151
|
Imaizumi-Scherrer T, Faust DM, Bénichou JC, Hellio R, Weiss MC. Accumulation in fetal muscle and localization to the neuromuscular junction of cAMP-dependent protein kinase A regulatory and catalytic subunits RI alpha and C alpha. J Biophys Biochem Cytol 1996; 134:1241-54. [PMID: 8794865 PMCID: PMC2120986 DOI: 10.1083/jcb.134.5.1241] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using probes specific for cAMP-dependent protein kinase, we have analyzed by in situ hybridization the patterns of expression of regulatory and catalytic subunits in mouse embryos and in adult muscle. RI alpha transcripts are distributed in muscle fibers exactly as acetylcholinesterase, showing that this RNA is localized at the neuromuscular junction. The transcript levels increase upon denervation of the muscle, but the RNA remains localized, indicating a regulation pattern similar to that of the epsilon subunit of nicotinic acetylcholine receptor. RI alpha transcripts have accumulated in the muscle by day 12 of mouse embryogenesis, and localization is established by day 14, at about the time of formation of junctions. This localization is maintained throughout development and in the adult. Immunocytochemical analysis has demonstrated that RI alpha protein is also localized. In addition, RI alpha recruits C alpha protein to the junction, providing at this site the potential for local responsiveness to cAMP. PKA could be implicated in the establishment and/or maintenance of the unique pattern of gene expression occurring at the junction, or in the modulation of synaptic activity via protein phosphorylation. Embryonic skeletal muscle shows a high level of C alpha transcripts and protein throughout the fiber; the transcripts are already present by day 12 of embryogenesis, and their elevated level is maintained only through fetal life. In the adult, the C alpha hybridization signal of muscle is weak and homogeneous.
Collapse
Affiliation(s)
- T Imaizumi-Scherrer
- Unité de Génétique de la Différenciation, URA 1149, Département de Biologie Moléculaire, Paris, France
| | | | | | | | | |
Collapse
|
152
|
Tajbakhsh S, Bober E, Babinet C, Pournin S, Arnold H, Buckingham M. Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 1996; 206:291-300. [PMID: 8896984 DOI: 10.1002/(sici)1097-0177(199607)206:3<291::aid-aja6>3.0.co;2-d] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have introduced the nlacZ reporter gene into the locus of the myogenic factor gene myf-5 by homologous recombination in embryonic stem (ES) cells. Targeted ES clones were injected into precompaction morula, and the beta-galactosidase expression pattern was monitored. These mice permit the sensitive visualization of myf-5 expression throughout the embryo, and provide a standard for comparing it with that seen with different myf-5/nlacZ transgenes. Thus, in a comparison using ES cells in chimaeric embryos containing the targeted or randomly integrated myf-5/nlacZ construct, we demonstrate that 5.5 kbp of myf-5 upstream flanking sequence including exon1 and most of intron1 directs some skeletal muscle expression, but this is neither qualitatively nor quantitatively equivalent to that of the endogenous gene. Myf-5 is expressed early, before terminal myogenesis takes place in the medial half of the somite, and subsequently it is a major myogenic factor as skeletal muscle forms. All skeletal muscle shows beta-galactosidase activity, even after birth, indicating that myf-5 expression is not confined to primary myotubes, which are derived from embryonic myoblasts, but is also present in muscles containing different adult fibre types. The presence of myf-5 transcripts from the endogenous gene in older muscle was confirmed by in situ hybridization. These results suggest that the myf-5 gene is not activated in only a subset of muscle cells and are consistent with the results on the MyoD knockout mice.
Collapse
Affiliation(s)
- S Tajbakhsh
- Department of Molecular Biology, CNRS URA1947, Pasteur Institute, Paris, France
| | | | | | | | | | | |
Collapse
|
153
|
Sarbassov DD, Stefanova R, Grigoriev VG, Peterson CA. Role of insulin-like growth factors and myogenin in the altered program of proliferation and differentiation in the NFB4 mutant muscle cell line. Proc Natl Acad Sci U S A 1995; 92:10874-8. [PMID: 7479901 PMCID: PMC40533 DOI: 10.1073/pnas.92.24.10874] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present study we used the mutant muscle cell line NFB4 to study the balance between proliferation and myogenic differentiation. We show that removal of serum, which induced the parental C2C12 cells to withdraw from the cell cycle and differentiate, had little effect on NFB4 cells. Gene products characteristic of the proliferation state, such as c-Jun, continued to accumulate in the mutant cells in low serum, whereas those involved in differentiation, like myogenin, insulin-like growth factor II (IGF-II), and IGF-binding protein 5 (IGFBP-5) were undetectable. Moreover, NFB4 cells displayed a unique pattern of tyrosine phosphorylated proteins, especially in low serum, suggesting that the signal transduction pathway(s) that controls differentiation is not properly regulated in these cells. Treatment of NFB4 cells with exogenous IGF-I or IGF-II at concentrations shown to promote myogenic differentiation in wild-type cells resulted in activation of myogenin but not MyoD gene expression, secretion of IG-FBP-5, changes in tyrosine phosphorylation, and enhanced myogenic differentiation. Similarly, transfection of myogenin expression constructs also enhanced differentiation and resulted in activation of IGF-II expression, showing that myogenin and IGF-II cross-activate each other's expression. However, in both cases, the expression of Jun mRNA remained elevated, suggesting that IGFs and myogenin cannot overcome all aspects of the block to differentiation in NFB4 cells.
Collapse
Affiliation(s)
- D D Sarbassov
- Department of Medicine, University of Arkansas for Medical Sciences, McClellan Veterans Hospital, Little Rock 72205, USA
| | | | | | | |
Collapse
|
154
|
Vilquin JT, Wagner E, Kinoshita I, Roy R, Tremblay JP. Successful histocompatible myoblast transplantation in dystrophin-deficient mdx mouse despite the production of antibodies against dystrophin. J Cell Biol 1995; 131:975-88. [PMID: 7490298 PMCID: PMC2200003 DOI: 10.1083/jcb.131.4.975] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Myoblast transplantation has been considered a potential treatment for some muscular disorders. It has proven very successful, however, only in immunodeficient or immunosuppressed mice. In this study, myoblasts from C57BL10J +/+ mice were transplanted, with no immunosuppressive treatment, in the tibialis anterior of fully histocompatible but dystrophin-deficient C57BL10J mdx/mdx mice. One to 9 months after transplantation, the success of the graft was evaluated by immunohistochemistry. All the transplanted mice (n = 24) developed dystrophin-positive fibers following transplantation. Depending on myoblast cultures, transplantations, and time of analysis, the mice presented 15 to 80% of dystrophin-positive fibers in transplanted muscles. These fibers were correctly oriented and they were either from donor or hybrid origin. The dystrophin-positive fibers remained stable up to 9 months. Possible humoral and cellular immune responses were investigated after grafting. Antibodies directed against dystrophin and/or muscle membrane were developed by 58% of the mice as demonstrated by immunohistochemistry and Western blotting. Despite the presence of these antibodies, dystrophin-positive fibers were still present in grafted muscles 9 months after transplantation. Moreover, the muscles did not show massive infiltration by CD4 cells, CD8 cells, or macrophages, as already described in myoblast allotransplantations. This lack of rejection was attributed to the sequestrated nature of dystrophin after fiber formation. These results indicate that myoblast transplantation leads to fiber formation when immunocompetent but fully histocompatible donors and recipients are used and that dystrophin incompatibility alone is not sufficient to induce an immunological rejection reaction.
Collapse
Affiliation(s)
- J T Vilquin
- Centre de Recherche en Neurobiologie de l'Université Laval, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | | | | | | | |
Collapse
|
155
|
Herweijer H, Latendresse JS, Williams P, Zhang G, Danko I, Schlesinger S, Wolff JA. A plasmid-based self-amplifying Sindbis virus vector. Hum Gene Ther 1995; 6:1161-7. [PMID: 8527474 DOI: 10.1089/hum.1995.6.9-1161] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sindbis virus was used as a self-amplifying eukaryotic expression vector. A recombinant cDNA genome of this (+)-strand RNA virus was placed under the transcriptional control of a Rous sarcoma virus LTR (RSV) promoter. Transfection of this plasmid construct into mammalian cell lines (3T3, HepG2, and 293 cells) resulted in expression of the luciferase reporter gene. High-expression levels were also measured after transfection into primary rat myoblasts. In differentiated myotubes, expression levels generated by the Sindbis virus vector were up to 200 times higher than those obtained with a conventional RSV expression vector. In vivo expression was detected after injection of plasmid DNA into mouse quadriceps. In vivo expression was transient and undetectable by day 16. This self-amplifying expression vector can be used for generating high-level expression of transgenes in vitro and in vivo. Its transient nature in vivo could allow for safe, short-term delivery of gene products in gene therapy protocols. It should facilitate the study of Sindbis and other RNA viruses.
