151
|
Punta M, Cavalli A, Torre V, Carloni P. Molecular modeling studies on CNG channel from bovine retinal rod: a structural model of the cyclic nucleotide-binding domain. Proteins 2003; 52:332-8. [PMID: 12866047 DOI: 10.1002/prot.10324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A dimeric model of the cyclic nucleotide-binding domain of the all-alpha homomeric cyclic nucleotide-gated channel from bovine retinal rod is constructed. The model, based on the structure of the fairly homologous catabolite gene activator protein (Weber and Steitz, J Mol Biol 1987;198:311-326), is obtained by use of comparative modeling and molecular dynamics simulations. Our model provides a structural basis for the experimentally measured difference in activity between cAMP and cGMP, as well as the different solvent accessibilities of GLY597 in the complex with cGMP, with cAMP and in the protein in free state. In addition, it provides support for the rearrangement of the domain C helix on ligand binding and releasing proposed by Matulef et al. (Neuron 1999;24:443-452).
Collapse
Affiliation(s)
- Marco Punta
- International School for Advanced Studies, Trieste, Italy
| | | | | | | |
Collapse
|
152
|
Kraevskaya MA, Higgins MJP, Wilson MT, Gower DB. Binding of the pheromonal steroid, 5alpha-androst-16-en-3-one, to membrane-enriched fractions of boar and rat olfactory epithelium; preliminary evidence for binding protein being a glycoprotein. J Steroid Biochem Mol Biol 2003; 86:133-41. [PMID: 14568564 DOI: 10.1016/s0960-0760(03)00264-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A high degree of binding of 5alpha-[3H]-androstenone was recorded in membrane-enriched fractions of porcine olfactory tissue. The specific (i.e. high affinity, low capacity) binding had a mean Ka approximately 2x10(8)M(-1). A Hill plot of the data showed a Hill coefficient of approximately 2, possibly suggesting co-operativity of binding, with binding constants increasing from 8x10(7) to 1.6x10(9)M(-1) with increasing substrate concentration. The level of specific binding of 5alpha-[3H]-androstenone was nearly 10-fold higher than in corresponding respiratory tissue preparations and was markedly reduced in the presence of excess (approximately 1 microM) unlabelled 5alpha-androstenone. Corresponding fractions derived from rat olfactory tissue showed only 25% of the binding recorded for the pig. After incubation of 5alpha-[3H]-androstenone with solubilised olfactory cilial tissue (porcine), gel filtration and chromatography on a typical "glycoprotein" column (Concanavalin A-Sepharose B) were performed. Specific binding was recorded only in fractions corresponding to glycoproteins with Mr of approximately 70-90 kDa. In a third series of experiments, fractions containing high concentrations of cilia, some still attached to the dendritic endings (as shown by electron microscopy) were obtained by a novel method involving stripping them off the nasal epithelium. The basal adenylate cyclase (AC) activity was very significantly (P<0.01) higher in olfactory, compared with respiratory, cilia; storage at -70 degrees C for 3 weeks greatly reduced AC activity. When fresh male and female porcine olfactory cilia preparations were incubated with 5alpha-androstenone plus GTP, AC activity was increased fourfold (P<0.01). However, responses of porcine respiratory cilia were not significant statistically, neither were changes in basal levels of AC activities in rat olfactory cilia.
