151
|
Ando H, Iwamoto R, Kobayashi H, Okabe S, Kitajima M. The Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids (EPISENS-S): A rapid and cost-effective SARS-CoV-2 RNA detection method for routine wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157101. [PMID: 35952875 PMCID: PMC9357991 DOI: 10.1016/j.scitotenv.2022.157101] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 04/14/2023]
Abstract
Wastewater-based epidemiology has attracted attention as a COVID-19 surveillance tool. Here, we developed a practical method for detecting SARS-CoV-2 RNA in wastewater (the EPISENS-S method), which employs direct RNA extraction from wastewater pellets formed via low-speed centrifugation. The subsequent multiplex one-step RT-preamplification reaction with forward and reverse primers for SARS-CoV-2 and a reverse primer only for pepper mild mottle virus (PMMoV) allowed for qPCR quantification of the targets with different abundances in wastewater from the RT-preamplification product. The detection sensitivity of the method was evaluated using wastewater samples seeded with heat-inactivated SARS-CoV-2 in concentrations of 2.11 × 103 to 2.11 × 106 copies/L. The results demonstrated that the sensitivity of the EPISENS-S method was two orders of magnitude higher than that of the conventional method (PEG precipitation, followed by regular RT-qPCR; PEG-QVR-qPCR). A total of 37 untreated wastewater samples collected from two wastewater treatment plants in Sapporo, Japan when 1.6 to 18 new daily reported cases per 100,000 people were reported in the city (March 4 to July 8, 2021), were examined using the EPISENS-S method to confirm its applicability to municipal wastewater. SARS-CoV-2 RNA was quantified in 92 % (34/37) of the samples via the EPISENS-S method, whereas none of the samples (0/37) was quantifiable via the PEG-QVR-qPCR method. The PMMoV concentrations measured by the EPISENS-S method ranged from 2.60 × 106 to 1.90 × 108 copies/L, and the SARS-CoV-2 RNA concentrations normalized by PMMoV ranged from 5.71 × 10-6 to 9.51 × 10-4 . The long-term trend of normalized SARS-CoV-2 RNA concentration in wastewater was consistent with that of confirmed COVID-19 cases in the city. These results demonstrate that the EPISENS-S method is highly sensitive and suitable for routine COVID-19 wastewater surveillance.
Collapse
Affiliation(s)
- Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Ryo Iwamoto
- Shionogi & Co. Ltd., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan; AdvanSentinel Inc., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Hiroyuki Kobayashi
- Shionogi & Co. Ltd., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
152
|
Wang JX, Wu Z, Wang H, Zhong M, Mao Y, Li Y, Wang M, Yao S. Ventilation reconstruction in bathrooms for restraining hazardous plume: Mitigate COVID-19 and beyond. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129697. [PMID: 36104926 PMCID: PMC9335364 DOI: 10.1016/j.jhazmat.2022.129697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 05/20/2023]
Abstract
Converging evidence reports that the probability of vertical transmission patterns via shared drainage systems, may be responsible for the huge contactless community outbreak in high-rise buildings. Publications indicate that a faulty bathroom exhaust fan system is ineffective in removing lifted hazardous virus-laden aerosols from the toilet bowl space. Common strategies (boosting ventilation capability and applying disinfection tablets) seem unsustainable and remain to date untested. Using combined simulation and experimental approaches, we compared three ventilation schemes in a family bathroom including the traditional ceiling fan, floor fan, and side-wall fan. We found that the traditional ceiling fan was barely functional whereby aerosol particles were not being adequately removed. Conversely, a side-wall fan could function efficiently and an enhanced ventilation capability can have increased performance whereby nearly 80.9% of the lifted aerosol particles were removed. There exists a common, and easily-overlooked mistake in the layout of the bathroom, exposing occupants to a contactless vertical pathogen aerosol transmission route. Corrections and dissemination are thus imperative for the reconstruction of these types of family bathrooms. Our findings provide evidence for the bathroom and smart ventilation system upgrade, promoting indoor public health and human hygiene.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Zhe Wu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongmei Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
| | - Yufeng Mao
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
| | - Yunyun Li
- School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Mengxiao Wang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| |
Collapse
|
153
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
154
|
Kevill JL, Lambert-Slosarska K, Pellett C, Woodhall N, Richardson-O'Neill I, Pântea I, Alex-Sanders N, Farkas K, Jones DL. Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156580. [PMID: 35690190 PMCID: PMC9181630 DOI: 10.1016/j.scitotenv.2022.156580] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has proven to be a useful surveillance tool during the ongoing SARS-CoV-2 pandemic, and has driven research into evaluating the most reliable and cost-effective techniques for obtaining a representative sample of wastewater. When liquid samples cannot be taken efficiently, passive sampling approaches have been used, however, insufficient data exists on their usefulness for multi-virus capture and recovery. In this study, we compared the virus-binding capacity of two passive samplers (cotton-based tampons and ion exchange filter papers) in two different water types (deionised water and wastewater). Here we focused on the capture of wastewater-associated viruses including Influenza A and B (Flu-A & B), SARS-CoV-2, human adenovirus (AdV), norovirus GII (NoVGII), measles virus (MeV), pepper mild mottle virus (PMMoV), the faecal marker crAssphage and the process control virus Pseudomonas virus phi6. After deployment, we evaluated four different methods to recover viruses from the passive samplers namely, (i) phosphate buffered saline (PBS) elution followed by polyethylene glycol (PEG) precipitation, (ii) beef extract (BE) elution followed by PEG precipitation, (iii) no-elution into PEG precipitation, and (iv) direct extraction. We found that the tampon-based passive samplers had higher viral recoveries in comparison to the filter paper. Overall, the preferred viral recovery method from the tampon passive samplers was the no-elution/PEG precipitation method. Furthermore, we evidenced that non-enveloped viruses had higher percent recoveries from the passive samplers than enveloped viruses. This is the first study of its kind to assess passive sampler and viral recovery methods amongst a plethora of viruses commonly found in wastewater or used as a viral surrogate in wastewater studies.
Collapse
Affiliation(s)
- Jessica L Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - India Richardson-O'Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
155
|
Kim H, Yi J, Yu J, Park J, Jang SK. A Simple and Effective Method to Concentrate Hepatitis C Virus: Aqueous Two-Phase System Allows Highly Efficient Enrichment of Enveloped Viruses. Viruses 2022; 14:v14091987. [PMID: 36146792 PMCID: PMC9503063 DOI: 10.3390/v14091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
To investigate the proliferation cycle of a virus, virus-host interaction, and pathogenesis of a virus, virion particles must be concentrated from the media of virus cell culture or the sera of virus-infected patients. Ultracentrifugation of the culture media is a standard method for concentrating virion particles. However, this method is time-consuming and requires special equipment (ultracentrifuge). Moreover, a large number of infectious viruses are lost during enrichment. We developed a new method of hepatitis C virus (HCV) concentration to overcome the issues associated with traditional methods of virus concentration. We used an aqueous two-phase system (ATPS) to concentrate the virus. HCV, which causes various liver diseases, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, was used as a model virus to test the efficacy and reliability of the ATPS. The efficiency of HCV concentration by the ATPS was approximately three times higher than that by ultracentrifugation. Moreover, the infectivity of the concentrated HCV, which is a labile virus, remained the same after concentration of the virus by the ATPS. Considering the simplicity and effectiveness of the ATPS, it is the method of choice for concentrating viruses.
Collapse
Affiliation(s)
- Heesun Kim
- Molecular Virology Laboratory, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Johan Yi
- Nanoparticle and Vesicle Laboratory, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jinbae Yu
- Molecular Virology Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jaesung Park
- Nanoparticle and Vesicle Laboratory, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Nanoparticle and Vesicle Laboratory, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (J.P.); (S.K.J.)
| | - Sung Key Jang
- Molecular Virology Laboratory, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
- Molecular Virology Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (J.P.); (S.K.J.)
| |
Collapse
|
156
|
Lu E, Ai Y, Davis A, Straathof J, Halloran K, Hull N, Winston R, Weir MH, Soller J, Bohrerova Z, Oglesbee M, Lee J. Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. ENVIRONMENTAL RESEARCH 2022; 212:113580. [PMID: 35671797 PMCID: PMC9167806 DOI: 10.1016/j.envres.2022.113580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology is an effective tool for monitoring infectious disease spread or illicit drug use within communities. At the Ohio State University, we conducted a SARS-CoV-2 wastewater surveillance program in the 2020-2021 academic year and compared results with the university-required weekly COVID-19 saliva testing to monitor COVID-19 infection prevalence in the on-campus residential communities. The objectives of the study were to rapidly track trends in the wastewater SARS-CoV-2 gene concentrations, analyze the relationship between case numbers and wastewater signals when adjusted using human fecal viral indicator concentrations (PMMoV, crAssphage) in wastewater, and investigate the relationship of the SARS-CoV-2 gene concentrations with wastewater parameters. SARS-CoV-2 nucleocapsid and envelope (N1, N2, and E) gene concentrations, determined with reverse transcription droplet digital PCR, were used to track SARS-CoV-2 viral loads in dormitory wastewater once a week at 6 sampling sites across the campus during the fall semester in 2020. During the following spring semester, research was focused on SARS-CoV2 N2 gene concentrations at 5 sites sampled twice a week. Spearman correlations both with and without adjusting using human fecal viral indicators showed a significant correlation (p < 0.05) between human COVID-19 positive case counts and wastewater SARS-CoV-2 gene concentrations. Spearman correlations showed significant relationships between N1 gene concentrations and both TSS and turbidity, and between E gene concentrations and both pH and turbidity. These results suggest that wastewater signal increases with the census of infected individuals, in which the majority are asymptomatic, with a statistically significant (p-value <0.05) temporal correlation. The study design can be utilized as a platform for rapid trend tracking of SARS-CoV-2 variants and other diseases circulating in various communities.