Collapse
Affiliation(s)
- H Herweijer
- Department of Pediatrics and Medical Genetics, University of Wisconsin, Madison 53705, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Griffin K, Patient R, Holder N. Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 1995; 121:2983-94. [PMID: 7555724 DOI: 10.1242/dev.121.9.2983] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To analyse the roles of FGF activity and brachyury during gastrulation we have directly compared the consequences of inhibition of FGF-receptor signalling with the phenotype of the zebrafish brachyury mutant, no tail (ntl). We show that expression of ntl is regulated by FGF and that inhibition of FGF receptor-signalling leads to complete loss of the trunk and tail. Since the ntl mutant lacks the tail and notochord but has an otherwise normal trunk, this demonstrates that trunk development is dependent upon an unidentified gene, or set of genes, referred to as no trunk (ntk) which is regulated by FGF. We propose a model to explain the FGF-dependent regulation of ntl and ntk that accounts for the above phenotypes. Consistent with this model, over-expression of eFGF led to suppression of anterior fates and development of trunk and tail derivatives only. In addition, widespread activation of convergence and extension movements resulted in the formation of multiple axis-like structures. Expression of eve1 and cad1 was also regulated by FGF activity, suggesting that during gastrulation FGF activity is normally restricted to the germ ring where these genes, and ntl, are expressed. Taken together these data suggest that the germ ring acts as a posteriorising centre during AP patterning, mediated by FGF activity in this tissue.
Collapse
Affiliation(s)
- K Griffin
- Developmental Biology Research Centre, Randall Institute, King's College, London, UK
| | | | | |
Collapse
|
157
|
Seidman S, Sternfeld M, Ben Aziz-Aloya R, Timberg R, Kaufer-Nachum D, Soreq H. Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons. Mol Cell Biol 1995; 15:2993-3002. [PMID: 7760797 PMCID: PMC230530 DOI: 10.1128/mcb.15.6.2993] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tissue-specific heterogeneity among mammalian acetylcholinesterases (AChE) has been associated with 3' alternative splicing of the primary AChE gene transcript. We have previously demonstrated that human AChE DNA encoding the brain and muscle AChE form and bearing the 3' exon E6 (ACHE-E6) induces accumulation of catalytically active AChE in myotomes and neuromuscular junctions (NMJs) of 2- and 3-day-old Xenopus embryos. Here, we explore the possibility that the 3'-terminal exons of two alternative human AChE cDNA constructs include evolutionarily conserved tissue-recognizable elements. To this end, DNAs encoding alternative human AChE mRNAs were microinjected into cleaving embryos of Xenopus laevis. In contrast to the myotomal expression demonstrated by ACHE-E6, DNA carrying intron 14 and alternative exon E5 (ACHE-I4/E5) promoted punctuated staining of epidermal cells and secretion of AChE into the external medium. Moreover, ACHE-E6-injected embryos displayed enhanced NMJ development, whereas ACHE-I4/E5-derived enzyme was conspicuously absent from muscles and NMJs and its expression in embryos had no apparent effect on NMJ development. In addition, cell-associated AChE from embryos injected with ACHE-I4/E5 DNA was biochemically distinct from that encoded by the muscle-expressible ACHE-E6, displaying higher electrophoretic mobility and greater solubility in low-salt buffer. These findings suggest that alternative 3'-terminal exons dictate tissue-specific accumulation and a particular biological role(s) of AChE, associate the 3' exon E6 with NMJ development, and indicate the existence of a putative secretory AChE form derived from the alternative I4/E5 AChE mRNA.
Collapse
Affiliation(s)
- S Seidman
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
158
|
Matthews PM, Benjamin D, Van Bakel I, Squier MV, Nicholson LV, Sewry C, Barnes PR, Hopkin J, Brown R, Hilton-Jones D. Muscle X-inactivation patterns and dystrophin expression in Duchenne muscular dystrophy carriers. Neuromuscul Disord 1995; 5:209-20. [PMID: 7633186 DOI: 10.1016/0960-8966(94)00057-g] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Muscle pathology, dystrophin expression and X-inactivation patterns were studied in the muscle of five asymptomatic females heterozygous for deletions in the dystrophin gene (non-manifesting carriers) and five symptomatic carriers (manifesting carriers). Muscle from the non-manifesting carriers showed an increase in the population of centrally nucleated fibres (9.0 +/- 2.8%; controls, 1.4 +/- 0.3%), frequent fibers with abnormally interrupted dystrophin staining (38 +/- 5%), and, in sections from three individuals, small numbers of dystrophin-negative fibers (1-4%). The amount of dystrophin measured by immunoblotting was reduced to 64 +/- 5% (P < 0.001 n = 5) of normal. The pattern of X-inactivation in muscle DNA was non-biased (50: 50-60: 40) in all cases. In the manifesting carriers both highly biased (90: 10) and non-biased patterns of X-inactivation were found, but no consistent relationship was apparent between the patterns of X-inactivation and the proportions of dystrophin-negative fibers. We conclude from studies of the non-manifesting carriers that the proportion of residual dystrophin is similar to the relative activation in muscle of the X-chromosome carrying the wild-type allele. Extreme bias of X-inactivation can be associated with early clinical symptoms and severe pathology. However, as non-manifesting and some manifesting adult carriers had identical patterns of X-inactivation, abnormalities in the distribution of dystrophin, as well as overall levels of expression, may be important for the development of myopathic pathology.
Collapse
|
159
|
Soukup T, Pedrosa-Domellöf F, Thornell LE. Expression of myosin heavy chain isoforms and myogenesis of intrafusal fibres in rat muscle spindles. Microsc Res Tech 1995; 30:390-407. [PMID: 7787238 DOI: 10.1002/jemt.1070300506] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review concerns the pattern of expression and regulation of myosin heavy chain (MHC) isoforms in intrafusal fibres of rat muscle spindles detected by immunocytochemistry. The three types of intrafusal fibres--nuclear bag1, nuclear bag2, and nuclear chain fibres--are unique in co-expressing several MHCs including special isoforms such as slow tonic and alpha cardiac-like MHC and isoforms typical of muscle development, such as embryonic and neonatal MHC. The distinct intrafusal fibre types appear sequentially during rat hind limb development, the nuclear bag2 precursors being first identifiable at 17-18 days in utero as the only primary myotubes expressing slow tonic MHC. Sensory innervation is required for the expression of "spindle-specific" MHC isoforms. Motor innervation contributes to the diversity in distribution of the different MHCs along the length of the nuclear bag fibres. It is suggested that unique populations of myoblasts are destined to become intrafusal fibres during development in the rat hind limb muscles and that the regional heterogeneity in MHC expression is related both to sensory and motor innervation and to the properties of the myoblast lineages. These distinct features make intrafusal fibres an attractive in situ model for investigating myogenesis, myofibrillogenesis, and the mechanisms regulating MHC expression.