Collapse
Affiliation(s)
- M A Kraevskaya
- Division of Biochemistry and Molecular Biology, United Medical and Dental Schools, Guy's Hospital, London SE1 9RT, UK
| | | | | | | |
Collapse
|
153
|
Peng C, Rich ED, Thor CA, Varnum MD. Functionally important calmodulin-binding sites in both NH2- and COOH-terminal regions of the cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit. J Biol Chem 2003; 278:24617-23. [PMID: 12730238 DOI: 10.1074/jbc.m301699200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas an important aspect of sensory adaptation in rod photoreceptors and olfactory receptor neurons is thought to be the regulation of cyclic nucleotide-gated (CNG) channel activity by calcium-calmodulin (Ca2+-CaM), it is not clear that cone photoreceptor CNG channels are similarly modulated. Cone CNG channels are composed of at least two different subunit types, CNGA3 and CNGB3. We have investigated whether calmodulin modulates the activity of these channels by direct binding to the CNGB3 subunit. Heteromeric channels were formed by co-expression of human CNGB3 with human CNGA3 subunits in Xenopus oocytes; CNGB3 subunits conferred sensitivity to regulation by Ca2+-CaM, whereas CaM regulation of homomeric CNGA3 channels was not detected. To explore the mechanism underlying this regulation, we localized potential CaM-binding sites in both NH2- and COOH-terminal cytoplasmic domains of CNGB3 using gel-overlay and glutathione S-transferase pull-down assays. For both sites, binding of CaM depended on the presence of Ca2+. Individual deletions of either CaM-binding site in CNGB3 generated channels that remained sensitive to regulation by Ca2+-CaM, but deletion of both together resulted in heteromeric channels that were not modulated. Thus, both NH2- and COOH-terminal CaM-binding sites in CNGB3 are functionally important for regulation of recombinant cone CNG channels. These studies suggest a potential role for direct binding and unbinding of Ca2+-CaM to human CNGB3 during cone photoreceptor adaptation and recovery.
Collapse
Affiliation(s)
- Changhong Peng
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
154
|
Abstract
Today, there is evidence that the cAMP-dependent kinases (PKA) are not the only intracellular receptors involved in intracellular cAMP signalling in eukaryotes. Other cAMP-binding proteins have been recently identified, including some cyclic nucleotide-gated channels and Epac (exchange protein directly activated by cAMP) proteins. All these proteins bind cAMP through conserved cyclic nucleotide monophosphate-binding domains. However, all putative cAMP-binding proteins having such domains, as revealed by computer analysis, do not necessarily bind cAMP, indicating that their presence is not a sufficient criteria to predict cAMP-binding property for a protein.
Collapse
Affiliation(s)
- S Dremier
- IRIBHM, Faculty of Medicine, Free University of Brussels, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
155
|
Trudeau MC, Zagotta WN. Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 2003; 278:18705-8. [PMID: 12626507 DOI: 10.1074/jbc.r300001200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels mediate sensory transduction in olfactory sensory neurons and retinal photoreceptor cells. In these systems, internal calcium/calmodulin (Ca2+/CaM) inhibits CNG channels, thereby having a putative role in sensory adaptation. Functional differences in Ca2+/CaM-dependent inhibition depend on the different subunit composition of olfactory and rod CNG channels. Recent evidence shows that three subunit types (CNGA2, CNGA4, and CNGB1b) make up native olfactory CNG channels and account for the fast inhibition of native channels by Ca2+/CaM. In contrast, two subunit types (CNGA1 and CNGB1) appear sufficient to mirror the native properties of rod CNG channels, including the inhibition by Ca2+/CaM. Within CNG channel tetramers, specific subunit interactions also mediate Ca2+/CaM-dependent inhibition. In olfactory CNGA2 channels, Ca2+/CaM binds to an N-terminal region and disrupts an interaction between the N- and C-terminal regions, causing inhibition. Ca2+/CaM also binds the N-terminal region of CNGB1 subunits and disrupts an intersubunit, N- and C-terminal interaction between CNGB1 and CNGA1 subunits in rod channels. However, the precise N- and C-terminal regions that form these interactions in olfactory channels are different from those in rod channels. Here, we will review recent advances in understanding the subunit composition and the mechanisms and roles for Ca2+/CaM-dependent inhibition in olfactory and rod CNG channels.
Collapse
Affiliation(s)
- Matthew C Trudeau
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington Medical School, Seattle, Washington 98195, USA
| | | |
Collapse
|
156
|
Trinh K, Storm DR. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 2003; 6:519-25. [PMID: 12665798 DOI: 10.1038/nn1039] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
It is commonly assumed that odorants are detected by the main olfactory epithelium (MOE) and pheromones are sensed through the vomeronasal organ (VNO). The complete loss of MOE-mediated olfaction in type-3 adenylyl cyclase knockout mice (AC3-/-) allowed us to examine chemosensory functions of the VNO in the absence of signaling through the MOE. Here we report that AC3-/- mice are able to detect certain volatile odorants via the VNO. These same odorants elicited electro-olfactogram transients in the VNO and MOE of wild-type mice, but only VNO responses in AC3-/- mice. This indicates that some odorants are detected through an AC3-independent pathway in the VNO.
