151
|
Khalkhali-Ellis Z, Goossens W, Margaryan NV, Hendrix MJC. Cleavage of Histone 3 by Cathepsin D in the involuting mammary gland. PLoS One 2014; 9:e103230. [PMID: 25054204 PMCID: PMC4108390 DOI: 10.1371/journal.pone.0103230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
The post-lactational regression of mammary gland is a complex multi-step process designed to conserve the biological function of the gland for next pregnancy. This developmental stage is a biological intrigue with great relevance to breast cancer research, and thus has been the subject of intensive scrutiny. Multipronged studies (microarray, proteomics profiling, animal knock-out models) have provided a repertoire of genes critical to involution. However, the caveat of these approaches remains in their failure to reveal post-translational modification(s), an emerging and critical aspect of gene regulation in developmental processes and mammary gland remodeling. The massive surge in the lysosomal enzymes concurrent with the onset of involution has been known for decades, and considered essential for “clearance” purposes. However, functional significance of these enzymes in diverse biological processes distinct from their proteolytic activity is just emerging. Studies from our laboratory had indicated specific post-translational modifications of the aspartyl endopeptidase Cathepsin D (CatD) at distinct stages mammary gland development. This study addresses the biological significance of these modifications in the involution process, and reveals that post-translational modifications drive CatD into the nucleus to cleave Histone 3. The cleavage of Histone 3 has been associated with cellular differentiation and could be critical instigator of involution process. From functional perspective, deregulated expression and increased secretion of CatD are associated with aggressive and metastatic phenotype of breast cancer. Thus unraveling CatD’s physiological functions in mammary gland development will bridge the present gap in understanding its pro-tumorigenic/metastatic functions, and assist in the generation of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| | - William Goossens
- Cancer Biology and Epigenomics, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Naira V. Margaryan
- Cancer Biology and Epigenomics, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Mary J. C. Hendrix
- Cancer Biology and Epigenomics, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
152
|
Chemistry and biology of biomolecule nitration. ACTA ACUST UNITED AC 2014; 19:1086-92. [PMID: 22999877 DOI: 10.1016/j.chembiol.2012.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/27/2022]
Abstract
Posttranslational modifications of proteins play key roles in the regulation of biological processes and lead to various physiological responses. In recent years, a number of analytical technologies have been developed to help understand the diversity and disease relevance of these modifications. The main areas of focus have included phosphorylation, cysteine redox chemistry, and transformations mediated directly by oxidative stress. However, the nitration of biomolecules is an exciting and relatively understudied area of research. Reactive nitrogen species generated in various disease states can create nitrated biomolecules, and we are only beginning to understand the potential implications of these species. This review explores some of the recent advances in current knowledge concerning the chemistry and biology of nitrated biomolecules.
Collapse
|
153
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
154
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
155
|
Beisswenger M, Cabrele C. Self-recognition behavior of a helix-loop-helix domain by a fragment scan. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1675-83. [PMID: 24981796 DOI: 10.1016/j.bbapap.2014.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
The inhibitors of DNA binding Id1-4 are helix-loop-helix (HLH) proteins that exert their biological function by interacting with members of the basic-HLH (bHLH) transcription-factor family. The HLH domains of the Id and bHLH proteins allow both self- and hetero-association. Due to their abnormal expression in cancer cells, the Id proteins are potential protein targets for cancer treatment. Suitable Id-protein inactivators should promote self-association and/or prevent hetero-association. In this work we evaluated the ability of the Id-protein HLH domain to recognize itself in form of short sequences extracted from the helical and loop regions. We performed a peptide scan of the Id1 HLH domain 64-106 based on three-residue overlapping octapeptides. Interaction of each octapeptide with the natively folded Id1 HLH domain was investigated by CD and fluorescence spectroscopy. The results from both techniques showed that the helix-based but not the loop-based octapeptides interacted with the Id1 HLH domain in the low-micromolar range. In contrast, a nitrotyrosine-containing analog of the Id1 HLH region, which was unable to reproduce the native-like conformation, quenched only the 2-amino-benzoyl-(Abz)-labeled loop-based octapeptides. This opposite self-recognition pattern suggests that the short helix-based and loop-based sequences should be able to distinguish different folding states of the Id1 HLH domain. This feature may be biologically relevant, as the Id proteins are predicted to behave as intrinsically disordered proteins, being in equilibrium between rapidly exchanging monomeric conformations and structurally better-defined homo-/heterodimers displaying the parallel four-helix bundle.
Collapse
Affiliation(s)
- Michael Beisswenger
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Chiara Cabrele
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany; Department of Molecular Biology, Division of Chemistry and Bioanalytics, Paris-Lodron University Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| |
Collapse
|
156
|
Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 2014; 71:196-207. [PMID: 24681256 PMCID: PMC4042208 DOI: 10.1016/j.freeradbiomed.2014.03.025] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Redox networks in the cell integrate signaling pathways that control metabolism, energetics, cell survival, and death. The physiological second messengers that modulate these pathways include nitric oxide, hydrogen peroxide, and electrophiles. Electrophiles are produced in the cell via both enzymatic and nonenzymatic lipid peroxidation and are also relatively abundant constituents of the diet. These compounds bind covalently to families of cysteine-containing, redox-sensing proteins that constitute the electrophile-responsive proteome, the subproteomes of which are found in localized intracellular domains. These include those proteins controlling responses to oxidative stress in the cytosol-notably the Keap1-Nrf2 pathway, the autophagy-lysosomal pathway, and proteins in other compartments including mitochondria and endoplasmic reticulum. The signaling pathways through which electrophiles function have unique characteristics that could be exploited for novel therapeutic interventions; however, development of such therapeutic strategies has been challenging due to a lack of basic understanding of the mechanisms controlling this form of redox signaling. In this review, we discuss current knowledge of the basic mechanisms of thiol-electrophile signaling and its potential impact on the translation of this important field of redox biology to the clinic. Emerging understanding of thiol-electrophile interactions and redox signaling suggests replacement of the oxidative stress hypothesis with a new redox biology paradigm, which provides an exciting and influential framework for guiding translational research.
Collapse
Affiliation(s)
- Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
157
|
Functional roles of protein nitration in acute and chronic liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:149627. [PMID: 24876909 PMCID: PMC4021747 DOI: 10.1155/2014/149627] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s) of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues.
Collapse
|
158
|
Seeley KW, Fertig AR, Dufresne CP, Pinho JPC, Stevens SM. Evaluation of a method for nitrotyrosine site identification and relative quantitation using a stable isotope-labeled nitrated spike-in standard and high resolution fourier transform MS and MS/MS analysis. Int J Mol Sci 2014; 15:6265-85. [PMID: 24736779 PMCID: PMC4013627 DOI: 10.3390/ijms15046265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
The overproduction of reactive oxygen and nitrogen species (ROS and RNS) can have deleterious effects in the cell, including structural and possible activity-altering modifications to proteins. Peroxynitrite is one such RNS that can result in a specific protein modification, nitration of tyrosine residues to form nitrotyrosine, and to date, the identification of nitrotyrosine sites in proteins continues to be a major analytical challenge. We have developed a method by which 15N-labeled nitrotyrosine groups are generated on peptide or protein standards using stable isotope-labeled peroxynitrite (O15NOO-), and the resulting standard is mixed with representative samples in which nitrotyrosine formation is to be measured by mass spectrometry (MS). Nitropeptide MS/MS spectra are filtered using high mass accuracy Fourier transform MS (FTMS) detection of the nitrotyrosine immonium ion. Given that the nitropeptide pair is co-isolated for MS/MS fragmentation, the nitrotyrosine immonium ions (at m/z=181 or 182) can be used for relative quantitation with negligible isotopic interference at a mass resolution of greater than 50,000 (FWHM, full width at half-maximum). Furthermore, the standard potentially allows for the increased signal of nitrotyrosine-containing peptides, thus facilitating selection for MS/MS in a data-dependent mode of acquisition. We have evaluated the methodology in terms of nitrotyrosine site identification and relative quantitation using nitrated peptide and protein standards.
Collapse
Affiliation(s)
- Kent W Seeley
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| | - Alison R Fertig
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| | - Craig P Dufresne
- Training Institute, Thermo Fisher Scientific, 1400 Northpoint Parkway, Ste 10., West Palm Beach, FL 33407, USA.
| | - Joao P C Pinho
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| |
Collapse
|
159
|
Cooley RB, Feldman JL, Driggers CM, Bundy TA, Stokes AL, Karplus PA, Mehl RA. Structural basis of improved second-generation 3-nitro-tyrosine tRNA synthetases. Biochemistry 2014; 53:1916-24. [PMID: 24611875 PMCID: PMC3985459 DOI: 10.1021/bi5001239] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic code expansion has provided the ability to site-specifically incorporate a multitude of noncanonical amino acids (ncAAs) into proteins for a wide variety of applications, but low ncAA incorporation efficiency can hamper the utility of this powerful technology. When investigating proteins containing the post-translational modification 3-nitro-tyrosine (nitroTyr), we developed second-generation amino-acyl tRNA synthetases (RS) that incorporate nitroTyr at efficiencies roughly an order of magnitude greater than those previously reported and that advanced our ability to elucidate the role of elevated cellular nitroTyr levels in human disease (e.g., Franco, M. et al. Proc. Natl. Acad. Sci. U.S.A 2013 , 110 , E1102 ). Here, we explore the origins of the improvement achieved in these second-generation RSs. Crystal structures of the most efficient of these synthetases reveal the molecular basis for the enhanced efficiencies observed in the second-generation nitroTyr-RSs. Although Tyr is not detectably incorporated into proteins when expression media is supplemented with 1 mM nitroTyr, a major difference between the first- and second-generation RSs is that the second-generation RSs have an active site more compatible with Tyr binding. This feature of the second-generation nitroTyr-RSs appears to be the result of using less stringent criteria when selecting from a library of mutants. The observation that a different selection strategy performed on the same library of mutants produced nitroTyr-RSs with dramatically improved efficiencies suggests the optimization of established selection protocols could lead to notable improvements in ncAA-RS efficiencies and thus the overall utility of this technology.
Collapse
Affiliation(s)
- Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University , 2011 Agriculture and Life Sciences Building, Corvallis, Oregon 97331, United States
| | | | | | | | | | | | | |
Collapse
|
160
|
Yi F, Wang H, Chai Q, Wang X, Shen WK, Willis MS, Lee HC, Lu T. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem 2014; 289:10853-10864. [PMID: 24570002 DOI: 10.1074/jbc.m113.520940] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large conductance Ca(2+)-activated K(+) (BK) channel, expressed abundantly in vascular smooth muscle cells (SMCs), is a key determinant of vascular tone. BK channel activity is tightly regulated by its accessory β1 subunit (BK-β1). However, BK channel function is impaired in diabetic vessels by increased ubiquitin/proteasome-dependent BK-β1 protein degradation. Muscle RING finger protein 1 (MuRF1), a muscle-specific ubiquitin ligase, is implicated in many cardiac and skeletal muscle diseases. However, the role of MuRF1 in the regulation of vascular BK channel and coronary function has not been examined. In this study, we hypothesized that MuRF1 participated in BK-β1 proteolysis, leading to the down-regulation of BK channel activation and impaired coronary function in diabetes. Combining patch clamp and molecular biological approaches, we found that MuRF1 expression was enhanced, accompanied by reduced BK-β1 expression, in high glucose-cultured human coronary SMCs and in diabetic vessels. Knockdown of MuRF1 by siRNA in cultured human SMCs attenuated BK-β1 ubiquitination and increased BK-β1 expression, whereas adenoviral expression of MuRF1 in mouse coronary arteries reduced BK-β1 expression and diminished BK channel-mediated vasodilation. Physical interaction between the N terminus of BK-β1 and the coiled-coil domain of MuRF1 was demonstrated by pulldown assay. Moreover, MuRF1 expression was regulated by NF-κB. Most importantly, pharmacological inhibition of proteasome and NF-κB activities preserved BK-β1 expression and BK-channel-mediated coronary vasodilation in diabetic mice. Hence, our results provide the first evidence that the up-regulation of NF-κB-dependent MuRF1 expression is a novel mechanism that leads to BK channelopathy and vasculopathy in diabetes.
Collapse
Affiliation(s)
- Fu Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xian 710032, China
| | - Huan Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Qiang Chai
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Xiaoli Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Win-Kuang Shen
- Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona 85259
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hon-Chi Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
161
|
De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, Marigo I, Molon B, Bronte V. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 2014; 5:69. [PMID: 24605112 PMCID: PMC3932549 DOI: 10.3389/fimmu.2014.00069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022] Open
Abstract
Under many inflammatory contexts, such as tumor progression, systemic and peripheral immune response is tailored by reactive nitrogen species (RNS)-dependent post-translational modifications, suggesting a biological function for these chemical alterations. RNS modify both soluble factors and receptors essential to induce and maintain a tumor-specific immune response, creating a “chemical barrier” that impairs effector T cell infiltration and functionality in tumor microenvironment and supports the escape phase of cancer. RNS generation during tumor growth mainly depends on nitric oxide production by both tumor cells and tumor-infiltrating myeloid cells that constitutively activate essential metabolic pathways of l-arginine catabolism. This review provides an overview of the potential immunological and biological role of RNS-induced modifications and addresses new approaches targeting RNS either in search of novel biomarkers or to improve anti-cancer treatment.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Sara Sandri
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Giovanna Ferrarini
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Irene Pagliarello
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Silvia Sartoris
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Stefano Ugel
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Ilaria Marigo
- Istituto Oncologico Veneto, Istituto Di Ricovero e Cura a Carattere Scientifico , Padua , Italy
| | - Barbara Molon
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| |
Collapse
|
162
|
Reinmuth-Selzle K, Ackaert C, Kampf CJ, Samonig M, Shiraiwa M, Kofler S, Yang H, Gadermaier G, Brandstetter H, Huber CG, Duschl A, Oostingh GJ, Pöschl U. Nitration of the birch pollen allergen Bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents. J Proteome Res 2014; 13:1570-7. [PMID: 24517313 PMCID: PMC3950889 DOI: 10.1021/pr401078h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Nitration
of the major birch pollen allergen Bet v 1 alters the
immune responses toward this protein, but the underlying chemical
mechanisms are not yet understood. Here we address the efficiency
and site-selectivity of the nitration reaction of recombinant protein
samples of Bet v 1.0101 with different nitrating agents relevant for
laboratory investigations (tetranitromethane, TNM), for physiological
processes (peroxynitrite, ONOO–), and for the health
effects of environmental pollutants (nitrogen dioxide and ozone, O3/NO2). We determined the total tyrosine nitration
degrees (ND) and the NDs of individual tyrosine residues (NDY). High-performance liquid chromatography coupled to diode array
detection and HPLC coupled to high-resolution mass spectrometry analysis
of intact proteins, HPLC coupled to tandem mass spectrometry analysis
of tryptic peptides, and amino acid analysis of hydrolyzed samples
were performed. The preferred reaction sites were tyrosine residues
at the following positions in the polypeptide chain: Y83 and Y81 for
TNM, Y150 for ONOO–, and Y83 and Y158 for O3/NO2. The tyrosine residues Y83 and Y81 are located
in a hydrophobic cavity, while Y150 and Y158 are located in solvent-accessible
and flexible structures of the C-terminal region. The heterogeneous
reaction with O3/NO2 was found to be strongly
dependent on the phase state of the protein. Nitration rates were
about one order of magnitude higher for aqueous protein solutions
(∼20% per day) than for protein filter samples (∼2%
per day). Overall, our findings show that the kinetics and site-selectivity
of nitration strongly depend on the nitrating agent and reaction conditions,
which may also affect the biological function and adverse health effects
of the nitrated protein.
Collapse
Affiliation(s)
- Kathrin Reinmuth-Selzle
- Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry , Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Oxidative stress in aging: advances in proteomic approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:573208. [PMID: 24688629 PMCID: PMC3943264 DOI: 10.1155/2014/573208] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022]
Abstract
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Collapse
|
164
|
Khalkhali-Ellis Z, Hendrix MJC. Two Faces of Cathepsin D: Physiological Guardian Angel and Pathological Demon. ACTA ACUST UNITED AC 2014; 6. [PMID: 25663755 PMCID: PMC4318633 DOI: 10.4172/0974-8369.1000206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since its discovery as a lysosomal hydrolase, Cathepsin D (CatD) has been the subject of intensive scrutiny by numerous scientists. Those accumulated efforts have defined its biosynthetic pathway, structure, and companion proteins in the context of its perceived “house keeping” function. However, in the past two decades CatD has emerged as a multifunctional enzyme, involved in myriad biological processes beyond its original “housekeeping” role. CatD is responsible for selective and limited cleavage (quite distinct from non-specific protein degradation) of particular substrates vital to proper cellular function. These proteolytic events are critical in the control of biological processes, including cell cycle progression, differentiation and migration, morphogenesis and tissue remodeling, immunological processes, ovulation, fertilization, neuronal outgrowth, angiogenesis, and apoptosis. Consistent with the biological relevance of CatD, its deficiency, altered regulation or post-translational modification underlie important pathological conditions such as cancer, atherosclerosis, neurological and skin disorders. Specifically, deregulated synthesis, post-translational modifications and hyper-secretion of CatD, along with its mitogenic effects, are established hallmarks of cancer. More importantly, but less studied, is its significance in regulating the sensitivity to anticancer drugs. This review outlines CatD’s post-translational modifications, cellular trafficking, secretion and protein binding partners in normal mammary gland, and restates the “site-specific” function of CatD which is most probably dictated by its post-translational modifications and binding partners. Noteworthy, CatD’s association with one of its binding partners in the context of drug sensitivity is highlighted, with the optimism that it could contribute to the development of more effective chemotherapeutic agent(s) tailored for individual patients.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine, 2300 Children's Plaza, Box 222, Chicago, Illinois, 60614-3394, USA
| | - Mary J C Hendrix
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 2300 Children's Plaza, Box 222, Chicago, Illinois, 60614-3394, USA
| |
Collapse
|
165
|
Petre BA. Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:129-51. [PMID: 24952182 DOI: 10.1007/978-3-319-06068-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Affinity-based approaches in combination with mass spectrometry for molecular structure identification in biological complexes such as protein-protein, and protein-carbohydrate complexes have become popular in recent years. Affinity-mass spectrometry involves immobilization of a biomolecule on a chemically activated support, affinity binding of ligand(s), dissociation of the complex, and mass spectrometric analysis of the bound fraction. In this chapter the affinity-mass spectrometric methodologies will be presented for (1) identification of the epitope structures in the Abeta amyloid peptide, (2) identification of oxidative modifications in proteins such as nitration of tyrosine, (3) determination of carbohydrate recognition domains, and as (4) development of a biosensor chip-based mass spectrometric system for concomitant quantification and identification of protein-ligand complexes.
Collapse
Affiliation(s)
- Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Carol I Boulevard, No. 11, 700506, Iasi, Romania,
| |
Collapse
|
166
|
Yun JW, Lum K, Lei XG. A novel upregulation of glutathione peroxidase 1 by knockout of liver-regenerating protein Reg3β aggravates acetaminophen-induced hepatic protein nitration. Free Radic Biol Med 2013; 65:291-300. [PMID: 23811004 PMCID: PMC3859715 DOI: 10.1016/j.freeradbiomed.2013.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 12/27/2022]
Abstract
Murine regenerating islet-derived 3β (Reg3β) represents a homologue of human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein and enhances mouse susceptibility to acetaminophen (APAP)-induced hepatotoxicity. Our objective was to determine if and how knockout of Reg3β (KO) affects APAP (300 mg/kg, ip)-mediated protein nitration in mouse liver. APAP injection produced greater levels of hepatic protein nitration in the KO than in the wild-type mice. Their elevated protein nitration was alleviated by a prior injection of recombinant mouse Reg3β protein and was associated with an accelerated depletion of the peroxynitrite (ONOO(-)) scavenger glutathione by an upregulated hepatic glutathione peroxidase-1 (GPX1) activity. The enhanced GPX1 production in the KO mice was mediated by an 85% rise (p<0.05) in the activity of selenocysteine lyase (Scly), a key enzyme that mobilizes Se for selenoprotein biosynthesis. Knockout of Reg3β enhanced AP-1 protein and its binding activity to the Scly gene promoter, upregulating its gene transcription. However, knockout of Reg3β did not affect gene expression of other key factors for selenoprotein biosynthesis. In conclusion, our findings unveil a new metabolic role for Reg3β in protein nitration and a new biosynthesis control of GPX1 by a completely "unrelated" regenerating protein, Reg3β, via transcriptional activation of Scly in coping with hepatic protein nitration. Linking selenoproteins to tissue regeneration will have profound implications in understanding the mechanism of Se functions and physiological coordination of tissue regeneration with intracellular redox control.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Krystal Lum
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
167
|
Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radic Biol Med 2013; 65:925-941. [PMID: 24002012 DOI: 10.1016/j.freeradbiomed.2013.08.184] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
Abstract
In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry.
Collapse
Affiliation(s)
- André M N Silva
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7 ET, United Kingdom
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
168
|
Kakizawa S. Nitric Oxide-Induced Calcium Release: Activation of Type 1 Ryanodine Receptor, a Calcium Release Channel, through Non-Enzymatic Post-Translational Modification by Nitric Oxide. Front Endocrinol (Lausanne) 2013; 4:142. [PMID: 24130553 PMCID: PMC3795324 DOI: 10.3389/fendo.2013.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/25/2013] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3', 5'-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: "S-nitrosylation" of target proteins. S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH), and categorized into non-enzymatic post-translational modification (PTM) of proteins, contrasted to enzymatic PTM of proteins, such as phosphorylation mediated by various protein kinases. Very recently, we found novel intracellular calcium (Ca(2+)) mobilizing mechanism, NO-induced Ca(2+) release (NICR) in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1), a Ca(2+) release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic PTM of proteins by gaseous signals, are described.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- *Correspondence: Sho Kakizawa, Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan e-mail:
| |
Collapse
|
169
|
Abstract
SIGNIFICANCE The conversion of protein-bound Tyr residues to 3-nitrotyrosine (3NY) can occur during nitrative stress and has been correlated to aging and many disease states. Proteomic analysis of this post-translational modification, using mass spectrometry-based techniques, is crucial for understanding its potential role in pathological and physiological processes. RECENT ADVANCES To overcome some of the disadvantages inherent to well-established nitroproteomic methods using anti-3NY antibodies and gel-based separations, methods involving multidimensional chromatography, precursor ion scanning, and/or chemical derivatization have emerged for both identification and quantitation of protein nitration sites. A few of these methods have successfully detected endogenous 3NY modifications from biological samples. CRITICAL ISSUES While model systems often show promising results, identification of endogenous 3NY modifications remains largely elusive. The frequently low abundance of nitrated proteins in vivo, even under inflammatory conditions, is especially challenging, and sample loss due to derivatization and cleaning may become significant. FUTURE DIRECTIONS Continued efforts to avoid interference from non-nitrated peptides without sacrificing recovery of nitrated peptides are needed. Quantitative methods are emerging and are crucial for identifying endogenous modifications that may have significant biological impacts.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, Kansas
| | | |
Collapse
|
170
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
171
|
Bergström Lind S, Artemenko KA, Elfineh L, Zhao Y, Bergquist J, Pettersson U. Post translational modifications in adenovirus type 2. Virology 2013; 447:104-11. [PMID: 24210104 DOI: 10.1016/j.virol.2013.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 01/05/2023]
Abstract
We have combined 2-D SDS-PAGE with liquid chromatography-high resolving mass spectrometry (LC-MS) to explore the proteome of the adenovirus type 2 (Ad2) at the level of post translational modifications (PTMs). The experimental design included in-solution digestion, followed by titanium dioxide enrichment, as well as in-gel digestion of polypeptides after separation of Ad2 capsid proteins by 1-D and 2-D SDS-PAGE. All samples were analyzed using LC-MS with subsequent manual verification of PTM positions. The results revealed new phosphorylation sites that can explain the observed trains of protein spots observed for the pIII, pIIIa and pIV proteins. The pIIIa protein was found to be the most highly modified protein with now 18 verified sites of phosphorylation, three sites of nitrated tyrosine and one sulfated tyrosine. Nitrated tyrosines were also identified in pII. Lysine acetylations were detected in pII and pVI. The findings make the Ad2 virion much more complex than hitherto believed.
Collapse
Affiliation(s)
- Sara Bergström Lind
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden; Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
172
|
Arc E, Galland M, Godin B, Cueff G, Rajjou L. Nitric oxide implication in the control of seed dormancy and germination. FRONTIERS IN PLANT SCIENCE 2013; 4:346. [PMID: 24065970 PMCID: PMC3777103 DOI: 10.3389/fpls.2013.00346] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/16/2013] [Indexed: 05/20/2023]
Abstract
Germination ability is regulated by a combination of environmental and endogenous signals with both synergistic and antagonistic effects. Nitric oxide (NO) is a potent dormancy-releasing agent in many species, including Arabidopsis, and has been suggested to behave as an endogenous regulator of this physiological blockage. Distinct reports have also highlighted a positive impact of NO on seed germination under sub-optimal conditions. However, its molecular mode of action in the context of seed biology remains poorly documented. This review aims to focus on the implications of this radical in the control of seed dormancy and germination. The consequences of NO chemistry on the investigations on both its signaling and its targets in seeds are discussed. NO-dependent protein post-translational modifications are proposed as a key mechanism underlying NO signaling during early seed germination.
Collapse
Affiliation(s)
- Erwann Arc
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
- University of Innsbruck, Institute of BotanyInnsbruck, Austria
- *Correspondence: Erwann Arc and Loïc Rajjou, INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, Route de Saint Cyr (RD10) - Bât 2, F-78026 Versailles Cedex, France e-mail: ;
| | - Marc Galland
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Béatrice Godin
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Gwendal Cueff
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
- *Correspondence: Erwann Arc and Loïc Rajjou, INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, Route de Saint Cyr (RD10) - Bât 2, F-78026 Versailles Cedex, France e-mail: ;
| |
Collapse
|
173
|
Selzle K, Ackaert C, Kampf CJ, Kunert AT, Duschl A, Oostingh GJ, Pöschl U. Determination of nitration degrees for the birch pollen allergen Bet v 1. Anal Bioanal Chem 2013; 405:8945-9. [PMID: 24037615 DOI: 10.1007/s00216-013-7324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Abstract
Nitration of tyrosine residues in the major birch pollen allergen Bet v 1 may alter the allergenic potential of the protein. The kinetics and mechanism of the nitration reaction, however, have not yet been well characterized. To facilitate further investigations, an efficient method to quantify the nitration degree (ND) of small samples of Bet v 1 is required. Here, we present a suitable method of high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) that can be photometrically calibrated using the amino acids tyrosine (Tyr) and nitrotyrosine (NTyr) without the need for nitrated protein standards. The new method is efficient and in agreement with alternative methods based on hydrolysis and amino acid analysis of tetranitromethane (TNM)-nitrated Bet v 1 standards as well as samples from nitration experiments with peroxynitrite. The results confirm the applicability of the new method for the investigation of the reaction kinetics and mechanism of protein nitration.
Collapse
Affiliation(s)
- Kathrin Selzle
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
174
|
Zhao S, Xiong Z, Mao X, Meng D, Lei Q, Li Y, Deng P, Chen M, Tu M, Lu X, Yang G, He G. Atmospheric pressure room temperature plasma jets facilitate oxidative and nitrative stress and lead to endoplasmic reticulum stress dependent apoptosis in HepG2 cells. PLoS One 2013; 8:e73665. [PMID: 24013954 PMCID: PMC3754921 DOI: 10.1371/journal.pone.0073665] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/20/2013] [Indexed: 01/06/2023] Open
Abstract
Atmospheric pressure room temperature plasma jets (APRTP-Js) that can emit a mixture of different active species have recently found entry in various medical applications. Apoptosis is a key event in APRTP-Js-induced cellular toxicity, but the exact biological mechanisms underlying remain elusive. Here, we explored the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in APRTP-Js-induced apoptosis using in vitro model of HepG2 cells. We found that APRTP-Js facilitated the accumulation of ROS and RNS in cells, which resulted in the compromised cellular antioxidant defense system, as evidenced by the inactivation of cellular antioxidants including glutathione (GSH), superoxide dismutase (SOD) and catalase. Nitrotyrosine and protein carbonyl content analysis indicated that APRTP-Js treatment caused nitrative and oxidative injury of cells. Meanwhile, intracellular calcium homeostasis was disturbed along with the alteration in the expressions of GRP78, CHOP and pro-caspase12. These effects accumulated and eventually culminated into the cellular dysfunction and endoplasmic reticulum stress (ER stress)-mediated apoptosis. The apoptosis could be markedly attenuated by N-acetylcysteine (NAC, a free radical scavenger), which confirmed the involvement of oxidative and nitrative stress in the process leading to HepG2 cell apoptosis by APRTP-Js treatment.
Collapse
Affiliation(s)
- Shasha Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Zilan Xiong
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Xiang Mao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Dandan Meng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Qian Lei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Pengyi Deng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Min Tu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Xinpei Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science & Technology (HUST), Wuhan, China
- * E-mail: (GH); (GY); (XL)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
- * E-mail: (GH); (GY); (XL)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
- * E-mail: (GH); (GY); (XL)
| |
Collapse
|
175
|
Bátor J, Varga J, Szeberényi J. The effect of sodium nitroprusside on survival and stress signaling in PC12 rat phaeochromocytoma cells expressing a dominant negative RasH mutant protein. Biochem Cell Biol 2013; 91:230-5. [PMID: 23859017 DOI: 10.1139/bcb-2012-0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxic concentrations of the second messenger nitric oxide cause cellular stress leading to cell death. Ras proteins, possible targets of nitric oxide-induced nitrosylation, may act as mediators in nitrosative stress. To analyze the possible involvement of Ras proteins in nitric oxide cytotoxicity, a PC12 rat phaeochromocytoma cell line expressing a dominant negative Ras mutant protein was used in this study. Cytotoxic concentrations of the nitric oxide donor sodium nitroprusside activated several proapoptotic mechanisms, including stimulation of the stress kinase pathways mediated by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), inhibition of the translation initiation factor eIF2α, induction and phosphorylation of the p53 protein, and inhibited Akt-mediated antiapoptotic signaling, independent of Ras function. Simultaneously, Ras-dependent stimulation of the prosurvival ERK pathway was also observed, followed by an increased activation of the caspase-9/caspase-3 cascade in cells with impaired Ras function. It is concluded that nitric oxide stimulation of multiple signaling pathways contributes to the cell death program, whereas concomitant activation of the Ras/ERK pathway provides a certain degree of protection.
Collapse
Affiliation(s)
- Judit Bátor
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | | | | |
Collapse
|
176
|
Ahsan H. 3-Nitrotyrosine: A biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Hum Immunol 2013; 74:1392-9. [PMID: 23777924 DOI: 10.1016/j.humimm.2013.06.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/10/2013] [Accepted: 06/07/2013] [Indexed: 02/07/2023]
Abstract
The free radical-mediated damage to proteins results in the modification of amino acid residues, cross-linking of side chains and fragmentation. l-Tyrosine and protein bound tyrosine are prone to attack by various mediators and reactive nitrogen intermediates to form 3-nitrotyrosine (3-NT). Activated macrophages produce superoxide (O2(·-)) and NO, which are converted to peroxynitrite ONO2(-). 3-NT formation is also catalyzed by a class of peroxidases utilizing nitrite and hydrogen peroxide as substrates. Evidence supports the formation of 3-NT in vivo in diverse pathologic conditions and 3-NT is thought to be a relatively specific marker of oxidative damage mediated by peroxynitrite. Free/protein-bound tyrosines are attacked by various RNS, including peroxynitrite, to form free/protein-bound 3-NT, which may provide insight into the etiopathogenesis of autoimmune conditions. The formation of nitrotyrosine represents a specific peroxynitrite-mediated protein modification; thus, detection of nitrotyrosine in proteins is considered as a biomarker for endogenous peroxynitrite activity. The peroxynitrite-driven oxidation and nitration of biomolecules may lead to autoimmune diseases such as systemic lupus. The subsequent release of altered proteins may enable them to act as antigen-inducing antibodies against self-proteins. Hence, tyrosine nitrated proteins can act as neoantigens and lead to the generation of autoantibodies against self proteins in various autoimmune disorders.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
177
|
Holley AK, Dhar SK, St Clair DK. Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect? Mitochondrion 2013; 13:170-88. [PMID: 22820117 PMCID: PMC4604438 DOI: 10.1016/j.mito.2012.07.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS), while vital for normal cellular function, can have harmful effects on cells, leading to the development of diseases such as cancer. The Warburg effect, the shift from oxidative phosphorylation to glycolysis, even in the presence of adequate oxygen, is an important metabolic change that confers many growth and survival advantages to cancer cells. Reactive oxygen species are important regulators of the Warburg effect. The mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD) is vital to survival in our oxygen-rich atmosphere because it scavenges mitochondrial ROS. MnSOD is important in cancer development and progression. However, the significance of MnSOD in the regulation of the Warburg effect is just now being revealed, and it may significantly impact the treatment of cancer in the future.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
178
|
Spickett CM, Reis A, Pitt AR. Use of narrow mass-window, high-resolution extracted product ion chromatograms for the sensitive and selective identification of protein modifications. Anal Chem 2013; 85:4621-7. [PMID: 23534669 DOI: 10.1021/ac400131f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL.
Collapse
Affiliation(s)
- Corinne M Spickett
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | | | | |
Collapse
|
179
|
Tveen-Jensen K, Reis A, Mouls L, Pitt AR, Spickett CM. Reporter ion-based mass spectrometry approaches for the detection of non-enzymatic protein modifications in biological samples. J Proteomics 2013; 92:71-9. [PMID: 23603107 DOI: 10.1016/j.jprot.2013.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS(3) ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run.This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. BIOLOGICAL SIGNIFICANCE The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions.
Collapse
|
180
|
Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry--a user's perspective. Biochim Biophys Acta Gen Subj 2013; 1840:818-29. [PMID: 23558060 DOI: 10.1016/j.bbagen.2013.03.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 03/17/2013] [Accepted: 03/24/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Proteins in human tissues and body fluids continually undergo spontaneous oxidation and glycation reactions forming low levels of oxidation and glycation adduct residues. Proteolysis of oxidised and glycated proteins releases oxidised and glycated amino acids which, if they cannot be repaired, are excreted in urine. SCOPE OF REVIEW In this review we give a brief background to the classification, formation and processing of oxidised and glycated proteins in the clinical setting. We then describe the application of stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) for measurement of oxidative and glycation damage to proteins in clinical studies, sources of error in pre-analytic processing, corroboration with other techniques - including how this may be improved - and a systems approach to protein damage analysis for improved surety of analyte estimations. MAJOR CONCLUSIONS Stable isotopic dilution analysis LC-MS/MS provides a robust reference method for measurement of protein oxidation and glycation adducts. Optimised pre-analytic processing of samples and LC-MS/MS analysis procedures are required to achieve this. GENERAL SIGNIFICANCE Quantitative measurement of protein oxidation and glycation adducts provides information on level of exposure to potentially damaging protein modifications, protein inactivation in ageing and disease, metabolic control, protein turnover, renal function and other aspects of body function. Reliable and clinically assessable analysis is required for translation of measurement to clinical diagnostic use. Stable isotopic dilution analysis LC-MS/MS provides a "gold standard" approach and reference methodology to which other higher throughput methods such as immunoassay and indirect methods are preferably corroborated by researchers and those commercialising diagnostic kits and reagents. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK; Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
181
|
Ng JY, Boelen L, Wong JWH. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome. Open Biol 2013; 3:120148. [PMID: 23389939 PMCID: PMC3603447 DOI: 10.1098/rsob.120148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein 3-nitrotyrosine is a post-translational modification that commonly arises from the nitration of tyrosine residues. This modification has been detected under a wide range of pathological conditions and has been shown to alter protein function. Whether 3-nitrotyrosine is important in normal cellular processes or is likely to affect specific biological pathways remains unclear. Using GPS-YNO2, a recently described 3-nitrotyrosine prediction algorithm, a set of predictions for nitrated residues in the human proteome was generated. In total, 9.27 per cent of the proteome was predicted to be nitratable (27 922/301 091). By matching the predictions against a set of curated and experimentally validated 3-nitrotyrosine sites in human proteins, it was found that GPS-YNO2 is able to predict 73.1 per cent (404/553) of these sites. Furthermore, of these sites, 42 have been shown to be nitrated endogenously, with 85.7 per cent (36/42) of these predicted to be nitrated. This demonstrates the feasibility of using the predicted dataset for a whole proteome analysis. A comprehensive bioinformatics analysis was subsequently performed on predicted and all experimentally validated nitrated tyrosine. This found mild but specific biophysical constraints that affect the susceptibility of tyrosine to nitration, and these may play a role in increasing the likelihood of 3-nitrotyrosine to affect processes, including phosphorylation and DNA binding. Furthermore, examining the evolutionary conservation of predicted 3-nitrotyrosine showed that, relative to non-nitrated tyrosine residues, 3-nitrotyrosine residues are generally less conserved. This suggests that, at least in the majority of cases, 3-nitrotyrosine is likely to have a deleterious effect on protein function and less likely to be important in normal cellular function.
Collapse
Affiliation(s)
- John Y Ng
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
182
|
Jacques S, Ghesquière B, Van Breusegem F, Gevaert K. Plant proteins under oxidative attack. Proteomics 2013; 13:932-40. [DOI: 10.1002/pmic.201200237] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 11/09/2022]
|
183
|
Bykova NV, Rampitsch C. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 2013. [PMID: 23197359 DOI: 10.1002/pmic.201200270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been clearly demonstrated that plants redox control can be exerted over virtually every cellular metabolic pathway affecting metabolic homeostasis and energy balance. Therefore, a tight link exists between cellular/compartmental steady-state redox level and cellular metabolism. Proteomics offers a powerful new way to characterize the response and regulation of protein oxidation in different cell types and in relation to cellular metabolism. Compelling evidence revealed in proteomics studies suggests the integration of the redox network with other cellular signaling pathways such as Ca(2+) and/or protein phosphorylation, jasmonic, salicylic, abscisic acids, ethylene, and other phytohormones. Here we review progress in using the various proteomics techniques and approaches to answer biological questions arising from redox signaling and from changes in redox status of the cell. The focus is on reversible redox protein modifications and on three main processes, namely oxidative and nitrosative stress, defense against pathogens, cellular redox response and regulation, drawing on examples from plant redox proteomics studies.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and AgriFood Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
184
|
Silva L, Carvalho H. Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses. FRONTIERS IN PLANT SCIENCE 2013; 4:372. [PMID: 24065976 PMCID: PMC3777134 DOI: 10.3389/fpls.2013.00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/31/2013] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is emerging as an important regulatory player in the Rhizobium-legume symbiosis. The occurrence of NO during several steps of the symbiotic interaction suggests an important, but yet unknown, signaling role of this molecule for root nodule formation and functioning. The identification of the molecular targets of NO is key for the assembly of the signal transduction cascade that will ultimately help to unravel NO function. We have recently shown that the key nitrogen assimilatory enzyme glutamine synthetase (GS) is a molecular target of NO in root nodules of Medicago truncatula, being post-translationally regulated by tyrosine nitration in relation to nitrogen fixation. In functional nodules of M. truncatula NO formation has been located in the bacteroid containing cells of the fixation zone, where the ammonium generated by bacterial nitrogenase is released to the plant cytosol and assimilated into the organic pools by plant GS. We propose that the NO-mediated GS post-translational inactivation is connected to nitrogenase inhibition induced by NO and is related to metabolite channeling to boost the nodule antioxidant defenses. Glutamate, a substrate for GS activity is also the precursor for the synthesis of glutathione (GSH), which is highly abundant in root nodules of several plant species and known to play a major role in the antioxidant defense participating in the ascorbate/GSH cycle. Existing evidence suggests that upon NO-mediated GS inhibition, glutamate could be channeled for the synthesis of GSH. According to this hypothesis, GS would be involved in the NO-signaling responses in root nodules and the NO-signaling events would meet the nodule metabolic pathways to provide an adaptive response to the inhibition of symbiotic nitrogen fixation by reactive nitrogen species.
Collapse
Affiliation(s)
| | - Helena Carvalho
- *Correspondence: Helena Carvalho, Laboratório de Biologia Molecular da Assimilação do Azoto, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal e-mail:
| |
Collapse
|
185
|
Corpas FJ, Palma JM, del Río LA, Barroso JB. Protein tyrosine nitration in higher plants grown under natural and stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:29. [PMID: 23444154 PMCID: PMC3580390 DOI: 10.3389/fpls.2013.00029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/06/2013] [Indexed: 05/18/2023]
Abstract
Protein tyrosine nitration is a post-translational modification (PTM) mediated by reactive nitrogen species (RNS) that is linked to nitro-oxidative damages in plant cells. During the last decade, the identification of proteins undergoing this PTM under adverse environmental conditions has increased. However, there is also a basal endogenous nitration which seems to have a regulatory function. The technological advances in proteome analysis have allowed identifying these modified proteins and have shown that the number and identity of the nitrated proteins change among plant species, analysed organs and growing/culture conditions. In this work, the current knowledge of protein tyrosine nitration in higher plants under different situations is reviewed.
Collapse
Affiliation(s)
- Francisco J. Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Francisco J. Corpas, Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo. 419, E-18080 Granada, Spain. e-mail:
| | - José M. Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Luis A. del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan B. Barroso
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ), Área de Bioquímica y Biología Molecular, Universidad de JaénJaén, Spain
| |
Collapse
|
186
|
Cheng S, Lian B, Liang J, Shi T, Xie L, Zhao YL. Site selectivity for protein tyrosine nitration: insights from features of structure and topological network. MOLECULAR BIOSYSTEMS 2013; 9:2860-8. [DOI: 10.1039/c3mb70260j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
187
|
Gómez-Mingot M, Alcaraz LA, Heptinstall J, Donaire A, Piccioli M, Montiel V, Iniesta J. Electrochemical nitration of myoglobin at tyrosine 103: Structure and stability. Arch Biochem Biophys 2013. [DOI: 10.1016/j.abb.2012.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
188
|
Blume YB, Krasylenko YA, Demchuk OM, Yemets AI. Tubulin tyrosine nitration regulates microtubule organization in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:530. [PMID: 24421781 PMCID: PMC3872735 DOI: 10.3389/fpls.2013.00530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/10/2013] [Indexed: 05/21/2023]
Abstract
During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics.
Collapse
Affiliation(s)
- Yaroslav B. Blume
- *Correspondence: Yaroslav B. Blume, Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo str., 2, Kyiv 04123, Ukraine e-mail:
| | | | | | | |
Collapse
|
189
|
Jarmuła A, Rode W. Computational study of the effects of protein tyrosine nitrations on the catalytic activity of human thymidylate synthase. J Comput Aided Mol Des 2012; 27:45-66. [PMID: 23239172 DOI: 10.1007/s10822-012-9624-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/06/2012] [Indexed: 11/25/2022]
Abstract
Tyrosine nitration is a widespread post-translational modification capable of affecting both the function and structure of the host protein molecule. Enzyme thymidylate synthase (TS), a homodimer, is a molecular target for anticancer therapy. Recently purified TS preparations, isolated from mammalian tissues, were found to be nitrated, suggesting this modification to appear endogenously in normal and tumor tissues. Moreover, human TS (hTS) nitration in vitro led to a by twofold lowered catalytic activity following nitration in average of 1 tyrosine residue per monomer (Dąbrowska-Maś et al. in Org Biomol Chem 10:323-331, 2012), with the modification identified by mass spectrometry at seven different sites (Y33, Y65, Y135, Y213, Y230, Y258 and Y301). In the present paper, combined computational approach, including molecular and essential dynamics and free energy computations, was used to predict the influence on the activity of hTS of nitration of each of the seven tyrosine residues. The simulations were based on the crystal structure of hTS ternary complex with dUMP and Tomudex (PDB code: 1I00), with the Tomudex molecule replaced by the molecule of TS cofactor analogue, tetrahydrofolate. The present results indicate that while with nitration of five out of seven residues (Y33, Y135, Y230, Y258 and Y301), single residue modification appears to have a strong reducing effect on the activity, with the remaining two, Y65 and Y213, no or a weaker influence is apparent. Taken together, these results demonstrate that tyrosine nitrations in the hTS enzyme show clear tendency to influence the structure and dynamics and, in turn, catalytic properties of the host enzyme. These effects are overall distance-dependent.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warszawa, Poland.
| | | |
Collapse
|
190
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Guo J, Prokai L. Conversion of 3-nitrotyrosine to 3-aminotyrosine residues facilitates mapping of tyrosine nitration in proteins by electrospray ionization-tandem mass spectrometry using electron capture dissociation. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1601-1611. [PMID: 23280749 DOI: 10.1002/jms.3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Protein tyrosine nitration is associated with oxidative stress and various human diseases. Tandem mass spectrometry has been the method of choice for the identification and localization of this posttranslational modification to understand the underlying mechanisms and functional consequences. Due to the electron predator effect of the nitro group limiting fragmentation of the peptide backbone, electron-based dissociation has not been applicable, however, to nitrotyrosine-containing peptides. A straightforward conversion of the nitrotyrosine to the aminotyrosine residues is introduced to address this limitation. When tested with nitrated ubiquitin and human serum albumin as model proteins in top-down and bottom-up approaches, respectively, this chemical derivatization enhanced backbone fragmentation of the corresponding nitroproteins and nitropeptides by electron capture dissociation (ECD). Increased sequence coverage has been obtained by combining in the bottom-up strategy the conversion of nitrotyrosine to aminotyrosine and introducing, in addition to trypsin, a further digesting enzyme of complementary specificity, when protein nitration was mapped by liquid chromatography-electrospray ionization tandem mass spectrometry using both collision-induced dissociation (CID) and ECD.
Collapse
Affiliation(s)
- Jia Guo
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA
| | | |
Collapse
|
192
|
Abstract
SIGNIFICANCE The understanding of physiological and pathological processes involving protein oxidation, particularly under conditions of aging and oxidative stress, can be aided by proteomic identification of proteins that accumulate oxidative post-translational modifications only if these detected modifications are connected to functional consequences. The modification of tyrosine (Tyr) residues can elicit significant changes in protein structure and function, which, in some cases, may contribute to biological aging and age-related pathologies, such as atherosclerosis, neurodegeneration, and cataracts. RECENT ADVANCES Studies characterizing proteins in which Tyr has been modified to 3-nitrotyrosine, 3,4-dihydroxyphenylalanine, 3,3'-dityrosine and other cross-links, or 3-chlorotyrosine are reviewed, with an emphasis on structural and functional consequences. CRITICAL ISSUES Distinguishing between inconsequential modifications and functionally significant ones requires careful biochemical and biophysical analysis of target proteins, as well as innovative methods for isolating the effects of the multiple modifications that often occur under oxidizing conditions. FUTURE DIRECTIONS The labor-intensive task of isolating and characterizing individual modified proteins must continue, especially given the expanding list of known modifications. Emerging approaches, such as genetic and metabolic incorporation of unnatural amino acids, hold promise for additional focused studies of this kind.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
193
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
194
|
Abstract
Nitric oxide (NO) has been demonstrated as an essential regulator of several physiological processes in plants. The understanding of the molecular mechanism underlying its critical role constitutes a major field of research. NO can exert its biological function through different ways, such as the modulation of gene expression, the mobilization of second messengers, or interplays with protein kinases. Besides this signaling events, NO can be responsible of the posttranslational modifications (PTM) of target proteins. Several modifications have been identified so far, whereas metal nitrosylation, the tyrosine nitration and the S-nitrosylation can be considered as the main ones. Recent data demonstrate that these PTM are involved in the control of a wide range of physiological processes in plants, such as the plant immune system. However, a great deal of effort is still necessary to pinpoint the role of each PTM in plant physiology. Taken together, these new advances in proteomic research provide a better comprehension of the role of NO in plant signaling.
Collapse
Affiliation(s)
- Jeremy Astier
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | |
Collapse
|
195
|
Petre BA, Ulrich M, Stumbaum M, Bernevic B, Moise A, Döring G, Przybylski M. When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1831-1840. [PMID: 22907170 DOI: 10.1007/s13361-012-0461-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar K(D) values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.
Collapse
Affiliation(s)
- Brînduşa-Alina Petre
- Steinbeis Research and Transfer Center for Biopolymer Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
196
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
197
|
Bas DF, Topcuoglu MA, Gursoy-Ozdemir Y, Saatci I, Bodur E, Dalkara T. Plasma 3-nitrotyrosine estimates the reperfusion-induced cerebrovascular stress, whereas matrix metalloproteinases mainly reflect plasma activity: a study in patients treated with thrombolysis or endovascular recanalization. J Neurochem 2012; 123 Suppl 2:138-47. [DOI: 10.1111/j.1471-4159.2012.07952.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Demet Funda Bas
- Department of Neurology; Hacettepe University; Ankara; Turkey
| | | | | | - Isil Saatci
- Department of Radiology; Hacettepe University; Ankara; Turkey
| | - Ebru Bodur
- Department of Biochemistry; Hacettepe University; Ankara; Turkey
| | | |
Collapse
|
198
|
Chen HJC, Chen YC. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem 2012; 84:7881-90. [PMID: 22958097 DOI: 10.1021/ac301597r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is essential for normal physiology, but excessive production of NO during inflammatory processes can damage the neighboring tissues. Reactive nitrogen oxide species (RNOx), including peroxynitrite (ONOO(-)), are powerful nitrating agents. Biological protein nitration is involved in several disease states, including inflammatory diseases, and it is evident by detection of 3-nitrotyrosine (3NT) in inflamed tissues. In this study, we identified peroxynitrite-induced post-translational modifications (PTMs) in human hemoglobin by accurate mass measurement as well as by the MS(2) and MS(3) spectra. Nitration on Tyr-24, Tyr-42 (α-globin), and Tyr-130 (β-globin) as well as nitrosation on Tyr-24 (α-globin) were identified. Also characterized were oxidation of all three methionine residues, α-Met-32, α-Met-76, and β-Met-55 to the sulfoxide, as well as cysteine oxidation determined as sulfinic acid on α-Cys-104 and sulfonic acid on α-Cys-104, β-Cys-93, and β-Cys-112. These modifications are detected in hemoglobin freshly isolated from human blood and the extents of modifications were semiquantified relative to the reference peptides by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) under the selected reaction monitoring (SRM) mode. The results showed a statistically significant positive correlation between cigarette smoking and the extents of tyrosine nitration at α-Tyr-24 and at α-Tyr-42. To our knowledge, this is the first report on identification and quantification of multiple PTMs in hemoglobin from human blood and association of a specific 3NT-containing peptide with cigarette smoking. This highly sensitive and specific assay only requires hemoglobin isolated from one drop (∼10 μL) of blood. Thus, measurement of these PTMs in hemoglobin might be feasible for assessing nitrative stress in vivo.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
199
|
Tu M, Huang Y, Li HL, Gao ZH. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell. Toxicology 2012; 299:60-8. [DOI: 10.1016/j.tox.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|
200
|
Ruhs S, Strätz N, Schlör K, Meinel S, Mildenberger S, Rabe S, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by nitrosative stress. Free Radic Biol Med 2012; 53:1088-100. [PMID: 22749806 DOI: 10.1016/j.freeradbiomed.2012.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022]
Abstract
The mineralocorticoid receptor (MR) plays an important role in salt and water homeostasis and pathological tissue modifications, such as cardiovascular and renal fibrosis. Importantly, MR activation by aldosterone per se is not sufficient for the deleterious effects but requires the additional presence of a certain pathological milieu. Phenomenologically, this milieu could be generated by enhanced nitrosative stress. However, little is known regarding the modulation of MR transcriptional activity in a pathological milieu. The glucocorticoid receptor (GR), the closest relative of the MR, binds to the same hormone-response element but elicits protective effects on the cardiovascular system. To investigate the possible modulation of MR and GR by nitrosative stress under controlled conditions we used human embryonic kidney (HEK) cells and measured MR and GR transactivation after stimulation with the nitric oxide (NO)-donor SNAP and the peroxynitrite-donor Sin-1. In the presence of corticosteroids NO led to a general reduced corticosteroid receptor activity by repression of corticosteroid receptor-DNA interaction. The NO-induced diminished transcriptional MR activity was most pronounced during stimulation with physiological aldosterone concentrations, suggesting that NO treatment prevented its pathophysiological overactivation. In contrast, single peroxynitrite administration specifically induced the MR transactivation activity whereas genomic GR activity remained unchanged. Mechanistically, peroxynitrite permitted nuclear MR translocation whereas the cytosolic GR distribution was unaffected. Consequently, peroxynitrite represents a MR-specific aldosterone mimetic. In summary, our data indicate that the genomic function of corticosteroid receptors can be modulated by nitrosative stress which may induce the shift from physiological toward pathophysiological MR effects.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius-Bernstein-Institut für Physiologie der Universität Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | |
Collapse
|