Collapse
Affiliation(s)
- T Soukup
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic
| | | | | |
Collapse
|
160
|
Sant'ana Pereira JA, Wessels A, Nijtmans L, Moorman AF, Sargeant AJ. New method for the accurate characterization of single human skeletal muscle fibres demonstrates a relation between mATPase and MyHC expression in pure and hybrid fibre types. J Muscle Res Cell Motil 1995; 16:21-34. [PMID: 7751402 DOI: 10.1007/bf00125307] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study we have developed a method which, by combining histochemical, immunohistochemical, electrophoretic and immunoblotting analyses on a single fibre, enables a sensitive characterization of human skeletal muscle fibres dissected from freeze-dried biopsy samples. For histochemical (and immunohistochemical) analysis fibre fragments (500 microns) of individual fibres were mounted in an embedding medium to allow cryostat sections of normalized thickness to be reproducibly obtained. The specificity of the myofibrillar Ca2+ ATPase (mATPase) staining profiles in gelatin-embedded single fibre sections was tested by immunohistochemical reactions with anti-myosin heavy chain (MyHC) monoclonal antibodies specific to human MyHC I, IIA, IIB and IIA + IIB and by gel electrophoresis. The combined methodologies demonstrated the specificity of the mATPase staining patterns which correlated to the expression of distinct MyHC isoforms. In addition the results provide evidence that many fibres co-expressed different MyHC isoforms in variable relative amounts, forming a continuum. Staining intensities for mATPase, converted into optical density values by image analysis revealed that a relationship between mATPase and MyHC expression holds for hybrid fibres even when displaying one MyHC type with overwhelming dominance. The results also revealed that three MyHC isoforms I, IIA and IIB can be co-expressed on a single muscle fibre. In such a case mATPase alone, with the current protocols, does not allow an accurate characterization of the specific MyHC-based fibre type(s). Although some hybrid fibres may have displayed a non-uniform expression of myosins along their lengths, most fibres from the IIA/B group (type) remained very stable with respect to the relative amounts of the MyHCs expressed. Finally, a second slow MyHC isoform was recognized on immunoblots of a mixed muscle sample.
Collapse
Affiliation(s)
- J A Sant'ana Pereira
- Department of Muscle and Exercise Physiology, Vrije University Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
161
|
Grubic Z, Komel R, Walker WF, Miranda AF. Myoblast fusion and innervation with rat motor nerve alter distribution of acetylcholinesterase and its mRNA in cultures of human muscle. Neuron 1995; 14:317-27. [PMID: 7857641 DOI: 10.1016/0896-6273(95)90288-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To elucidate the mechanisms underlying acetylcholinesterase (AChE) localization, we analyzed the distribution of AChE and Ache mRNA during myogenesis in cocultures of human muscle and fetal rat spinal cord. We observed a temporal coincidence in alterations of AChE localization and nuclei expressing the message, suggesting developmental regulation at the mRNA level. Nonuniform mRNA staining among nuclei suggests asynchronous regulation, also supporting an earlier proposal that transcription proceeds intermittently. Asynchrony seems to be overridden by generally acting factors during myoblast fusion, when message is up-regulated, and at the onset of muscle contractions, when it becomes restricted to some nuclei in the junctional region and focal patches of AChE appear near nerve contacts. Coincidence of mRNA down-regulation and synthesis of stable basal lamina-bound AChE suggests coordinated adaptation, so that sufficient enzyme may be derived from low message levels.
Collapse
Affiliation(s)
- Z Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
162
|
|
163
|
Abstract
Skeletal muscle can be both the site and target of immune reactions. Here, Reinhard Hohlfeld and Andrew Engel consider the role of muscle as an immunological microenvironment and discuss the immunological properties of human muscle cells. Furthermore, they provide a brief overview of autoimmune diseases of muscle and of other conditions in which intramuscular immune reactions play a role. Finally, they discuss the immunological problems of novel gene therapies that rely on muscle cells as vehicles for gene transfer.
Collapse
Affiliation(s)
- R Hohlfeld
- Dept of Neuroimmunology, Max Planck Institute, Martinsried, Germany
| | | |
Collapse
|
164
|
Seidman S, Aziz-Aloya RB, Timberg R, Loewenstein Y, Velan B, Shafferman A, Liao J, Norgaard-Pedersen B, Brodbeck U, Soreq H. Overexpressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos. J Neurochem 1994; 62:1670-81. [PMID: 8158119 DOI: 10.1046/j.1471-4159.1994.62051670.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Formation of a functional neuromuscular junction (NMJ) involves the biosynthesis and transport of numerous muscle-specific proteins, among them the acetylcholine-hydrolyzing enzyme acetylcholinesterase (AChE). To study the mechanisms underlying this process, we have expressed DNA encoding human AChE downstream of the cytomegalovirus promoter in oocytes and developing embryos of Xenopus laevis. Recombinant human AChE (rHAChE) produced in Xenopus was biochemically and immunochemically indistinguishable from native human AChE but clearly distinguished from the endogenous frog enzyme. In microinjected embryos, high levels of catalytically active rHAChE induced a transient state of over-expression that persisted for at least 4 days postfertilization. rHAChE appeared exclusively as nonassembled monomers in embryos at times when endogenous Xenopus AChE displayed complex oligomeric assembly. Nonetheless, cell-associated rHAChE accumulated in myotomes of 2- and 3-day-old embryos within the same subcellular compartments as native Xenopus AChE. NMJs from 3-day-old DNA-injected embryos displayed fourfold or greater overexpression of AChE, a 30% increase in postsynaptic membrane length, and increased folding of the postsynaptic membrane. These findings indicate that an evolutionarily conserved property directs the intracellular trafficking and synaptic targeting of AChE in muscle and support a role for AChE in vertebrate synaptogenesis.
Collapse
Affiliation(s)
- S Seidman
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A. Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 1994; 199:326-37. [PMID: 8075434 DOI: 10.1002/aja.1001990407] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Following muscle damage in adult vertebrates, myofibers can be regenerated from muscle precursor cells (satellite cells). During this process, prenatal myogenesis is recapitulated to a large extent, both morphologically and molecularly. A putative morphoregulatory molecule involved in myogenesis is M-cadherin (Mcad), a calcium-dependent cell adhesion protein. The expression of Mcad was studied by immunofluorescence in regenerating, denervated, and normal mouse muscles. Our results demonstrate that Mcad is present in satellite cells in normal muscle. Enhanced staining at sites of contact between satellite cells and the parent muscle fiber suggests an additional, spatially restricted expression of Mcad in muscle fibers. Mcad positive cells in normal and denervated muscles did not incorporate bromodeoxyuridine within 24 hr after injection in vivo, indicating that Mcad is expressed on mitotically quiescent satellite cells. Neural cell adhesion molecule (NCAM) co-localized with Mcad in nearly all satellite cells in denervated muscles but rarely in intact muscles. At early stages of regeneration, Mcad was exclusively and strongly expressed in myoblasts. After fusion of myoblasts into myotubes, Mcad was down-regulated and was barely detectable on more mature myotubes surrounded by distinct basal lamina sheaths. These observations are in line with the idea that Mcad plays a crucial role in myogenesis. In intact muscle, Mcad might function as a molecular link between satellite cell and muscle fiber.
Collapse
Affiliation(s)
- A Irintchev
- Department of Physiology, Neurophysiology, University of Bonn, Germany
| | | | | | | |
Collapse
|
166
|
Ono T, Ono K, Mizukawa K, Ohta T, Tsuchiya T, Tsuda M. Limited diffusibility of gene products directed by a single nucleus in the cytoplasm of multinucleated myofibres. FEBS Lett 1994; 337:18-22. [PMID: 8276105 DOI: 10.1016/0014-5793(94)80621-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two types of beta-galactosidase genes, whose products are distributed in the nucleus (N beta-gal) or cytoplasm (C beta-gal), were injected with fructose intramuscularly into the quadriceps of adult mice. Regionally restricted and overlapped distributions of both gene products were observed in the myofibres. These findings indicate that N beta-gal is incorporated into the nucleus responsible for its synthesis and that C beta-gal becomes located in the vicinity of the nucleus after its synthesis. This restricted location of C beta-gal in myofibres remained unchanged during the development of infant mouse muscle. Thus, the gene products directed by the nucleus of myofibres seem to show limited diffusibility, suggesting a universal localization of subcellular domains in myofibres.
Collapse
Affiliation(s)
- T Ono
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
167
|
Simpson DG, Carver W, Borg TK, Terracio L. Role of mechanical stimulation in the establishment and maintenance of muscle cell differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 150:69-94. [PMID: 8169083 DOI: 10.1016/s0074-7696(08)61537-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D G Simpson
- Department of Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
168
|
McCormick KM, Schultz E. Role of satellite cells in altering myosin expression during avian skeletal muscle hypertrophy. Dev Dyn 1994; 199:52-63. [PMID: 8167379 DOI: 10.1002/aja.1001990106] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study examined whether satellite cells express an embryonic isoform of myosin upon fusion with hypertrophying muscle fibers. Anterior latissimus dorsi (ALD) muscle hypertrophy was induced in adult chickens by weighting one wing. One and 7 days of wing-weighting produced significant increases in ALD muscle wet weight and in the number of mature fibers expressing ventricular-like embryonic (V-EMB) myosin. V-EMB myosin expression could be an event during regeneration of fibers injured by overload or part of the hypertrophy process itself. Although there was an increase in both the number of damaged fibers and the number of mature fibers expressing embryonic myosin after wing-weighting, results from this study suggest that these two events were not necessarily related. The apparent health of fibers expressing V-EMB myosin and the lack of correlation between the numbers of damaged and V-EMB myosin positive fibers (r = 0.20) suggest that embryonic myosin expression in mature fibers was likely a feature of the hypertrophy process itself. The appearance of V-EMB myosin in mature fibers 1 day after wing-weighting suggests that the change in myosin expression did not involve satellite cells since 24 hr is too short a time to permit more than limited satellite cell fusion. The relationship between satellite cells and embryonic myosin expression was examined more closely by labeling dividing satellite cells and their progeny with 5-bromo-2-deoxyuridine, and then colocalizing labeled myofiber nuclei and embryonic myosin in consecutive transverse sections of hypertrophied ALD muscle. One week of wing-weighting resulted in marked increases in myofiber nuclear labeling index and myofiber nuclear density compared to contralateral control. V-EMB myosin was not expressed uniformly throughout individual fibers, but rather in discrete regions of varying length. Many V-EMB myosin positive regions had a higher labeled nuclear density than V-EMB myosin negative regions indicating that V-EMB myosin expression was associated with an accumulation of satellite cell progeny in a restricted area. However, it was also clear that satellite cell progeny were not the sole source of V-EMB myosin since labeled nuclei were completely absent from 41% of the V-EMB positive regions. Furthermore, the presence of new nuclei did not result in obligatory expression of embryonic myosin because many V-EMB negative regions had a high labeled nuclear density. Thus, recently incorporated nuclei arising by satellite cell division are implicated as one, but not the sole source of embryonic myosin in hypertrophying muscle.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K M McCormick
- Biodynamics Laboratory, University of Wisconsin-Madison 53706
| | | |
Collapse
|
169
|
Weis J. Jun, Fos, MyoD1, and myogenin proteins are increased in skeletal muscle fiber nuclei after denervation. Acta Neuropathol 1994; 87:63-70. [PMID: 8140895 DOI: 10.1007/bf00386255] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After denervation, mRNA levels of the jun and fos protooncogenes and of the muscular differentiation factors myoD1 and myogenin are increased. Here, immunohistochemistry was used (a) to show that this increase in mRNA is followed by an increase in the transcription factor proteins, and (b) to determine which cell populations in skeletal muscle express these factors after denervation. Rat diaphragms were denervated and analyzed after periods of 90 min-8 days. An increase in Fos and Jun as well as MyoD1 and Myogenin immunoreactivity was found after 2-2.5 days of denervation. Fos, MyoD1, and Myogenin immunoreactivity was mostly confined to muscle cell nuclei, whereas Jun antibodies stained muscle cell and some interstitial cell nuclei. A selective expression of any of the four transcription factors in muscle cell nuclei closely associated with motor endplates could not be detected in either denervated or innervated muscle at any time point examined, indicating that synaptic and extrasynaptic muscle cell nuclei are activated simultaneously after denervation. These results suggest that a genetic program which includes protooncogenes and myogenic differentiation factors is activated in skeletal muscle after denervation.
Collapse
Affiliation(s)
- J Weis
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
170
|
Staron RS, Johnson P. Myosin polymorphism and differential expression in adult human skeletal muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 106:463-75. [PMID: 8281747 DOI: 10.1016/0305-0491(93)90120-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Myosin heavy chain (HC) and light chain (LC) isoforms are expressed in a tissue-specific and developmentally-regulated manner in human skeletal muscle. 2. At least seven myosin HC isoforms are expressed in skeletal muscle of the adult. 3. Histochemically-delineated fibre types (based on the stability of myofibrillar actomyosin adenosine triphosphatase activity) in limb muscles correlate with the myosin HC content. 4. Alterations in the phenotypic expression of myosin provides a mechanism of adaptation to stresses placed upon the muscle (e.g. increased and decreased usage).
Collapse
Affiliation(s)
- R S Staron
- College of Osteopathic Medicine, Department of Biological Sciences, Ohio University, Athens 45701
| | | |
Collapse
|
171
|
Karpati G, Acsadi G. The potential for gene therapy in Duchenne muscular dystrophy and other genetic muscle diseases. Muscle Nerve 1993; 16:1141-53. [PMID: 8413366 DOI: 10.1002/mus.880161102] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dystrophin cDNAs have been introduced into skeletal muscle fibers of dystrophin-deficient mice (mdx) through direct DNA injection in plasmid expression vectors and by replication-defective recombinant adenovirus vectors. The introduced genes appear to protect those muscle fibers from necrosis in which they become expressed. By direct injection of dystrophin cDNA in plasmid expression vector, only 1-2% of adult mdx muscle fibers of the injected muscle expressed dystrophin. On the other hand, by recombinant adenovirus injection into very young mdx muscle, a better efficiency has been reported. We have discussed several putative and proven factors that may contribute to the thus far demonstrated relatively low efficiency of dystrophin gene transfer. These include poor uptake of gene constructs by muscle fibers, degradation of the injected DNA, and poor access of gene constructs to the nuclear compartment. Neutralization or elimination of these factors could improve the efficiency of gene transfer so that it might, in the future, qualify as an effective therapy for DMD and some other genetic diseases of muscle.
Collapse
Affiliation(s)
- G Karpati
- Neuromuscular Research Group, Montreal Neurological Institute, Quebec, Canada
| | | |
Collapse
|
172
|
Alway SE. Stretch induces non-uniform isomyosin expression in the quail anterior latissimus dorsi muscle. Anat Rec (Hoboken) 1993; 237:1-7. [PMID: 8214635 DOI: 10.1002/ar.1092370102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stretch-overload has been shown to elevate muscle mass in the avian anterior latissimus dorsi (ALD) by increasing both fiber size and fiber number; however, it is not known if these adaptations result in uniform regulation of myosin isoform expression along the length of the fibers in this slow tonic muscle. When a weight was added to the left wing of 20 adult quail for 30 days, ALD mass was increased by 161%. ALDs were divided into proximal, middle, and distal portions. Tissue cross-sections from each muscle portion were reacted against monoclonal antibodies for either fast (FM) or slow myosin (SM), or processed for identification of native myosin isoforms. The number of fibers expressing FM increased by 190% in the distal region after stretch; however, most of these were small fibers. Electrophoretic analyses of stretched muscles demonstrated an upregulation of SM2 in all regions of the ALD. SM1 was only down-regulated in the proximal region of the ALD. FM isoforms had greater increases in the proximal region than other regions of the overloaded ALD. These data indicate that stretch-induced hypertrophy induces a non-uniform increase in fast myosin isoforms and SM1 along the length of the fibers of the ALD.
Collapse
Affiliation(s)
- S E Alway
- Department of Exercise Science, Ohio State University, Columbus 43210
| |
Collapse
|
173
|
Jasmin BJ, Lee RK, Rotundo RL. Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron 1993; 11:467-77. [PMID: 8398140 DOI: 10.1016/0896-6273(93)90151-g] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acetylcholinesterase (AChE) is concentrated at the vertebrate neuromuscular synapse. To determine whether increased transcript levels could underlie this selective accumulation, we employed a quantitative reverse transcription polymerase chain reaction-based assay to determine mRNA copy number in samples as small as single neuromuscular junctions (NMJs) and a microassay to measure AChE enzyme activity at single synapses. Our results show that AChE mRNA is an intermediate transcript at NMJs, whereas in noninnervated regions of muscle fibers, AChE transcripts are either undetectable or rare. In contrast, alpha-actin transcript levels in the same samples are similar in junctional and extrajunctional regions. However, compared with AChE enzyme activity and alpha-actin mRNA levels, the levels of AChE transcripts at NMJs are highly variable. These results indicate that AChE mRNA and protein expression are compartmentalized at the vertebrate NMJ and provide a direct approach toward dissecting the molecular events leading from synaptic activation to plastic changes in gene expression at single vertebrate synapses.