Collapse
Affiliation(s)
- Kien Trinh
- Molecular and Cellular Biology Program and Department of Pharmacology, University of Washington, Box 357750, 1959 NE Pacific St., Seattle, Washington 98195, USA
| | | |
Collapse
|
157
|
Kelliher KR, Ziesmann J, Munger SD, Reed RR, Zufall F. Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice. Proc Natl Acad Sci U S A 2003; 100:4299-304. [PMID: 12649326 PMCID: PMC153087 DOI: 10.1073/pnas.0736071100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Odor stimulation of olfactory sensory neurons (OSNs) leads to both the activation and subsequent desensitization of a heteromultimeric cyclic-nucleotide-gated (CNG) channel present in these cells. The native olfactory CNG channel consists of three distinct subunits: CNGA2, CNGA4, and CNGB1b. Mice in which the CNGA4 gene has been deleted display defective Ca(2+)calmodulin-dependent inhibition of the CNG channel, resulting in a striking reduction in adaptation of the odor-induced electrophysiological response in the OSNs. These mutants therefore afford an excellent opportunity to assess the importance of Ca(2+)-mediated CNG channel desensitization for odor discrimination and adaptation in behaving animals. By using an operant conditioning paradigm, we show that CNGA4-null mice are profoundly impaired in the detection and discrimination of olfactory stimuli in the presence of an adapting background odor. The extent of this impairment depends on both the concentration and the molecular identity of the adapting stimulus. Thus, Ca(2+)-dependent desensitization of the odor response in the OSNs mediated by the CNGA4 subunit is essential for normal odor sensation and adaptation of freely behaving mice, preventing saturation of the olfactory signal transduction machinery and extending the range of odor detection and discrimination.
Collapse
Affiliation(s)
- Kevin R Kelliher
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
158
|
Keyser MR, Anson BD, Titus SA, Ganetzky B, Witten JL. Molecular characterization, functional expression, and developmental profile of an ether à-go-go K+ channel in the tobacco hornworm Manduca sexta. JOURNAL OF NEUROBIOLOGY 2003; 55:73-85. [PMID: 12605460 DOI: 10.1002/neu.10188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A very large number of evolutionarily conserved potassium channels have been identified but very little is known about their function or modulation in vivo. Metamorphosis of the tobacco hornworm, Manduca sexta, is a compelling model system for such studies because it permits analysis to be conducted at the level of identified neurons whose roles in simple behaviors and endocrine regulation are known. We present here the characterization of the first ion channel to be cloned from this animal. Partial genomic sequence for Manduca sexta ether à-go-go (Mseag) and a cDNA clone encoding the Mseag open reading frame were obtained. Genomic Southern analysis indicates that Manduca contains a single member of the eag subfamily per haploid genome. When expressed in Xenopus oocytes, MsEag channels conduct a voltage-dependent, K+ selective outward current with an inactivating component that closely resembles the Drosophila eag current. Mseag transcripts were restricted to the nervous system, adult antenna, and one set of larval skeletal muscles. Steroid hormonal regulation of Mseag expression is suggested by the temporal correlation of developmental changes in transcript expression with the changing steroid titers that promote metamorphosis. These results provide the foundation for functional and modulatory studies of the Eag family of K+ channels in Manduca, which will complement the genetic analysis in Drosophila.