Collapse
Affiliation(s)
- Emily Lu
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Judith Straathof
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Kent Halloran
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Facilities Operations and Development, Environmental Health and Safety, The Ohio State University, Columbus, OH, USA
| | - Natalie Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Mark H Weir
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | | | - Zuzana Bohrerova
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
157
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
158
|
Mac Mahon J, Criado Monleon AJ, Gill LW, O'Sullivan JJ, Meijer WG. Wastewater-based epidemiology (WBE) for SARS-CoV-2 - A review focussing on the significance of the sewer network using a Dublin city catchment case study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1402-1425. [PMID: 36178814 DOI: 10.2166/wst.2022.278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has been employed by many countries globally since the beginning of the COVID-19 pandemic in order to assess the benefits of this surveillance tool in the context of informing public health measures. WBE has been successfully employed to detect SARS-CoV-2 at wastewater treatment plants for community-wide surveillance, as well as in smaller catchments and institutions for targeted surveillance of COVID-19. In addition, WBE has been successfully used to detect new variants, identify areas of high infection levels, as well as to detect new infection outbreaks. However, due to to the large number of inherent uncertainties in the WBE process, including the inherent intricacies of the sewer network, decay of the virus en route to a monitoring point, levels of recovery from sampling and quantification methods, levels of faecal shedding among the infected population, as well as population normalisation methods, the usefulness of wastewater samples as a means of accurately quantifying SARS-CoV-2 infection levels among a population remains less clear. The current WBE programmes in place globally will help to identify new areas of research aimed at reducing the levels of uncertainty in the WBE process, thus improving WBE as a public health monitoring tool for future pandemics. In the meantime, such programmes can provide valuable comparisons to clinical testing data and other public health metrics, as well being an effective early warning tool for new variants and new infection outbreaks. This review includes a case study of sampled wastewater from the sewer network in Dublin, Ireland, during a peak infection period of COVID-19 in the city, which evaluates the different uncertainties in the WBE process.
Collapse
Affiliation(s)
| | | | | | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin
| | - Wim G Meijer
- UCD School of Biomolecular & Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin
| |
Collapse
|
159
|
Lee WL, Gu X, Armas F, Leifels M, Wu F, Chandra F, Chua FJD, Syenina A, Chen H, Cheng D, Ooi EE, Wuertz S, Alm EJ, Thompson J. Monitoring human arboviral diseases through wastewater surveillance: Challenges, progress and future opportunities. WATER RESEARCH 2022; 223:118904. [PMID: 36007397 DOI: 10.1016/j.watres.2022.118904] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 05/21/2023]
Abstract
Arboviral diseases are caused by a group of viruses spread by the bite of infected arthropods. Amongst these, dengue, Zika, west nile fever and yellow fever cause the greatest economic and social impact. Arboviral epidemics have increased in frequency, magnitude and geographical extent over the past decades and are expected to continue increasing with climate change and expanding urbanisation. Arboviral prevalence is largely underestimated, as most infections are asymptomatic, nevertheless existing surveillance systems are based on passive reporting of loosely defined clinical syndromes with infrequent laboratory confirmation. Wastewater-based surveillance (WBS), which has been demonstrated to be useful for monitoring diseases with significant asymptomatic populations including COVID19 and polio, could be a useful complement to arboviral surveillance. We review the current state of knowledge and identify key factors that affect the feasibility of monitoring arboviral diseases by WBS to include viral shedding loads by infected persons, the persistence of shed arboviruses and the efficiency of their recovery from sewage. We provide a simple model on the volume of wastewater that needs to be processed for detection of arboviruses, in face of lower arboviral shedding rates. In all, this review serves to reflect on the key challenges that need to be addressed and overcome for successful implementation of arboviral WBS.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Disease, University of Texas School of Public Health, Houston, TX, USA
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Eng Eong Ooi
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
160
|
Moresco V, Charatzidou A, Oliver DM, Weidmann M, Matallana-Surget S, Quilliam RS. Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119594. [PMID: 35680062 DOI: 10.1016/j.envpol.2022.119594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/25/2023]
Abstract
Microplastics in wastewater and surface water rapidly become colonised by microbial biofilm. Such 'plastisphere' communities are hypothesised to persist longer and be disseminated further in the environment and may act as a vector for human pathogens, particularly as microplastics entering wastewater treatment plants are exposed to high concentrations of pathogenic bacteria. However, the potential for human viral pathogens to become associated with the plastisphere has never before been quantified. Here, we have used rotavirus (RV) SA11 (a non-enveloped enteric virus) and the enveloped bacteriophage Phi6 as model viruses to quantify binding and recovery from biofilm-colonised microplastic pellets in three different water treatments (filtered and non-filtered surface water, and surface water with added nutrients). Viruses associated with biofilm-colonised pellets were more stable compared to those remaining in the water. While infectious particles and genome copies of RV remained stable over the 48 h sampling period, Phi6 stability was highly impacted, with a reduction ranging from 2.18 to 3.94 log10. Virus particles were protected against inactivation factors when associated with the biofilm on microplastic surfaces, and when there was a high concentration of particulate matter in the liquid phase. Although our results suggest that the presence of an envelope may limit virus interaction with the plastisphere, the ability to recover both enveloped and non-enveloped infectious viruses from colonised microplastic pellets highlights an additional potential public health risk of surface waters becoming contaminated with microplastics, and subsequent human exposure to microplastics in the environment.
Collapse
Affiliation(s)
- Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Anna Charatzidou
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Senftenberg, D-01968, Germany
| | - Sabine Matallana-Surget
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
161
|
Farkas K, Pellett C, Alex-Sanders N, Bridgman MTP, Corbishley A, Grimsley JMS, Kasprzyk-Hordern B, Kevill JL, Pântea I, Richardson-O’Neill IS, Lambert-Slosarska K, Woodhall N, Jones DL. Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Microbiol Spectr 2022; 10:e0110222. [PMID: 35950856 PMCID: PMC9430619 DOI: 10.1128/spectrum.01102-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Matthew T. P. Bridgman
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Alexander Corbishley
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Jasmine M. S. Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
| | | | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - India S. Richardson-O’Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
162
|
Robinson RT, Mahfooz N, Rosas-Mejia O, Liu Y, Hull NM. UV 222 disinfection of SARS-CoV-2 in solution. Sci Rep 2022; 12:14545. [PMID: 36008435 PMCID: PMC9406255 DOI: 10.1038/s41598-022-18385-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
There is an urgent need for evidence-based engineering controls to reduce transmission of SARS-CoV-2, which causes COVID-19. Although ultraviolet (UV) light is known to inactivate coronaviruses, conventional UV lamps contain toxic mercury and emit wavelengths (254 nm) that are more hazardous to humans than krypton chlorine excimer lamps emitting 222 nm (UV222). Here we used culture and molecular assays to provide the first dose response for SARS-CoV-2 solution exposed to UV222. Culture assays (plaque infectivity to Vero host) demonstrated more than 99.99% disinfection of SARS-CoV-2 after a UV222 dose of 8 mJ/cm2 (pseudo-first order rate constant = 0.64 cm2/mJ). Immediately after UV222 treatment, RT-qPCR assays targeting the nucleocapsid (N) gene demonstrated ~ 10% contribution of N gene damage to disinfection kinetics, and an ELISA assay targeting the N protein demonstrated no contribution of N protein damage to disinfection kinetics. Molecular results suggest other gene and protein damage contributed more to disinfection. After 3 days incubation with host cells, RT-qPCR and ELISA kinetics of UV222 treated SARS-CoV-2 were similar to culture kinetics, suggesting validity of using molecular assays to measure UV disinfection without culture. These data provide quantitative disinfection kinetics which can inform implementation of UV222 for preventing transmission of COVID-19.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Najmus Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Oscar Rosas-Mejia
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Yijing Liu
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Hitchcock 417C, Columbus, OH, 43210, USA
| | - Natalie M Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Hitchcock 417C, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
163
|
Bivins A, Kaya D, Ahmed W, Brown J, Butler C, Greaves J, Leal R, Maas K, Rao G, Sherchan S, Sills D, Sinclair R, Wheeler RT, Mansfeldt C. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155347. [PMID: 35460780 PMCID: PMC9020839 DOI: 10.1016/j.scitotenv.2022.155347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA
| | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Raeann Leal
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Kendra Maas
- Microbial Analyses, Resources, and Services Facility, University of Connecticut, Storrs, CT 06269, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA; Center for Climate and Health, Morgan State University, Baltimore, MD 21251, USA
| | - Deborah Sills
- Bucknell University, Department of Civil and Environmental Engineering, Lewisburg, PA 17837, USA
| | - Ryan Sinclair
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, USA
| |
Collapse
|
164
|
Vincent-Hubert F, Wacrenier C, Desdouits M, Jousse S, Schaeffer J, Le Mehaute P, Nakache-Danglot F, Le Guyader FS. Development of passive samplers for the detection of SARS-CoV-2 in sewage and seawater: Application for the monitoring of sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155139. [PMID: 35405243 PMCID: PMC8993413 DOI: 10.1016/j.scitotenv.2022.155139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/16/2023]
Abstract
Recent studies have shown that passive sampling is a promising tool for SARS-CoV-2 detection for wastewater-based epidemiology (WBE) application. We have previously developed passive sampling of viruses using polymer membranes in seawater. Even though SARS-CoV-2 was not detected yet in seawater, passive sampling could be optimized for future application in coastal areas close to wastewater treatment plant (WWTP). The aim of this study was to optimize passive sampling of SARS-CoV-2 in sewage and seawater by selecting a suitable membrane, to determine whether the quantities of virus increase over time, and then to determine if passive sampling and traditional sampling are correlated when conducted in a wastewater treatment plant. Nylon and Zetapor allowed the detection of heat inactivated SARS-CoV-2 and of the Porcine Epidemic Diarrhea Virus (PEDV), a coronavirus surrogate, in wastewater and seawater spiked with these 2 viruses, showing an increase in detection between 4 h and 24 h of immersion and significantly higher recoveries of both viruses with nylon in seawater (15%) compared to wastewater (4%). On wastewater samples, both membranes detected the virus, the recovery rate was of about 3% for freshly collected samples, and no significant difference was found between SARS-CoV-2 genome concentration on Zetapor and that in water. In sewage spiked seawater, similar concentrations of genome were found on both membranes, with a mean recovery rate of 16% and 11% respectively for nylon and Zetapor. A 3-weeks monitoring with passive sampler allowed the detection of viruses in the influent of a WWTP with a frequency of 100% and 76% for SARS-CoV-2 and norovirus GII respectively. Passive and traditional sampling gave the same evolution of the SARS-CoV-2 concentration over time. All these results confirmed the interest of passive sampling for virus detection and its potential application for monitoring in the wastewater system for targeted public health actions.