Collapse
Affiliation(s)
- B J Jasmin
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101
| | | | | |
Collapse
|
174
|
Denetclaw WF, Bi G, Pham DV, Steinhardt RA. Heterokaryon myotubes with normal mouse and Duchenne nuclei exhibit sarcolemmal dystrophin staining and efficient intracellular free calcium control. Mol Biol Cell 1993; 4:963-72. [PMID: 8257798 PMCID: PMC275726 DOI: 10.1091/mbc.4.9.963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Duchenne and mdx muscle tissues lack dystrophin where it normally interacts with glycoproteins in the sarcolemma. Intracellular free calcium ([Ca2+]i) is elevated in Duchenne and mdx myotubes and is correlated with abnormally active calcium-specific leak channels in dystrophic myotubes. We fused Duchenne human and normal mouse myoblasts and identified heterokaryon myotubes by Hoechst 33342 staining to measure the degree to which dystrophin introduced by normal nuclei could incorporate throughout the myotube at the sarcolemma and restore normal calcium homeostasis. Dystrophin expression in myotubes was determined by immunofluorescence and confocal laser scanning microscopy. Dystrophin was expressed at the sarcolemma in normal mouse and heterokaryon myotubes, but not in Duchenne myotubes. In heterokaryons, extensive dystrophin localization occurred at the sarcolemma even where only Duchenne nuclei were present, indicating that dystrophin does not exhibit nuclear domains. Heterokaryon, normal mouse and Duchenne myotube [Ca2+]i was measured using fura-2 and fluorescence ratio imaging. Heterokaryon and normal mouse myotubes were found to maintain similar levels of [Ca2+]i. In contrast, Duchenne myotubes had significantly higher [Ca2+]i (p < 0.001). Furthermore, the ability of heterokaryons to maintain normal [Ca2+]i did not depend on greater numbers of normal nuclei than Duchenne being present in the myotube. These results support the view that dystrophin expression in heterokaryons allows for efficient control of [Ca2+]i.
Collapse
Affiliation(s)
- W F Denetclaw
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
175
|
Yoshihara CM, Hall ZW. Increased expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes. J Biophys Biochem Cytol 1993; 122:169-79. [PMID: 7686162 PMCID: PMC2119616 DOI: 10.1083/jcb.122.1.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 43-kD protein is a peripheral membrane protein that is in approximately 1:1 stoichiometry with the acetylcholine receptor (AChR) in vertebrate muscle cells and colocalizes with it in the postsynaptic membrane. To investigate the role of the 43-kD protein in AChR clustering, we have isolated C2 muscle cell lines in which some cells overexpress the 43-kD protein. We find that myotubes with increased levels of the 43-kD protein have small AChR clusters and that those with the highest levels of expression have a drastically reduced number of clusters. Our results suggest that the 1:1 stoichiometry of AChR and 43-kD protein found in muscle cells is important for AChR cluster formation.
Collapse
Affiliation(s)
- C M Yoshihara
- Department of Physiology, University of California, San Francisco 94143-0444
| | | |
Collapse
|
176
|
Jacobs-El J, Ashley W, Russell B. IIx and slow myosin expression follow mitochondrial increases in transforming muscle fibers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C79-84. [PMID: 8338140 DOI: 10.1152/ajpcell.1993.265.1.c79] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metabolic profile and contractile isoform expression commonly define classic fiber types in skeletal muscle. Little is known about how metabolic requirements determine expression of fast IIx and slow myosin isoforms in muscles undergoing fiber type conversion. Tibialis anterior muscles from female New Zealand White rabbits were stimulated continuously at 10 Hz for 4-21 days. Quantitative fiber analysis was made for oxidative potential by histochemistry and for fast IIx and slow myosin mRNA content by in situ hybridization. In control muscle we found 3 +/- 0.27% fibers coexpress both fast IIx and slow myosin mRNA and so were not assignable to a classic fiber type. After stimulation, increase in fiber oxidative potential was detectable by 4 days and preceded IIx mRNA increases on a fiber-by-fiber basis. Slow myosin transcripts were detected by 7 days in fibers with higher oxidative levels. Coexpression of IIx and slow transcripts peaked at 22 +/- 2.5% of fibers by 7 days. IIx then declined, leaving slow myosin expressed in 62 +/- 0.45% of fibers by 3 wk. We conclude that during fiber type transformation individual fibers can transcribe two myosin mRNAs synchronously. Metabolic demand precedes and may be linked to IIx and slow myosin isoform expression.
Collapse
Affiliation(s)
- J Jacobs-El
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago 60612-7342
| | | | | |
Collapse
|
177
|
Meola G, Tremblay JP, Sansone V, Rotondo G, Radice S, Bresolin N, Huard J, Scarlato G. Muscle glucose-6-phosphate dehydrogenase deficiency: restoration of enzymatic activity in hybrid myotubes. Muscle Nerve 1993; 16:594-600. [PMID: 8502256 DOI: 10.1002/mus.880160604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A high level of glucose-6-phosphate dehydrogenase (G6PD) activity was observed in myoblasts and myotubes from normal human and mouse cell cultures. However, only a residual amount of activity was observed in myoblasts and myotubes obtained from G6PD-deficient patients (G6PD Mediterranean). Hybrids were formed by the fusion of normal (from human and mouse) and G6PD-deficient myoblasts (from the patients). These hybrids contained a high level of G6PD activity. Hoechst staining permitted to confirm that the enzymatic activity was not restrained to a domain near the competent nuclei. These results suggest that myoblast transplantation could be used to restore normal enzymatic activity in metabolic myopathies.
Collapse
Affiliation(s)
- G Meola
- Division of Neurology, San Donato Hospital, San Donato Milanese, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Szekely L, Jin P, Jiang WQ, Rosén A, Wiman KG, Klein G, Ringertz N. Position-dependent nuclear accumulation of the retinoblastoma (RB) protein during in vitro myogenesis. J Cell Physiol 1993; 155:313-22. [PMID: 7683311 DOI: 10.1002/jcp.1041550212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of the retinoblastoma (RB) protein has been studied during in vitro muscle differentiation by immunofluorescence staining with three different antibodies against RB protein. Proliferating mononucleate L6 rat myoblasts showed a low level of expression. As cells began to enter a nonreplicating G0 state, the cell population became heterogeneous. Some nonreplicating cells showed a high level of expression. Nuclei at the two ends of myotubes were strongly positive, whereas centrally located nuclei showed low RB expression. Overexpression of the human RB protein in rat L6 myotubes from a Semliki forest virus (SFV)-based, transient expression vector produced a similar picture. Terminally located nuclei expressed human RB at a much higher level than did the centrally located nuclei. The results suggest that individual nuclei with a multinucleated syncytium may undergo position-dependent specialization.
Collapse
Affiliation(s)
- L Szekely
- Department of Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
179
|
Cartaud J, Changeux JP. Post-transcriptional compartmentalization of acetylcholine receptor biosynthesis in the subneural domain of muscle and electrocyte junctions. Eur J Neurosci 1993; 5:191-202. [PMID: 8261100 DOI: 10.1111/j.1460-9568.1993.tb00485.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, CNRS, Université Paris VII, France
| | | |
Collapse
|
180
|
Ralston E. Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis. J Cell Biol 1993; 120:399-409. [PMID: 7678420 PMCID: PMC2119512 DOI: 10.1083/jcb.120.2.399] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myogenesis involves changes in both gene expression and cellular architecture. Little is known of the organization, in muscle in vivo, of the subcellular organelles involved in protein synthesis despite the potential importance of targeted protein synthesis for formation and maintenance of functional domains such as the neuromuscular junction. A panel of antibodies to markers of the ER, the Golgi complex, and the centrosome were used to localize these organelles by immunofluorescence in myoblasts and myotubes of the mouse muscle cell line C2 in vitro, and in intact single muscle fibers from the rat flexor digitorum brevis. Antibodies to the ER stained structures throughout the cytoplasm of both C2 myoblasts and myotubes. In contrast, the spatial relationship between nucleus, centrosome, and Golgi complex was dramatically altered. These changes could also be observed in a low-calcium medium that allowed differentiation while preventing myoblast fusion. Muscle fibers in vivo resembled myotubes except that the ER occupied a smaller volume of cytoplasm and no staining was found for one of the Golgi complex markers, the enzyme alpha-mannosidase II. Electron microscopy, however, clearly showed the presence of stacks of Golgi cisternae in both junctional and extrajunctional regions of muscle fibers. The perinuclear distribution of the Golgi complex was also observed in live muscle fibers stained with a fluorescent lipid. Thus, the distribution of subcellular organelles of the secretory pathway was found to be similar in myotubes and muscle fibers, and all organelles were found in both junctional and extrajunctional areas of muscle.
Collapse
Affiliation(s)
- E Ralston
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
181
|
Bushby KM, Goodship JA, Nicholson LV, Johnson MA, Haggerty ID, Gardner-Medwin D. Variability in clinical, genetic and protein abnormalities in manifesting carriers of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 1993; 3:57-64. [PMID: 8329890 DOI: 10.1016/0960-8966(93)90042-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have analysed the results of clinical assessment, X-inactivation status, deletion screening and dystrophin analysis in eight manifesting carriers of Duchenne and Becker muscular dystrophy (DMD and BMD). Only two had a prior family history of X-linked muscle disease, all had normal karyotypes and none were twins. Presentation varied from 2 to 25 yr and progression varied from a DMD-like severity to a very mild BMD-like course. In one girl the initial symptoms were restricted to learning difficulties. Where methods for assessing X-inactivation were informative, three patients showed an abnormal pattern. However, in one patient, the obligate carrier daughter of a BMD patient who had presented at the age of 2 yr, X-inactivation appeared normal in lymphocytes and muscle. While dystrophin analysis seems to be reliable in identifying manifesting carriers of DMD and BMD, the relationship between X-inactivation status, dystrophin analysis and phenotype is not simple.
Collapse
Affiliation(s)
- K M Bushby
- Department of Human Genetics, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | |
Collapse
|
182
|
Morgan JE, Watt DJ. Myoblast transplantation in inherited myopathies. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1993; 3:303-31. [PMID: 8111544 DOI: 10.1007/978-94-011-1528-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross and Westminster Medical School, London, UK
| | | |
Collapse
|
183
|
Meola G, Sansone V, Rotondo G, Radice S, Bottiroli G, Scarlato G. Stable hybrid myotubes: a new model for studying re-expression of enzymatic activities in vitro. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1993; 14:35-43. [PMID: 7682541 DOI: 10.1007/bf02339040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heterokaryons represent a stable and reproducible model system for the study of biochemical and molecular aspects responsible for muscle gene activation. Previous experiments have used this fusion system to demonstrate human gene activation in hybrids formed between human and non-human cells. The aim of this research was to apply this experimental model to the correction of a cytoplasmic activity, namely glucose-6-phosphate dehydrogenase (G6PD), in vitro, in hybrid myotubes formed between G6PD-negative and positive myoblasts. Different identification methods were used (Hoechst stain and Fluorescent Latex Microspheres, FLMs) to identify hybrid myotubes formed. We demonstrated the restoration of G6PD activity in all hybrid myotubes formed; we then tried to elucidate the mechanisms underlying the restoration of this specific activity and apply the results obtained to the understanding of more complex mechanisms involved in muscle gene activation.
Collapse
Affiliation(s)
- G Meola
- Divisione di Neurologia, Ospedale San Donato, San Donato Milanese
| | | | | | | | | | | |
Collapse
|
184
|
Affiliation(s)
- T Obinata
- Department of Biology, Faculty of Science, Chiba University, Japan
| |
Collapse
|
185
|
Rossi SG, Rotundo RL. Cell surface acetylcholinesterase molecules on multinucleated myotubes are clustered over the nucleus of origin. J Cell Biol 1992; 119:1657-67. [PMID: 1469054 PMCID: PMC2289756 DOI: 10.1083/jcb.119.6.1657] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multinucleated skeletal muscle fibers are compartmentalized with respect to the expression and organization of several intracellular and cell surface proteins including acetylcholinesterase (AChE). Mosaic muscle fibers formed from homozygous myoblasts expressing two allelic variants of AChE preferentially translate and assemble the polypeptides in the vicinity of the nucleus encoding the mRNA (Rotundo, R. L. 1990. J. Cell Biol. 110:715-719). To determine whether the locally synthesized AChE molecules are targeted to specific regions of the myotube surface, primary quail myoblasts were mixed with mononucleated cells of the mouse muscle C2/C12 cell line and allowed to fuse, forming heterospecific mosaic myotubes. Cell surface enzyme was localized by immunofluorescence using an avian AChE-specific monoclonal antibody. HOECHST 33342 was used to distinguish between quail and mouse nuclei in myotubes. Over 80% of the quail nuclei exhibited clusters of cell surface AChE in mosaic quail-mouse myotubes, whereas only 4% of the mouse nuclei had adjacent quail AChE-positive regions of membrane, all of which were located next to a quail nucleus. In contrast, membrane proteins such as Na+/K+ ATPase, which are not restricted to specific regions of the myotube surface, are free to diffuse over the entire length of the fiber. These studies indicate that the AChE molecules expressed in multinucleated muscle fibers are preferentially transported and localized to regions of surface membrane overlying the nucleus of origin. This targeting could play an important role in establishing and maintaining specialized cell surface domains such as the neuromuscular and myotendinous junctions.
Collapse
Affiliation(s)
- S G Rossi
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101
| | | |
Collapse
|
186
|
Abstract
For many years the mechanisms by which skeletal muscles in higher vertebrates come to be composed of diverse fiber types distributed in distinctive patterns has interested cell and developmental biologists. The fiber composition of skeletal muscles varies from class to class and from muscle to muscle within the vertebrates. The developmental basis for these events is the subject of this review. Because an individual multinucleate vertebrate skeletal muscle fiber is formed by the fusion of many individual myoblasts, more attention, in recent times, has been directed toward the origins and differences among myoblasts, and more emphasis has been placed on the lineal relationship of myoblasts to fibers. This is a review of studies related to the concepts of myogenic cell lineage in higher vertebrate development with emphases on some of the most challenging problems of myogenesis including the embryonic origins of myogenic precursor cells, the mechanisms of fiber type diversity and patterning, the distinctions among myoblasts during myogenesis, and the current hypotheses of how a variety of factors, intrinsic and extrinsic to the myoblast, determine the definitive phenotype of a muscle fiber.
Collapse
Affiliation(s)
- F E Stockdale
- Stanford University School of Medicine, California 94305-5306
| |
Collapse
|
187
|
Ralston E, Hall ZW. Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes. J Biophys Biochem Cytol 1992; 119:1063-8. [PMID: 1447288 PMCID: PMC2289719 DOI: 10.1083/jcb.119.5.1063] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although the proteins encoded by a single nucleus in multinucleated myotubes have a wide range of distributions within the myofiber, little is known about the distributions of their mRNAs. We have used hybrid myotubes in which one or a few nuclei are derived from myoblasts that express nonmuscle proteins to investigate this question. We find that three different mRNAs, encoding proteins that are, respectively, nuclear, cytoplasmic, and targeted to the ER, have similar distributions within myotubes. Each is confined to an area within approximately 100 microns of the nucleus that expresses it.
Collapse
Affiliation(s)
- E Ralston
- Department of Physiology, School of Medicine, University of California, San Francisco 94143-0444
| | | |
Collapse
|
188
|
Schultheiss T, Choi J, Lin ZX, DiLullo C, Cohen-Gould L, Fischman D, Holtzer H. A sarcomeric alpha-actinin truncated at the carboxyl end induces the breakdown of stress fibers in PtK2 cells and the formation of nemaline-like bodies and breakdown of myofibrils in myotubes. Proc Natl Acad Sci U S A 1992; 89:9282-6. [PMID: 1409636 PMCID: PMC50110 DOI: 10.1073/pnas.89.19.9282] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In many nonmuscle cells, nonsarcomeric alpha-actinin is distributed in the dense bodies of stress fibers, adhesion plaques, and adherens junctions. In striated muscle, a sarcomeric isoform of alpha-actinin (s-alpha-actinin) is found in the Z-bands of myofibrils and subsarcolemmal adhesion plaques. To understand the role(s) of the alpha-actinin isoforms in the assembly and maintenance of such cytoskeletal structures, full-length or truncated s-alpha-actinin cDNAs were expressed in PtK2 cells and in primary skeletal myogenic cells. We found the following. (i) In transfected PtK2 cells the truncated s-alpha-actinin was rapidly incorporated into preexisting dense bodies, adhesion plaques, and adherens junctions. With time these structures collapsed, and the affected cells detached from the substrate. (ii) In myotubes the truncated s-alpha-actinin was incorporated into nascent Z-bands. Many of these progressively hypertrophied, forming nemaline-like bodies. With time the affected myofibrils fragmented, and the myotubes detached from the substrate. (iii) In both cell types the truncated s-alpha-actinin was significantly more disruptive of the cytoskeletal structures than the full-length molecule. (iv) Pools of "over-expressed" full-length or truncated protein did not self-aggregate into homogeneous, amorphous complexes; rather the exogenous proteins selectively colocalized with the same cohort of cytoskeletal proteins with which the endogenous alpha-actinin normally associates. The similarity among the hypertrophied Z-bands in transfected myotubes, the nemaline bodies in patients with nemaline myopathies, and the streaming Z-bands seen in various muscle pathologies raises the possibility that the genetically determined nemaline bodies and the pathologically induced Z-band alterations may reflect primary and/or post-translational modifications of s-alpha-actinin.