Collapse
Affiliation(s)
- Matthew R Keyser
- Department of Biological Sciences, P.O. Box 413, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | | | |
Collapse
|
159
|
Weitz D, Ficek N, Kremmer E, Bauer PJ, Kaupp UB. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 2002; 36:881-9. [PMID: 12467591 DOI: 10.1016/s0896-6273(02)01098-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory stimuli into electrical signals. CNG channels form heterooligomeric complexes built of A and B subunits. Here, we study the subunit stoichiometry of the native rod CNG channel by chemical crosslinking. The apparent molecular weight (M(w)) of each crosslink product was determined by SDS-PAGE, and its composition was analyzed by Western blotting using antibodies specific for the A1 or B1 subunit. The number of crosslink products and their M(w) as well as the immunological identification of A1 and B1 subunits in the crosslink products led us to conclude that the native rod CNG channel is a tetramer composed of three A1 and one B1 subunit. This is an example of violation of symmetry in tetrameric channels.
Collapse
Affiliation(s)
- Dietmar Weitz
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany
| | | | | | | | | |
Collapse
|
160
|
Mazzolini M, Punta M, Torre V. Movement of the C-helix during the gating of cyclic nucleotide-gated channels. Biophys J 2002; 83:3283-95. [PMID: 12496096 PMCID: PMC1302404 DOI: 10.1016/s0006-3495(02)75329-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Movements within the cyclic nucleotide-binding domain of cyclic nucleotide-gated channels are thought to underlie the initial phase of channel gating (Tibbs, G. R., D. T. Liu, B. G. Leypold, and S. A. Siegelbaum. 1998. J. Biol. Chem. 273:4497-4505; Zong, X., H. Zucker, F. Hofmann, and M. Biel. 1998. EMBO J. 17:353-362; Matulef, K., G. E. Flynn, and W. N. Zagotta. 1999. Neuron. 24:443-452; Paoletti, P., E. C. Young, and S. A. Siegelbaum. 1999. J. Gen. Physiol. 113:17-33; Johnson, J. P., and W. N. Zagotta. 2001. Nature. 412:917-921). To investigate these movements, cysteine mutation was performed on each of the 28 residues (Leu-583 to Asn-610), which span the agonist-binding domain of the alpha-subunit of the bovine rod cyclic nucleotide-gated channel. The effects of Cd(2+) ions, 2-trimethylammonioethylmethane thiosulfonate (MTSET) and copper phenanthroline (CuP) on channel activity were examined, in excised inside-out patches in the presence and in the absence of a saturating concentration of cGMP. The application of 100 microM Cd(2+) in the presence of saturating concentration of cGMP caused an irreversible and almost complete reduction of the current in mutant channels E594C, I600C, and L601C. In the absence of cGMP, the presence of 100 microM Cd(2+) caused a strong current reduction in all cysteine mutants from Asp-588 to Leu-607, with the exception of mutant channels A589C, M592C, M602C, K603C, and L606C. The selective effect of Cd(2+) ions was very similar to that observed when adding the oxidizing agent CuP to the bath medium, except for mutant channel G597C, where CuP caused a stronger current decrease (67 +/- 7%) than Cd(2+) (23 +/- 4%). In the absence of cGMP, MTSET caused a reduction of the current by >40% in mutant channels L607C, L601C, I600C, G597C, and E594C, whereas in the presence of cGMP only mutant channel L601C was affected. The application of MTSET protected many mutant channels from the effects of Cd(2+) and CuP. These results suggest that, when CNG channels are in the open state, residues from Asp-588 to Leu-607 are in an alpha-helical structure, homologous to the C-helix of the catabolite gene activator protein (Weber, I. T., and T. A. Steitz. 1987. J. Mol. Biol. 198:311-326). Furthermore, residues Glu-594, Gly-597, Ile-600, and Leu-601 of these helices belonging to two different subunits must be in close proximity. In the closed state the C-helices are in a different configuration and undergo significant fluctuations.