Collapse
Affiliation(s)
- Françoise Vincent-Hubert
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France.
| | - Candice Wacrenier
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Marion Desdouits
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Sarah Jousse
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | | | | | - Françoise S Le Guyader
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| |
Collapse
|
165
|
Shaheen MNF, Elmahdy EM, Shahein YE. The first detection of SARS-CoV-2 RNA in urban wastewater in Giza, Egypt. JOURNAL OF WATER AND HEALTH 2022; 20:1212-1222. [PMID: 36044190 DOI: 10.2166/wh.2022.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The new coronavirus (SARS-CoV-2) is a respiratory virus causing coronavirus disease (COVID-19). Individuals with COVID-19 can shed the viral genome in their feces, even if they do not have symptoms, and the virus can be detected in wastewater. The current study provides the first surveillance of SARS-CoV-2 RNA genome in the wastewater in Egypt. To study this aim, untreated influent (n = 48) and treated effluent (n = 48) samples were collected between January and December 2021 from the wastewater treatment plant in Giza. The viral RNA genome was determined by reverse transcription-polymerase chain reaction (RT-PCR) (S, E, and N target regions) and real-time quantitative reverse transcription-PCR (RT-qPCR) (N1 and N2 target regions). The RT-PCR assay failed to detect SARS-CoV-2 RNA in all samples analyzed, whereas RT-qPCR succeeded in the detection of N gene of SARS-CoV-2 in 62.5% of untreated influent samples. The RT-qPCR Ct values of those samples tested positive ranged from 19.9 to 30.1 with a mean of 23. The treated effluent samples were negative for viral RNA detected by both RT-PCR and RT-qPCR, indicating the efficiency of the sewage treatment plant in degrading SARS-CoV-2. Our preliminary findings provide evidence for the value of wastewater epidemiology approach for the surveillance of SARS-CoV-2 in the population to assist in the responses of public health to COVID-19 outbreak.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki 12622, Giza, Egypt E-mail: ,
| | - Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki 12622, Giza, Egypt E-mail: ,
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
166
|
Zahmatkesh S, Sillanpaa M, Rezakhani Y, Wang C. Review of concerned SARS-CoV-2 variants like Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), as well as novel methods for reducing and inactivating SARS-CoV-2 mutants in wastewater treatment facilities. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100140. [PMID: 37520798 PMCID: PMC9349052 DOI: 10.1016/j.hazadv.2022.100140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
The coronavirus known as COVID-19, which causes pandemics, is causing a global epidemic at a critical stage today. Furthermore, novel mutations in the SARS-CoV-2 spike protein have been discovered in an entirely new strain, impacting the clinical and epidemiological features of COVID-19. Variants of these viruses can increase the transmission in wastewater, lead to reinfection, and reduce immunity provided by monoclonal antibodies and vaccinations. According to the research, a large quantity of viral RNA was discovered in wastewater, suggesting that wastewater can be a crucial source of epidemiological data and health hazards. The purpose of this paper is to introduce a few basic concepts regarding wastewater surveillance as a starting point for comprehending COVID-19's epidemiological aspects. Next, the observation of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in wastewater is discussed in detail. Secondly, the essential information for the initial, primary, and final treating sewage in SARS-CoV-2 is introduced. Following that, a thorough examination is provided to highlight the newly developed methods for eradicating SARS-CoV-2 using a combination of solar water disinfection (SODIS) and ultraviolet radiation A (UVA (315-400 nm)), ultraviolet radiation B (UVB (280-315 nm)), and ultraviolet radiation C (UVC (100-280 nm)) processes. SARS-CoV-2 eradication requires high temperatures (above 56°C) and UVC. However, SODIS technologies are based on UVA and operate at cooler temperatures (less than 45°C). Hence, it is not appropriate for sewage treatment (or water consumption) to be conducted using SODIS methods in the current pandemic. Finally, SARS-CoV-2 may be discovered in sewage utilizing the wastewater-based epidemiology (WBE) monitoring method.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| | - Yousof Rezakhani
- Department of Civil Engineer in g, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
167
|
Kumar M, Jiang G, Kumar Thakur A, Chatterjee S, Bhattacharya T, Mohapatra S, Chaminda T, Kumar Tyagi V, Vithanage M, Bhattacharya P, Nghiem LD, Sarkar D, Sonne C, Mahlknecht J. Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 441:135936. [PMID: 35345777 PMCID: PMC8942437 DOI: 10.1016/j.cej.2022.135936] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 05/05/2023]
Abstract
The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Shreya Chatterjee
- Encore Insoltech Pvt Ltd, Randesan, Gandhinagar, Gujarat 382 307, India
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra 835215, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, University of Ruhuna, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Meththika Vithanage
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology,SE-100 44, Stockholm, Sweden
| | - Long D Nghiem
- Centre for Technology in Water & Wastewater, University of Technology Sydney, Ultimo 2007, Australia
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, NJ 07030, USA
| | - Christian Sonne
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Department of Ecoscience, Aarhus University, Roskilde DK-4000, Denmark
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
168
|
Amahmid O, El Guamri Y, Rakibi Y, Ouizat S, Yazidi M, Razoki B, Kaid Rassou K, Asmama S, Bouhoum K, Belghyti D. Occurrence of SARS-CoV-2 in excreta, sewage, and environment: epidemiological significance and potential risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1686-1706. [PMID: 33752527 DOI: 10.1080/09603123.2021.1901865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 05/23/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients' excreta raises the issue of its occurrence and fate in sewage. This review has focused on the presence of the SARS-CoV-2 in human excreta, wastewater, sewage sludge, and river waters. It explored the potential use of the wastewater-based epidemiology approach to report on the situation of current and eventual future SARS-CoV-2 outbreaks. The main concern of the occurrence of SARS-CoV-2 in the environment is the public health risks at sites of sewage products disposal and reuse, especially in low-income countries with inadequate sanitation, where direct discharge and reuse of raw sewage are common practices. The review also addressed the role sewage-irrigated agriculture can have in SARS-CoV-2 spread in the environmental compartments reached through sewage products application. An overview was made on the interest of sewage management, water safety, and hygienic practices for controlling the environmental dissemination of SARS-CoV-2.
Collapse
Affiliation(s)
- Omar Amahmid
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
- Department of Biology, Laboratory of Water, Biodiversity and Climatic Change, Faculty of Sciences Semlalia, Cadi Ayyad Univesity, Marrakesh, Morocco
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, University Ibn Tofail, Kenitra, Morocco
| | - Youssef El Guamri
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, University Ibn Tofail, Kenitra, Morocco
| | - Youness Rakibi
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
- Engineering Laboratory of Organometallic, Molecular Materials and Environment (LIMOME), Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Saadia Ouizat
- Chemistry and Didactics Unit, Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Mohamed Yazidi
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Bouchra Razoki
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Khadija Kaid Rassou
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Souad Asmama
- Laboratory of Biomedical Analysis, University Hospital Centre Mohammad VI, Marrakech, Morocco
| | - Khadija Bouhoum
- Department of Biology, Laboratory of Water, Biodiversity and Climatic Change, Faculty of Sciences Semlalia, Cadi Ayyad Univesity, Marrakesh, Morocco
| | - Driss Belghyti
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, University Ibn Tofail, Kenitra, Morocco
| |
Collapse
|
169
|
Mazumder P, Dash S, Honda R, Sonne C, Kumar M. Sewage surveillance for SARS-CoV-2: Molecular detection, quantification, and normalization factors. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 28:100363. [PMID: 35694049 PMCID: PMC9170178 DOI: 10.1016/j.coesh.2022.100363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The presence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater systems provides a primary indication of the coronavirus disease 2019 (COVID-19) spread throughout communities worldwide. Droplet digital polymerase chain reaction (dd-PCR) or reverse transcription-polymerase chain reaction (RT-PCR) administration of SARS-CoV-2 in wastewaters provides a reliable and efficient technology for gathering secondary local-level public health data. Often the accuracy of prevalence estimation is hampered by many methodological issues connected with wastewater surveillance. Still, more studies are needed to use and create efficient approaches for deciphering the actual SARS-CoV-2 indication from noise in the specimens/samples. Nearly 39-65% of positive patients and asymptomatic carriers expel the virus through their faeces however, only ∼6% of the infected hosts eject it through their urine. COVID-19 positive patients can shed the remnants of the SARS-CoV-2 RNA virus within the concentrations ∼103-108 copies/L. However, it can decrease up to 102 copies/L in wastewaters due to dilution. Environmental virology and microbiology laboratories play a significant role in the identification and analysis of SARS-CoV-2 ribonucleic acid (RNA) in waste and ambient waters worldwide. Virus extraction or recovery from the wastewater (However, due to lack of knowledge, established procedures, and integrated quality assurance/quality control (QA/QC) approaches, the novel coronavirus RNA investigation for estimating current illnesses and predicting future outbreaks is insufficient and/or conducted inadequately. The present manuscript is a technical review of the various methods and factors considered during the identification of SARS-CoV-2 genetic material in wastewaters and/or sludge, including tips and tricks to be taken care of during sampling, virus concentration, normalization, PCR inhibition, and trend line smoothening when compared with clinically active/positive cases.
Collapse
Affiliation(s)
- Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Siddhant Dash
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ryo Honda
- School of Geosciences and Civil Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, DK-4000, Denmark
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan, 450002, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
170
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
171
|
Isanovic M, Correa Velez KE, Norman RS. Dispersion of SARS-CoV-2 RNA across a wastewater treatment plant and its workers. WATER AND ENVIRONMENT JOURNAL : THE JOURNAL 2022; 36:WEJ12812. [PMID: 35942195 PMCID: PMC9349956 DOI: 10.1111/wej.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 05/16/2023]
Abstract
Within urban and suburban sewersheds, SARS-CoV-2 released through faeces is transported through sewage systems into municipal wastewater treatment plants (WWTPs). Studies have shown that viral RNA is detectable in untreated wastewater but not in WWTP effluent. In this study, we investigated treatment steps between the influent and final treated effluent to identify the point at which viral RNA is below detection. Additionally, we examined air surrounding high turbulence treatment steps to test for the presence of SARS-CoV-2 RNA in WWTP-generated bioaerosols. To examine potential worker exposure to SARS-CoV-2, WWTP workers were tested for the presence of viral RNA. The data show that despite high viral RNA concentration in the influent, SARS-CoV-2 RNA concentration decreased significantly (p < 0.02) in the main treatment steps and was below detection in the effluent. Additionally, SARS-CoV-2 RNA was below detection in air samples (n = 42), and the worker rate of infection was not significantly different (p = 0.99) from the rate of infection in the surrounding community. These results suggest that WWTP workers may have minimal exposure to SARS-CoV-2 during routine outdoor work procedures and that the WWTP successfully reduces the amount of viral RNA entering effluent receiving waters, providing a vital public health service to communities.
Collapse
Affiliation(s)
- Mirza Isanovic
- Department of Environmental Health Sciences, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Karlen E. Correa Velez
- Department of Environmental Health Sciences, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - R. Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
172
|
Forés E, Rusiñol M, Itarte M, Martínez-Puchol S, Calvo M, Bofill-Mas S. Evaluation of a virus concentration method based on ultrafiltration and wet foam elution for studying viruses from large-volume water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154431. [PMID: 35278558 DOI: 10.1016/j.scitotenv.2022.154431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Assessing the presence of viruses in large-volume samples involves cumbersome methods that require specialized training and laboratory equipment. In this study, a large volume concentration (LVC) method, based on dead-end ultrafiltration (DEUF) and Wet Foam Elution™ technology, was evaluated in different type of waters and different microorganisms. Its recovery efficiency was evaluated through different techniques (infectivity assays and molecular detection) by spiking different viral surrogates (bacteriophages PhiX174 and MS2 and Coxsackie virus B5 (CVB5) and Escherichia coli (E. coli). Furthermore, the application of a secondary concentration step was evaluated and compared with skimmed milk flocculation. Viruses present in river water, seawater and groundwater samples were concentrated by applying LVC method and a centrifugal ultrafiltration device (CeUF), as a secondary concentration step and quantified with specific qPCR Human adenoviruses (HAdV) and noroviruses (NoVs). MS2 was used as process control, obtaining a mean viral recovery of 22.0 ± 12.47%. The presence of other viruses was also characterized by applying two different next-generation sequencing approaches. LVC coupled to a secondary concentration step based on CeUF allowed to detect naturally occurring viruses such as HAdV and NoVs in different water matrices. Using HAdV as a human fecal indicator, the highest viral pollution was found in river water samples (100% of positive samples), followed by seawater (83.33%) and groundwater samples (66.67%). The LVC method has also proven to be useful as a virus concentration method in the filed since HAdV and NoVs were detected in the river water and groundwater samples concentrated in the field. All in all, LVC method presents high concentration factor and a low limit of detection and provides viral concentrates useful for subsequent molecular analysis such as PCR and massive sequencing.
Collapse
Affiliation(s)
- Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Catalonia, Spain.
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miquel Calvo
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
173
|
Weyersberg L, Klemens E, Buehler J, Vatter P, Hessling M. UVC, UVB and UVA susceptibility of Phi6 and its suitability as a SARS-CoV-2 surrogate. AIMS Microbiol 2022; 8:278-291. [PMID: 36317004 PMCID: PMC9576498 DOI: 10.3934/microbiol.2022020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 11/19/2022] Open
Abstract
For SARS-CoV-2 disinfection systems or applications that are based on UVC, UVB or UVA irradiation, it would be desirable to have a SARS-CoV-2 surrogate for tests and development, which does not require a laboratory with a high biosafety level. The bacteriophage Phi 6, an enveloped RNA virus like coronaviruses, is an obvious candidate for such a surrogate. In this study, UVC, UVB and UVA log-reduction doses for Phi6 are determined by plaque assay. Log-reduction doses for SARS-CoV-2 are retrieved from a literature research. Because of a high variability of the published results, median log-reduction doses are determined for defined spectral ranges and compared to Phi6 data in the same intervals. The measured Phi6 log-reduction doses for UVC (254 nm), UVB (311 nm) and UVA (365 nm) are 31.7, 980 and 14 684 mJ/cm2, respectively. The determined median log-reduction doses for SARS-CoV-2 are much lower, only about 1.7 mJ/cm2 within the spectral interval 251-270 nm. Therefore, Phi6 can be photoinactivated by all UV wavelengths but it is much less UV sensitive compared to SARS-CoV-2 in all UV spectral ranges. Thus, Phi6 is no convincing SARS-CoV-2 surrogate in UV applications.
Collapse
Affiliation(s)
| | | | | | | | - Martin Hessling
- Ulm University of Applied Sciences, Department of Medical Engineering and Mechatronics, Albert Einstein-Allee 55, D-89081 Ulm, Germany
| |
Collapse
|
174
|
Guo Y, Li J, O'Brien J, Sivakumar M, Jiang G. Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. WATER RESEARCH 2022; 219:118610. [PMID: 35598472 DOI: 10.1016/j.watres.2022.118610] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The amount of norovirus RNA (Ribonucleic Acid) in raw wastewater, collected from a wastewater treatment plant (WWTP), can provide an indication of disease prevalence within the sampled catchment. However, an accurate back-estimation might be impeded by the uncertainties from in-sewer/in-sample degradation of viral RNA, variable shedding magnitude, and difficulties in measurement within raw wastewater. The current study reviewed the published literature regarding the factors of norovirus shedding, viral RNA decay in wastewater, and the occurrence of norovirus RNA in raw wastewater based on molecular detection. Sensitivity analysis for WBE back-estimation was conducted using the reported data of the factors mentioned above considering different viral loads in wastewater samples. It was found that the back-estimation is more sensitive to analytical detection uncertainty than shedding variability for norovirus. Although seasonal temperature change can lead to variation of decay rates and may influence the sensitivity of this pathogen-specific parameter, decay rates of norovirus RNA contribute negligibly to the variance in estimating disease prevalence, based on the available data from decay experiments in bulk wastewater under different temperatures. However, the effects of in-sewer transportation on viral RNA decay and retardation by sewer biofilms on pipe surfaces are largely unknown. Given the highest uncertainty from analytical measurement by molecular methods and complexity of in-sewer processes that norovirus experienced during the transportation to WWTP, future investigations are encouraged to improve the accuracy of viral RNA detection in wastewater and delineate viral retardation/interactions with wastewater biofilms in real sewers.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
175
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
176
|
Sodhi KK, Singh CK. A systematic review on the occurrence, fate, and remediation of SARS-CoV-2 in wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:8073-8086. [PMID: 35755183 PMCID: PMC9207430 DOI: 10.1007/s13762-022-04326-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 05/26/2022] [Indexed: 06/12/2023]
Abstract
The COVID-19 has been declared a pandemic by the World Health Organization. Along with impairing the respiratory system, it also affects the gastrointestinal system. By reviewing experiments on the wastewater analysis for the detection of coronavirus, this study explores the fate, persistence, and various remediation strategies for the virus removal from the wastewater. The results indicated that the virus can be detected in the wastewater samples, feces, and sewage, even before the onset of symptoms. Coronavirus can be a potential panzootic disease, as several mammalian species get infected by the deadly virus. The disinfection strategies used earlier for the treatment of wastewater are not sufficient for the removal of viruses from the wastewater. Therefore, concerted efforts should be made to understand their fate, sources, and occurrence in the environmental matrices. To prevent the spread of the panzootic disease, revised guidelines should be issued for the remediation of the virus. Recent viral remediation methods such as membrane bioreactors and advanced oxidation methods can be used. Therefore, the present review puts a light on the current knowledge on the occurrence of coronaviruses in wastewater, the possible sources, fate, and removal strategies.
Collapse
Affiliation(s)
- K. K. Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - C. K. Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
177
|
Yanaç K, Adegoke A, Wang L, Uyaguari M, Yuan Q. Detection of SARS-CoV-2 RNA throughout wastewater treatment plants and a modeling approach to understand COVID-19 infection dynamics in Winnipeg, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153906. [PMID: 35218826 PMCID: PMC8864809 DOI: 10.1016/j.scitotenv.2022.153906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
Although numerous studies have detected SARS-CoV-2 RNA in wastewater and attempted to find correlations between the concentration of SARS-CoV-2 RNA and the number of cases, no consensus has been reached on sample collection and processing, and data analysis. Moreover, the fate of SARS-CoV-2 in wastewater treatment plants is another issue, specifically regarding the discharge of the virus into environmental settings and the water cycle. The current study monitored SARS-CoV-2 RNA in influent and effluent wastewater samples with three different concentration methods and sludge samples over six months (July to December 2020) to compare different virus concentration methods, assess the fate of SARS-CoV-2 RNA in wastewater treatment plants, and describe the potential relationship between SARS-CoV-2 RNA concentrations in influent and infection dynamics. Skimmed milk flocculation (SMF) resulted in 15.27 ± 3.32% recovery of an internal positive control, Armored RNA, and a high positivity rate of SARS-CoV-2 RNA in stored wastewater samples compared to ultrafiltration methods employing a prefiltration step to eliminate solids in fresh wastewater samples. Our results suggested that SARS-CoV-2 RNA may predominate in solids, and therefore, concentration methods focusing on both supernatant and solid fractions may result in better recovery. SARS-CoV-2 RNA was detected in influent and primary sludge samples but not in secondary and final effluent samples, indicating a significant reduction during primary and secondary treatments. SARS-CoV-2 RNA was first detected in influent on September 30th, 2020. A decay-rate formula was applied to estimate initial concentrations of late-processed samples with SMF. A model based on shedding rate and new cases was applied to estimate SARS-CoV-2 RNA concentrations and the number of active shedders. Inferred sensitivity of observed and modeled concentrations to the fluctuations in new cases and test-positivity rates indicated a potential contribution of newly infected individuals to SARS-CoV-2 RNA loads in wastewater.
Collapse
Affiliation(s)
- Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| | - Adeola Adegoke
- Department of Statistics, University of Manitoba, Winnipeg, Canada
| | - Liqun Wang
- Department of Statistics, University of Manitoba, Winnipeg, Canada
| | - Miguel Uyaguari
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
178
|
Tandukar S, Sthapit N, Thakali O, Malla B, Sherchan SP, Shakya BM, Shrestha LP, Sherchand JB, Joshi DR, Lama B, Haramoto E. Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153816. [PMID: 35157870 PMCID: PMC8832950 DOI: 10.1016/j.scitotenv.2022.153816] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 05/19/2023]
Abstract
The applicability of wastewater-based epidemiology (WBE) has been extensively studied throughout the world with remarkable findings. This study reports the presence and reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at two wastewater treatment plants (WWTPs) of Nepal, along with river water, hospital wastewater (HWW), and wastewater from sewer lines collected between July 2020 and February 2021. SARS-CoV-2 RNA was detected in 50%, 54%, 100%, and 100% of water samples from WWTPs, river hospitals, and sewer lines, respectively, by at least one of four quantitative PCR assays tested (CDC-N1, CDC-N2, NIID_2019-nCOV_N, and N_Sarbeco). The CDC-N2 assay detected SARS-CoV-2 RNA in the highest number of raw influent samples of both WWTPs. The highest concentration was observed for an influent sample of WWTP A (5.5 ± 1.0 log10 genome copies/L) by the N_Sarbeco assay. SARS-CoV-2 was detected in 47% (16/34) of the total treated effluents of WWTPs, indicating that biological treatments installed at the tested WWTPs are not enough to eliminate SARS-CoV-2 RNA. One influent sample was positive for N501Y mutation using the mutation-specific qPCR, highlighting a need for further typing of water samples to detect Variants of Concern. Furthermore, crAssphage-normalized SARS-CoV-2 RNA concentrations in raw wastewater did not show any significant association with the number of new coronavirus disease 2019 (COVID-19) cases in the whole district where the WWTPs were located, suggesting a need for further studies focusing on suitability of viral as well as biochemical markers as a population normalizing factor. Detection of SARS-CoV-2 RNA before, after, and during the peaking in number of COVID-19 cases suggests that WBE is a useful tool for COVID-19 case estimation in developing countries.
Collapse
Affiliation(s)
- Sarmila Tandukar
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan; Policy Research Institute, Sano Gaucharan, Kathmandu, Nepal
| | - Niva Sthapit
- Department of Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Samendra P Sherchan
- Department of Global Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA; Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Bijay Man Shakya
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Laxman P Shrestha
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Bhupendra Lama
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
179
|
Tanimoto Y, Ito E, Miyamoto S, Mori A, Nomoto R, Nakanishi N, Oka N, Morimoto T, Iwamoto T. SARS-CoV-2 RNA in Wastewater Was Highly Correlated With the Number of COVID-19 Cases During the Fourth and Fifth Pandemic Wave in Kobe City, Japan. Front Microbiol 2022; 13:892447. [PMID: 35756040 PMCID: PMC9223763 DOI: 10.3389/fmicb.2022.892447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the current coronavirus disease 2019 (COVID-19) pandemic and associated respiratory infections, has been detected in the feces of patients. Therefore, determining SARS-CoV-2 RNA levels in sewage may help to predict the number of infected people within the area. In this study, we quantified SARS-CoV-2 RNA copy number using reverse transcription quantitative real-time PCR with primers and probes targeting the N gene, which allows the detection of both wild-type and variant strain of SARS-CoV-2 in sewage samples from two wastewater treatment plants (WWTPs) in Kobe City, Japan, during the fourth and fifth pandemic waves of COVID-19 between February 2021 and October 2021. The wastewater samples were concentrated via centrifugation, yielding a pelleted solid fraction and a supernatant, which was subjected to polyethylene glycol (PEG) precipitation. The SARS-CoV-2 RNA was significantly and frequently detected in the solid fraction than in the PEG-precipitated fraction. In addition, the copy number in the solid fraction was highly correlated with the number of COVID-19 cases in the WWTP basin (WWTP-A: r = 0.8205, p < 0.001; WWTP-B: r = 0.8482, p < 0.001). The limit of capturing COVID-19 cases per 100,000 people was 0.75 cases in WWTP-A and 1.20 cases in WWTP-B, respectively. Quantitative studies of RNA in sewage can be useful for administrative purposes related to public health, including issuing warnings and implementing preventive measures within sewage basins.
Collapse
Affiliation(s)
- Yoshihiko Tanimoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Erika Ito
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Sonoko Miyamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Ai Mori
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Naohiro Oka
- Planning Division, Sewage Works Department, Public Construction Projects Bureau, Kobe City, Japan
| | - Takao Morimoto
- Planning Division, Sewage Works Department, Public Construction Projects Bureau, Kobe City, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| |
Collapse
|
180
|
Quantification of infectious Human mastadenovirus in environmental matrices using PMAxx-qPCR. Braz J Microbiol 2022; 53:1465-1471. [PMID: 35666431 PMCID: PMC9168632 DOI: 10.1007/s42770-022-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022] Open
Abstract
Molecular methodologies providing data on viral concentration and infectivity have been successfully used in environmental virology, supporting quantitative risk assessment studies. The present study aimed to assess human mastadenovirus (HAdV) intact particles using a derivative of propidium monoazide associated with qPCR (PMAxx-qPCR) in aquatic matrices. Initially, different concentrations of PMAxx were evaluated to establish an optimal protocol for treating different naturally contaminated matrices, using 10 min incubation in the dark at 200 rpm at room temperature and 15 min of photoactivation in the PMA-Lite™ LED photolysis device. There was no significant reduction in the quantification of infectious HAdV with increasing concentration of PMAxx used (20 μM, 50 μM, and 100 μM), except for sewage samples. In this matrix, a reduction of 5.01 log of genomic copies (GC)/L was observed from the concentration of 50 μM and revealed 100% HAdV particles with damaged capsids. On the other hand, the mean reduction of 0.51 log in stool samples using the same concentration mentioned above demonstrated 83% of damaged particles eliminated in the stool. Following, 50 μM PMAxx-qPCR protocol revealed a log reduction of 0.91, 0.67, and 1.05 in other samples of raw sewage, brackish, and seawater where HAdV concentration reached 1.47 × 104, 6.81 × 102, and 2.33 × 102 GC/L, respectively. Fifty micrometers of PMAxx protocol helped screen intact viruses from different matrices, including sea and brackish water.
Collapse
|
181
|
Alamin M, Tsuji S, Hata A, Hara-Yamamura H, Honda R. Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153737. [PMID: 35149069 PMCID: PMC8824713 DOI: 10.1016/j.scitotenv.2022.153737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 05/24/2023]
Abstract
Since SARS-CoV-2 RNA in wastewater is often present at low concentration or under detection limit, ensuring the reliability of detection processes using appropriate process controls is essential. The objective of this study was to evaluate applicability and limitations of candidate surrogate viruses as process controls under combinations of different virus concentration and RNA extraction methods. Detection efficiency of SARS-CoV-2 spiked in wastewater was compared with those of candidate surrogate viruses of bacteriophage ϕ6, pepper mild mottle virus (PMMoV), F-specific coliphage (F-phage), and murine norovirus (MNV). After inactivated SARS-CoV-2 and ϕ6 were spiked in two different wastewaters, the viruses in solid and liquid fractions of wastewater were concentrated by centrifuge and polyethylene glycol (PEG) precipitation, respectively. Viral RNA was extracted by using QIAamp Viral RNA Mini Kit and 3 other commercially available extraction kits, then quantified by reverse transcription-quantitative PCR using CDCN1 assay. Regardless of extraction kits, SARS-CoV-2 was consistently detected with good efficiency from both liquid (11-200%) and solid fractions (7.1-93%). Among the candidate process controls, PMMoV was widely detected at good efficiencies from both liquid and solid fractions regardless of selection of RNA extraction kits. F-phage and MNV also showed good detection efficiencies in most combinations of wastewater fractions and RNA extraction kits. An enveloped virus ɸ6 was found often undetected or to have very low detection efficiency (0.1-4.2%) even when SARS-CoV-2 spiked in wastewater was detected with good efficiency. Consequently, PMMoV is widely applicable as process control for detection of SARS-CoV-2 either in liquid fractions concentrated by PEG precipitation, or in solid fractions concentrated by centrifuge.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Shohei Tsuji
- School of Environmental Design, Kanazawa University, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan.
| |
Collapse
|
182
|
Chazot-Franguiadakis L, Eid J, Socol M, Molcrette B, Guégan P, Mougel M, Salvetti A, Montel F. Optical Quantification by Nanopores of Viruses, Extracellular Vesicles, and Nanoparticles. NANO LETTERS 2022; 22:3651-3658. [PMID: 35475610 DOI: 10.1021/acs.nanolett.2c00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanopores combined with optical approaches can be used to detect viral particles. In this work, we demonstrate the ability of hydrodynamical driving and optical sensing to identify and quantify viral particles in a biological sample. We have developed a simple and rapid method which requires only fluorescent labeling of the particles and can therefore be applied to a wide range of virus type. The system operates in real time and at the single particle level while providing a low error on concentration (4%) and a low limit of detection of 105 particles/mL for an acquisition time of 60 s with the ability to increase the acquisition time to achieve a lower limit.
Collapse
Affiliation(s)
| | - Joelle Eid
- Institut de Recherche en Infectiologie de Montpellier, UMR CNRS 9004, Université de Montpellier, Montpellier 34965, France
| | - Marius Socol
- Institut de Recherche en Infectiologie de Montpellier, UMR CNRS 9004, Université de Montpellier, Montpellier 34965, France
| | - Bastien Molcrette
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon 69007, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Sorbonne Université, Paris 75252, France
| | - Marylène Mougel
- Institut de Recherche en Infectiologie de Montpellier, UMR CNRS 9004, Université de Montpellier, Montpellier 34965, France
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie, UMR CNRS 5308, Université de Lyon, INSERM, Lyon 69007, France
| | - Fabien Montel
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon 69007, France
| |
Collapse
|
183
|
Owen C, Wright-Foulkes D, Alvarez P, Delgado H, Durance EC, Wells GF, Poretsky R, Shrestha A. Reduction and discharge of SARS-CoV-2 RNA in Chicago-area water reclamation plants. FEMS MICROBES 2022; 3:xtac015. [PMID: 37332512 PMCID: PMC10117756 DOI: 10.1093/femsmc/xtac015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 05/05/2022] [Indexed: 08/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA is commonly excreted in the feces and urine of infected individuals and is, therefore, detected in wastewaters where infection is present in the surrounding population. Water reclamation plants (WRPs) that treat these wastewaters commonly discharge treated effluents into the surrounding environment, yet little is known about the removal or persistence of SARS-CoV-2 RNA through wastewater treatment systems and potential for eventual release into the environment. We collected 361 24-hour composite influent and effluent samples from seven WRPs in the Greater Chicago Area in Illinois. Samples were collected over a period of 21 weeks for three large WRPs (with design max flows of 1.89-2.32 billion gallons per day and serving a combined population of 4.62 million people) and 11 weeks for four smaller WRPs (with design max flows of 96.3-186 million gallons per day and serving a combined population of >0.5 million people). A total of two of the larger WRPs implemented seasonal disinfection (using UV light or chlorination/dechlorination) for 8 weeks of this sampling period. SARS-CoV-2 RNA was quantified in the influent and effluent samples by reverse-transcription quantitative PCR (RT-qPCR) of the N1 and N2 targets of the nucleocapsid (N) gene. Although SARS-CoV-2 RNA was regularly detected in influent and effluent from all WRPs, viral RNA concentrations in the effluent samples were considerably lower, with mean effluent: influent gene copy concentration ratios ranging from 1:160 to 1:2.95 between WRPs. Samples collected while disinfection was active vs. inactive did not show any significant difference in the portion of RNA persisting through the treatment process (P > .05).
Collapse
Affiliation(s)
- Christopher Owen
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Dorothy Wright-Foulkes
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL 60610, United States
| | - Prisila Alvarez
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Haidy Delgado
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Eva C Durance
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Rachel Poretsky
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL 60610, United States
| |
Collapse
|
184
|
Yang S, Dong Q, Li S, Cheng Z, Kang X, Ren D, Xu C, Zhou X, Liang P, Sun L, Zhao J, Jiao Y, Han T, Liu Y, Qian Y, Liu Y, Huang X, Qu J. Persistence of SARS-CoV-2 RNA in wastewater after the end of the COVID-19 epidemics. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128358. [PMID: 35123131 PMCID: PMC8800135 DOI: 10.1016/j.jhazmat.2022.128358] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 05/19/2023]
Abstract
Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely detected in wastewater in many countries to track the COVID-19 pandemic development, it is still a lack of clear understanding of the persistence of SARS-CoV-2 in raw sewage, especially after the end of the COVID-19 pandemic event. To fill this knowledge gap, this study conducted a field trial on the SARS-CoV-2 presence in various wastewater facilities after the end of the COVID-19 epidemics in Beijing. The result showed that the wastewater treatment facility is a large SARS-CoV-2 repository. The viral RNA was still present in hospital sewage for 15 days and was continually detected in municipal WWTPs for more than 19 days after the end of the local COVID-19 epidemics. The T90 values of the SARS-CoV-2 RNA in raw wastewater were 17.17-8.42 days in the wastewater at 4 ℃ and 26 ℃, respectively, meaning that the decay rates of low titer viruses in raw sewage were much faster. The results confirmed that the SARS-CoV-2 RNA could persist in wastewater for more than two weeks, especially at lower temperatures. The sewage systems would be a virus repository and prolong the presence of the residual SARS-CoV-2 RNA. The study could enhance further understanding of the presence of SARS-CoV-2 RNA in raw wastewater.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xiaofeng Kang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Daheng Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xiaohong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Jianhong Zhao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Taoli Han
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Yi Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Yi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jiuhui Qu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
185
|
Foladori P, Cutrupi F, Cadonna M, Manara S. Coronaviruses and SARS-CoV-2 in sewerage and their removal: Step by step in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2022; 207:112204. [PMID: 34656637 PMCID: PMC8516124 DOI: 10.1016/j.envres.2021.112204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
The fate of Coronaviruses (CoVs) and in particular SARS-CoV-2 in wastewater treatment plants (WWTPs) has not been completely understood yet, but an adequate knowledge on the removal performances in WWTPs could help to prevent waterborne transmission of the virus that is still under debate. CoVs and SARS-CoV-2 are discharged from faeces into the sewer network and reach WWTPs within a few hours. This review presents the fate of SARS-CoV-2 and other CoVs in the primary, secondary and tertiary treatments of WWTPs as well as in sludge treatments. The viral loads decrease progressively along with the treatments from 20 to 3.0E+06 GU/L (Genomic Units/L) in the influent wastewater to concentrations below 2.50E+05 GU/L after secondary biological treatments and finally to negative concentrations (below detection limit) in disinfected effluents. Reduction of CoVs is due to (i) natural decay under unfavourable conditions (solids, microorganisms, temperature) for relatively long hydraulic retention times and (ii) processes of sedimentation, filtration, predation, adsorption, disinfection. In primary and secondary settling, due to the hydrophobic properties, a partial accumulation of CoVs may occur in the separated sludge. In secondary treatment (i.e. activated sludge) CoVs and SARS-CoV-2 loads can be reduced only by about one logarithm (∼90%). To enhance this removal, tertiary treatment with ultrafiltration (Membrane Bioreactors) and chemical disinfection or UV light is needed. CoVs and SARS-CoV-2 in the sludge (1.2E+04-4.6E+08 GU/L) can be inactivated significantly in the thermophilic digestion (55 °C), while mesophilic temperatures (33-37 °C) are not efficient. Additional studies are required to investigate the infectivity of SARS-CoV-2 in WWTPs, especially in view of increasing interest in wastewater reclamation and reuse.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123, Trento, Italy.
| | - Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123, Trento, Italy
| | - Maria Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121, Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology (CIBIO) - University of Trento, via Sommarive, n. 9, 38123, Trento, Italy
| |
Collapse
|
186
|
Guo Y, Sivakumar M, Jiang G. Decay of four enteric pathogens and implications to wastewater-based epidemiology: Effects of temperature and wastewater dilutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152000. [PMID: 34843787 DOI: 10.1016/j.scitotenv.2021.152000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Measurement of pathogens in raw wastewater from a population within certain sewer catchments can provide quantitative information on public health status within the sampled urban area. This so-called wastewater-based epidemiology (WBE) approach has the potential of becoming a powerful tool to monitor pathogen circulation and support timely intervention during outbreaks. However, many WBE studies failed to account for the pathogen decay during wastewater transportation in back calculating the disease prevalence. Various sewer process factors, including water temperature and infiltration/inflow, can lead to the variation of pathogen decay rates. This paper firstly reviewed the effects of temperature and types of water, i.e., wastewater, freshwater, and saline water, on the decay of four selected enteric pathogens, i.e., Campylobacter, Salmonella, Norovirus, and Adenovirus. To elucidate the importance of the pathogen decay rates (measured by culture and molecular methods) to WBE, a sensitivity analysis was conducted on the back-calculation equation for infection prevalence with decay rates collected from published literature. It was found that WBE back-calculation is more sensitive to decay rates under the condition of high wastewater temperature (i.e., over 25 °C) or if wastewater is diluted by saline water (i.e., sewer infiltration or use of seawater as an alternative source of freshwater constituting around 1/3 household water demand in some cities). Stormwater dilution of domestic wastewater (i.e., sewer inflow might achieve 10 times volumetric dilution) was shown to play a role in increasing the sensitivity of WBE back-calculation to bacterial pathogens, but not viral pathogens. Hence, WBE back-calculation in real sewers should account for in-sewer decay of specific pathogen species under different wastewater temperatures and dilutions. Overall, this review contributes to a better understanding of pathogen decay in wastewater which can lead to improved accuracy of WBE back-calculation.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
187
|
Hao X, Chen J, Xu M, Zheng H, Li X, Wang M, Liu T. Separation and purification of enveloped and non-enveloped viruses from water samples using an aqueous two-phase system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
188
|
Effect of Time and Temperature on SARS-CoV-2 in Municipal Wastewater Conveyance Systems. WATER 2022. [DOI: 10.3390/w14091373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Wastewater surveillance for SARS-CoV-2 is becoming a widespread public health metric, but little is known about pre-analytical influences on these measurements. We examined SARS-CoV-2 loads from two sewer service areas with different travel times that were within the same metropolitan area. Throughout the one-year study, case rates were nearly identical between the two service areas allowing us to compare differences in empirical concentrations relative to conveyance system characteristics and wastewater treatment plant parameters. We found time did not have a significant effect on degradation of SARS-CoV-2 when using average transit times (22 vs. 7.5 h) (p = 0.08), or under low flow conditions when transit times are greater (p = 0.14). Flow increased rather than decreased SARS-CoV-2 case-adjusted concentrations, but this increase was only significant in one service area. Warmer temperatures (16.8–19.8 °C) compared with colder (8.4–12.3 °C) reduced SARS-CoV-2 case-adjusted loads by ~50% in both plants (p < 0.05). Decreased concentrations in warmer temperatures may be an important factor to consider when comparing seasonal dynamics. Oxygen demand and suspended solids had no significant effect on SARS-CoV-2 case-adjusted loads overall. Understanding wastewater conveyance system influences prior to sample collection will improve comparisons of regional or national data for SARS-CoV-2 community infections.
Collapse
|
189
|
Dong Q, Cai JX, Liu YC, Ling HB, Wang Q, Xiang LJ, Yang SL, Lu ZS, Liu Y, Huang X, Qu JH. Occurrence and decay of SARS-CoV-2 in community sewage drainage systems. ENGINEERING (BEIJING, CHINA) 2022; 26:S2095-8099(22)00224-7. [PMID: 35469118 PMCID: PMC9020836 DOI: 10.1016/j.eng.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The rapid spread of the coronavirus disease (COVID-19) pandemic in over 200 countries poses a substantial threat to human health. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can be discharged with feces into the drainage system. However, a comprehensive understanding of the occurrence, presence, and potential transmission of SARS-CoV-2 in sewers, especially in community sewers, is still lacking. This study investigated the virus occurrence by viral nucleic acid testing in vent stacks, septic tanks, and the main sewer outlets of community where confirmed patients had lived during the outbreak of the epidemic in Wuhan, China. The results indicated that the risk of long-term emission of SARS-CoV-2 to the environment via vent stacks of buildings was low after confirmed patients were hospitalized. SARS-CoV-2 were mainly detected in the liquid phase, as opposed to being detected in aerosols, and its RNA in the sewage of septic tanks could be detected for only four days after confirmed patients were hospitalized. The surveillance of SARS-CoV-2 in sewage could be a sensitive indicator for the possible presence of asymptomatic patients in the community, though the viral concentration could be diluted more than 10 times, depending on the sampling site, as indicated by the Escherichia coli (E. coli) test. The comprehensive investigation of the community sewage drainage system is helpful to understand the occurrence characteristics of SARS-CoV-2 in sewage after excretion with feces and the feasibility of sewage surveillance for COVID-19 pandemic monitoring.
Collapse
Affiliation(s)
- Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun-Xiong Cai
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China
| | - Yan-Chen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China
| | - Qi Wang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China
| | - Luo-Jing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China
| | - Shao-Lin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zheng-Sheng Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiu-Hui Qu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
190
|
Kumar R, Adhikari S, Halden RU. Comparison of sorption models to predict analyte loss during sample filtration and evaluation of the impact of filtration on data quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152624. [PMID: 34963584 DOI: 10.1016/j.scitotenv.2021.152624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Although filtration has been a widely applied sample pretreatment step in environmental analytical chemistry, its impact on the quality of the data produced is often underappreciated in the scientific community. The objective of this literature review and modeling exercise was to examine nine existing sorption models with input parameters including hydrophobic interactions, pH, and structural features to predict the loss of analytes during wastewater filtration due to sorption to suspended solids and to assess the impact of filtration on data quality. Models' sorption estimates were further validated with a set of comprehensive metadata collected and analyzed from 20 peer-reviewed research papers that reported physical measurements of the suspended solids sorbed fraction of analytes obtained during wastewater filtration of contaminants of emerging concern (CECs). Data on the impact of filtration were obtained from the literature for 156 organic compounds reported both for the dissolved and particulate bound analyte mass. Approximately 40% of CECs (62/156) showed significant filtration loss (>20%) as a result of the removal of suspended solids during filtration. The loss of analyte mass due to filtration ranged from <1% for atenolol to >95% for acenaphthene. Collected literature data were then used to evaluate the utility of sorption modeling to predict analyte losses during sample pretreatment. Among nine sorption models, three were found to predict filtration loss of at least 70% of the CECs evaluated within a range of ±20% of the actually measured filtration loss of analytes, assuming a suspended solid concentration of 200 mg/L and a fraction of organic carbon in suspended solids of 0.43. Thus, sorption modeling can help reduce error when calculating mass loadings based on samples filtered before analysis. It is concluded that the estimates could be further improved by considering the following factors: ionic interactions, characteristics of the water-borne sorbents, and filtration media properties.
Collapse
Affiliation(s)
- Rahul Kumar
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA; OneWaterOneHealth, Non-profit Project of Arizona State University Foundation, Tempe, AZ 85287, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA; AquaVitas, LLC, 9260 E. Raintree Dr., Suite 130, Scottsdale, AZ 85260, USA.
| |
Collapse
|
191
|
Jiang SC, Bischel HN, Goel R, Rosso D, Sherchan S, Whiteson KL, Yan T, Solo-Gabriele HM. Integrating Virus Monitoring Strategies for Safe Non-potable Water Reuse. WATER 2022; 14:1187. [PMID: 37622131 PMCID: PMC10448804 DOI: 10.3390/w14081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, and especially viral pathogen exposure, limit widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling of viral health risks in the context of water reuse. First, we describe the current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We introduce promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies are ready for identifying and implementing viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in more robust assessment of water reuse risk.
Collapse
Affiliation(s)
- Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Heather N Bischel
- Department of Civil & Environmental Engineering, University of California, Davis CA 95616
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah 84112
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Samendra Sherchan
- Department of Environmental Health sciences, Tulane university, New Orleans, LA 70112
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawaii at Manoa, HI 96822, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
192
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
193
|
Monteiro S, Rente D, Cunha MV, Marques TA, Cardoso E, Vilaça J, Coelho N, Brôco N, Carvalho M, Santos R. Discrimination and surveillance of infectious severe acute respiratory syndrome Coronavirus 2 in wastewater using cell culture and RT-qPCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152914. [PMID: 34999067 PMCID: PMC8733236 DOI: 10.1016/j.scitotenv.2022.152914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 05/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA has been extensively detected in raw wastewater in studies exploring wastewater-based epidemiology (WBE) for early warning purposes. Nonetheless, only a few limited studies investigated the presence of SARS-CoV-2 in treated wastewaters to determine the potential health risks across the water cycle. The detection of SARS-CoV-2 has been done mostly by RT-qPCR and ddPCR, which only provides information on the presence of nucleic acids rather than information on potential infectivity. In this study, we set to develop and evaluate the use of viability RT-qPCR for the selective discrimination and surveillance of infectious SARS-CoV-2 in secondary-treated wastewater. Enzymatic (nuclease) and viability dye (Reagent D) pretreatments were applied to infer infectivity through RT-qPCR using porcine epidemic diarrhea virus (PEDV) as a CoV surrogate. Infectivity tests were first performed on PEDV purified RNA, then on infectious and heat-inactivated PEDV, and finally on heat inactivated PEDV spiked in concentrated secondary-treated wastewater. The two viability RT-qPCR methods were then applied to 27 secondary-treated wastewater samples positive for SARS-CoV-2 RNA at the outlet of five large urban wastewater treatment plants in Portugal. Reagent D pretreatment showed similar behavior to cell culture for heat-inactivated PEDV and both viability RT-qPCR methods performed comparably to VERO E6 cell culture for SARS-CoV-2 present in secondary-treated wastewater, eliminating completely the RT-qPCR signal. Our study demonstrated the lack of infectious SARS-CoV-2 viral particles on secondary-treated wastewater through the application of two pretreatment methods for the rapid inference of infectivity through RT-qPCR, showing their potential application in environmental screening. This study addressed a knowledge gap on the public health risks of SARS-CoV-2 across the water cycle.
Collapse
Affiliation(s)
- Silvia Monteiro
- Laboratorio de Análises, Tecnico Lisboa, Universidade de Lisboa, Lisboa, Portugal.
| | - Daniela Rente
- Laboratorio de Análises, Tecnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Tiago A Marques
- Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews KY16 9LZ, Scotland; Centro de Estatística e Aplicações, Departamento de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Eugénia Cardoso
- Águas do Tejo Atlântico, Fábrica de Águas de Alcântara, Avenida de Ceuta, 1300-254 Lisboa, Portugal
| | - João Vilaça
- SIMDOURO, ETAR de Gaia Litoral, 4400-356 Canidelo, Portugal
| | | | - Nuno Brôco
- AdP VALOR, Serviços Ambientais, S.A., Rua Visconde de Seabra, 3, 1700-421 Lisboa, Portugal
| | - Marta Carvalho
- AdP VALOR, Serviços Ambientais, S.A., Rua Visconde de Seabra, 3, 1700-421 Lisboa, Portugal
| | - Ricardo Santos
- Laboratorio de Análises, Tecnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
194
|
Oh C, Kim K, Araud E, Wang L, Shisler JL, Nguyen TH. A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads. WATER RESEARCH 2022; 212:118112. [PMID: 35091223 DOI: 10.1016/j.watres.2022.118112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Viruses are present at low concentrations in wastewater; therefore, an effective method for concentrating virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species, including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the final solution to that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency was significantly higher when calculated with virus titers than it was with genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk to humans who are inadvertently exposed to wastewater contaminated with infectious viruses. Furthermore, PCR inhibitors were not concentrated by PGM-MBs, suggesting that this tool will be successful for use with environmental samples. In addition, the PGM-MBs method is cost-effective (0.5 USD/sample) and has a fast turnaround time (3 h from virus concentration to genome quantification). Thus, this method can be implemented in high throughput facilities. Because of its strong performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, the PGM-MBs method can be successfully applied to WBE and ultimately provides valuable public health information.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States.
| | - Kyukyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, United States
| | - Elbashir Araud
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana-Champaign
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
195
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
196
|
Maan HS, Chaurasia D, Kapoor G, Dave L, Siddiqui A, Pal S, Singh HO, Biswas D, Chowdhary R. Intestinal viral infections of nSARS-CoV2 in the Indian community: Risk of virus spread in India. J Med Virol 2022; 94:1315-1329. [PMID: 34825708 PMCID: PMC9015588 DOI: 10.1002/jmv.27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
In December 2019, novel severe acute respiratory syndrome coronavirus 2 (nSARS-CoV-2) virus outbreaks emerged from Wuhan, China, and spread all over the world, including India. Molecular diagnosis of Coronavirus Disease 2019 (COVID) 19 for densely and highly populated countries like India is time-consuming. A few reports have described the successful diagnosis of nSARS-CoV-2 virus from sewage and wastewater samples contaminated with fecal matter, suggesting the diagnosis of COVID 19 from the same to raise an alarm about the community transmission of virus for implementation of evacuation and lockdown strategies. So far, the association between the detection of virus and its concentration in stool samples with severity of the disease and the presence or absence of gastrointestinal symptoms have been rarely reported. We led the search utilizing multiple databases, specifically PubMed (Medline), EMBASE, and Google Scholar. We conducted a literature survey on gastrointestinal infection and the spread of this virus through fecal-oral transmission. Reports suggested that the existence and persistence of nSARS-CoV-2 in anal/rectal swabs and stool specimens for a longer period of time than in nasopharyngeal swabs provides a strong tenable outcome of gastrointestinal contamination and dissemination of this infection via potential fecal-oral transmission. This review may be helpful to conduct further studies to address the enteric involvement and excretion of nSARS-CoV-2 RNA in feces and control the community spread in both COVID-19 patients ahead of the onset of symptoms and in asymptomatic individuals through wastewater and sewage surveillance as an early indication of infection. The existence of the viral genome and active viral particle actively participate in genomic variations. Hence, we comprehended the enteric spread of different viruses amongst communities with special reference to nSARS-CoV-2.
Collapse
Affiliation(s)
- Harjeet S. Maan
- State Virology Laboratory, Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Deepti Chaurasia
- Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Garima Kapoor
- Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Lokendra Dave
- Department of Respiratory MedicineGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Arshi Siddiqui
- Department of BiotechnologyBarkatullah UniversityBhopalMadhya PradeshIndia
| | - Savita Pal
- Department of BiochemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
| | - Hari O. Singh
- Division of Molecular Biology, Indian Council of Medical ResearchNational AIDS Research InstitutePuneMaharashtraIndia
| | - Debasis Biswas
- Department of MicrobiologyAll India Institute of Medical Sciences BhopalBhopalMadhya PradeshIndia
| | - Rashmi Chowdhary
- Department of BiochemistryAll India Institute of Medical Sciences BhopalBhopalMadhya PradeshIndia
| |
Collapse
|
197
|
Kim S, Kennedy LC, Wolfe MK, Criddle CS, Duong DH, Topol A, White BJ, Kantor RS, Nelson KL, Steele JA, Langlois K, Griffith JF, Zimmer-Faust AG, McLellan SL, Schussman MK, Ammerman M, Wigginton KR, Bakker KM, Boehm AB. SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022. [PMID: 35433013 DOI: 10.1101/2021.11.10.21266138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.
Collapse
Affiliation(s)
- Sooyeol Kim
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Lauren C Kennedy
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Marlene K Wolfe
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
- Rollins School of Public Health, Emory University Atlanta GA 30329 USA
| | - Craig S Criddle
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | | | - Aaron Topol
- Verily Life Sciences South San Francisco CA 94080 USA
| | | | - Rose S Kantor
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Kara L Nelson
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Joshua A Steele
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - Kylie Langlois
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - John F Griffith
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | | | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Melissa K Schussman
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Michelle Ammerman
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Kevin M Bakker
- Department of Epidemiology, University of Michigan Ann Arbor MI 48109 USA
| | - Alexandria B Boehm
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| |
Collapse
|
198
|
Kim S, Kennedy LC, Wolfe MK, Criddle CS, Duong DH, Topol A, White BJ, Kantor RS, Nelson KL, Steele JA, Langlois K, Griffith JF, Zimmer-Faust AG, McLellan SL, Schussman MK, Ammerman M, Wigginton KR, Bakker KM, Boehm AB. SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022; 8:757-770. [PMID: 35433013 PMCID: PMC8969789 DOI: 10.1039/d1ew00826a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 05/21/2023]
Abstract
Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.
Collapse
Affiliation(s)
- Sooyeol Kim
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Lauren C Kennedy
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Marlene K Wolfe
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
- Rollins School of Public Health, Emory University Atlanta GA 30329 USA
| | - Craig S Criddle
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | | | - Aaron Topol
- Verily Life Sciences South San Francisco CA 94080 USA
| | | | - Rose S Kantor
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Kara L Nelson
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Joshua A Steele
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - Kylie Langlois
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - John F Griffith
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | | | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Melissa K Schussman
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Michelle Ammerman
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Kevin M Bakker
- Department of Epidemiology, University of Michigan Ann Arbor MI 48109 USA
| | - Alexandria B Boehm
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| |
Collapse
|
199
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|
200
|
Shi J, Li X, Zhang S, Sharma E, Sivakumar M, Sherchan SP, Jiang G. Enhanced decay of coronaviruses in sewers with domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151919. [PMID: 34826473 PMCID: PMC8610560 DOI: 10.1016/j.scitotenv.2021.151919] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Recent outbreaks caused by coronaviruses and their supposed potential fecal-oral transmission highlight the need for understanding the survival of infectious coronavirus in domestic sewers. To date, the survivability and decay of coronaviruses were predominately studied using small volumes of wastewater (normally 5-30 mL) in vials (in-vial tests). However, real sewers are more complicated than bulk wastewater (wastewater matrix only), in particular the presence of sewer biofilms and different operational conditions. This study investigated the decay of infectious human coronavirus 229E (HCoV-229E) and feline infectious peritonitis virus (FIPV), two typical surrogate coronaviruses, in laboratory-scale reactors mimicking the gravity (GS, gravity-driven sewers) and rising main sewers (RM, pressurized sewers) with and without sewer biofilms. The in-sewer decay of both coronaviruses was greatly enhanced in comparison to those reported in bulk wastewater through in-vial tests. 99% of HCoV-229E and FIPV decayed within 2 h under either GS or RM conditions with biofilms, in contrast to 6-10 h without biofilms. There is limited difference in the decay of HCoV and FIPV in reactors operated as RM or GS, with the T90 and T99 difference of 7-10 min and 14-20 min, respectively. The decay of both coronaviruses in sewer biofilm reactors can be simulated by biphasic first-order kinetic models, with the first-order rate constant 2-4 times higher during the first phase than the second phase. The decay of infectious HCoV and FIPV was significantly faster in the reactors with sewer biofilms than in the reactors without biofilms, suggesting an enhanced decay of these surrogate viruses due to the presence of biofilms and related processes. The mechanism of biofilms in virus adsorption and potential inactivation remains unclear and requires future investigations. The results indicate that the survivability of infectious coronaviruses detected using bulk wastewater overestimated the infectivity risk of coronavirus during wastewater transportations in sewers or the downstream treatment.
Collapse
Affiliation(s)
- Jiahua Shi
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|