151
|
Luo Y, Feng L, Jia R, Yang G, Yang Q, Mu J. Variation in microbial populations and antibiotic resistance genes in mariculture sediments in the present of the seaweed Ulva fasciata and under selective pressure of oxytetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111114. [PMID: 32798752 DOI: 10.1016/j.ecoenv.2020.111114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The widely distributed seaweed Ulva fasciata has nutrient absorption abilities and can be used in the bioremediation of polluted maricultural environments. This study explored microbial community and antibiotic resistance gene (ARG) variation in mariculture sediments in response to different trace levels (10, 100, and 500 μg L-1) of oxytetracycline (OTC) and the presence of Ulva fasciata. The increase in OTC level promoted nutrient (NO3_-N and PO43--P) removal mainly due to Ulva fasciata adsorption. The abundances of the Euryarchaeota and Planctomycetes phyla in sediments were positively related to the increase in OTC stress, while a negative correlation occurred for the Proteobacteria phylum via metagenomic analysis. Compared with the control system, the increase rates of total ARGs were 3.90%, 7.36% and 13.42% at the OTC levels of 10, 100 and 500 μg L-1, respectively. OTC stress mainly favoured the collateral enrichment of non-corresponding polypeptide and MLS ARGs, mainly due to the enrichment of the phyla Planctomycetes and Euryarchaeota by the synergistic effect of OTC and nutrients. The results of quantitative PCR with tetracycline resistance genes (TRGs) (tetO, tetT, tetPB, tetW and otrA) and a horizontal transfer gene (intl1) demonstrated that all of genes had much higher gene numbers in sediments after 3 months of OTC stress than in those without OTC stress, which was strongly related to the variation in the phyla Bacteroidetes, Gemmatimonadetes and Acidobacteria. The significant correlation between intl1 and the target TRGs is indicative of the important role of the horizontal transfer of integron-resistant genes in the spread of TRGs.
Collapse
Affiliation(s)
- Yuqin Luo
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Lijuan Feng
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Rong Jia
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Guangfeng Yang
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qiao Yang
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jun Mu
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, PR China; School of Ecology and Environment, Hainan Tropical Ocean University, Sanya City, 572022, PR China
| |
Collapse
|
152
|
Li LG, Huang Q, Yin X, Zhang T. Source tracking of antibiotic resistance genes in the environment - Challenges, progress, and prospects. WATER RESEARCH 2020; 185:116127. [PMID: 33086465 DOI: 10.1016/j.watres.2020.116127] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance has become a global public health concern, rendering common infections untreatable. Given the widespread occurrence, increasing attention is being turned toward environmental pathways that potentially contribute to antibiotic resistance gene (ARG) dissemination outside the clinical realm. Studies during the past decade have clearly proved the increased ARG pollution trend along with gradient of anthropogenic interference, mainly through marker-ARG detection by PCR-based approaches. However, accurate source-tracking has been always confounded by various factors in previous studies, such as autochthonous ARG level, spatiotemporal variability and environmental resistome complexity, as well as inherent method limitation. The rapidly developed metagenomics profiles ARG occurrence within the sample-wide genomic context, opening a new avenue for source tracking of environmental ARG pollution. Coupling with machine-learning classification, it has been demonstrated the potential of metagenomic ARG profiles in unambiguously assigning source contribution. Through identifying indicator ARG and recovering ARG-host genomes, metagenomics-based analysis will further increase the resolution and accuracy of source tracking. In this review, challenges and progresses in source-tracking studies on environmental ARG pollution will be discussed, with specific focus on recent metagenomics-guide approaches. We propose an integrative metagenomics-based framework, in which coordinated efforts on experimental design and metagenomic analysis will assist in realizing the ultimate goal of robust source-tracking in environmental ARG pollution.
Collapse
Affiliation(s)
- Li-Guan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Qi Huang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong.
| |
Collapse
|
153
|
Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, Zada S, Ali B, Hayat M, Irfan M, Kang S. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139275. [PMID: 32480145 DOI: 10.1016/j.scitotenv.2020.139275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The present world faces a new threat of ancient microbes and resistomes that are locked in the cryosphere and now releasing upon thawing due to climate change and anthropogenic activities. The cryosphere act as the best preserving place for these microbes and resistomes that stay alive for millions of years. Current reviews extensively discussed whether the resurrection of microbes and resistomes existing in these pristine environments is true or just a hype. Release of these ancient microorganisms and naked DNA is of great concern for society as these microbes can either cause infections directly or they can interact with contemporary microorganisms and affect their fitness, survival, and mutation rate. Moreover, the contemporary microorganisms may uptake the unlocked naked DNA, which might transform non-pathogenic microorganisms into deadly antibiotic-resistant microbes. Additionally, the resurrection of glacial microorganisms can cause adverse effects on ecosystems downstream. The release of glacial pathogens and naked DNA is real and can lead to fatal outbreaks; therefore, we must prepare ourselves for the possible reemergence of diseases caused by these microbes. This study provides a scientific base for the adoption of actions by international cooperation to develop preventive measures.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghufranud Din
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Hayat
- Institute of Microbial Technology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, China
| | - Muhammad Irfan
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL. USA
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
154
|
Xiao KQ, Ge TD, Wu XH, Peacock CL, Zhu ZK, Peng J, Bao P, Wu JS, Zhu YG. Metagenomic and 14 C tracing evidence for autotrophic microbial CO 2 fixation in paddy soils. Environ Microbiol 2020; 23:924-933. [PMID: 32827180 DOI: 10.1111/1462-2920.15204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Autotrophic carbon dioxide (CO2 ) fixation by microbes is ubiquitous in the environment and potentially contributes to the soil organic carbon (SOC) pool. However, the multiple autotrophic pathways of microbial carbon assimilation and fixation in paddy soils remain poorly characterized. In this study, we combine metagenomic analysis with 14 C-labelling to investigate all known autotrophic pathways and CO2 assimilation mechanisms in five typical paddy soils from southern China. Marker genes of six autotrophic pathways are detected in all soil samples, which are dominated by the cbbL genes (67%-82%) coding the ribulose-bisphosphate carboxylase large chain in the Calvin cycle. These marker genes are associated with a broad range of phototrophic and chemotrophic genera. Significant amounts of 14 C-CO2 are assimilated into SOC (74.3-175.8 mg 14 C kg-1 ) and microbial biomass (5.2-24.1 mg 14 C kg-1 ) after 45 days incubation, where more than 70% of 14 C-SOC was concentrated in the relatively stable humin fractions. These results show that paddy soil microbes contain the genetic potential for autotrophic carbon fixation spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into organic components, which ultimately contribute to the stable SOC pool.
Collapse
Affiliation(s)
- Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Ti-Da Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Xiao-Hong Wu
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Caroline L Peacock
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Zhen-Ke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jingjing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Bao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Jin-Shui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| |
Collapse
|
155
|
Chen YR, Guo XP, Niu ZS, Lu DP, Sun XL, Zhao S, Hou LJ, Liu M, Yang Y. Antibiotic resistance genes (ARGs) and their associated environmental factors in the Yangtze Estuary, China: From inlet to outlet. MARINE POLLUTION BULLETIN 2020; 158:111360. [PMID: 32573452 DOI: 10.1016/j.marpolbul.2020.111360] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of antibiotic resistance genes (ARGs) and their associated environmental factors in estuaries are poorly understood. In this study, we comprehensively analyzed ARGs in both water and sediments from inlet to outlet of the Yangtze Estuary, China. The relative abundances of ARGs were higher in the turbidity maximum zone (TMZ) than other sites, implying that suspended particulate matter (SPM) was the major reservoir for ARGs in water. ARGs showed an increasing trend from inlet to outlet in sediments. Positively correlation between intI1 and sul1 in both water and sediments indicated that sul1 may be regulated by intI1. Correlation analysis and redundancy analysis showed that the spatial variations of estuarine ARGs were positively correlated with sample properties (e.g., temperature, SPM, pH) and chemical pollutants (e.g., heavy metals and antibiotic residues), among which chemical pollutants were the major drivers for the ARG distribution in both water and sediments.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sai Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
156
|
Zhou M, Xu Y, Ouyang P, Ling J, Cai Q, Du Q, Zheng L. Spread of resistance genes from duck manure to fish intestine in simulated fish-duck pond and the promotion of cefotaxime and As. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138693. [PMID: 32408202 DOI: 10.1016/j.scitotenv.2020.138693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Integrated culture is a widespread culture mode in South China, in which resistance genes (RGs) also spread in the circulation system with nutrients. Accordingly, the aim of the present study was to investigate the spread of RGs in a fish-duck pond and the RGs and bacterial community of fish intestines. Five fish tanks, including a control tank and four experimental tanks (duck manure, duck manure + cefotaxime, duck manure + As, and duck manure + cefotaxime + As), were tested for 100 days. The results showed that duck manure increased both the diversity and relative abundance of RGs in fish intestines, and the addition of stress factors (cefotaxime, As) increased the relative abundance of RGs by one to two orders of magnitude. The stress-inducing effect of cefotaxime was greater than that of As. Tetracycline resistance genes were more sensitive to stress factors and were the predominant RGs in fish intestines. RGs in duck manure preferentially spread from the water to biofilm and then to fish intestines, whereas co-stress of cefotaxime and As obviously promoted the spread of RGs to fish intestines. In comparison to the control tank, duck manure and stress factors significantly changed the bacterial community of fish intestines. Correlation analysis also revealed that arsB, MOX, tetA and sul1 were significantly correlated with intI1 (P < 0.01), which hinted a potentially dissemination risk of RGs in fish intestines. These findings provide a theoretical basis for further investigating the dissemination of RGs in integrated culture systems and for evaluating the ecological risk of antibiotic and As use in aquaculture.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Pengqian Ouyang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qiujie Cai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
157
|
Zhou R, Zeng S, Hou D, Liu J, Weng S, He J, Huang Z. Temporal variation of antibiotic resistance genes carried by culturable bacteria in the shrimp hepatopancreas and shrimp culture pond water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110738. [PMID: 32447139 DOI: 10.1016/j.ecoenv.2020.110738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) is a challenge to the health of humans, animals and the environments. Human activities and aquatic environments can increase ARGs. Few studies have focused on the temporal variation of aquatic bacteria with multiple ARGs in aquatic environments affected by human production activity. We studied culturable bacteria (CB) carrying ARGs, including sul1, sul2, floR, strA and gyrA in the shrimp hepatopancreas (HP) and in pond water during shrimp culture. The relative abundance of ARGs carried by CB in HP was higher than that in water (P < 0.05). However, CB carrying ARGs generally varied in random pattern. The correlation of sul2 abundance was significantly positive in HP, while that of strA abundance was significantly negative in water (P < 0.05) during shrimp culture. Among all of the CB, 33.59% carried multiple ARGs. Temporal distance-decay analysis indicated that CB carrying ARGs in water were more resistant to the effects of human activity. CB carrying ARGs varied temporally in HP and pond water during shrimp culture. These results demonstrate that multiple ARGs are carried by CB, and these varied with the phase of aquatic culture.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jian Liu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
158
|
Peng H, Gu J, Wang X, Wang Q, Sun W, Hu T, Guo H, Ma J, Bao J. Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110581. [PMID: 32310121 DOI: 10.1016/j.jenvman.2020.110581] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product.
Collapse
Affiliation(s)
- Huiling Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
159
|
Zhang Y, Lu J, Wu J, Wang J, Lin Y. Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137712. [PMID: 32325606 DOI: 10.1016/j.scitotenv.2020.137712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Extensive and improper overuse of antibiotics resulted in the prevalence of antibiotic resistance genes (ARGs). As the typical semi-enclosed continental shelf sea, the Bohai Sea has been considered as one of the most polluted marine areas in China. However, no comprehensive investigation on the spatial distribution of ARGs in sediments from the Bohai Sea has been reported. A large-scale sampling was performed in the Bohai Sea areas. The abundances of ARGs (6 classes, 29 ARG subtypes), class 1 integron-integrase gene (intI1), hmt-DNA and 16S rRNA gene were evaluated. IntI1 was detected with higher abundances in coastal areas ranging from 2.8 × 105 to 2.5 × 108 copies/g. The total ARGs abundances varied over 3 orders of magnitude in different sampling sites with the maximum at 4.9 × 108 copies/g. Sulfonamides resistance genes were ubiquitous and abundant with the abundances ranging from 5.7 × 104 to 1.8 × 107 copies/g, and quinolones resistance genes varied greatly in different samples. The contour map demonstrated that ARGs were more abundant in the Laizhou Bay, the south of Bohai Bay and the eastern of central sea basin. Most of the target ARG subtypes were detected with 100% detection frequencies. The genes of sul1, sul2 and tetX were detected with both higher absolute and relative abundance, while the abundance of β-lactams ARG subtypes was lower. Principal component analysis (PCA) and redundancy analysis (RDA) indicated that no significant differences in the ARGs abundance existed in different samples, and the sediment qualities played important roles in the distribution of ARGs. Bacterial communities were investigated and 768 strong and significant connections between ARGs and bacteria were identified. The possible hosts of ARGs were revealed by network analysis with higher relative abundance in coastal areas than the sea.
Collapse
Affiliation(s)
- Yuxuan Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Jianhua Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| | - Yichen Lin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
160
|
Scott LC, Lee N, Aw TG. Antibiotic Resistance in Minimally Human-Impacted Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113939. [PMID: 32498349 PMCID: PMC7313453 DOI: 10.3390/ijerph17113939] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
Antibiotic resistant bacteria (ARB) have become contaminants of concern in environmental systems. Studies investigating environmental ARB have primarily focused on environments that are greatly impacted by anthropogenic activity. Background concentrations of ARB in natural environments is not well understood. This review summarizes the current literature on the monitoring of ARB and antibiotic resistance genes (ARGs) in environments less impacted by human activity. Both ARB and ARGs have been detected on the Antarctic continent, on isolated glaciers, and in remote alpine environments. The methods for detecting and quantifying ARB and ARGs from the environment are not standardized and warrant optimization. Further research should be focused on the detection and quantification of ARB and ARGs along human gradients to better characterize the factors leading to their dissemination in remote environments.
Collapse
|
161
|
He P, Wu Y, Huang W, Wu X, Lv J, Liu P, Bu L, Bai Z, Chen S, Feng W, Yang Z. Characteristics of and variation in airborne ARGs among urban hospitals and adjacent urban and suburban communities: A metagenomic approach. ENVIRONMENT INTERNATIONAL 2020; 139:105625. [PMID: 32251897 DOI: 10.1016/j.envint.2020.105625] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 05/21/2023]
Abstract
Environmental antibiotic resistance genes (ARGs) have received much attention, while the characteristics of ARGs carried by particulate matter (PM) as a function of urban functional region are almost unknown. In this study, ARGs carried by PM2.5 and PM10 in an urban hospital, a nearby urban community and the nearest suburban community were detected using metagenomics. In total, 643 ARG subtypes belonging to 22 different ARG types were identified. The chloramphenicol exporter gene, sul1, bacA, and lnuA were the most abundant ARG subtypes in all air samples. The hospital exhibited higher ARG abundance and richness than the nearby communities. ARG profiles depended on functional region: hospital and suburban samples clustered separately, and samples from the nearby urban community interspersed among them. The representation of multidrug and quinolone resistance genes decayed with distance from the hospital to the urban community to the suburban community, indicating that hospital PM may be a hotspot for ARGs encoding proteins conferring multidrug and quinolone resistance. Airborne ARGs carried by PM in the hospital environment were more closely associated with clinically important pathogens than were those in nearby communities. In particular, carbapenemase genes, including blaNDM,blaKPC,blaIMP,blaVIM,and blaOXA-48, were discovered in hospital PM. In the suburban community, crAssphage, a human host-specific bacteriophage, was applied to predict ARG abundance and found to be enriched due to anthropogenic pollution but showed no clear evidence for ARG selection. In the hospital and the nearby urban community, the drivers of ARGs were complex. Our results highlighted that PM ARGs were closely related to human activities and revealed a potential hotspot, which could provide new evidence for further research and consequently mitigate the formation of airborne ARGs and transfer risks.
Collapse
Affiliation(s)
- Peng He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Yan Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Wenzhong Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510006, Guangdong, PR China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Jiayun Lv
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Pengda Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Li Bu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.
| |
Collapse
|
162
|
Metagenomic Profiles of Antibiotic Resistance Genes in Activated Sludge, Dewatered Sludge and Bioaerosols. WATER 2020. [DOI: 10.3390/w12061516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wastewater treatment plants (WWTPs) have been considered hotspots for the development and dissemination of antibiotic resistance in the environment. Although researchers have reported a significant increase in bioaerosols in WWTPs, the associated bacterial taxa, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) remain relatively unknown. In this study, we have investigated the abundance and occurrences of ARGs and MGEs, as well as the bacterial community compositions in activated sludge (AS), dewatered sludge (DS) and bioaerosols (BA) in a WWTP. In total, 153 ARG subtypes belonging to 19 ARG types were identified by the broad scanning of metagenomic profiles obtained using Illumina HiSeq. The results indicated that the total occurrences and abundances of ARGs in AS and DS samples were significantly higher than those in BA samples (p < 0.05). However, some specific ARG types related to sulfonamide, tetracycline, macrolide resistance were present in relatively high abundance in BA samples. Similar to many other full-scale WWTPs, the Proteobacteria (58%) and Bacteroidetes (18%) phyla were dominant in the AS and DS samples, while the Firmicutes (25%) and Actinobacteria (20%) phyla were the most dominant in the BA samples. Although the abundance of genes related to plasmids and integrons in bioaerosols were two to five times less than those in AS and DS samples, different types of MGEs were observed in BA samples. These results suggest that comprehensive analyses of resistomes in BA are required to better understand the emergence of both ARGs and MGEs in the wastewater treatment process due to the significant increase of scientific attention toward bioaerosols effects.
Collapse
|
163
|
Wang Q, Liu L, Hou Z, Wang L, Ma D, Yang G, Guo S, Luo J, Qi L, Luo Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137055. [PMID: 32065888 DOI: 10.1016/j.scitotenv.2020.137055] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Recent studies have consistently demonstrated increasing abundances of antibiotic resistance genes (ARGs) in the absence of antibiotic use. There is a large amount of quantitative data that has correlated the elevated ARGs levels with the concentrations of heavy metals in environments with anthropogenic impact. However, the mechanisms by which heavy metals facilitate the proliferation and horizontal gene transfer of ARGs among environmental bacteria were still unknown. This study validated effects of four typical heavy metals (Cu, Cd, Pb, Zn) on the plasmid RP4 mediated conjugative transfer of ARGs in freshwater microcosms. The results suggested that the typical heavy metals including Cu, Pb and Zn would promote conjugative transfer of the plasmid RP4, and Cu (5.0 μg/L) had the greatest ability to increase conjugative transfer by 16-fold higher than the control groups. In conjugative transfer microcosms, the species of each cultivable transconjugant were isolated, and their minimum inhibitory concentrations (MICs) were assessed via antibiotic susceptibility testing. The mechanism of the increased conjugative transfer of Cu was that Cu induced cell damage and the reduced conjugative transfer of Cd was that Cd increased the content of extracellular polymers substances (EPS). This study confirms that heavy metal Cu facilitates the conjugative transfer of environmental-mediated plasmid RP4 by cell damage effect, therefore accelerating the transmission and proliferation of ARGs.
Collapse
Affiliation(s)
- Qing Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Lei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zelin Hou
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Dan Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guang Yang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shaoyue Guo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jinghui Luo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Liying Qi
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
164
|
Wu DL, Zhang M, He LX, Zou HY, Liu YS, Li BB, Yang YY, Liu C, He LY, Ying GG. Contamination profile of antibiotic resistance genes in ground water in comparison with surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136975. [PMID: 32018106 DOI: 10.1016/j.scitotenv.2020.136975] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 05/21/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in the water environment has become an increasing concern. There have been many reports on ARGs in surface water, but little is known about ARGs in groundwater. In this study, we investigated the profiles and abundance of ARGs in groundwater in comparison with those in surface water of Maozhou River using high-throughput quantitative PCR (HT-qPCR). Totally 127 ARGs and 10 MGEs were detected by HT-qPCR, and among them the sulfonamides, multidrug and aminoglycosides resistance genes were the dominant ARG types. According to the results of HT-qPCR, 18 frequently detected ARGs conferring resistance to 6 classes of antibiotics and 3 MGEs were further quantified by qPCR in the wet season and dry season. The absolute abundance ranged from 1.23 × 105 to 8.89 × 106 copies/mL in wet season and from 8.50 × 102 to 2.65 × 106 copies/mL in the dry season, with sul1 and sul2 being the most abundant ARGs. The absolute abundance of ARGs and MGEs has no significant difference between the wet season and dry season while the diversity of ARGs in the dry season was higher than that in the wet season (p < 0.05). Totally 141 and 150 ARGs were detected in the water and sediments of Maozhou River, respectively. A total of 116 ARGs were shared among the groundwater, river water, and sediment, which accounted for 67.1% of all detected genes. Redundancy analysis further demonstrated that the environmental factors contributed 70.7% of the total ARG variations. The findings of large shared ARGs, abundant Total Coliforms and large wastewater burden in the groundwater provide a clear evidence that anthropogenic activities had a significant impact on groundwater.
Collapse
Affiliation(s)
- Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bei-Bei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
165
|
Li Y, Jing H, Kao SJ, Zhang W, Liu H. Metabolic response of prokaryotic microbes to sporadic hypoxia in a eutrophic subtropical estuary. MARINE POLLUTION BULLETIN 2020; 154:111064. [PMID: 32319898 DOI: 10.1016/j.marpolbul.2020.111064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Coastal eutrophication and consequent oxygen depletion (hypoxia) occurs worldwide due to increased human activity. The paucity of genomic information of microbes in hypoxia prone coastal waters have hindered our understanding of microorganism related causation and adaption to the environment. Here, using metagenomic approach, we investigated microbial metabolic capability in heavily polluted Pearl River estuary. Our results highlighted the possible roles of microbial metabolic activity in the formation of bottom water hypoxia by revealing enriched organic degradation related microbial genes in the bottom layer beneath surface phytoplankton bloom. Microbial nitrate reduction in hypoxia layer was low, possibly due to the low pH and fluctuating oxygen level. On contrary, high abundance of sulfate-reducing, and antibiotic and metal resistance related genes were detected in bottom and surface layers, respectively, indicating microbial adaptation to oxygen depletion and pollution. Our study provides gene level information on the interactive relations between microbial functions and environmental stress.
Collapse
Affiliation(s)
- Yingdong Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Weipeng Zhang
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
166
|
Preena PG, Swaminathan TR, Rejish Kumar VJ, Bright Singh IS. Unravelling the menace: detection of antimicrobial resistance in aquaculture. Lett Appl Microbiol 2020; 71:26-38. [PMID: 32248555 DOI: 10.1111/lam.13292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
One of the major problems to be addressed in aquaculture is the prominence of antimicrobial resistance (AMR). The occurrence of bacterial infections in cultured fishes promotes the continuous use of antibiotics in aquaculture, which results in the selection of proliferated antibiotic-resistant bacteria and increases the possibility of transfer to the whole environment through horizontal gene transfer. Hence, the accurate cultivation-dependent and cultivation-independent detection methods are very much crucial for the immediate and proper management of this menace. Antimicrobial resistance determinants carrying mobile genetic transfer elements such as transposons, plasmids, integrons and gene cassettes need to be specifically analysed through molecular detection techniques. The susceptibility of microbes to antibiotics should be tested at regular intervals along with various biochemical assays and conjugation studies so as to determine the extent of spread of AMR. Advanced omic-based and bioinformatic tools can also be incorporated for understanding of genetic diversity. The present review focuses on different detection methods to unearth the complexity of AMR in aquaculture. This monitoring helps the authorities to curb the use of antibiotics, commencement of appropriate management measures and adequate substitute strategies in aquaculture. The long battle of AMR could be overcome by the sincere implementation of One Health approach. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of antibiotics and increased antimicrobial resistance (AMR) are of major concerns in aquaculture industry. This could result in global health risks through direct consumption of cultured fishes and dissemination of AMR to natural environment through horizontal gene transfer. Hence, timely detection of the antimicrobial-resistant pathogens and continuous monitoring programmes are inevitable. Advanced microbiological, molecular biological and omic-based tools can unravel the menace to a great extent. This will help the authorities to curb the use of antibiotics and implement appropriate management measures to overcome the threat.
Collapse
Affiliation(s)
- P G Preena
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| | - T Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre of ICAR-NBFGR, CMFRI Campus, Kochi, India
| | - V J Rejish Kumar
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| |
Collapse
|
167
|
Ma J, Cui Y, Li A, Zhang W, Liang J, Wang S, Zhang L. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136370. [PMID: 31945537 DOI: 10.1016/j.scitotenv.2019.136370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The aim of this research was to analyze the elimination of nutrients, antibiotics as well as antibiotic resistance genes (ARGs) in different sludge treatment wetlands (STWs) with or without reeds and aeration tubes. Five antibiotics, including oxytetracycline, tetracycline, azithromycin, sulfamethoxazole, and sulfadiazine; five ARGs, including two tetracycline ARGs (tetC and tetA), one macrolide ARGs (ermB), and two sulfonamide ARGs (sul1 and sul2); and one integrase gene (intI1) were determined in the surface and bottom layers of three STWs, respectively. The removal efficiencies of antibiotics in the bottom layer were lower than that in the surface layer, while the elimination efficiencies of ARGs showed opposite trend. Strong correlations were observed among the contents of antibiotics as well as related ARGs, and the abundance of ARGs had a strong correlation with intI1. The results demonstrated that the contents of these pollutants decreased during the resting period in all the STWs, while the wetland had reeds and aeration tubes performed the best.
Collapse
Affiliation(s)
- Junwen Ma
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
| | - Aimin Li
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Wanjun Zhang
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Junyu Liang
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Shiquan Wang
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
168
|
Nguyen BAT, Chen QL, He JZ, Hu HW. Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135882. [PMID: 31818598 DOI: 10.1016/j.scitotenv.2019.135882] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change.
Collapse
Affiliation(s)
- Bao-Anh Thi Nguyen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
169
|
Yoo K, Yoo H, Lee J, Choi EJ, Park J. Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis. J Microbiol 2019; 58:123-130. [DOI: 10.1007/s12275-020-9309-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022]
|
170
|
Yuan K, Chen X, Chen P, Huang Y, Jiang J, Luan T, Chen B, Wang X. Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109722. [PMID: 31577991 DOI: 10.1016/j.ecoenv.2019.109722] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 05/16/2023]
Abstract
Methylmercury (MeHg) is a toxicant that mainly originates from in situ microbial methylation of inorganic mercury (Hg) in the environment and poses a severe health risk to the public. However, the characteristics of the Hg-methylating microbial community and its relationship with MeHg production in various environments remain to be understood. In the present study, Hg-methylating microbial communities and genes (hgcAB cluster) in the sediments of the Pearl River (PR), Pearl River Estuary (PRE) and South China Sea (SCS) were investigated at a large spatial scale using high-throughput sequencing-based approaches. The results showed that sulfur-reducing bacteria (SRB) and iron-reducing bacteria (IRB) were consistently the dominant microbial strains responsible for the methylation of inorganic Hg in all three regions investigated. The abundance and diversity of Hg-methylating communities and genes were both found to be higher in the PR sediments compared to that in the PRE and SCS sediments, and in good agreement with the spatial distribution of MeHg. Furthermore, a significant correlation was observed between the MeHg concentration and the abundance of both hgcA and hgcB genes in the sediments of the PR, PRE and SCS regions. Overall, the present study suggested that there was the presence of a close link between MeHg and Hg-methylating communities or genes in the ambient aquatic environment, which could be used to reflect the potential of in situ MeHg production.
Collapse
Affiliation(s)
- Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Xin Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ping Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, 510300, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tiangang Luan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Xiaowei Wang
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
171
|
Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK. Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms 2019; 7:microorganisms7120608. [PMID: 31771141 PMCID: PMC6956225 DOI: 10.3390/microorganisms7120608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis—along with other prominent functions—clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions.
Collapse
Affiliation(s)
- Ratna Prabha
- Chhattisgarh Swami Vivekananda Technical University, Bhilai, Chhattisgarh 491107, India; (R.P.); (M.K.V.)
| | - Dhananjaya P. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, UP, India
- Correspondence:
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock 18057, Germany;
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Hesham A. El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Mukesh K. Verma
- Chhattisgarh Swami Vivekananda Technical University, Bhilai, Chhattisgarh 491107, India; (R.P.); (M.K.V.)
| |
Collapse
|
172
|
Antibiotic Resistome Biomarkers associated to the Pelagic Sediments of the Gulfs of Kathiawar Peninsula and Arabian Sea. Sci Rep 2019; 9:17281. [PMID: 31754151 PMCID: PMC6872816 DOI: 10.1038/s41598-019-53832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Antibiotic resistance has been one of the most persistent global issue. Specifically, marine microbiomes have served as complex reservoirs of antibiotic resistant genes. Molecular advancements have enabled exploration of the uncultured microbial portion from hitherto difficult to sample niches such as deeper oceans. The Gulfs of Kathiawar Peninsula have been known for their unique properties like extreme tidal variations, different sediment textures and physicochemical variations. Pelagic sediment cores across four coordinates each of the Gulf of Kutch, Gulf of Khambhat and an open Arabian Sea were collected, processed for metagenomic sequencing and assessed for antibiotic and metal resistome. The dominant genes were mostly resistant to macrolides, glycopeptides and tetracycline drugs. Studied samples divided into three clusters based on their resistome with carA, macB, bcrA, taeA, srmB, tetA, oleC and sav1866 among the abundant genes. Samples from creek of Gulf of Kutch and mouth of Gulf of Khambhat were most diverse in resistance gene profile. Biomarkers observed include gyrA mutation conferring resistance gene in the Arabian Sea; Proteobacteria species in Gulf of Kutch and Arabian sea; while Aquificae, Acidobacteria and Firmicutes species in the Gulf of Khambhat. Region-wise differentially abundant 23 genes and 3 taxonomic biomarkers were proposed for antibiotic resistance monitoring.
Collapse
|
173
|
Wang H, Wang J, Li S, Li J, Jing C. Prevalence of antibiotic resistance genes in cell culture liquid waste and the virulence assess for isolated resistant strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32040-32049. [PMID: 31493078 DOI: 10.1007/s11356-019-06299-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Cell culture liquid waste containing antibiotic resistance genes (ARGs) and microbial community were still not received enough recognition, which pose potential risks to human health. Sixty-eight resistance genes and intl1 were detected in eight samples by Quantitative real-time PCR, while intl1 was only detected in hospital group. Meanwhile, the bacterial community was complex and diverse in each sample by 16S rRNA gene high-throughput sequencing, in addition, Morganella and Enterococcus presented a significant difference between two groups. Whole genome shotgun sequencing revealed that Morganella morganii had more resistance genes and virulence factors in hospital group, and three extended-spectrum beta-lactamase (ESBL) genotypes were found to be blaDHA-5, blaOXA-1, and blaTEM-1. This study provided a preliminary report on ARGs and resistant strains, which reminded people attention to the health risks of potential pathogens in this waste.
Collapse
Affiliation(s)
- Haichao Wang
- School of Civil Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, China
| | - Jin Wang
- School of Civil Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, China.
| | - Shuming Li
- School of Civil Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, China
| | - Jinzhao Li
- China Shenhua Overseas Development & Investment Co., Limited, Beijing, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
174
|
Zhao H, Yan B, Mo X, Li P, Li B, Li Q, Li N, Mo S, Ou Q, Shen P, Wu B, Jiang C. Prevalence and proliferation of antibiotic resistance genes in the subtropical mangrove wetland ecosystem of South China Sea. Microbiologyopen 2019; 8:e871. [PMID: 31251470 PMCID: PMC6855136 DOI: 10.1002/mbo3.871] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
The emerging pollutants antibiotic resistance genes (ARGs) are prevalent in aquatic environments such as estuary. Coastal mangrove ecosystems always serve as natural wetlands for receiving sewage which always carry ARGs. Currently, the research considering ARG distribution in mangrove ecosystems gains more interest. In this work, we investigated the diversity of ARGs in an urban estuary containing mangrove and nonmangrove areas of the South China Sea. A total of 163 ARGs that classified into 22 resistance types and six resistance mechanisms were found. ARG abundance of the samples in the estuary is between 0.144 and 0.203. This is within the general range of Chinese estuaries. The difference analysis showed that abundances of total ARGs, six most abundant ARGs (mtrA, rpoB, rpoC, rpsL, ef-Tu, and parY), the most abundant resistance types (elfamycin, multidrug, and peptide), and the most abundant resistance mechanism (target alteration) were significantly lower in mangrove sediment than that in nonmangrove sediment (p < 0.05). Network and partial redundancy analysis showed that sediment properties and mobile genetic elements were the most influential factors impacting ARG distribution rather than microbial community. The two factors collectively explain 51.22% of the differences of ARG distribution. Our study indicated that mangrove sediments have the capacity to remove ARGs. This work provides a research paradigm for analysis of ARG prevalence and proliferation in the subtropical marine coastal mangrove ecosystem.
Collapse
Affiliation(s)
- Huaxian Zhao
- Guangxi Key Lab of Mangrove Conservation and UtilizationGuangxi Mangrove Research CenterGuangxi Academy of SciencesBeihaiChina
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis ChemistryGuangxi Academy of SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and UtilizationGuangxi Mangrove Research CenterGuangxi Academy of SciencesBeihaiChina
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis ChemistryGuangxi Academy of SciencesNanningChina
| | - Xueyan Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Pu Li
- PFOMIC Bioinformatics CompanyNanningChina
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro‐Environmental Pollution Control and ManagementGuangdong Institute of Eco‐Environmental Science & TechnologyGuangzhouChina
| | - Quanwen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University)NanningChina
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qian Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo Wu
- Department of chemical and biological engineeringGuangxi Normal University for NationalitiesChongzuoChina
| | - Chengjian Jiang
- Guangxi Key Lab of Mangrove Conservation and UtilizationGuangxi Mangrove Research CenterGuangxi Academy of SciencesBeihaiChina
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis ChemistryGuangxi Academy of SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
175
|
Chen Y, Li P, Huang Y, Yu K, Chen H, Cui K, Huang Q, Zhang J, Yew-Hoong Gin K, He Y. Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment. WATER RESEARCH 2019; 162:127-138. [PMID: 31260828 DOI: 10.1016/j.watres.2019.06.047] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 05/26/2023]
Abstract
With the rapid construction of dams worldwide, reservoir system has become a representation of modern aquatic environment. However, the profiles of antibiotic resistance genes (ARGs) and associated factor influencing their dynamics in modern aquatic environment (e.g., water phase, sediment phase, and soil phase) are largely unknown. Here, we comprehensively characterized the diversity, abundance, distribution of ARGs in a large drinking water reservoir using high-throughput quantitative PCR, as well as ranked the factors (e.g., mobile genetic elements (MGEs), bacteria community, bacterial biomass, antibiotics, and basic properties) influencing the profiles of ARGs on the basis of structural equation models (SEMs). Water phase was prone to harbor more diverse ARGs as compared to sediment phase and soil phase, and soil phase in drawdown area was a potential reservoir and hotspot for ARGs. Environmental media partially affected the ARG diversity in modern aquatic environment, while it observably influenced the distributions of ARGs and MGEs and their co-occurrence patterns. The pathways for the proliferation and spread of ARGs in water phase were both the horizontal gene transfer (HGT) and vertical gene transfer (VGT), while the dominant pathways in sediment phase and soil phase were the HGT and VGT, respectively. The SEMs demonstrated that MGEs contributed the most to drive the ARG dynamics in both water phase and sediment phase, while the most dominant factor for this in soil phase was bacterial community. Overall, environmental media exerted a bottleneck in driving the dynamics of ARGs in modern aquatic environment probably via diversifying the MGEs, bacterial community, bacterial biomass, antibiotics and basic properties.
Collapse
Affiliation(s)
- Yihan Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuansheng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qianli Huang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
176
|
Zhou S, Zhu Y, Yan Y, Wang W, Wang Y. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome. WATER RESEARCH 2019; 161:610-620. [PMID: 31254887 DOI: 10.1016/j.watres.2019.06.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) including extracellular ARGs (eARGs) and intracellular ARGs (iARGs), are recognized as emerging environmental contaminants. Despite extensive efforts to profile ARGs in their "hotspots" wastewater treatment plants (WWTPs), the contribution of eARGs to antibiotic resistance spread remains unclear. Here, we applied metagenomic sequencing to investigate the distribution, mobility and microbial hosts of eARGs in activated sludge from five WWTPs. The total relative abundance eARGs ranged from 9.5 × 10-6 to 1.3 × 10-4, mainly encompassing elfamycin, dual drug, and aminoglycoside resistance genes. Multiple eARGs (e.g., EF-Tu, ropB, and rpsL mutants) were shared among the five WWTPs, and some clustered in the same genetic element (e.g., EF-Tu-rpsJ). eARGs were found to frequently co-localize with the eMGEs (e.g., sul1-3'CS-TnAs3, sul2-intI1-ISVsa3, and tetX-p63039), which may facilitate the mobilization of eARGs. Most eARGs likely originated from the genera Mycobacterium (6.7%), Nitrosomonas (5.3%), Steroidobacter (5.3%), Nitrospira (5.2%) and Pseudomonas (5.1%). No significant difference in the diversity, abundance, and mobility was observed between eARGs and iARGs. The host composition of eARGs and iARGs from municipal WWTPs are consistently dominated by Nitrosomonas, Steroidobacter, Nitrospira and Pseudomonas, while some differentially enriched genera (especially Nitrospira) in the hosts of iARGs compared with those of eARGs from the swine WWTP were identified. Our findings corroborate the mobile eARGs reservoir in WWTPs, thereby laying foundation for mitigating widespread antibiotic resistance.
Collapse
Affiliation(s)
- Shuai Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
177
|
Zhang Y, Zhang Y, Kuang Z, Xu J, Li C, Li Y, Jiang Y, Xie J. Comparison of Microbiomes and Resistomes in Two Karst Groundwater Sites in Chongqing, China. GROUND WATER 2019; 57:807-818. [PMID: 31297792 DOI: 10.1111/gwat.12924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Karst groundwater is an important water resource, as it accounts for about 15% of the total landscape of the earth and supplies 20% of potable water worldwide. The antibiotics resistance is an emerging global concern, and antibiotics residual and increase of antibiotic resistance genes represent serious global concerns and emerging pollutants. There is no report on the antibiotic resistance genes in groundwater. To survey resistome and microbiome in karst groundwater, two karst water samples were chosen for metagenome and metatranscriptome study, namely the 37th spring (C) and Dongcao spring (R) in Beibei, Chongqing, China. The two sites differ significantly in sulfur content, geochemical parameters, community structure, antibiotic resistance genes, and mechanisms, and these results may be influenced by anthropogenic activities. Combining with the Antibiotic Resistance Genes Database, three types of resistance genes baca, sul2, sul1 are present in R and C, and ant3ia, ermc, tetpa are also present in R. The number of all resistance genes in R was more than C, and Proteobacteria, Bacteroidetes, Nitrospirae are the main sources of antibiotic resistance genes. In addition, a large number of genes related to antibiotic gene transmission and drug resistance were found in both samples. Karst groundwater is an important source of drinking water and a possible venue for the transmission of microbial antibiotic resistance genes. However, few studies addressed this issue in karst groundwater, despite its widespread and great importance to global ecosystem. Karst groundwater is a reservoir for antibiotic resistant genes, and measures to control these resistant genes are urgently needed.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Yuanzhu Zhang
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, 2 Tiansheng, Chongqing, 400715, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Yong Li
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, 2 Tiansheng, Chongqing, 400715, China
| | - Yongjun Jiang
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, 2 Tiansheng, Chongqing, 400715, China
| | | |
Collapse
|
178
|
Gupta S, Arango-Argoty G, Zhang L, Pruden A, Vikesland P. Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm. MICROBIOME 2019; 7:123. [PMID: 31466530 PMCID: PMC6716844 DOI: 10.1186/s40168-019-0735-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/14/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The interconnectivities of built and natural environments can serve as conduits for the proliferation and dissemination of antibiotic resistance genes (ARGs). Several studies have compared the broad spectrum of ARGs (i.e., "resistomes") in various environmental compartments, but there is a need to identify unique ARG occurrence patterns (i.e., "discriminatory ARGs"), characteristic of each environment. Such an approach will help to identify factors influencing ARG proliferation, facilitate development of relative comparisons of the ARGs distinguishing various environments, and help pave the way towards ranking environments based on their likelihood of contributing to the spread of clinically relevant antibiotic resistance. Here we formulate and demonstrate an approach using an extremely randomized tree (ERT) algorithm combined with a Bayesian optimization technique to capture ARG variability in environmental samples and identify the discriminatory ARGs. The potential of ERT for identifying discriminatory ARGs was first evaluated using in silico metagenomic datasets (simulated metagenomic Illumina sequencing data) with known variability. The application of ERT was then demonstrated through analyses using publicly available and in-house metagenomic datasets associated with (1) different aquatic habitats (e.g., river, wastewater influent, hospital effluent, and dairy farm effluent) to compare resistomes between distinct environments and (2) different river samples (i.e., Amazon, Kalamas, and Cam Rivers) to compare resistome characteristics of similar environments. RESULTS The approach was found to readily identify discriminatory ARGs in the in silico datasets. Also, it was not found to be biased towards ARGs with high relative abundance, which is a common limitation of feature projection methods, and instead only captured those ARGs that elicited significant profiles. Analyses of publicly available metagenomic datasets further demonstrated that the ERT approach can effectively differentiate real-world environmental samples and identify discriminatory ARGs based on pre-defined categorizing schemes. CONCLUSIONS Here a new methodology was formulated to characterize and compare variances in ARG profiles between metagenomic data sets derived from similar/dissimilar environments. Specifically, identification of discriminatory ARGs among samples representing various environments can be identified based on factors of interest. The methodology could prove to be a particularly useful tool for ARG surveillance and the assessment of the effectiveness of strategies for mitigating the spread of antibiotic resistance. The python package is hosted in the Git repository: https://github.com/gaarangoa/ExtrARG.
Collapse
Affiliation(s)
- Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061 USA
| | | | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Peter Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
179
|
Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin JG, Gu JD, Li M. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. ENVIRONMENT INTERNATIONAL 2019; 129:208-220. [PMID: 31129497 DOI: 10.1016/j.envint.2019.05.036] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
Wastewater treatment plants (WWTPs) are a source and reservoir for subsequent spread of various antibiotic resistance genes (ARGs). However, little is known about the activity and hosts of ARGs in WWTPs. Here, we utilized both metagenomic and metatranscriptomic approaches to comprehensively reveal the diversity, abundance, expression and hosts of ARGs in activated sludge (AS) from three conventional WWTPs in Taiwan. Based on deep sequencing data and a custom-made ARG database, a total of 360 ARGs associated with 24 classes of antibiotics were identified from the three AS metagenomes, with an abundance range of 7.06 × 10-1-1.20 × 10-4 copies of ARG/copy of 16S rRNA gene. Differential coverage binning analysis revealed that >22 bacterial phyla were the putative hosts of the identified ARGs. Surprisingly, genus Mycobacterium and family Burkholderiaceae were observed as multi-drug resistant harboring 14 and 50 ARGs. Metatranscriptome analysis showed 65.8% of the identified ARGs were being expressed, highlighting that ARGs were not only present, but also transcriptionally active in AS. Remarkably, 110 identified ARGs were annotated as plasmid-associated and displayed a close to two-fold increased likelihood of being transcriptionally expressed compared to those ARGs found exclusively within bacterial chromosomes. Further analysis showed the transcript abundance of aminoglycoside, sulfonamide, and tetracycline resistance genes was mainly contributed by plasmid-borne ARGs. Our approach allowed us to specifically link ARGs to their transcripts and genetic context, providing a comprehensive insight into the prevalence, expression and hosts of ARGs in AS. Overall, results of this study enhance our understanding of the distribution and dissemination of ARGs in WWTPs, which benefits environmental risk assessment and management of ARB and ARGs.
Collapse
Affiliation(s)
- Zongbao Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Uli Klümper
- ESI & CLES, Biosciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom; European Centre for Environment and Human Health, University of Exeter, Truro, United Kingdom
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qiaoyan Wei
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
180
|
Shi W, Zhang H, Li J, Liu Y, Shi R, Du H, Chen J. Occurrence and spatial variation of antibiotic resistance genes (ARGs) in the Hetao Irrigation District, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:792-801. [PMID: 31121544 DOI: 10.1016/j.envpol.2019.04.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
The prevalence and proliferation of antibiotic resistance genes (ARGs) has been identified as an emerging contaminant of concern and a crucial threat to public health worldwide. To determine the occurrence and distribution of ARGs in artificial agricultural irrigation systems, we designed eight sample sites of farmland drainage in the Hetao Irrigation District, Inner Mongolia, China. Results indicated that the distribution of ARGs in sub-drainage canals is influenced by the local urban area, agriculture, and animal husbandry structure. The blaTEM gene was predominant in the water samples (up to 8.98 ARG copies/16S rRNA genes). The average ARG abundance in drainage channel sampling sites was significantly higher than the influent water from the Yellow River, which means that the artificial agricultural irrigation system enhances the abundance of resistance genes in the study area. Moreover, the effluent water of the whole irrigation system presented a lower abundance of ARGs than the influent water. This demonstrates that the Wuliangsuhai watershed ecosystem plays an important role in regulating the abundance of ARGs in the area. In our study, the mobile gene elements correlated with trB, emrD, mexF, and vanC (P < 0.001) in the irrigation system. Additionally, different correlations exist between other special subtypes of ARGs. These findings provided deeper insights into mitigating the propagation of ARGs and the associated risks to public health.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hong Zhang
- College of Environmental Science and Resources, Shanxi University, Taiyuan, 030006, China.
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yong Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Shi
- Institute of Environmental Science of Bayannur, Linhe, 015000, China
| | - Hongyu Du
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
181
|
Yuan K, Yu K, Yang R, Zhang Q, Yang Y, Chen E, Lin L, Luan T, Chen W, Chen B. Metagenomic characterization of antibiotic resistance genes in Antarctic soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:300-308. [PMID: 30947033 DOI: 10.1016/j.ecoenv.2019.03.099] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance genes (ARGs) are considered environmental pollutants. Comprehensive characterization of the ARGs in pristine environments is essential towards understanding the evolution of antibiotic resistance. Here, we analyzed ARGs in soil samples collected from relatively pristine Antarctica using metagenomic approaches. We identified 79 subtypes related to 12 antibiotic classes in Antarctic soils, in which ARGs related to multidrug and polypeptide were dominant. The characteristics of ARGs in Antarctic soils were significantly different from those in active sludge, chicken feces and swine feces, in terms of composition, abundance and potential transferability. ARG subtypes (e.g., bacA, ceoB, dfrE, mdtB, amrB, and acrB) were more abundant than others in Antarctic soils. Approximately 60% of the ARGs conferred antibiotic resistance via an efflux mechanism, and a low fraction of ARGs (∼16%) might be present on plasmids. Culturable bacterial consortiums isolated from Antarctic soils were consistently susceptible to most of the tested antibiotics frequently used in clinical therapies. The amrB and ceoB carried by culturable species did not express the resistance to aminoglycoside and fluoroquinolone at the levels of clinical concern. Our results suggest that the wide use of antibiotics may have contributed to developing higher antibiotic resistance and mobility.
Collapse
Affiliation(s)
- Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ke Yu
- School of Environmental and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Enzhong Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Lan Lin
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
182
|
Chen J, McIlroy SE, Archana A, Baker DM, Panagiotou G. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. MICROBIOME 2019; 7:104. [PMID: 31307536 PMCID: PMC6632204 DOI: 10.1186/s40168-019-0714-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/17/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Coastal marine environments are one of the most productive ecosystems on Earth. However, anthropogenic impacts exert significant pressure on coastal marine biodiversity, contributing to functional shifts in microbial communities and human health risk factors. However, relatively little is known about the impact of eutrophication-human-derived nutrient pollution-on the marine microbial biosphere. RESULTS Here, we tested the hypothesis that benthic microbial diversity and function varies along a pollution gradient, with a focus on human pathogens and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG annotation revealed that zinc, lead, total volatile solids, and ammonia nitrogen were correlated with microbial diversity and function. We propose several microbes, including Planctomycetes and sulfate-reducing microbes as candidates to reflect pollution concentration. Annotation of antibiotic resistance genes showed that the highest abundance of efflux pumps was found at the most polluted site, corroborating the relationship between pollution and human health risk factors. This result suggests that sediments at polluted sites harbor microbes with a higher capacity to reduce intracellular levels of antibiotics, heavy metals, or other environmental contaminants. CONCLUSIONS Our findings suggest a correlation between pollution and the marine sediment microbiome and provide insight into the role of high-turnover microbial communities as well as potential pathogenic organisms as real-time indicators of water quality, with implications for human health and demonstrate the inner functional shifts contributed by the microcommunities.
Collapse
Affiliation(s)
- Jiarui Chen
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Shelby E McIlroy
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China
| | - Anand Archana
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
| | - David M Baker
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China.
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China.
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Beutenbergstrasse 11a, Jena, 07745, Germany.
- Department of Microbiology Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
183
|
Tan L, Wang F, Liang M, Wang X, Das R, Mao D, Luo Y. Antibiotic resistance genes attenuated with salt accumulation in saline soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:35-42. [PMID: 30978628 DOI: 10.1016/j.jhazmat.2019.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Salt accumulation on the surface of the soil layer driven by the strong evaporation is a natural phenomenon that usually happens in the dry season, particularly on the coastal lands reclaimed from tidal flats. However, the influence of salt accumulation on the distribution profile of antibiotic resistance genes (ARGs) and mobile gene elements (MGEs) remains unclear. In this study, we sampled a wild saline soil where the salt accumulation was frequently observed to investigate the vertical distribution profiles of ARGs and MGEs. The results showed that an increasing gradient of ARGs and MGEs was observed from the top to deep layer with the decreasing of electrical conductivity (EC1:5 values) indicating the salt-influenced attenuation of ARGs in the saline soil. The competing test suggested that the attenuation of ARGs in response to salinity gradient was attributable to the elimination of the ARG-harboring plasmids, due to the reduction of the relative fitness of plasmid-harboring strains. Additionally, the network analyses showed that the attenuation of ARGs might be associated with decreased abundance of Actinobacteria. Overall, this study identifies that salinity as an abiotic stress could re-shape the distribution of ARGs, which may influence the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Lu Tan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Fu Wang
- Tianjin Center of Geological Survey, China Geological Survey (CGS), Tianjin, China; Key Laboratory of Muddy Coast Geo-Environment, China Geological Survey, CGS, Tianjin, China
| | - Minmin Liang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Ranjit Das
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China.
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
184
|
Shen JP, Li ZM, Hu HW, Zeng J, Zhang LM, Du S, He JZ. Distribution and Succession Feature of Antibiotic Resistance Genes Along a Soil Development Chronosequence in Urumqi No.1 Glacier of China. Front Microbiol 2019; 10:1569. [PMID: 31354668 PMCID: PMC6629927 DOI: 10.3389/fmicb.2019.01569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Primary succession of plant and microbial communities in the glacier retreating foreland has been extensively studied, but shifts of antibiotic resistance genes (ARGs) with the glacier retreating due to global warming remain elusive. Unraveling the diversity and succession features of ARGs in pristine soil during glacier retreating could contribute to a mechanistic understanding of the evolution and development of soil resistome. In this study, we quantified the abundance and diversity of ARGs along a 50-year soil development chronosequence by using a high-throughput quantitative PCR (HT-qPCR) technique. A total of 24 ARGs and two mobile genetic elements (MGEs) were detected from all the glacier samples, and the numbers of detected ARGs showed a unimodal pattern with an increasing trend at the early stage (0∼8 years) but no significant change at later stages (17∼50 years). The oprJ and mexF genes encoding multidrug resistance were the only two ARGs that were detected across all the succession ages, and the mexF gene showed an increasing trend along the succession time. Structural equation models indicated the predominant role of the intI1 gene encoding the Class 1 integron-integrase in shaping the variation of ARG profiles. These findings suggested the presence of ARGs in pristine soils devoid of anthropogenic impacts, and horizontal gene transfer mediated by MGEs may contribute to the succession patterns of ARGs during the initial soil formation stage along the chronosequence.
Collapse
Affiliation(s)
- Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Ming Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jun Zeng
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
185
|
Chen J, Su Z, Dai T, Huang B, Mu Q, Zhang Y, Wen D. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays. J Environ Sci (China) 2019; 81:156-167. [PMID: 30975318 DOI: 10.1016/j.jes.2019.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The coastal area of the East China Sea has experienced rapid urbanization and industrialization in China since 1980s, resulting in severe pollution of its environments. Antibiotic resistance genes (ARGs) are regarded as a kind of emerging pollutant with potential high risk. The sediment samples were collected from Hangzhou Bay (HB), Xiangshan Bay (XB), and Taizhou Bay (TB) to investigate the spatial occurrence and distribution of 27 ARGs and class I integron-integrase gene (intI1) in the coastal area of the East China Sea. The PCR results showed the frequent presence of 11 ARGs and intI1 in the sediments of the three bays. The qPCR results further showed that sulfonamide resistance was the most prevalent ARG type and antibiotic target replacement and protection were the most important resistance mechanisms in the sediments. Regarding the subtype of ARGs, sulI, tetW, and dfrA13 were the most abundant ARGs, in which sulI was higher in TB (based on both the absolute and relative abundances) and dfrA13 was higher in HB (based on the relative abundances). The network analysis revealed that intI1 had significant correlations with tetC, sulI, sulII, and blaPSE-1. Oil was the key connected factor, which had positive connections with sulI, sulII, and blaPSE-1. In addition, the joint effect of heavy metals and nutrients & organic pollutants might be crucial for the fate of ARGs in the coastal sediments.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Environmental and Geography Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Yongming Zhang
- School of Environmental and Geography Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
186
|
Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. WATER RESEARCH 2019; 158:11-21. [PMID: 31009830 DOI: 10.1016/j.watres.2019.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The widespread of water borne antibiotic resistance genes (ARGs) represents a growing threat to the health of millions of people. Our study detected the relative abundances of 10 ARG subtypes in the Shanghai river network, where the major ARG components were strB, sul1, and ermB. These ARGs were significantly enriched by the combined sewage, tail water from urban wastewater treatment plant and runoff from agricultural areas, which reached the Suzhou (SZ), Dianpu (DP), and Huangpu (HP) River, respectively (one-way ANOVA, P < 0.01). The target ARGs were distributed in varying patterns across different rivers. blaCTX-M and blaTEM contributed to the increase of total ARGs in the rivers influenced by urban sources, particularly in the SZ River, whose distribution of ARGs was significantly related to that of the confluence of the whole river network (Mantel test, P < 0.01). The bacterial community was closely structured with ARGs and potential pathogenic bacteria's association with target ARGs became significant in downstream samples (Procrustes test, P = 0.03). Water near urban wastewater fallouts was observed to have the highest content of intl1 in the DP River, whose downstream samples' intl -ARG relationship fitted the same regression model as that of the network confluence (R = 0.84, P < 0.001). The amelioration of river water quality does not reduce ARGs, but may affect their distributional patterns in the river network in Shanghai.
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Joint Research Institute for New Energy and the Environment, East China Normal University and Colorado State University, Shanghai, 200062, China
| | - Yinglong Su
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Joint Research Institute for New Energy and the Environment, East China Normal University and Colorado State University, Shanghai, 200062, China
| | - Hui Xi
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xinyuan Chen
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Bing Xie
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Joint Research Institute for New Energy and the Environment, East China Normal University and Colorado State University, Shanghai, 200062, China.
| |
Collapse
|
187
|
Xie X, Chen C, Wang X, Li J, Naraginti S. Efficient detoxification of triclosan by a S-Ag/TiO 2@g-C 3N 4 hybrid photocatalyst: process optimization and bio-toxicity assessment. RSC Adv 2019; 9:20439-20449. [PMID: 35514706 DOI: 10.1039/c9ra03279grsc.li/rsc-advances] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 05/22/2023] Open
Abstract
Owing to their persistency and toxicity, development of an effective strategy to eliminate antibiotic residues from the aquatic system has become a major environmental concern. Doping TiO2 with hetero atoms and forming a hybrid structure with g-C3N4 could serve as an efficient visible light active photocatalytic candidate. In this study, a novel S-Ag/TiO2@g-C3N4 hybrid catalyst was prepared for visible light degradation and detoxification of triclosan (TS) antibiotic. The effect of various operational parameters towards the photocatalytic degradation was systematically evaluated through response surface methodology (RSM) based on central composite design (CCD). The highest TS degradation (92.3%) was observed under optimal conditions (TS concentration = 10 mg L-1, pH = 7.8, and catalyst weight = 0.20 g L-1) after 60 min. Efficient charge separation resulted from the doped nanoparticles (silver and sulphur), the existing integrated electric field of the heterojunction and the overlying light response of hybridized TiO2 and g-C3N4, thus the S-Ag/TiO2@g-C3N4 composite showed impressively higher activity. The main degradation products of TS were identified by LC/ESI-MS analysis. In addition, the toxicity of the degradation products was investigated through an Escherichia coli (E. coli) colony forming unit assay and the results revealed that under optimal conditions a significant reduction in biotoxicity was noticed.
Collapse
Affiliation(s)
- Xiangfeng Xie
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Chen Chen
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
| | - Xiaoxiang Wang
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University Nanjing 210098 China
| | - Jie Li
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University Nanjing 210098 China
| | - Saraschandra Naraginti
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University Nanjing 210098 China
- Biofuels Institute, School of the Environment, Jiangsu University 301 Xuefu Road Zhenjiang 212013 China
| |
Collapse
|
188
|
Chao H, Kong L, Zhang H, Sun M, Ye M, Huang D, Zhang Z, Sun D, Zhang S, Yuan Y, Liu M, Hu F, Jiang X. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:353-361. [PMID: 30884260 DOI: 10.1016/j.scitotenv.2019.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Earthworm gut played an important role in the transformation of various contaminants in the soil environments. With the increasing application of organic fertilizer recently, the ingestion of antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) made the earthworm gut a potential favorable micro-environment for the transmission of ARGs in the soil. In this work, the conventional plate incubation and high-throughput sequencing methods were both employed to investigate the composition of the cultivable and overall ARB/ARGs in the Metaphire guillelmi earthworm gut. A total of 87 cultivable isolates that resisted tetracycline (TC) and/or sulfadiazine (SD) were obtained, most of which belonged to phylum Firmicutes, genus Bacillus. Meanwhile, the counts of isolates with TC-SD dual resistance were higher than those with sole SD or TC resistance. Moreover, higher ARB counts and diversity were detected in the earthworm gut by high-throughput sequencing technique than those by the classical plate cultivation. Overall, the combination of conventional cultivable bacteria isolation and high-throughput sequencing methods provided a comprehensive understanding of the ARB composition in the earthworm gut. The results demonstrate that the earthworm gut is a hospitable micro-environment for ARB colonization. The potential role of earthworm intestinal ARB and ARGs proliferation in soil environments warrants further research.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lingya Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210008, China
| | - Huixin Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dawei Sun
- Beijing GeoEnviron Engineering & Technology, lnc., Beijing 100095, China
| | - Shengtian Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yilin Yuan
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
189
|
Zhou R, Zeng S, Hou D, Liu J, Weng S, He J, Huang Z. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. J Environ Sci (China) 2019; 80:248-256. [PMID: 30952342 DOI: 10.1016/j.jes.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
190
|
Yang Y, Li Z, Song W, Du L, Ye C, Zhao B, Liu W, Deng D, Pan Y, Lin H, Cao X. Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: Influence of stratification and geography. ENVIRONMENT INTERNATIONAL 2019; 127:371-380. [PMID: 30954723 DOI: 10.1016/j.envint.2019.03.062] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
A global survey was performed with 122 aquatic metagenomic DNA datasets (92 lake water and 30 seawater) obtained from the Sequence Read Archive (SRA). Antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) were derived from the dataset sequences via bioinformatic analysis. The relative abundances of ARGs and MRGs in lake samples were in the ranges ND (not detected)-1.34 × 100 and 1.22 × 10-3-1.98 × 10-1 copies per 16S rRNA, which were higher than those in seawater samples. Among ARGs, multidrug resistance genes and bacitracin resistance genes had high relative abundances in both lake and sea water samples. Multi-metal resistance genes, mercury resistance genes and copper resistance genes had the greatest relative abundance for MRGs. No significant difference was found between epilimnion and hypolimnion in abundance or the Shannon diversity index for ARGs and MRGs. Principal coordinates analysis and permutational multivariate analysis of variance (PERMANOVA) test showed that stratification and geography had significant influence on the composition of ARGs and MRGs in lakes (p < 0.05, PERMANOVA). Coastal seawater samples had significantly greater relative abundance and a higher Shannon index for both ARGs and MRGs than deep ocean and Antarctic seawater samples (p < 0.05, Kruskal-Wallis one-way ANOVA), suggesting that human activity may exert more selective pressure on ARGs and MRGs in coastal areas than those in deep ocean and Antarctic seawater.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenjuan Song
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Chen Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Danli Deng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtai Pan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Lin
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinhua Cao
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| |
Collapse
|
191
|
Fang H, Huang K, Yu J, Ding C, Wang Z, Zhao C, Yuan H, Wang Z, Wang S, Hu J, Cui Y. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment. CHEMOSPHERE 2019; 224:202-211. [PMID: 30822726 DOI: 10.1016/j.chemosphere.2019.02.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/02/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Aquaculture has attracted significant attention as an environmental gateway to the development of antibiotic resistance. The industry of Chinese mitten crab Eriocheir sinensis contributes significantly to the freshwater aquaculture industry in China. However, the situation of antibiotic resistance in the E. sinensis aquaculture environment is not known. In this study, high-throughput sequencing based metagenomic approaches were used to comprehensively investigate the structure of bacterial communities, the abundance and diversity of antibiotic resistance genes (ARGs), as well as mobile genetic elements (MGEs) in three E. sinensis aquaculture ponds in Jiangsu Province, China. The dominant phyla were Proteobacteria, Actinobacteria, and Bacteroidetes in water samples and Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes in sediment samples. Bacitracin and multidrug were predominant ARG types in water and sediment samples, respectively. There was a significant correlation between MGEs and ARGs. In particular, plasmids were the most abundant MGEs and strongly correlated with ARGs. This is the first study of antibiotic resistome that uses metagenomic approaches in the E. sinensis aquaculture environment. The results indicate that the opportunistic pathogens may acquire ARGs via horizontal gene transfer, intensifying the potential risk to human health.
Collapse
Affiliation(s)
- Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junnan Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Zhifeng Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Cheng Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hezhong Yuan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China.
| |
Collapse
|
192
|
Liu K, Han J, Li S, Liu L, Lin W, Luo J. Insight into the diversity of antibiotic resistance genes in the intestinal bacteria of shrimp Penaeus vannamei by culture-dependent and independent approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:451-459. [PMID: 30735978 DOI: 10.1016/j.ecoenv.2019.01.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs) that distributed in antibiotic resistant bacteria (ARBs) are widespread in aquaculture and have great threats to the aquatic organism as well as to human. However, our understanding about the risk of ARGs to the health of aquatic organism is still limited. In the present study, we got a deep insight into the diversity of ARGs in the intestinal bacteria of shrimp by culture-dependent and independent approaches. Results of the PCR-based detection and culture-dependent analysis indicated that the tetracycline, sulfadiazine, quinolone and erythromycin resistance genes were prevalent in the commercial shrimps that bought from aquatic markets or supermarket. The culture-independent plasmid metagenomic analysis identified 62 different ARGs, which were classified into 21 types, with abundances ranging from 13 to 1418 ppm. The analysis suggested that most of the ARGs come from the plasmids originating from Vibrio (accounted for 2.8-51%) and Aeromonas (accounted for 16-55%), and the Vibrio group was concluded to be the main bacterial pathogen that probably resulted in the shrimp disease. Accordingly, the plasmid metagenomic that focuses on the mobile genetic elements has great potential on the identification of ARGs in complex environments.
Collapse
Affiliation(s)
- Kexin Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jiamin Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Surong Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Liangting Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
193
|
Zeng J, Pan Y, Yang J, Hou M, Zeng Z, Xiong W. Metagenomic insights into the distribution of antibiotic resistome between the gut-associated environments and the pristine environments. ENVIRONMENT INTERNATIONAL 2019; 126:346-354. [PMID: 30826613 DOI: 10.1016/j.envint.2019.02.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs) in the environment are promoted by anthropogenic activities, which cause potential risks to human health. However, large-scale quantitative data on antibiotic resistome from the pristine and anthropogenic environments remains largely unexplored. Here, we used metagenome-wide analysis to investigate the share and divergence in ARG profiles and their potential bacterial hosts between the pristine and gut-associated environments. We found that the abundance of total ARGs in gut-associated environments was significantly higher than the pristine environments (P < 0.001). The mcr-1 and tetX, the genes resistant to the last resort antibiotics (colistin and tigecycline, respectively), were in high abundance (4.57 copies/Gb and 3.39 copies/Gb, respectively) in gut-associated environments, suggesting the ARG pollution caused by anthropogenic antibiotics. Metagenomic assembly-based host-tracking analysis identified Escherichia, Bacteroides, and Clostridium as the predominant bacterial hosts of ARGs in gut-associated environments, while Alteromonas, Vibrio, and Proteobacteria as the predominant bacterial hosts of ARGs in pristine environments. We first described the broad diversity of ARG hosts in different environments using metagenome-wide analysis. Our results revealed the heterogeneous distribution of ARGs and their hosts among different microbial niches in gut-associated environments and the pristine environments.
Collapse
Affiliation(s)
- Jiaxiong Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jintao Yang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Mengtian Hou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| | - Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
194
|
Asante J, Osei Sekyere J. Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: advances and applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:62-86. [PMID: 30637962 DOI: 10.1111/1758-2229.12735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Our inability to cultivate most microorganisms, specifically bacteria, in the laboratory has for many years restricted our view and understanding of the bacterial meta-resistome in all living and nonliving environments. As a result, reservoirs, sources and distribution of antibiotic resistance genes (ARGS) and antibiotic-producers, as well as the effects of human activity and antibiotics on the selection and dissemination of ARGs were not well comprehended. With the advances made in the fields of metagenomics and metatranscriptomics, many of the hitherto little-understood concepts are becoming clearer. Further, the discovery of antibiotics such as lugdinin and lactocillin from the human microbiota, buttressed the importance of these new fields. Metagenomics and metatranscriptomics are becoming important clinical diagnostic tools for screening and detecting pathogens and ARGs, assessing the effects of antibiotics, other xenobiotics and human activity on the environment, characterizing the microbiome and the environmental resistome with lesser turnaround time and decreasing cost, as well as discovering antibiotic-producers. However, challenges with accurate binning, skewed ARGs databases, detection of less abundant and allelic variants of ARGs and efficient mobilome characterization remain. Ongoing efforts in long-read, phased- and single-cell sequencing, strain-resolved binning, chromosomal-conformation capture, DNA-methylation binning and deep-learning bioinformatic approaches offer promising prospects in reconstructing complete strain-level genomes and mobilomes from metagenomes.
Collapse
Affiliation(s)
- Jonathan Asante
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
195
|
Meng M, Sun RY, Liu HW, Yu B, Yin YG, Hu LG, Shi JB, Jiang GB. An Integrated Model for Input and Migration of Mercury in Chinese Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2460-2471. [PMID: 30688440 DOI: 10.1021/acs.est.8b06329] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coastal sediments are a major sink of the global mercury (Hg) biogeochemical cycle, bridging terrestrial Hg migration to the open ocean. It is thus of substantial interest to quantify the Hg contributors to coastal sediments and the extents to which the Hg sequestered into coastal sediments affects the ocean. Here, we measured concentrations and isotope compositions of Hg in Chinese coastal sediments and found that estuary sediments had distinctly higher δ202Hg and lower Δ199Hg values than marine sediments. Hg isotope compositions of marine sediments followed a latitudinal trend where δ202Hg decreases and Δ199Hg increases from north to south. An integrated model was developed based on a Hg isotope mixing model and urban distance factor (UDF), which revealed a significant difference in Hg source contributions among the estuary and marine sediments and a gradual change of dominant Hg sources from terrestrial inputs (riverine and industrial wastewater discharges) to atmospheric deposition with a decrease in urban impact. A UDF value of 306 ± 217 was established as the critical point where dominant Hg sources started to change from terrestrial inputs to atmospheric deposition. Our study helps explain the input and migration of Hg in Chinese marginal seas and provides critical insights for targeted environmental management.
Collapse
Affiliation(s)
- Mei Meng
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Ruo-Yu Sun
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
196
|
Ding J, Zhu D, Hong B, Wang HT, Li G, Ma YB, Tang YT, Chen QL. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. ENVIRONMENT INTERNATIONAL 2019; 124:145-152. [PMID: 30641258 DOI: 10.1016/j.envint.2019.01.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 05/11/2023]
Abstract
Antibiotic resistance genes (ARGs), prevalent across multiple environmental media, threaten human health worldwide and are considered emerging environmental contaminants. Earthworm gut, a niche for bacteria to survive, represents a potential reservoir for ARGs in soil. However, the compositions of ARGs in the earthworm gut microbiota remain elusive, especially under field conditions. In this study, we applied high-throughput quantitative PCR to profile the ARGs in the gut microbiota of earthworms after chronic exposure to fertilizers. To elucidate the factors that impact the ARGs composition, the bacterial community of gut microbiota, mobile genetic elements (MGEs), soil (nutrients, heavy metals, and antibiotics) and the properties of gut content (pH and nutrients) were analyzed. A total of 98 subtypes among 9 major types of ARGs, and 3 different MGEs were detected in the gut microbiota of earthworms. Organic fertilizer (sewage sludge and chicken manure) application significantly increased the diversity and abundance of ARGs. Of the 1123 identified operational taxonomic units (OTUs) at 97% similarity cutoff, most of them were assigned to Firmicutes (55.5%) and Proteobacteria (33.6%) in earthworm gut microbiota. Long-term organic fertilization slightly changed the microbiota composition, but did not impact the diversity. Partial redundancy analysis (pRDA) revealed that bacterial community, combined with environmental factors (soil and gut content properties) and MGEs, explained 72% of the variations of ARGs in the earthworm gut. Furthermore, the co-occurrence pattern between ARGs and MGEs indicated that horizontal gene transfer via MGEs may occur in the earthworm gut. These findings improve the current understanding of the dynamics of soil fauna-associated ARGs and the gut microbiota of earthworms may be an underappreciated hotspot for ARGs in the environment.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Hong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong Tao Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi Bing Ma
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Yu Ting Tang
- School of Geographical Sciences, University of Nottingham, Ningbo 315100, China
| | - Qing Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
197
|
Dong P, Cui Q, Fang T, Huang Y, Wang H. Occurrence of antibiotic resistance genes and bacterial pathogens in water and sediment in urban recreational water. J Environ Sci (China) 2019; 77:65-74. [PMID: 30573107 DOI: 10.1016/j.jes.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 06/09/2023]
Abstract
The emergence and prevalence of antibiotic resistance genes (ARGs) and pathogens in the environment are serious global health concern. However, information about the occurrence of ARGs and pathogens in recreational water is still limited. Accordingly, we investigated the occurrence of six ARGs and human pathogens in three recreational lakes, and the correlations between ARGs and one mobile genetic element (intI1) were analyzed. The quantitative PCR results showed that the concentration of ARGs ranged from 4.58 × 100 to 5.0 × 105 copies/mL in water and from 5.78 × 103 to 5.89 × 108 copies/g dry weight (dw) in sediment. Sul1 exhibited the highest level among the five quantifiable ARGs. The concentrations of sul1, bla-TEM, and tetX exhibited significant positive correlations with intI1 (p < 0.05), indicating that intI1 may be involved in their proliferation. The detection frequencies of ARGs ranged from 75%-100%, indicating the prevalence of these risks in this region. The concentration of Escherichia coli, Aeromonas spp., Mycobacterium avium, Pseudomonas aeruginosa, and Salmonella enterica ranged from 103 to 105 copies/100 mL in water and 104-106 copies/g dw in sediment. In total, 25% of the samples harbored all pathogen genes, indicating the prevalence of these pathogens in recreational lakes. Furthermore, the next-generation sequencing results showed that 68 genera of pathogens were present, among which Aeromonas, Mycobacterium, and Pseudomonas were the dominant ones in this region, posing a considerable potential health risk to public health. Overall, the widespread distribution of ARGs and pathogens underscores the need to better monitor and mitigate their propagation in recreational lakes and the associated risks to human health.
Collapse
Affiliation(s)
- Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
198
|
Prevalence of Antibiotic Resistance Genes in Air-Conditioning Systems in Hospitals, Farms, and Residences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050683. [PMID: 30813565 PMCID: PMC6427721 DOI: 10.3390/ijerph16050683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
High-throughput quantitative PCR combined with Illumina sequencing and network analysis were used to characterize the antibiotic resistance gene (ARG) profiles in air-conditioning filters from different environments. In total, 177 ARGs comprising 10 ARG types were determined. The detectable numbers and the relative abundance of ARGs in hospitals and farms were significantly higher than those in city and village residences. Compared to hospitals, farms had a higher level of tetracycline, multidrug, integrase, and macrolide⁻lincosamide⁻streptogramin (MLS) B resistance genes but a lower level of beta-lactam resistance genes. The bl3_cpha gene was the most abundant resistance gene subtype in hospital samples with an abundance of 2.01 × 10-4 copies/16S rRNA, while a level of only 5.08 × 10-12 copies/16S rRNA was observed in farm samples. There was no significant difference in bacterial diversity among the hospitals, farms, and residences, and Proteobacteria was the most abundant phylum. Network analysis revealed that Proteobacteria and Actinobacteria were possible hosts of the beta-lactam, MLSB, aminoglycoside, multidrug, sulfonamide, and tetracycline resistance genes. The results demonstrate that ARGs exist in indoor environments and that farms and hospitals are important sources. This study provides a useful reference for understanding the distribution patterns and risk management of ARGs in indoor environments.
Collapse
|
199
|
Chen H, Bai X, Jing L, Chen R, Teng Y. Characterization of antibiotic resistance genes in the sediments of an urban river revealed by comparative metagenomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1513-1521. [PMID: 30759585 DOI: 10.1016/j.scitotenv.2018.11.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The over-use of antibiotics causes growing concerns about human health risks induced by increasing rates of antimicrobial resistance. Riverine systems are considered generally as a natural reservoir of antibiotic resistance genes (ARGs). In this study, several methods including high-throughput sequencing-based metagenomics approach, statistical analysis and network analysis were applied jointly to characterize the wide-spectrum profile of ARGs in the sediments of an urban river in Beijing. Furthermore, contribution of human activities for the presence of ARGs was identified through comparative studies on the metagenomic profiling of ARGs between the river sediments and pristine niches (remote Antarctic soils and deep sea sediments). In total, 442 ARG subtypes belonging to 22 ARG types were detected in the human-impacted river sediments with an abundance range of 1.1 × 10-1-8.1 × 10-1 copy of ARG per copy of 16S-rRNA gene. The most abundant and diverse ARGs were commonly associated with antibiotics that have been extensively used in that area, likely indicating the spread of ARGs in river environments because of the selective pressure resulting from antibiotic use. As a whole, anthropogenic activities were the dominant contributor of major ARG types, for example, occupying 100% for sulfonamide-ARGs, 97% for beta-lactam-ARGs, 94% for aminoglycoside-ARGs and 64% for tetracycline-ARGs. This study provides insights into the role of human activities in accelerating the dissemination and proliferation of ARGs in urban river environment and draws attention to controlling the use and discharge of antibiotics for protection of public health.
Collapse
Affiliation(s)
- Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Xiaomei Bai
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Lijun Jing
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Ruihui Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
200
|
Nathani NM, Mootapally C, Dave BP. Antibiotic resistance genes allied to the pelagic sediment microbiome in the Gulf of Khambhat and Arabian Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:446-454. [PMID: 30412889 DOI: 10.1016/j.scitotenv.2018.10.409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics have been widely spread in the environments, imposing profound stress on the resistome of the residing microbes. Marine microbiomes are well established large reservoirs of novel antibiotics and corresponding resistance genes. The Gulf of Khambhat is known for its extreme tides and complex sedimentation process. We performed high throughput sequencing and applied bioinformatics techniques on pelagic sediment microbiome across four coordinates of the Gulf of Khambhat to assess the marine resistome, its corresponding bacterial community and compared with the open Arabian Sea sample. We identified a total of 2354 unique types of resistance genes, with most abundant and diverse gene profile in the area that had anthropogenic activities being carried out on-shore. The genes with >1% abundance in all samples included carA, macB, sav1866, tlrC, srmB, taeA, tetA, oleC and bcrA which belonged to the macrolides, glycopeptides and peptide drug classes. ARG enriched phyla distribution was quite varying between all the sites, with Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes among the dominant phyla. Based on the outcomes, we also propose potential biomarker candidates Desulfovibrio, Thermotaga and Pelobacter for antibiotic monitoring in the two of the Gulf samples probable contamination prone environments, and genera Nitrosocccus, Marinobacter and Streptomyces in the rest of the three studied samples. Outcomes support the concept that ARGs naturally originate in environments and human activities contribute to the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Neelam M Nathani
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364-001, Gujarat, India.
| | - Chandrashekar Mootapally
- Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364-001, Gujarat, India.
| | - Bharti P Dave
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364-001, Gujarat, India; School of Science, Indrashil University, Rajpur, Kadi, Mehsana 382-715, Gujarat, India.
| |
Collapse
|