Collapse
Affiliation(s)
- T Schultheiss
- Department of Anatomy, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
189
|
Tsim KW, Greenberg I, Rimer M, Randall WR, Salpeter MM. Transcripts for the acetylcholine receptor and acetylcholine esterase show distribution differences in cultured chick muscle cells. J Cell Biol 1992; 118:1201-12. [PMID: 1512293 PMCID: PMC2289589 DOI: 10.1083/jcb.118.5.1201] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In situ hybridization of chick cultured muscle cells using exonic DNA probes for both AChR alpha-sub-unit and the catalytic subunit of AChE, revealed major differences in the distribution of label both over nuclei and in their surrounding cytoplasm, although some overlap in these distributions exists. For the AChR alpha-subunit there is a highly skewed distribution of labeled nuclei, with 35% of the nuclei being relatively inactive (less than 0.25 times the mean label) and approximately 10% being very heavily labeled (greater than 2.5 times the mean label). In contrast the nuclei labeled with the exonic probe for the AChE transcripts had a more Gaussian distribution, yet with some slight skewness in the direction of a few heavily labeled nuclei. There was also a difference in the cytoplasmic distribution of the label. The AChR alpha-subunit mRNA was mainly within 4 microns of labeled nuclei while the AChE mRNA was more widely distributed throughout the cytoplasm, possibly within a 10 microns rim around labeled nuclei. An intronic probe for the AChE gave the identical distribution of nuclear label to that of the exonic probe (but without any cytoplasmic label). In addition, calibration of the technique indicated that per myotube the AChE transcript is about sixfold more abundant than the AChR alpha-subunit transcript.
Collapse
Affiliation(s)
- K W Tsim
- Department of Neurobiology, Stanford University School of Medicine, California 94305
| | | | | | | | | |
Collapse
|
190
|
Abstract
Duchenne's muscular dystrophy (DMD), which affects 1/3500 live male births, involves a progressive degeneration of skeletal and cardiac muscle, leading to early death. The protein dystrophin is lacking in DMD and present, but defective, in the allelic, less severe, Becker muscular dystrophy and is also missing in the mdx mouse. Experiments on the mdx mouse have suggested two possible therapies for these myopathies. Implantation of normal muscle precursor cells (mpc) into mdx skeletal muscle leads to the conversion of dystrophin-negative fibres to -positive, with consequent improvement in muscle histology. Direct injection of dystrophin cDNA into skeletal or cardiac muscle also gives rise to dystrophin-positive fibres. Although both appear promising, there are a number of questions to be answered and refinements to be made before either technique could be considered possible as treatments for myopathies in man.
Collapse
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross and Westminster Medical School, London, UK
| | | |
Collapse
|
191
|
Gordon H, Ralston E, Hall ZW. Cooperation between the products of different nuclei in hybrid myotubes produces localized acetylcholine receptor clusters. Proc Natl Acad Sci U S A 1992; 89:6595-8. [PMID: 1631161 PMCID: PMC49548 DOI: 10.1073/pnas.89.14.6595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cultured myotubes form clusters of acetylcholine receptors (AChRs) spontaneously and at sites of nerve-muscle contact. To investigate the cellular mechanisms by which spontaneous clusters are formed, we have made hybrid myotubes between a mouse muscle cell variant, S27, that does not cluster AChRs, and one that does not make AChRs. We have also made hybrid myotubes using S27 and quail muscle cells. In both cases, clusters of AChRs were found near the non-S27 nuclei; in the case of the interspecific hybrids, mouse AChRs were associated with extracellular matrix components contributed by the quail nuclei. Our results suggest that AChRs made by one nucleus can be clustered by localized extracellular matrix produced by a different nucleus and provide an example of nuclear cooperation between the products of different nuclei within multinucleated muscle fibers.
Collapse
Affiliation(s)
- H Gordon
- Department of Physiology, School of Medicine, University of California, San Francisco 94143-0444
| | | | | |
Collapse
|
192
|
Nicholson LV, Johnson MA, Davison K, O'Donnell E, Falkous G, Barron M, Harris JB. Dystrophin or a "related protein" in Duchenne muscular dystrophy? Acta Neurol Scand 1992; 86:8-14. [PMID: 1519480 DOI: 10.1111/j.1600-0404.1992.tb08046.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously we have shown low levels of dystrophin immunoreactivity in muscle from patients with DMD. According to the "frame-shift hypothesis" DMD muscle should not synthesize any dystrophin through to the C-terminus and it has been suggested that the protein detected is not dystrophin, but a related autosomal homologue. We have labelled serial sections of DMD muscle with specific monoclonal antibodies to the amino, rod and C-terminal domains of dystrophin and find labelling on the same individual fibres, allowing us to conclude that the protein detected is Xp21-encoded dystrophin. This has an impact on the interpretation of myoblast transfer experiments. The abundance (on blots) of "C-terminal dystrophin" appears lower than "rod dystrophin" in both BMD and DMD.
Collapse
Affiliation(s)
- L V Nicholson
- Muscular Dystrophy Group Research Laboratories, Newcastle General Hospital, England
| | | | | | | | | | | | | |
Collapse
|
193
|
Metsikkö K, Hentunen T, Väänänen K. Local expression and exocytosis of viral glycoproteins in multinucleated muscle cells. J Cell Biol 1992; 117:987-95. [PMID: 1315787 PMCID: PMC2289478 DOI: 10.1083/jcb.117.5.987] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have analyzed the distribution of enveloped viral infections in multinucleated L6 muscle cells. A temperature-sensitive vesicular stomatitis virus (mutant VSV ts045) was utilized at the nonpermissive temperature (39 degrees C). As expected, the glycoprotein (G protein) of this mutant was restricted to the ER when the multinucleated cells were maintained at 39 degrees C. We demonstrate that this G protein remained localized when the infection was performed at low dose. By 4 h after infection the G protein patches spanned an average of 220 microns. The localization was independent of nuclear positions, showing that the ER was a peripheric structure. Thus, the infection did not recognize nuclear domains characteristic of nuclearly encoded proteins. After release of the 39 degrees C block, transport through a perinuclear compartment into a restricted surface domain lying above the internal G protein patch occurred. Accordingly, the transport pathway was locally restricted. After a 16-h infection the G protein spanned 420 microns, while the matrix protein occupied 700-800 microns of the myotube length. Double infection of multinucleated L6 muscle cells with Semliki Forest virus and VSV at high multiplicities showed that the glycoprotein of each virus occupied intracellular domains which were devoid of the other respective glycoprotein. Taken together, these findings indicate that the viral glycoproteins did not range far from their site of synthesis within the ER or other intracellular membrane compartments in these large cells. This result also suggests that relocation of viral RNA synthesis occurred slowly.
Collapse
Affiliation(s)
- K Metsikkö
- Department of Anatomy, University of Oulu, Finland
| | | | | |
Collapse
|
194
|
Piette J, Huchet M, Duclert A, Fujisawa-Sehara A, Changeux JP. Localization of mRNAs coding for CMD1, myogenin and the alpha-subunit of the acetylcholine receptor during skeletal muscle development in the chicken. Mech Dev 1992; 37:95-106. [PMID: 1318730 DOI: 10.1016/0925-4773(92)90018-f] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenin and CMD1, the chicken homologue of MyoD, transactivate the promoter of the alpha-subunit of the acetylcholine receptor (AChR) in chicken fibroblasts. The expression of these three genes was followed by in situ hybridization. In two-day-old embryos the CMD1 gene is expressed shortly before the AChR alpha-subunit and the myogenin genes. At day 19 extrajunctional AChR mRNA clusters have disappeared and myogenin mRNAs are no longer detected in PLD muscle. Moreover, both myogenin and CMD1 mRNA levels increase after muscle denervation in chicks. These data are compatible with a role for myogenic factors in the induction and maintenance of extra-junctional expression of the AChR genes during early muscle development. Using digoxygenin labelled RNA probes, we also show that the mRNAs for the AChR alpha-subunit display a punctated, probably perinuclear distribution, whereas mRNAs for myogenic genes accumulate in the sarcoplasm around subsets of nuclei in the muscle fiber.
Collapse
Affiliation(s)
- J Piette
- UA CNRS D1284 Neurobiologie Moléculaire, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
195
|
Abstract
Muscle fibers specialized for fast or slow contraction are arrayed in characteristic patterns within developing limbs. Clones of myoblasts analyzed in vitro express fast and slow myosin isoforms typical of the muscle from which they derive. As a result, it has been suggested that distinct myoblast lineages generate and maintain muscle fiber pattern. We tested this hypothesis in vivo by using a retrovirus to label myoblasts genetically so that the fate of individual clones could be monitored. Both myoblast clones labeled in muscle in situ and clones labeled in tissue culture and then injected into various muscles contribute progeny to all fiber types encountered. Thus, extrinsic signals override the intrinsic commitment of myoblast nuclei to particular programs of gene expression. We conclude that in postnatal development, pattern is not dictated by myoblast lineage.
Collapse
Affiliation(s)
- S M Hughes
- Department of Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | |
Collapse
|
196
|
Dynamics of the Interphase Golgi Apparatus in Mammalian Cells. ADVANCES IN MOLECULAR AND CELL BIOLOGY 1992. [DOI: 10.1016/s1569-2558(08)60178-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
197
|
Smith TH, Miller JB. Distinct myogenic programs of embryonic and fetal mouse muscle cells: expression of the perinatal myosin heavy chain isoform in vitro. Dev Biol 1992; 149:16-26. [PMID: 1728586 DOI: 10.1016/0012-1606(92)90260-n] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early embryonic and late fetal mouse myogenic cells showed distinct patterns of perinatal myosin heavy chain (MHC) isoform expression upon differentiation in vitro. In cultures of somite or limb muscle cells isolated from Day 9 to Day 12 embryos, differentiated cells that expressed perinatal MHC were rare and perinatal MHC was not detectable by immunoblotting. In cultures of limb muscle cells isolated from Day 13 to Day 18 fetuses, in contrast, the perinatal MHC isoform was easily detected and was expressed in a substantial percentage of myocytes and myotubes. Analyses of clonally derived muscle colonies and cytosine arabinoside-treated fetal muscle cell cultures suggested that different fetal muscle cell nuclei initiated perinatal MHC expression at different times. In both embryonic and fetal cell cultures, the embryonic MHC isoform was expressed by all differentiated cells examined. A small number of myotubes in fetal muscle cell cultures showed a mosaic distribution of MHC isoform accumulation in which the perinatal MHC isoform accumulated in a restricted region of the myotube near particular nuclei, whereas the embryonic MHC isoform accumulated throughout the myotube. Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture.
Collapse
Affiliation(s)
- T H Smith
- Day Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129
| | | |
Collapse
|
198
|
Flucher BE, Phillips JL, Powell JA. Dihydropyridine receptor alpha subunits in normal and dysgenic muscle in vitro: expression of alpha 1 is required for proper targeting and distribution of alpha 2. J Cell Biol 1991; 115:1345-56. [PMID: 1659576 PMCID: PMC2289242 DOI: 10.1083/jcb.115.5.1345] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied the subcellular distribution of the alpha 1 and alpha 2 subunits of the skeletal muscle dihydropyridine (DHP) receptor with immunofluorescence labeling of normal and dysgenic (mdg) muscle in culture. In normal myotubes both alpha subunits were localized in clusters associated with the T-tubule membranes of longitudinally as well as transversely oriented T-tubules. The DHP receptor-rich domains may represent the sites where triad junctions with the sarcoplasmic reticulum are being formed. In cultures from dysgenic muscle the alpha 1 subunit was undetectable and the distribution patterns of the alpha 2 subunit were abnormal. The alpha subunit did not form clusters nor was it discretely localized in the T-tubule system. Instead, alpha 2 was found diffusely distributed in parts of the T-system, in structures in the perinuclear region and in the plasma membrane. These results suggest that an interaction between the two alpha subunits is required for the normal distribution of the alpha 2 subunit in the T-tubule membranes. Spontaneous fusion of normal non-muscle cells with dysgenic myotubes resulted in a regional expression of the alpha 1 polypeptide near the foreign nuclei, thus defining the nuclear domain of a T-tubule membrane protein in multi-nucleated muscle cells. Furthermore, the normal intracellular distribution of the alpha 2 polypeptide was restored in domains containing a foreign "rescue" nucleus; this supports the idea that direct interactions between the DHP receptor alpha 1 and alpha 2 subunits are involved in the organization of the junctional T-tubule membranes.
Collapse
Affiliation(s)
- B E Flucher
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
199
|
Kucera J, Walro JM. Aggregation of myonuclei and the spread of slow-tonic myosin immunoreactivity in developing muscle spindles. HISTOCHEMISTRY 1991; 96:381-9. [PMID: 1836207 DOI: 10.1007/bf00315994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pattern of regional expression of a slow-tonic myosin heavy chain (MHC) isoform was studied in developing rat soleus intrafusal muscle fibers. Binding of the slow-tonic antibody (ATO) began at the equator of prenatal intrafusal fibers where sensory nerve endings are located, and spread into the polar regions of nuclear bag2 and bag1 fibers but not nuclear chain fibers during ontogeny. The onset of the ATO reactivity coincided with the appearance of equatorial clusters of myonuclei (nuclear bag formations) in bag1 and bag2 fibers. Moreover, the intensity of the ATO reaction was strongest in the region of equatorial myonuclei and decreased with increasing distance from the equator of bag1 and bag2 fibers at all stages of prenatal and postnatal development. The polar expansion of ATO reactivity continued throughout the postnatal development of bag1 fibers, but ceased shortly after birth in bag2 fiber coincident with innervation by motor axons. Thus, afferents that innervate the equator might induce the slow-tonic MHC isoform in bag2 and bag1 fibers by regulating the myosin gene expression by equatorial myonuclei, and efferents or twitch contractile activity might inhibit the spread of the slow-tonic MHC isoform into the poles of bag2 but not bag1 fibers. Absence of ATO binding in chain fibers suggests that chain myotubes may not be as susceptible to the effect of afferents as are myotubes that develop into bag2 and bag1 fibers. The different patterns of slow-tonic MHC expression in the three types of intrafusal fiber may therefore result from the interaction of three elements: sensory neurons, motor neurons, and intrafusal myotubes.
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, School of Medicine, Boston University, MA 02118
| | | |
Collapse
|
200
|
Nonaka I, Koga Y, Kikuchi A, Goto Y. Mitochondrial encephalomyopathies and cytochrome c oxidase deficiency: muscle culture study. Acta Neuropathol 1991; 82:286-94. [PMID: 1662001 DOI: 10.1007/bf00308814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The populations of cytochrome c oxidase (CCO)-positive and -negative mitochondria were analyzed in the elongated cells containing occasional multiple nuclei (myotubes) in primary muscle cultures derived from patients with various forms of mitochondrial encephalomyopathies with CCO deficiency. Even in control muscle cultures, CCO-positive (79.7%) and -negative (20.3%) mitochondria were distributed randomly, showing intracellular mosaicism. All mitochondria in all muscle cultures from two patients with clinical characteristics of Leigh's disease exhibited faint to negative CCO activity. In these patients no enzyme activity could be detected in any tissue including intrafusal fibers and fibroblasts in muscle biopsies. In patients with the fatal infantile and the encephalomyopathic forms of CCO deficiency, and myoclonic epilepsy with ragged-red fibers, two different types of myotubes containing mostly CCO-positive mitochondria and only negative mitochondria, respectively, representing intercellular mosaicism, were demonstrated. The intercellular mosaicism in biopsied and cultured muscles in the case of CCO deficiency supports the contention that both CCO-positive and -negative mitochondria coexist in the early myogenic cell and are later randomly segregated during cell division (mitotic segregation), forming two different cells.
Collapse
Affiliation(s)
- I Nonaka
- Division of Ultrastructural Research, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | |
Collapse
|