Immunoneutralization of endogenous IL-10 reversed the inhibitory effect of amiloride on proinflammatory cytokines and restored the DNA-binding activity of NF-kappaB. These results indicate that amiloride acts as a novel dual immunoregulator in the alveolar epithelium: it downregulates an inflammatory signal and at the same time upregulates an antiinflammatory response. This biphasic effect is IL-10 sensitive and is associated with the selective targeting of the IkappaB-alpha/NF-kappaB signaling transduction pathway.
Collapse
Affiliation(s)
- John J Haddad
- Oxygen Signaling Group, Center for Research into Human Development, Tayside Institute of Child Health, Faculty of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom.
| | | |
Collapse
|
177
|
Abstract
The regulation of gene expression by transcription factors is fundamental to the phenotype of all cells. The activated phenotype of cells engaged in inflammatory processes is characterized by induced expression of a diverse set of genes, including cytokines, enzymes and cell adhesion molecules. A relatively small number of inducible transcription factors, particularly NF-kappaB, AP-1, NFATs and STATs, are responsible for the expression of a wide variety of inflammatory phenotypic characteristics and therefore play a central role in the pathogenesis of rheumatic diseases. Each of these transcription factors can be modified by existing anti-rheumatic and anti-inflammatory drugs, although adverse effects and limited efficacy remain problems. The future development of therapeutic agents with specificity for transcription factors, especially NF-kappaB, might lead to safer and more effective treatment.
Collapse
Affiliation(s)
- M L Handel
- Garvan Institute of Medical Research & University of New South Wales, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | |
Collapse
|
178
|
Abstract
The proteasome is an enzyme present in all cells, from yeast to human, and has a central role in the proteolytic degradation of the vast majority of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in controlling inflammatory processes, cell cycle regulation, and gene expression. As such, agents that inhibit the proteasome have been shown to be active in numerous animal models of inflammation and cancer Two proteasome inhibitors are under clinical evaluation. PS-519 is being studied for the treatment of reperfusion injury that occurs following cerebral ischemia and myocardial infarction. The other, PS-341, has recently entered multiple phase 2 clinical trials for the treatment of multiple myeloma, chronic lymphocytic leukemia, and a variety of solid tumors. The proteasome may have an important role in the evolution of HIV-related disorders including AIDS and inflammatory disorders. Therapeutic strategies using proteasome inhibitors for the treatment of these conditions have now entered preclinical development.
Collapse
Affiliation(s)
- P J Elliott
- Millennium Pharmaceuticals, Cambridge, MA, USA
| | | |
Collapse
|
179
|
Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 2001; 15:2321-42. [PMID: 11562344 DOI: 10.1101/gad.909001] [Citation(s) in RCA: 703] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N Silverman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
180
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|