Collapse
Affiliation(s)
- Monica Mazzolini
- INFM Section and International School for Advanced Studies, via Beirut 2-4, I-34014 Trieste, Italy
| | | | | |
Collapse
|
161
|
Eisthen HL. Why are olfactory systems of different animals so similar? BRAIN, BEHAVIOR AND EVOLUTION 2002; 59:273-93. [PMID: 12207084 DOI: 10.1159/000063564] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As we learn more about the neurobiology of olfaction, it is becoming increasingly clear that olfactory systems of animals in disparate phyla possess many striking features in common. Why? Do these features provide clues about the ways the nervous system processes olfactory information? This might be the case if these commonalities are convergent adaptations that serve similar functions, but similar features can be present in disparate animals for other reasons. For example, similar features may be present because of inheritance from a common ancestor (homology), may represent responses to similar constraints, or may be superficial or reflect strategies used by researchers studying the system. In this paper, I examine four examples of features of olfactory systems in members of different phyla: the presence of odorant binding proteins in the fluid overlying olfactory receptor neurons; the use of G protein-coupled receptors as odorant receptors; the use of a two-step pathway in the transduction of odorant signals; and the presence of glomerular neuropils in the first central target of the axons of olfactory receptor cells. I analyze data from nematodes, arthropods, molluscs, and vertebrates to investigate the phylogenetic distribution of these features, and to try to explain the presence of these features in disparate animals. Phylogenetic analyses indicate that these features are not homologous across phyla. Although these features are often interpreted as convergent adaptations, I find that alternative explanations are difficult to dismiss. In many cases, it seems that olfactory system features that are similar across phyla may reflect both responses to similar constraints and adaptations for similar tasks.
Collapse
Affiliation(s)
- Heather L Eisthen
- Department of Zoology, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
162
|
Decressac S, Grechez-Cassiau A, Lenfant J, Falcón J, Bois P. Cloning, localization and functional properties of a cGMP-gated channel in photoreceptor cells from fish pineal gland. J Pineal Res 2002; 33:225-33. [PMID: 12390505 DOI: 10.1034/j.1600-079x.2002.02922.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The perception of photic information and its translation into a rhythmic melatonin signal differ considerably among vertebrates. In the fish pineal gland, melatonin biosynthesis is controlled directly by the natural light/dark cycle. There are indications that the mechanisms of phototransduction are similar in the retinal and pineal photoreceptor cells. Here we report the molecular cloning of a novel ionic cyclic guanosine monophosphate (cGMP)-gated channel from trout pineal photoreceptors. The deduced amino acid sequence exhibits a high sequence homology to cyclic nucleotide-gated-3 (CNG) channels from retinal cones. In situ hybridization with sections of trout pineal gland revealed the expression of CNG channel in photoreceptor cells of the pineal organ. Electrophysiological studies by means of patch-clamp technique indicated that the native channel in photoreceptor cells and the expressed channel in a human cell line (HEK 293 cells) have properties similar to those of cone-CNG (cCNG)-3 channels. They are activated by cGMP, insensitive to cyclic adenosine monophosphate (cAMP) and blocked by intracellular Mg2+ ions at positive voltage values. They have a single-channel conductance close to 42 pS in negative voltage range. In transfected HEK cells loaded with the calcium indicator dye Fura 2, direct activation of CNG channels by 8-Br-cGMP increased fluorescence. The signal was blocked by the addition of Mg2+ ions. From these results, it is suggested that the pineal cyclic nucleotide-gated channel is a good candidate for mediating calcium entry into the pineal photoreceptors. It is most probably a key element in the signalling pathways that control the rhythmic production of melatonin.
Collapse
Affiliation(s)
- Sonia Decressac
- Laboratoire des Biomembranes et Signalisation Cellulaire, Unité Mixte de Recherche CNRS 6558, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
163
|
Stomatin-related olfactory protein, SRO, specifically expressed in the murine olfactory sensory neurons. J Neurosci 2002. [PMID: 12122055 DOI: 10.1523/jneurosci.22-14-05931.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We identified a stomatin-related olfactory protein (SRO) that is specifically expressed in olfactory sensory neurons (OSNs). The mouse sro gene encodes a polypeptide of 287 amino acids with a calculated molecular weight of 32 kDa. SRO shares 82% sequence similarity with the murine stomatin, 78% with Caenorhabditis elegans MEC-2, and 77% with C. elegans UNC-1. Unlike other stomatin-family genes, the sro transcript was present only in OSNs of the main olfactory epithelium. No sro expression was seen in vomeronasal neurons. SRO was abundant in most apical dendrites of OSNs, including olfactory cilia. