151
|
Gorsuch PA, Sargeant AW, Penfield SD, Quick WP, Atkin OK. Systemic low temperature signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2010; 51:1488-1498. [PMID: 20813832 DOI: 10.1093/pcp/pcq112] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
When leaves are exposed to low temperature, sugars accumulate and transcription factors in the C-repeat binding factor (CBF) family are expressed, which, together with CBF-independent pathways, are known to contribute to the cold acclimation process and an increase in freezing tolerance. What is not known, however, is whether expression of these cold-regulated genes can be induced systemically in response to a localized cold treatment. To address this, pre-existing, mature leaves of warm-grown Arabidopsis thaliana were exposed to a localized cold treatment (near 10 °C) whilst conjoined newly developing leaves continued only to experience warmer temperatures. In initial experiments on wild-type A. thaliana (Col-0) using real-time reverse transcription--PCR (RT-PCR) we observed that some genes--including CBF genes, certain downstream cold-responsive (COR) targets and CBF-independent transcription factors--respond to a direct 9 °C treatment of whole plants. In subsequent experiments, we found that the treatment of expanded leaves with temperatures near 10 °C can induce cold-associated genes in conjoined warm-maintained tissues. CBF1 showed a particularly strong systemic response, although CBF-independent transcription factors also responded. Moreover, the localized cold treatment of A. thaliana (C24) plants with a luciferase reporter fused to the promoter region of KIN2 indicated that in warm-maintained leaves, KIN2 might respond to a systemic signal from remote, directly cold-treated leaves. Collectively, our study provides strong evidence that the processes involved in cold acclimation are partially mediated by a signal that acts systemically. This has the potential to act as an early-warning system to enable developing leaves to cope better with the cold environment in which they are growing.
Collapse
Affiliation(s)
- Peter A Gorsuch
- Department of Biology, University of York, PO Box 373, York YO105YW, UK
| | | | | | | | | |
Collapse
|
152
|
Atkinson LJ, Campbell CD, Zaragoza-Castells J, Hurry V, Atkin OK. Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01758.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
153
|
Gorsuch PA, Pandey S, Atkin OK. Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming? PLANT, CELL & ENVIRONMENT 2010; 33:1124-1137. [PMID: 20199622 DOI: 10.1111/j.1365-3040.2010.02134.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We quantified a broad range of Arabidopsis thaliana (Col-0) leaf phenotypes for initially warm-grown (25/20 degrees C day/night) plants that were exposed to cold (5 degrees C) for periods of a few hours to 45 d before being transferred back to the warm, where leaves were allowed to mature. This allowed us to address the following questions: (1) For how long do warm-grown plants have to experience cold before developing leaves become irreversibly cold acclimated? (2) To what extent is the de-acclimation process associated with changes in leaf anatomy and physiology? We show that leaves that experience cold for extended periods during early development exhibit little plasticity in either photosynthesis or respiration, and they do not revert to a warm-associated carbohydrate profile. The eventual expansion rate in the warm was inversely related to the duration of previous cold treatment. Moreover, cold exposure of immature/developing leaves for as little as 5 d resulted in irreversible changes in the morphology of leaves that subsequently matured in the warm, with 15 d cold being sufficient for a permanent alteration of leaf anatomy. Collectively, these results highlight the impact of transitory cold during early leaf development in determining the eventual phenotype of leaves that mature in the warm.
Collapse
Affiliation(s)
- Peter A Gorsuch
- Department of Biology, University of York, York YO10 5YW, UK
| | | | | |
Collapse
|
154
|
Khodorova NV, Miroslavov EA, Shavarda AL, Laberche JC, Boitel-Conti M. Bud development in corydalis (Corydalis bracteata) requires low temperature: a study of developmental and carbohydrate changes. ANNALS OF BOTANY 2010; 105:891-903. [PMID: 20382640 PMCID: PMC2876016 DOI: 10.1093/aob/mcq076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Spring geophytes require a period of low temperature for proper flower development but the mechanism that underlies the relationship between cold treatment and flowering remains unknown. The present study aims to compare the developmental anatomy and carbohydrate content of the tuberous geophyte Corydalis bracteata growing under natural winter conditions from 10 to -10 degrees C (field-grown) and under a mild temperature regime of 18 degrees C (indoor-grown plants). METHODS Samples were studied under light and electron microscopy. A histochemical test (periodic acid--Schiff's) was employed to identify starch in sectioned material. Sugars were analysed by capillary gas chromatography. Apoplastic wash fluid was prepared. KEY RESULTS Under natural conditions, shoots were elongated, and buds gained in dry mass and developed normally. For indoor-grown plants, these parameters were lower in value and, from December, a progressive necrosis of flower buds was observed. The tuber consisted of the new developing one, which was connected to the bud, and the old tuber with its starch reserve. Due to the absence of plasmodesmata between new and old tuber cells, sugar transport cannot be through the symplast. Thus, a potential apoplastic route is proposed from old tuber phloem parenchyma cells to the adjacent new tuber cells. Sugar content in buds during the autumn months (September-November) was lower for indoor-grown plants than control plants, whereas the sugar content in tubers during the same period was similar for plants from both temperature treatments. However, the amount of apoplastic sugars in tubers of field-grown plants was almost 15-fold higher than in indoor-grown tubers. CONCLUSIONS The results suggest that low temperature activates the apoplastic route of sugar transport in C. bracteata tubers and a consequent carbohydrate delivery to the bud. In the absence of cold treatment, the carbohydrate reserve is locked in old tuber cells so the nutrient supply to the buds is suppressed, possibly leading to bud abortion.
Collapse
Affiliation(s)
- Nadejda V. Khodorova
- Laboratory of Anatomy and Morphology
- Laboratory of Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street, 2, 197376, St-Petersburg, Russia
| | | | - Alexey L. Shavarda
- Unité de Recherche EA 3900 BioPI ‘Biologie des Plantes et contrôle des Insectes ravageurs’, UFR des Sciences, Ilot des Poulies, Jules Verne University of Picardie, 33 rue St-Leu, 80039, Amiens, France
| | - Jean-Claude Laberche
- Laboratory of Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street, 2, 197376, St-Petersburg, Russia
| | - Michèle Boitel-Conti
- Laboratory of Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street, 2, 197376, St-Petersburg, Russia
- For correspondence. E-mail
| |
Collapse
|
155
|
Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. PLANT MOLECULAR BIOLOGY 2010; 73:49-65. [PMID: 20191309 DOI: 10.1016/j.envexpbot.2014.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 01/22/2010] [Indexed: 05/24/2023]
Abstract
The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species' growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy development. Northern ecotypes of dogwood may be more tolerant to photoinhibition under the dormancy inducing LD/LT conditions compared to southern ecotypes. In this paper, we propose the existence of two separate, but temporally connected processes that contribute to dormancy development in some deciduous woody plant: one driven by photoperiod and influenced by moderate temperatures; the other driven by abiotic stresses, such as low temperature in combination with long photoperiods. The molecular changes corresponding to these two related but distinct responses to temperature during dormancy development in woody plants remains an investigative challenge.
Collapse
Affiliation(s)
- Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | | | | | | | | |
Collapse
|
156
|
Parent B, Turc O, Gibon Y, Stitt M, Tardieu F. Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2057-2069. [PMID: 20194927 DOI: 10.1093/jxb/erq003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Temperature fluctuates rapidly and affects all developmental and metabolic processes. This often obscures the effects of developmental trends or of other environmental conditions when temperature fluctuates naturally. A method is proposed for modelling temperature-compensated rates, based on the coordination of temperature responses of developmental processes. In a data set comprising 41 experiments in the greenhouse, growth chamber, or the field, the temperature responses in the range of 6-36 degrees C for different processes were compared in three species, maize, rice, and Arabidopsis thaliana. Germination, cell division, expansive growth rate, leaf initiation, and phenology showed coordinated temperature responses and followed common laws within each species. The activities of 10 enzymes involved in carbon metabolism exhibited monotonous exponential responses across the whole range 10-40 degrees C. Hence, the temperature dependence of developmental processes is not explained by a simple relationship to central metabolism. Temperature-compensated rates of development were calculated from the equations of response curve, by expressing rates per unit equivalent time at 20 degrees C. This resulted in stable rates when temperatures fluctuated over a large range (for which classical thermal time was inefficient), and in time courses of leaf development which were common to several experiments with different temperature scenarios.
Collapse
Affiliation(s)
- B Parent
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
| | | | | | | | | |
Collapse
|
157
|
Gorsuch PA, Pandey S, Atkin OK. Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. PLANT, CELL & ENVIRONMENT 2010; 33:244-58. [PMID: 19906148 DOI: 10.1111/j.1365-3040.2009.02074.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To predict the effects of temperature changes on plant growth and performance, it is crucial to understand the impact of thermal history on leaf morphology, anatomy and physiology. Here, we document a comprehensive range of leaf phenotypes in 25/20 degrees C-grown Arabidopsis thaliana plants that were shifted to 5 degrees C for up to 2 months. When warm-grown, pre-existing (PE) leaves were exposed to cold, leaf thickness increased due to an increase in mesophyll cell size. Leaves that were entirely cold-developed (CD) were twice as thick (eight cell layers) as their warm-developed (WD) counterparts (six layers), and also had higher epidermal and stomatal cell densities. After 4 d of cold, PE leaves accumulated high levels of total non-structural carbohydrates (TNC). However, glucose and starch levels declined thereafter, and after 45 d in the cold, PE leaves exhibited similar TNC to CD leaves. A similar phenomenon was observed in delta(13)C and a range of photosynthetic parameters. In cold-treated PE leaves, an increase in respiration (R(dark)) with cold exposure time was evident when measured at 25 degrees C but not 5 degrees C. Cold acclimation was associated with a large increase in the ratio of leaf R(dark) to photosynthesis. The data highlight the importance of understanding developmental thermal history in determining individual phenotypic traits.
Collapse
Affiliation(s)
- Peter A Gorsuch
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | | | |
Collapse
|
158
|
Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H. Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. PLANT CELL REPORTS 2009; 28:1709-15. [PMID: 19760270 DOI: 10.1007/s00299-009-0770-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/25/2009] [Accepted: 09/02/2009] [Indexed: 05/08/2023]
Abstract
Plants have their own mechanisms for overcoming various stresses. In cold regions, plants are subject to stress and must enter an inherent dormancy, through several complex mechanisms, if they are to continue to exist. In winter, regulation of tonoplast and plasma membrane aquaporin genes differed in the bud cushions of the high-chill peach (Prunus persica L. Batsch) cv. Kansuke Hakuto and the low-chill peach cv. Coral. In December and January, when the temperature was lowest (around 2 degrees C), the increased expression of Pp-gammaTIP1 and Pp-PIP1 seen in the bud cushions of Kansuke Hakuto may have been related to the concomitant high-soluble sugar content of the cushions of this cultivar. This relationship may have made the cells highly stable and relatively unaffected by low-temperature stress owing to the presence of "glasses" that prevented ice nucleation. However, a simpler form of cold protection regulation seemed to occur in Coral, in which there was no winter increase in Pp-gammaTIP1 and Pp-PIP1 mRNA and a slow decline in total soluble sugar content in December and January. These results suggested that Pp-gammaTIP1 and Pp-PIP1, respectively, play important roles in intra- and intercellular membrane transport, enhancing cold resistance in the bud cushions of high-chill cultivars. In addition, Pp-deltaTIP1 and Pp-PIP2 mRNA increased at the end of endodormancy in both cultivars. This change may be induced by endodormancy-release signals and the resumption of bud activity in both cultivars.
Collapse
|
159
|
Mao L, Van Hemert JL, Dash S, Dickerson JA. Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 2009; 10:346. [PMID: 19845953 PMCID: PMC2772859 DOI: 10.1186/1471-2105-10-346] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 10/21/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated. RESULTS We constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively. CONCLUSION This study reveals new insight into the topological properties of biological networks. The preferential hub-hub connections might be necessary for the formation of modular structure in gene co-expression networks. The study also reveals new insight into the organization of gene functional modules.
Collapse
Affiliation(s)
- Linyong Mao
- Virtual Reality Applications Center, Iowa State University, Ames, IA 50010, USA.
| | | | | | | |
Collapse
|
160
|
Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:550-61. [PMID: 19508276 DOI: 10.1111/j.1467-7652.2009.00423.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Low temperature is a major environmental stress for plants. Many important cultivated crops have limited capacity to survive below freezing/subfreezing temperatures. Low inorganic phosphate (Pi) is reportedly important in triggering cold acclimatization. SPX (SYG1/Pho81/XPR1: SYG1, suppressor of yeast gpal; Pho81, CDK inhibitor in yeast PHO pathway; XPR1, xenotropic and polytropic retrovirus receptor) domain proteins have been shown to be involved in the phosphate-related signal transduction and regulation pathways. Recently, Arabidopsis AtSPX family genes have been found to possess diverse functions in plant tolerance to phosphorus starvation, and OsSPX1 is involved in phosphate homeostasis in rice and optimizes growth under phosphate-limited conditions through a negative feedback loop. In this study, our phylogenetic and gene expression profiling approaches identified six rice OsSPX genes up-regulated during cold stress. Transgenic tobacco plants with constitutive expression of OsSPX1 were more tolerant to cold stress than were wild-type plants, and showed better seedling survival and reduced cellular electrolyte leakage. In addition, there was decreased total leaf Pi content and accumulation of free proline and sucrose in transgenic tobacco plants during cold stress. To further establish a cause-and-effect relationship between intracellular Pi level and cold acclimatization in transgenic plants, we generated transgenic Arabidopsis plants with constitutive expression of OsSPX1. Cold stress resulted in reduced leaf Pi levels in Arabidopsis transgenic relative to wild-type plants. From real-time reverse transcriptase-polymerase chain reaction analysis, several Pi starvation-related genes, such as AtSPX1 (orthologue of OsSPX1), PHO2, PLDZ2 and ATSIZ1, showed differential expression between wild-type and transgenic plants during cold stress. Our results indicate that OsSPX1 may play an important role in linking cold stress and Pi starvation signal transduction pathways.
Collapse
Affiliation(s)
- Linna Zhao
- State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE. Soluble sugars--metabolism, sensing and abiotic stress: a complex network in the life of plants. PLANT SIGNALING & BEHAVIOR 2009; 4:388-93. [PMID: 19816104 PMCID: PMC2676748 DOI: 10.4161/psb.4.5.8294] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/26/2009] [Indexed: 05/18/2023]
Abstract
Plants are autotrophic and photosynthetic organisms that both produce and consume sugars. Soluble sugars are highly sensitive to environmental stresses, which act on the supply of carbohydrates from source organs to sink ones. Sucrose and hexoses both play dual functions in gene regulation as exemplified by the upregulation of growth-related genes and downregulation of stress-related genes. Although coordinately regulated by sugars, these growth- and stress-related genes are upregulated or downregulated through HXK-dependent and/or HXK-independent pathways. Sucrose-non-fermenting-1- (SNF1-) related protein pathway, analogue to the protein kinase (SNF-) yeast-signalling pathway, seems also involved in sugar sensing and transduction in plants. However, even if plants share with yeast some elements involved in sugar sensing, several aspects of sugar perception are likely to be peculiar to higher plants. In this paper, we have reviewed recent evidences how plants sense and respond to environmental factors through sugar-sensing mechanisms. However, we think that forward and reverse genetic analysis in combination with expression profiling must be continued to uncover many signalling components, and a full biochemical characterization of the signalling complexes will be required to determine specificity and cross-talk in abiotic stress signalling pathways.
Collapse
Affiliation(s)
- Mariana Rosa
- Facultad de Ciencias Naturales e IML, Tucumán, Argentina
| | | | | | | | | | | | | |
Collapse
|
162
|
Lundmark M, Hurry V, Lapointe L. Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2203-13. [PMID: 19403850 PMCID: PMC2682509 DOI: 10.1093/jxb/erp103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In Crocus vernus, a spring bulbous species, prolonged growth at low temperatures results in the development of larger perennial organs and delayed foliar senescence. Because corm growth is known to stop before the first visual sign of leaf senescence, it is clear that factors other than leaf duration alone determine final corm size. The aim of this study was to determine whether reduced growth at higher temperatures was due to decreased carbon import to the corm or to changes in the partitioning of this carbon once it had reached the corm. Plants were grown under two temperature regimes and the amount of carbon fixed, transported, and converted into a storable form in the corm, as well as the partitioning into soluble carbohydrates, starch, and the cell wall, were monitored during the growth cycle. The reduced growth at higher temperature could not be explained by a restriction in carbon supply or by a reduced ability to convert the carbon into starch. However, under the higher temperature regime, the plant allocated more carbon to cell wall material, and the amount of glucose within the corm declined earlier in the season. Hexose to sucrose ratios might control the duration of corm growth in C. vernus by influencing the timing of the cell division, elongation, and maturation phases. It is suggested that it is this shift in carbon partitioning, not limited carbon supply or leaf duration, which is responsible for the smaller final biomass of the corm at higher temperatures.
Collapse
Affiliation(s)
- Maria Lundmark
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87, Umeå Sweden
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87, Umeå Sweden
| | - Line Lapointe
- Département de biologie and Centre d’étude de la forêt, Université Laval, Québec City, Québec, Canada G1V 0A6
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
163
|
|
164
|
Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3595-609. [PMID: 19553368 DOI: 10.1093/jxb/erp205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Festuca pratensis (meadow fescue) as the most frost-tolerant species within the Lolium-Festuca complex was used as a model for research aimed at identifying the cellular components involved in the cold acclimation (CA) of forage grasses. The work presented here also comprises the first comprehensive proteomic research on CA in a group of monocotyledonous species which are able to withstand winter conditions. Individual F. pratensis plants with contrasting levels of frost tolerance, high frost tolerant (HFT) and low frost tolerant (LFT) plants, were selected for comparative proteomic research. The work focused on the analysis of leaf protein accumulation before and after 2, 8, and 26 h, and 3, 5, 7, 14, and 21 d of CA, using high-throughput two-dimensional electrophoresis, and on the identification of proteins which were accumulated differentially between the selected plants by the application of mass spectrometry. The analyses of approximately 800 protein profiles revealed a total of 41 (5.1%) proteins that showed a minimum of a 1.5-fold difference in abundance, at a minimum of one time point of CA for HFT and LFT genotypes. It was shown that significant differences in profiles of protein accumulation between the analysed plants appeared relatively early during cold acclimation, most often after 26 h (on the 2nd day) of CA and one-half of the differentially accumulated proteins were all parts of the photosynthetic apparatus. Several proteins identified here have been reported to be differentially accumulated during cold conditions for the first time in this paper. The functions of the selected proteins in plant cells and their probable influence on the level of frost tolerance in F. pratensis, are discussed.
Collapse
Affiliation(s)
- Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| | | | | | | | | |
Collapse
|
165
|
Okawa K, Nakayama K, Kakizaki T, Yamashita T, Inaba T. Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. PLANT, CELL & ENVIRONMENT 2008; 31:1470-83. [PMID: 18643950 DOI: 10.1111/j.1365-3040.2008.01854.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plastids are surrounded by two membrane layers, the outer and inner envelope membranes, which have various transport and metabolic activities. A number of envelope membrane proteins have been identified by biochemical approaches and have been assigned to specific functions. Despite those efforts, the chloroplast envelope membrane is expected to contain a number of as yet unidentified proteins that may affect specific aspects of plant growth and development. In this report, we identify and characterize a novel class of inner envelope membrane proteins, designated as Cor413 chloroplast inner envelope membrane group (Cor413im). Both in vivo and in vitro studies indicate that Cor413im proteins are targeted to the chloroplast envelope. Biochemical analyses of Cor413im1 demonstrate that it is an integral membrane protein in the inner envelope of chloroplasts. Quantitative real-time PCR analysis reveals that COR413IM1 is more abundant than COR413IM2 in cold-acclimated Arabidopsis leaves. The analyses of T-DNA insertion mutants indicate that a single copy of COR413IM genes is sufficient to provide normal freezing tolerance to Arabidopsis. Based on these data, we propose that Cor413im proteins are novel components that are targeted to the chloroplast inner envelope in response to low temperature.
Collapse
Affiliation(s)
- Kumiko Okawa
- The 21st Century Centers of Excellence Program, Cryobiofrontier Research Center, IwateUniversity, Morioka 020-8550, Japan
| | | | | | | | | |
Collapse
|
166
|
Ivanov AG, Sane PV, Hurry V, Oquist G, Huner NPA. Photosystem II reaction centre quenching: mechanisms and physiological role. PHOTOSYNTHESIS RESEARCH 2008; 98:565-74. [PMID: 18821028 DOI: 10.1007/s11120-008-9365-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 09/01/2008] [Indexed: 05/03/2023]
Abstract
Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and DeltapH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced Q(A) in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology and The Biotron, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
167
|
Robinson SJ, Parkin IAP. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 2008; 9:434. [PMID: 18808718 PMCID: PMC2568001 DOI: 10.1186/1471-2164-9-434] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022] Open
Abstract
Background Abiotic stress, including low temperature, limits the productivity and geographical distribution of plants, which has led to significant interest in understanding the complex processes that allow plants to adapt to such stresses. The wide range of physiological, biochemical and molecular changes that occur in plants exposed to low temperature require a robust global approach to studying the response. We have employed Serial Analysis of Gene Expression (SAGE) to uncover changes in the transcriptome of Arabidopsis thaliana over a time course of low temperature stress. Results Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Interpretation of these data was facilitated by representing the SAGE data by gene identifier, allowing more robust statistical analysis, cross-platform comparisons and the identification of genes sharing common expression profiles. Simultaneous statistical calculations across all five libraries identified 920 low temperature responsive genes, only 24% of which overlapped with previous global expression analysis performed using microarrays, although similar functional categories were affected. Clustering of the differentially regulated genes facilitated the identification of novel loci correlated with the development of freezing tolerance. Analysis of their promoter sequences revealed subsets of genes that were independent of CBF and ABA regulation and could provide a mechanism for elucidating complementary signalling pathways. The SAGE data emphasised the complexity of the plant response, with alternate pre-mRNA processing events increasing at low temperatures and antisense transcription being repressed. Conclusion Alternate transcript processing appears to play an important role in enhancing the plasticity of the stress induced transcriptome. Novel genes and cis-acting sequences have been identified as compelling targets to allow manipulation of the plant's ability to protect against low temperature stress. The analyses performed provide a contextual framework for the interpretation of quantitative sequence tag based transcriptome analysis which will prevail with the application of next generation sequencing technology.
Collapse
Affiliation(s)
- Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | | |
Collapse
|
168
|
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. THE PLANT CELL 2008; 20:2117-29. [PMID: 18757556 PMCID: PMC2553604 DOI: 10.1105/tpc.108.058941] [Citation(s) in RCA: 478] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 08/01/2008] [Accepted: 08/09/2008] [Indexed: 05/17/2023]
Abstract
Plants have evolved robust mechanisms to respond and adapt to unfavorable environmental conditions, such as low temperature. The C-repeat/drought-responsive element binding factor CBF1/DREB1b gene encodes a transcriptional activator transiently induced by cold that controls the expression of a set of genes responding to low temperature (the CBF regulon). Constitutive expression of CBF1 confers freezing tolerance but also slows growth. Here, we propose that low temperature-induced CBF1 expression restrains growth at least in part by allowing the accumulation of DELLAs, a family of nuclear growth-repressing proteins, the degradation of which is stimulated by gibberellin (GA). We show that cold/CBF1 enhances the accumulation of a green fluorescent protein (GFP)-tagged DELLA protein (GFP-RGA) by reducing GA content through stimulating expression of GA-inactivating GA 2-oxidase genes. Accordingly, transgenic plants that constitutively express CBF1 accumulate less bioactive GA and as a consequence exhibit dwarfism and late flowering. Both phenotypes are suppressed when CBF1 is expressed in a line lacking two DELLA proteins, GA-INSENSITIVE and REPRESSOR OF GA1-3. In addition, we show that DELLAs contribute significantly to CBF1-induced cold acclimation and freezing tolerance by a mechanism that is distinct from the CBF regulon. We conclude that DELLAs are components of the CBF1-mediated cold stress response.
Collapse
Affiliation(s)
- Patrick Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventioné avec l'Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
169
|
Usadel B, Bläsing OE, Gibon Y, Poree F, Höhne M, Günter M, Trethewey R, Kamlage B, Poorter H, Stitt M. Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. PLANT, CELL & ENVIRONMENT 2008; 31:518-47. [PMID: 18088337 DOI: 10.1111/j.1365-3040.2007.01763.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper characterizes the transcriptional and metabolic response of a chilling-tolerant species to an increasingly large decrease of the temperature. Arabidopsis Col-0 was grown at 20 degrees C and transferred to 17, 14, 12, 10 or 8 degrees C for 6 and 78 h, before harvesting the rosette and profiling >22 000 transcripts, >20 enzyme activities and >80 metabolites. Most parameters showed a qualitatively similar response across the entire temperature range, with the amplitude increasing as the temperature decreased. Transcripts typically showed large changes after 6 h, which were often damped by 78 h. Genes were induced for sucrose, proline, raffinose, tocopherol and polyamine synthesis, phenylpropanoid and flavonoid metabolism, fermentation, non-phosphorylating mitochondrial electron transport, RNA processing, and protein synthesis, targeting and folding. Genes were repressed for carbonic anhydrases, vacuolar invertase, and ethylene and jasmonic acid signalling. While some enzyme activities and metabolites changed rapidly, most changed slowly. After 6 h, there was an accumulation of phosphorylated intermediates, a shift of partitioning towards sucrose, and a perturbation of glycine decarboxylation and nitrogen metabolism. By 78 h, there was an increase of the overall protein content and many enzyme activities, a general increase of carbohydrates, organic and amino acids, and an increase of many stress-responsive metabolites including raffinose, proline, tocopherol and polyamines. When the responses of transcripts and metabolism were compared, there was little agreement after 6 h, but considerable agreement after 78 h. Comparison with the published studies indicated that much, but not all, of the response was orchestrated by the CBF programme. Overall, our results showed that transcription and metabolism responded in a continuous manner across a wide range of temperatures. The general increase of enzyme activities and metabolites emphasized the positive and compensatory nature of this response.
Collapse
Affiliation(s)
- Björn Usadel
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Golm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Ow LF, Griffin KL, Whitehead D, Walcroft AS, Turnbull MH. Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides x nigra. THE NEW PHYTOLOGIST 2008; 178:123-134. [PMID: 18221247 DOI: 10.1111/j.1469-8137.2007.02357.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dark respiration and photosynthesis were measured in leaves of poplar Populus deltoides x nigra ('Veronese') saplings to investigate the extent of respiratory and photosynthetic acclimation in pre-existing and newly emerged leaves to abrupt changes in air temperature. The saplings were grown at three temperature regimes and at high and low nitrogen availabilities. Rates of photosynthesis and dark respiration (R(d)) were measured at the initial temperature and the saplings were then transferred to a different temperature regime, where the plants remained for a second and third round of measurements on pre-existing and newly emerged leaves. Acclimation of photosynthesis was limited following transfer to warmer or cooler growing conditions. There was strong evidence of cold and warm acclimation of R(d) to growth temperature, but this was limited in pre-existing leaves. Full acclimation of R(d )was restricted to newly emerged leaves grown at the new growth temperature. These findings indicate that the extent of thermal acclimation differs significantly between photosynthesis and respiration. Importantly, pre-existing leaves in poplar were capable of some respiratory acclimation, but full acclimation was observed only in newly emerged leaves. The R(d)/A(max) ratio declined at higher growth temperatures, and nitrogen status of leaves had little impact on the degree of acclimation.
Collapse
Affiliation(s)
- Lai Fern Ow
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-8000, USA
| | | | - Adrian S Walcroft
- Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
171
|
Davey MP, Burrell MM, Woodward FI, Quick WP. Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. THE NEW PHYTOLOGIST 2008; 177:380-388. [PMID: 18028292 DOI: 10.1111/j.1469-8137.2007.02282.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. Here, it was investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes within the plant foliage. Seeds of A. petraea were obtained from populations along a latitudinal gradient (49-64 N), namely Germany, Wales, Sweden and Iceland and grown in a controlled cabinet environment. Targeted metabolic profiles and fingerprints were obtained at the same initial developmental stage. The free amino acid compositions were population specific, with fold differences in arginine, aspartic acid, asparagines, glycine, phenylalanine, alanine, threonine, histidine, serine and gamma-aminobutyric acid (GABA) concentrations. Sucrose, mannose and fructose concentrations were also different between populations but polyhydric alcohol concentrations were not. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic phenotypes for each population. It is suggested that glucosinolates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations. These findings show that there is significant natural variation in metabolism among populations of A. petraea.
Collapse
Affiliation(s)
- Matthew P Davey
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - Mike M Burrell
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - F Ian Woodward
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - W Paul Quick
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| |
Collapse
|
172
|
Photoprotection of Photosystem II: Reaction Center Quenching Versus Antenna Quenching. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
173
|
Cao A, Jain A, Baldwin JC, Raghothama KG. Phosphate differentially regulates 14-3-3 family members and GRF9 plays a role in Pi-starvation induced responses. PLANTA 2007; 226:1219-30. [PMID: 17598127 DOI: 10.1007/s00425-007-0569-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/31/2007] [Indexed: 05/08/2023]
Abstract
The 14-3-3s are phosphoserine-binding proteins that act as key regulators of many metabolic pathways. Several biotic and abiotic stresses have been shown to modulate the expression of 14-3-3 genes. In Arabidopsis thaliana, 15 genes are known to code for 14-3-3 isoforms belonging to epsilon and non-epsilon groups. Since phosphorus is one of the essential macronutrients for plants, we examined its role in the regulation of the expression of 14-3-3 isoforms belonging to epsilon (GRF9, GRF10, GRF11, GRF13) and non-epsilon (GRF1, GRF3, GRF6, GRF8) groups. The effect of Pi deprivation was differential on the members of non-epsilon group ranging from a significant reduction in the transcripts of GRF3 to non-perceptible changes in the transcripts of other members. Suppressive effect of Pi-deficiency was more pronounced on some of the members of epsilon group with transcripts levels of GRF9 and GRF13 barely detectable. A concurrent increase in the transcript levels of GRF9 with an increase in the Pi concentration suggested a correlation between gene expression and Pi availability. However, neither Pi deficiency at low temperature nor Fe and K deficiency failed to suppress GRF9 expression. In planta role of GRF9 was elucidated by the analysis of the loss-of-function mutant under Pi-replete condition. The analyses revealed exaggerated Pi-starvation responses in the form of starch accumulation in the leaves and modulated root system architecture (RSA). An inverse relationship between the abundance of GRF9 transcripts and accumulation of starch in transgenic lines over-expressing this gene provided further evidence towards the role of GRF9 in modulation of metabolic pathways during Pi-starvation responses.
Collapse
Affiliation(s)
- Aiqin Cao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA
| | | | | | | |
Collapse
|
174
|
Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:967-81. [PMID: 17461790 DOI: 10.1111/j.1365-313x.2007.03100.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exposure of Arabidopsis to low temperatures results in cold acclimation where freezing tolerance is enhanced. To achieve a wider view of the role of transcriptome to biochemical changes that occur during cold acclimation, analyses of concurrent transcript and metabolite changes during cold acclimation was performed revealing the dynamics of selected gene-metabolite relationships. Exposure to low temperature resulted in broad transcriptional and metabolite responses. Principal component analysis revealed sequentially progressive, global changes in both gene expression and metabolite profiles during cold acclimation. Changes in transcript abundance for many metabolic processes, including protein amino acid biosynthetic pathways and soluble carbohydrates, during cold acclimation were observed. For some metabolic processes, changes in transcript abundance temporally correlated with changes in metabolite levels. For other metabolic processes, changes in transcript levels were not correlated with changes in metabolite levels. The present findings demonstrate that regulatory processes independent of transcript abundance represent a key part of the metabolic adjustments that occur during cold acclimation.
Collapse
Affiliation(s)
- Fatma Kaplan
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Limin A, Corey A, Hayes P, Fowler DB. Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. PLANTA 2007; 226:139-46. [PMID: 17245568 DOI: 10.1007/s00425-006-0475-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 12/29/2006] [Accepted: 12/29/2006] [Indexed: 05/03/2023]
Abstract
Six barley (Hordeum vulgare L.) accessions, previously used as parents of mapping populations, were evaluated for characters potentially affecting the location of low-temperature (LT) tolerance QTLs. Three were of winter growth habit (Kompolti Korai, Nure, and Strider), one was facultative (Dicktoo) and two were spring (Morex and Tremois). Final leaf number (FLN) and LT(50 )were determined at weekly intervals from 0 to 98 days of LT acclimation/vernalization under both long day (LD) and short day (SD) photoperiods. The point of vegetative/reproductive transition was determined from measurements of double ridge (DR) formation and FLN. With the exception of Nure, SD delayed development by increasing leaf production. Dicktoo was extremely SD sensitive lengthening its vegetative phase by more than 63 days relative to the LD photoperiod. SD had the opposite effect on Nure, causing an accelerating of flowering exhibiting the characteristic of 'short day vernalization'. All accessions except Dicktoo and Kompolti Korai acclimated rapidly in the first 7 days of LT exposure, approaching their maximum LT tolerance in 14-21 days. Dicktoo and Kompolti Korai continued to slowly acclimate until reproductive transition. The results emphasize two important points: (1) the location of QTLs for LT tolerance, and as a consequence the identification of putative candidate genes, will be a function of the genotypes sampled, the experimental conditions used, and the quality of the phenotypic data and (2) the barley LT tolerance pathway reaches an early impediment relative to closely related more hardy members of the Triticeae such as wheat and rye.
Collapse
Affiliation(s)
- Allen Limin
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | | | | | | |
Collapse
|
176
|
Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:290-5. [PMID: 17468037 DOI: 10.1016/j.pbi.2007.04.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Temperate plants are capable of developing freezing tolerance when they are exposed to low nonfreezing temperatures. Acquired freezing tolerance involves extensive reprogramming of gene expression and metabolism. Recent full-genome transcript profiling studies, in combination with mutational and transgenic plant analyses, have provided a snapshot of the complex transcriptional network that operates under cold stress. Ubiquitination-mediated proteosomal protein degradation has a crucial role in regulating one of the upstream transcription factors, INDUCER OF CBF EXPRESSION 1 (ICE1), and thus in controlling the cold-responsive transcriptome. The changes in expression of hundreds of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Genetic analysis has revealed important roles for cellular metabolic signals, and for RNA splicing, export and secondary structure unwinding, in regulating cold-responsive gene expression and chilling and freezing tolerance.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Botany and Plant Sciences, 2150 Batchelor Hall, University of California-Riverside, California 92521, USA
| | | | | |
Collapse
|
177
|
Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP. Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:557-73. [PMID: 17419838 DOI: 10.1111/j.1365-313x.2007.03077.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have performed transcript and metabolite profiling of isolated cambial meristem cells of the model tree aspen during the course of their activity-dormancy cycle to better understand the environmental and hormonal regulation of this process in perennial plants. Considerable modulation of cambial transcriptome and metabolome occurs throughout the activity-dormancy cycle. However, in addition to transcription, post-transcriptional control is also an important regulatory mechanism as exemplified by the regulation of cell-cycle genes during the reactivation of cambial cell division in the spring. Genes related to cold hardiness display temporally distinct induction patterns in the autumn which could explain the step-wise development of cold hardiness. Factors other than low temperature regulate the induction of early cold hardiness-related genes whereas abscisic acid (ABA) could potentially regulate the induction of late cold hardiness-related genes in the autumn. Starch breakdown in the autumn appears to be regulated by the 'short day' signal and plays a key role in providing substrates for the production of energy, fatty acids and cryoprotectants. Catabolism of sucrose and fats provides energy during the early stages of reactivation in the spring, whereas the reducing equivalents are generated through activation of the pentose phosphate shunt. Modulation of gibberellin (GA) signaling and biosynthesis could play a key role in the regulation of cambial activity during the activity-dormancy cycle as suggested by the induction of PttRGA which encodes a negative regulator of growth in the autumn and that of a GA-20 oxidase, a key gibberellin biosynthesis gene during reactivation in spring. In summary, our data reveal the dynamics of transcriptional and metabolic networks and identify potential targets of environmental and hormonal signals in the regulation of the activity-dormancy cycle in cambial meristem.
Collapse
Affiliation(s)
- Nathalie Druart
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, The Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T. Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. PLANT PHYSIOLOGY 2007; 144:513-23. [PMID: 17384167 PMCID: PMC1913801 DOI: 10.1104/pp.106.094581] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many plants acquire increased freezing tolerance when they are exposed to nonfreezing temperatures of a certain duration. This process is known as cold acclimation and allows plants to protect themselves from freezing injury. A wide variety of polypeptides are induced during cold acclimation, among which is one encoded by COR15A in Arabidopsis (Arabidopsis thaliana). Previous studies showed that the COR15A gene encodes a small, plastid-targeted polypeptide that is processed to a mature form called Cor15am. In this study, we examined the biochemical properties and activities of Cor15am in more detail. We provide evidence that Cor15am localizes almost exclusively to the chloroplast stroma. In addition, the cold-regulated accumulation of Cor15am is affected by chloroplast functionality. Both gel-filtration chromatography and protein cross-linking reveal that Cor15am forms oligomers in the stroma of chloroplasts. Although Cor15am accumulates in response to low temperature, cold acclimation is not a prerequisite for oligomerization of Cor15am. Structural analysis suggests that Cor15am is composed of both ordered and random structures, and can stay soluble with small structural change after boiling and freeze-thaw treatments. Recombinant Cor15am exhibits in vitro cryoprotection of a freeze-labile enzyme, l-lactate dehydrogenase. Furthermore, Cor15am is capable of associating with l-lactate dehydrogenase in vitro and with potential stromal substrates in vivo. On the basis of these results, we propose that Arabidopsis Cor15am is a cryoprotective protein that forms oligomers in the chloroplast stroma, and that direct association of Cor15am with its substrates is part of its cryoprotective mechanism.
Collapse
Affiliation(s)
- Katsuhiro Nakayama
- The 21st Century Centers of Excellence Program, Cryobiosystem Research Center, Iwate University, Morioka 020-8550, Japan
| | | | | | | | | | | |
Collapse
|
179
|
Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. PLANT, CELL & ENVIRONMENT 2007; 30:85-112. [PMID: 17177879 DOI: 10.1111/j.1365-3040.2006.01608.x] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Affymetrix ATH1 arrays, large-scale real-time reverse transcription PCR of approximately 2200 transcription factor genes and other gene families, and analyses of metabolites and enzyme activities were used to investigate the response of Arabidopsis to phosphate (Pi) deprivation and re-supply. Transcript data were analysed with MapMan software to identify coordinated, system-wide changes in metabolism and other cellular processes. Phosphorus (P) deprivation led to induction or repression of > 1000 genes involved in many processes. A subset, including the induction of genes involved in P uptake, the mobilization of organic Pi, the conversion of phosphorylated glycolytic intermediates to carbohydrates and organic acids, the replacement of P-containing phospholipids with galactolipids and the repression of genes involved in nucleotide/nucleic acid synthesis, was reversed within 3 h after Pi re-supply. Analyses of 22 enzyme activities revealed that changes in transcript levels often, but not always, led to changes in the activities of the encoded enzymes in P-deprived plants. Analyses of metabolites confirmed that P deprivation leads to a shift towards the accumulation of carbohydrates, organic acids and amino acids, and that Pi re-supply leads to use of the latter. P-deprived plants also showed large changes in the expression of many genes involved in, for example, secondary metabolism and photosynthesis. These changes were not reversed rapidly upon Pi re-supply and were probably secondary in origin. Differentially expressed and highly P-specific putative regulator genes were identified that presumably play central roles in coordinating the complex responses of plants to changes in P nutrition. The specific responses to Pi differ markedly from those found for nitrate, whereas the long-term responses during P and N deprivation share common and non-specific features.
Collapse
Affiliation(s)
- Rosa Morcuende
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, 14476 Potsdam, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. THE NEW PHYTOLOGIST 2007; 176:375-389. [PMID: 17692077 DOI: 10.1111/j.1469-8137.2007.02183.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28 degrees C). When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups. Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle. Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.
Collapse
Affiliation(s)
- Catherine Campbell
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
- Department of Biology (Area 2), The University of York, PO Box 373, York YO10 5YW, UK
| | - Lindsey Atkinson
- Department of Biology (Area 2), The University of York, PO Box 373, York YO10 5YW, UK
| | | | - Maria Lundmark
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Owen Atkin
- Department of Biology (Area 2), The University of York, PO Box 373, York YO10 5YW, UK
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
181
|
Atkinson LJ, Hellicar MA, Fitter AH, Atkin OK. Impact of temperature on the relationship between respiration and nitrogen concentration in roots: an analysis of scaling relationships, Q10 values and thermal acclimation ratios. THE NEW PHYTOLOGIST 2007; 173:110-20. [PMID: 17176398 DOI: 10.1111/j.1469-8137.2006.01891.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
* The impact of nitrogen (N) supply on the temperature response of root respiratory O(2) uptake (R) was assessed in several herbaceous species grown in solution culture. Warm-grown (25 : 20 degrees C, day:night) plants differing in root N concentration were shifted to 13 : 8 degrees C for 7 d to cold-acclimate. * Log-log plots of root R vs root N concentration both showed that R increased with increasing tissue N concentration, irrespective of the growth temperature. Although the regression slopes of the log-log plots did not differ between the warm-grown and cold-acclimated plants, cold-acclimated plants did exhibit a higher y-axis intercept than their warm-grown counterparts. This suggests that cold acclimation of root R is not entirely dependent on cold-induced increases in tissue N concentration and that scaling relationships (i.e. regression equations fitted to the log-log plots) between root R and N concentration are not fixed. * No systematic differences were found in the short-term Q(10) (proportional change in R per 10 degrees C change in temperature), or degree of cold acclimation (as measured by the proportional difference between warm- and cold-acclimated roots) among roots differing in root N concentration. The temperature response of root R is therefore insensitive to tissue N concentration. * The insensitivity of Q(10) values and acclimation to tissue N concentration raises the possibility that root R and its temperature sensitivity can be predicted for a range of N supply scenarios.
Collapse
Affiliation(s)
- Lindsey J Atkinson
- Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK
| | | | | | | |
Collapse
|
182
|
Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:720-34. [PMID: 16923014 DOI: 10.1111/j.1365-313x.2006.02821.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5 degrees C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.
Collapse
Affiliation(s)
- Estelle Goulas
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
183
|
Wilson KE, Ivanov AG, Öquist G, Grodzinski B, Sarhan F, Huner NP. Energy balance, organellar redox status, and acclimation to environmental stress. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-098] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In plants and algal cells, changes in light intensity can induce intrachloroplastic and retrograde regulation of gene expression in response to changes in the plastoquinone redox status. We review the evidence in support of the thesis that the chloroplast acts as a general sensor of cellular energy imbalance sensed through the plastoquinone pool. Alteration in cellular energy balance caused by chloroplast or mitochondrial metabolism can induce intracellular signalling to affect chloroplastic and nuclear gene expression in response, not only to light intensity, but to a myriad of abiotic stresses. In addition, this chloroplastic redox sensing also appears to have a broader impact, affecting long-distance systemic signalling related to plant growth and development. The organization of the respiratory electron transport chains of mitochondria and heterotrophic prokaryotes is comparable to that of chloroplast thylakoid membranes, and the redox state of the respiratory ubiquinone pool is a well-documented cellular energy sensor. Thus, modulation of electron transport component redox status by abiotic stress regulates organellar as well as nuclear gene expression. From the evidence presented, we suggest that the photosynthetic and respiratory machinery in prokaryotic and eukaryotic organisms have a dual function: primary cellular energy transformation, and global environmental sensing.
Collapse
Affiliation(s)
- Kenneth E. Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Alexander G. Ivanov
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Gunnar Öquist
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Bernard Grodzinski
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Fathey Sarhan
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Norman P.A. Huner
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
184
|
Lundmark M, Cavaco AM, Trevanion S, Hurry V. Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters. PLANT, CELL & ENVIRONMENT 2006; 29:1703-14. [PMID: 16913860 DOI: 10.1111/j.1365-3040.2006.01543.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 3 and 10 d with new leaves that developed at 5 degrees C with control leaves on plants at 23 degrees C. At 23 degrees C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 degrees C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.
Collapse
Affiliation(s)
- Maria Lundmark
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
185
|
Malone JG, Mittova V, Ratcliffe RG, Kruger NJ. The Response of Carbohydrate Metabolism in Potato Tubers to Low Temperature. ACTA ACUST UNITED AC 2006; 47:1309-22. [PMID: 16936336 DOI: 10.1093/pcp/pcj101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work investigates the possible causes of cold-induced sweetening in potato by examining the impact of low temperature on carbohydrate metabolism in mature tubers. Metabolism in tuber discs was monitored by determining the redistribution of radiolabel following incubation in [U-(14)C]glucose. Estimates of flux based on the specific activity of hexose phosphates established that while incubation at 4 degrees C resulted in an immediate restriction in pathways of carbohydrate oxidation relative to activity at 25 degrees C, there was no corresponding increase in flux to soluble sugars. In contrast, prior storage at low temperature stimulated flux to sugars at both 4 and 25 degrees C. Comparison of (14)CO(2) release from specifically labeled glucose and gluconate fed to tuber discs at 4 and 25 degrees C indicated that flux through glycolysis was preferentially restricted relative to the oxidative pentose phosphate pathway at low temperature, irrespective of prior storage temperature. However, the degree of randomization of label between positions C1 and C6 in the fructosyl moiety of sucrose following metabolism of [1-(13)C]glucose established that there was no preferential inhibition of the recycling of triose phosphates to hexose phosphates at low temperature. These results indicate that sugar accumulation in tubers during storage in the cold is not a direct consequence of a constraint in carbohydrate oxidation, despite preferential restriction of glycolysis at low temperature. It is concluded that the cold lability of enzymes catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate is not a major factor in cold-induced sweetening in plants and that this widely held hypothesis should be abandoned.
Collapse
Affiliation(s)
- Jacob G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | |
Collapse
|
186
|
Calenge F, Saliba-Colombani V, Mahieu S, Loudet O, Daniel-Vedele F, Krapp A. Natural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics. PLANT PHYSIOLOGY 2006; 141:1630-43. [PMID: 16798941 PMCID: PMC1533913 DOI: 10.1104/pp.106.082396] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/28/2006] [Accepted: 05/30/2006] [Indexed: 05/10/2023]
Abstract
Besides being a metabolic fuel, carbohydrates play important roles in plant growth and development, in stress responses, and as signal molecules. We exploited natural variation in Arabidopsis (Arabidopsis thaliana) to decipher the genetic architecture determining carbohydrate content. A quantitative trait locus (QTL) approach in the Bay-0 x Shahdara progeny grown in two contrasting nitrogen environments led to the identification of 39 QTLs for starch, glucose, fructose, and sucrose contents representing at least 14 distinct polymorphic loci. A major QTL for fructose content (FR3.4) and a QTL for starch content (ST3.4) were confirmed in heterogeneous inbred families. Several genes associated with carbon (C) metabolism colocalize with the identified QTL. QTLs for senescence-related traits, and for flowering time, water status, and nitrogen-related traits, previously detected with the same genetic material, colocalize with C-related QTLs. These colocalizations reflect the complex interactions of C metabolism with other physiological processes. QTL fine-mapping and cloning could thus lead soon to the identification of genes potentially involved in the control of different connected physiological processes.
Collapse
Affiliation(s)
- Fanny Calenge
- Unité de Nutrition Azotée des Plantes , Institut National de la Recherche Agronomique, Centre de Versailles, 78026 Versailles, France
| | | | | | | | | | | |
Collapse
|
187
|
Armstrong AF, Logan DC, Tobin AK, O'Toole P, Atkin OK. Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. PLANT, CELL & ENVIRONMENT 2006; 29:940-9. [PMID: 17087477 DOI: 10.1111/j.1365-3040.2005.01475.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study, we investigated whether changes in mitochondrial abundance, ultrastructure and activity are involved in the respiratory cold acclimation response in leaves of the cold-hardy plant Arabidopsis thaliana. Confocal microscopy [using plants with green fluorescence protein (GFP) targeted to the mitochondria] and transmission electron microscopy (TEM) were used to visualize changes in mitochondrial morphology, abundance and ultrastructure. Measurements of respiratory flux in isolated mitochondria and intact leaf tissue were also made. Warm-grown (WG, 25/ 20 degrees C day/night), 3-week cold-treated (CT) and cold-developed (CD) leaves were sampled. Although CT leaves exhibited some evidence of acclimation (as evidenced by higher rates of respiration at moderate measurement temperatures), it was only the CD leaves that were able to re-establish respiratory flux within the cold. Associated with the recovery of respiratory flux in the CD leaves were: (1) an increase in the total volume of mitochondria per unit volume of tissue in epidermal cells; (2) an increase in the ratio of cristae to matrix within mesophyll cell mitochondria; and (3) an increase in the capacity of the energy-producing cytochrome pathway in mitochondria isolated from whole leaf homogenates. Regardless of growth temperature, we found that contrasting cell types exhibited distinct differences in mitochondrial ultrastructure, morphology and abundance. Collectively, our data demonstrated the diversity and tissue-specific nature of mitochondrial responses that underpin respiratory acclimation to the cold, and revealed the heterogeneity of mitochondrial structure and abundance that exists within leaves.
Collapse
Affiliation(s)
- Anna F Armstrong
- Department of Biology, University of York, PO Box 373, York, YO10 5YW, UK
| | | | | | | | | |
Collapse
|
188
|
Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. PLANT PHYSIOLOGY 2006; 140:1437-50. [PMID: 16500996 PMCID: PMC1435811 DOI: 10.1104/pp.105.070508] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 12/10/2005] [Accepted: 01/19/2006] [Indexed: 05/06/2023]
Abstract
Thellungiella, an Arabidopsis (Arabidopsis thaliana)-related halophyte, is an emerging model species for studies designed to elucidate molecular mechanisms of abiotic stress tolerance. Using a cDNA microarray containing 3,628 unique sequences derived from previously described libraries of stress-induced cDNAs of the Yukon ecotype of Thellungiella salsuginea, we obtained transcript profiles of its response to cold, salinity, simulated drought, and rewatering after simulated drought. A total of 154 transcripts were differentially regulated under the conditions studied. Only six of these genes responded to all three stresses of drought, cold, and salinity, indicating a divergence among the end responses triggered by each of these stresses. Unlike in Arabidopsis, there were relatively few transcript changes in response to high salinity in this halophyte. Furthermore, the gene products represented among drought-responsive transcripts in Thellungiella associate a down-regulation of defense-related transcripts with exposure to water deficits. This antagonistic interaction between drought and biotic stress response may demonstrate Thellungiella's ability to respond precisely to environmental stresses, thereby conserving energy and resources and maximizing its survival potential. Intriguingly, changes of transcript abundance in response to cold implicate the involvement of jasmonic acid. While transcripts associated with photosynthetic processes were repressed by cold, physiological responses in plants developed at low temperature suggest a novel mechanism for photosynthetic acclimation. Taken together, our results provide useful starting points for more in-depth analyses of Thellungiella's extreme stress tolerance.
Collapse
Affiliation(s)
- Chui E Wong
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Sage RF, McKown AD. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis? JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:303-17. [PMID: 16364950 DOI: 10.1093/jxb/erj040] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
C4 photosynthesis is a complex specialization that enhances carbon gain in hot, often arid habitats where photorespiration rates can be high. Certain features unique to C4 photosynthesis may reduce the potential for phenotypic plasticity and photosynthetic acclimation to environmental change relative to what is possible with C3 photosynthesis. During acclimation, the structural and physiological integrity of the mesophyll-bundle sheath (M-BS) complex has to be maintained if C4 photosynthesis is to function efficiently in the new environment. Disruption of the M-BS structure could interfere with metabolic co-ordination between the C3 and C4 cycles, decrease metabolite flow rate between the tissues, increase CO2 leakage from the bundle sheath, and slow enzyme activity. C4 plants have substantial acclimation potential, but in most cases lag behind the acclimation responses in C3 plants. For example, some C4 species are unable to maintain high quantum yields when grown in low-light conditions. Others fail to reduce carboxylase content in shade, leaving substantial over-capacity of Rubisco and PEP carboxylase in place. Shade-tolerant C4 grasses lack the capacity for maintaining a high state of photosynthetic induction following sunflecks, and thus may be poorly suited to exploit subsequent sunflecks compared with C3 species. In total, the evidence indicates that C4 photosynthesis is less phenotypically plastic than C3 photosynthesis, and this may contribute to the more restricted ecological and geographical distribution of C4 plants across the Earth.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada.
| | | |
Collapse
|
190
|
Atkin OK, Loveys BR, Atkinson LJ, Pons TL. Phenotypic plasticity and growth temperature: understanding interspecific variability. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:267-81. [PMID: 16371402 DOI: 10.1093/jxb/erj029] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The subject of this review is the impact of long-term changes in temperature on plant growth and its underlying components. The discussion highlights the extent to which thermal acclimation of metabolism is intrinsically linked to the plasticity of a range of biochemical and morphological traits. The fact that there is often a trade-off between temperature-mediated changes in net assimilation rates (NAR) and biomass allocation [in particular the specific leaf area (SLA)] when plants are grown at different temperatures is also highlighted. Also discussed is the role of temperature-mediated changes in photosynthesis and respiration in determining NAR values. It is shown that in comparisons that do not take phylogeny into account, fast-growing species exhibit greater temperature-dependent changes in RGR, SLA, and NAR than slow-growing plants. For RGR and NAR, such trends are maintained within phylogenetically independent contrasts (i.e. species adapted to more-favourable habitats consistently exhibit greater temperature-mediated changes than their congeneric counterparts adapted to less-favourable habitats). By contrast, SLA was not consistently more thermally plastic in species from favourable habitats. Interestingly, biomass allocation between leaves and roots was consistently more plastic in slow-growing species within individual phylogenetically independent contrasts, when plants were grown under contrasting temperatures. Finally, how interspecific variations in NAR account for an increasing proportion of variability in RGR as growth temperatures decrease is highlighted. Conversely, SLA played a more dominant role in determining interspecific variability in RGR at higher growth temperatures; thus, the importance of SLA in determining interspecific variation in RGR could potentially increase if annual mean temperatures increase in the future.
Collapse
Affiliation(s)
- O K Atkin
- Department of Biology, University of York, PO Box 373, York YO1 5YW, UK.
| | | | | | | |
Collapse
|
191
|
Ensminger I, Busch F, Huner NPA. Photostasis and cold acclimation: sensing low temperature through photosynthesis. PHYSIOLOGIA PLANTARUM 2006; 126:28-44. [PMID: 0 DOI: 10.1111/j.1399-3054.2006.00627.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
192
|
Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. PLANT & CELL PHYSIOLOGY 2005; 46:1525-39. [PMID: 16024910 DOI: 10.1093/pcp/pci165] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effects of overexpression of two Brassica CBF/DREB1-like transcription factors (BNCBF5 and 17) in Brassica napus cv. Westar were studied. In addition to developing constitutive freezing tolerance and constitutively accumulating COR gene mRNAs, BNCBF5- and 17-overexpressing plants also accumulate moderate transcript levels of genes involved in photosynthesis and chloroplast development as identified by microarray and Northern analyses. These include GLK1- and GLK2-like transcription factors involved in chloroplast photosynthetic development, chloroplast stroma cyclophilin ROC4 (AtCYP20-3), beta-amylase and triose-P/Pi translocator. In parallel with these changes, increases in photosynthetic efficiency and capacity, pigment pool sizes, increased capacities of the Calvin cycle enzymes, and enzymes of starch and sucrose biosynthesis, as well as glycolysis and oxaloacetate/malate exchange are seen, suggesting that BNCBF overexpression has partially mimicked cold-induced photosynthetic acclimation constitutively. Taken together, these results suggest that BNCBF/DREB1 overexpression in Brassica not only resulted in increased constitutive freezing tolerance but also partially regulated chloroplast development to increase photochemical efficiency and photosynthetic capacity.
Collapse
Affiliation(s)
- Leonid V Savitch
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario, Canada, K1A 0C6
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Atkin OK, Bruhn D, Hurry VM, Tjoelker MG. The hot and the cold: unravelling the variable response of plant respiration to temperature. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:87-105. [PMID: 32689114 DOI: 10.1071/fp03176] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 12/14/2004] [Indexed: 05/28/2023]
Abstract
When predicting the effects of climate change, global carbon circulation models that include a positive feedback effect of climate warming on the carbon cycle often assume that (1) plant respiration increases exponentially with temperature (with a constant Q10) and (2) that there is no acclimation of respiration to long-term changes in temperature. In this review, we show that these two assumptions are incorrect. While Q10 does not respond systematically to elevated atmospheric CO2 concentrations, other factors such as temperature, light, and water availability all have the potential to influence the temperature sensitivity of respiratory CO2 efflux. Roots and leaves can also differ in their Q10 values, as can upper and lower canopy leaves. The consequences of such variable Q10 values need to be fully explored in carbon modelling. Here, we consider the extent of variability in the degree of thermal acclimation of respiration, and discuss in detail the biochemical mechanisms underpinning this variability; the response of respiration to long-term changes in temperature is highly dependent on the effect of temperature on plant development, and on interactive effects of temperature and other abiotic factors (e.g. irradiance, drought and nutrient availability). Rather than acclimating to the daily mean temperature, recent studies suggest that other components of the daily temperature regime can be important (e.g. daily minimum and / or night temperature). In some cases, acclimation may simply reflect a passive response to changes in respiratory substrate availability, whereas in others acclimation may be critical in helping plants grow and survive at contrasting temperatures. We also consider the impact of acclimation on the balance between respiration and photosynthesis; although environmental factors such as water availability can alter the balance between these two processes, the available data suggests that temperature-mediated differences in dark leaf respiration are closely linked to concomitant differences in leaf photosynthesis. We conclude by highlighting the need for a greater process-based understanding of thermal acclimation of respiration if we are to successfully predict future ecosystem CO2 fluxes and potential feedbacks on atmospheric CO2 concentrations.
Collapse
Affiliation(s)
- Owen K Atkin
- Department of Biology (Area 2), The University of York, PO Box 373, York YO10 5YW, UK. Corresponding author. Email
| | - Dan Bruhn
- Cooperative Research Centre for Green House Accounting, Ecosystem Dynamics Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Vaughan M Hurry
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Mark G Tjoelker
- Department of Forest Science, Texas A & M University, 2135 TAMU, College Station, TX 77843-2135, USA
| |
Collapse
|
194
|
In O, Berberich T, Romdhane S, Feierabend J. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation. PLANTA 2005; 220:941-950. [PMID: 15843963 DOI: 10.1007/s00425-004-1410-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/07/2004] [Indexed: 05/24/2023]
Abstract
Suppression subtractive hybridization and differential display polymerase chain reactions were used to identify genes that were differentially expressed in cold-hardened and dehardened leaves of winter rye (Secale cereale L.). The transcripts of nine genes declined during dehardening at 22 degrees C of cold-hardened 4 degrees C-grown leaves, indicating some role in cold-acclimation. Among the genes that were strongly expressed in cold-hardened leaves were five genes of photosynthetic metabolism, the gene of the antioxidative enzyme peptide methionine sulfoxide reductase (PMSR) and three genes of RNA and protein metabolism. Four genes were identified that were more strongly expressed during dehardening of cold-hardened leaves at 22 degrees C. A full-length cDNA for a presumed cytosolic PMSR (EC 1.8.4.6) of rye leaves was identified. After heterologous expression in Escherichia coli, an antiserum against the ScPMSR was produced. The content of the ScPMSR protein, visualized by immunoblotting, was much higher in cold-hardened than in non-hardened leaves and declined during dehardening. In non-hardened leaves the mRNA of ScPMSR increased only slowly during exposures to 4 degrees C in light and was not affected by exposure to 4 degrees C in darkness. However, the ScPMSR mRNA was also induced by prolonged exposure (48 h) to high light at 22 degrees C, or by treatment with 2 muM paraquat. Consequently, the induction of cytosolic ScPMSR is a late response to prolonged photooxidative stress conditions, as expected during growth at low temperature in light. In cold-hardened leaves, PMSR may protect proteins from photodamage and thus prevent their degradation and the need for repair.
Collapse
Affiliation(s)
- Oliver In
- Botanisches Institut, Goethe-Universität, Fach 213, 60054, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
195
|
Krapp A, Saliba-Colombani V, Daniel-Vedele F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics. PHOTOSYNTHESIS RESEARCH 2005; 83:251-63. [PMID: 16143855 DOI: 10.1007/s11120-004-3196-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interaction between carbon (C) and nitrogen (N) metabolisms in plants is important to ensure efficient assimilation of these two major nutrients and thus to allow maximum growth and yield. Both pathways are well studied, but the regulatory elements and the processes are still mostly unknown. Quantitative genetics explore the natural variation of traits and offer an alternative approach to discover new genes and to unravel new interactions that would not have been detected by classical functional genomics. C and N metabolisms have been the target for quantitative trait loci (QTL) analysis especially in crop plants due to their close impact on yield, for example in potato or cereals, respectively. C/N interactions have not been studied extensively using these approaches, nevertheless, several interesting co-localisations have been evidenced. Several candidate genes have been located near loci involved in C and N dependent traits, but most of these loci need further characterisation. Arabidopsis thaliana was only recently used as a model species, but might now accelerate the progress by facilitating QTL cloning.
Collapse
Affiliation(s)
- Anne Krapp
- Unité de Nutrition Azotée des Plantes, INRA Versailles, route de St. Cyr, 78000 Versailles, France
| | | | | |
Collapse
|
196
|
Barth O, Zschiesche W, Siersleben S, Humbeck K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. PHYSIOLOGIA PLANTARUM 2004; 121:282-293. [PMID: 15153196 DOI: 10.1111/j.0031-9317.2004.00325.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to isolate genes involved in the early acclimation of winter barley (Hordeum vulgare L. cv. Trixi) to a combined cold and light stress of 2 degrees C and 600 micromol m(-2) s(-1) restriction fragment differential display-polymerase chain reaction was performed. Impact of the cold-treatment on the leaves was characterized by measuring chlorophyll content and photosystem II efficiency. By this approach several cDNAs of genes that quickly and transiently up-regulated during early stages of the stress were identified. One of these genes (HvFP1) includes sequence motifs representing a heavy metal associated domain (HMA), nuclear localization signals (NLS) and a farnesylation motif. This gene is also induced at drought stress, during leaf senescence and after exposure to abscisic acid. Analysis of its spatial expression patterns in barley plants either grown at 21 or 2 degrees C showed that in contrast to the situation in leaves transcript level of this gene is high not only in cold-treated plants but also in controls kept at 21 degrees C in plant compartments enriched in meristematic tissues. The nuclear localization of the protein was confirmed by confocal laser scanning microscopy of epidermal onion cells after particle bombardment with chimeric HVFP1-GFP constructs. Using a construct with a modified farnesylation motif yielded a different pattern of nuclear distribution of the chimeric protein.
Collapse
Affiliation(s)
- Olaf Barth
- Institute of Plant Physiology, University of Halle, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
197
|
Delessert C, Wilson IW, Van Der Straeten D, Dennis ES, Dolferus R. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. PLANT MOLECULAR BIOLOGY 2004; 55:165-81. [PMID: 15604673 DOI: 10.1007/s11103-004-0112-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We studied the local response to wounding in Arabidopsis thaliana leaves using a two-step microarray analysis. A microarray containing 3500 cDNA clones was first screened to enrich for genes affected by wounding in the immediate vicinity of the wound (4 h post wounding). 359 non-redundant putative wound responsive genes were then spotted on a smaller wound-response array for detailed analysis of spatial expression (local, adjacent and systemic), timing of expression (0.5, 4, 8, 17 h), and effect of hormone treatments (methyl jasmonate, ethylene and abscisic acid). Our results show that genes that respond early at the site of the wound also respond throughout the plant, with similar kinetics. Early-induced genes which respond systemically encode predominantly signal transduction and regulatory factors (36%), and the expression of many of them is also controlled by methyl jasmonate (about 35% of the 36%). Genes specific to the wound site and the wounded leaf have a slower response to wounding and are mainly metabolic genes. At the wound, many genes of the lignin biosynthesis pathway were induced. In silico analysis of the 5' promoter regions of genes affected by wounding revealed G-box-related motifs in a significant proportion of the promoters. These results show that the establishment of a systemic response to wounding is a priority for the plant, and that the local response at the wound site is established later. Ethylene and abscisic acid are involved in the local response, regulating repression of photosynthetic genes and expression of drought responsive genes respectively.
Collapse
|
198
|
Zhu T, Provart NJ. Transcriptional responses to low temperature and their regulation in Arabidopsis. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have used a transcriptional profiling approach to identify genes in Arabidopsis that respond at the level of transcript abundance to cold (4 °C) or chilling (13 °C) temperatures. Results have shown that plants respond to low temperatures by altering mRNA levels of a large number of genes belonging to different independent pathways. Early transcriptional response to low temperatures frequently involves signaling pathways used to respond to other environmental stresses, indicating the existence and involvement of a complex genetic network. Genes with functions specific to low-temperature signaling pathways, and those with functions in multiple signaling pathways, especially those encoding transcription factors and other signaling molecules, have been identified based on their transcriptional responses to different environmental stresses. The qualitative and quantitative difference in transcriptional response to chilling and cold suggests that plants might have different molecular mechanisms to acclimate to different types of low-temperature stresses. The regulation and interactions of genes involved in low-temperature response at the transcriptional level has been further explored by computational methods, and preliminary results have identified motifs that are known to be important for cold response, raising the possibility of a better understanding of the processes involved.Key words: Arabidopsis, low-temperature stress, gene expression, transcriptional regulation, microarray.
Collapse
|
199
|
Guy CL. Freezing tolerance of plants: current understanding and selected emerging concepts. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-130] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of ice on and inside plant tissues represents a major challenge to survival. The resulting phase transition and spatial redistribution of liquid water from inside the cell to extracellular ice results in physical changes to cells and enormous physical stresses and strains. The ability of higher plants to acclimate and tolerate freezing stress is a complex quantitative trait and the product of the activities of not one, but a sizable suite of genes. Many of the known cold-regulated genes are under the control of a primary master regulator, CBF/DREB1, but it is not likely to be the sole master regulator. In considering the origin of freezing tolerance in higher plants, it has been suggested that freezing tolerance likely arose by adopting drought tolerance mechanisms. This may explain why many genes responsive to cold stress are also responsive to drought and (or) other osmotic stresses.Key words: abiotic, dehydration, gene expression, physiology, signal transduction, transcriptome.
Collapse
|
200
|
Sane PV, Ivanov AG, Hurry V, Huner NPA, Oquist G. Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis. PLANT PHYSIOLOGY 2003; 132:2144-51. [PMID: 12913169 PMCID: PMC181298 DOI: 10.1104/pp.103.022939] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 03/09/2003] [Accepted: 04/29/2003] [Indexed: 05/20/2023]
Abstract
Exposure of control (non-hardened) Arabidopsis leaves for 2 h at high irradiance at 5 degrees C resulted in a 55% decrease in photosystem II (PSII) photochemical efficiency as indicated by F(v)/F(m). In contrast, cold-acclimated leaves exposed to the same conditions showed only a 22% decrease in F(v)/F(m). Thermoluminescence was used to assess the possible role(s) of PSII recombination events in this differential resistance to photoinhibition. Thermoluminescence measurements of PSII revealed that S(2)Q(A)(-) recombination was shifted to higher temperatures, whereas the characteristic temperature of the S(2)Q(B)(-) recombination was shifted to lower temperatures in cold-acclimated plants. These shifts in recombination temperatures indicate higher activation energy for the S(2)Q(A)(-) redox pair and lower activation energy for the S(2)Q(B)(-) redox pair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between primary and secondary electron-accepting quinones in PSII electron acceptors. We propose that these effects result in an increased population of reduced primary electron-accepting quinone in PSII, facilitating non-radiative P680(+)Q(A)(-) radical pair recombination. Enhanced reaction center quenching was confirmed using in vivo chlorophyll fluorescence-quenching analysis. The enhanced dissipation of excess light energy within the reaction center of PSII, in part, accounts for the observed increase in resistance to high-light stress in cold-acclimated Arabidopsis plants.
Collapse
|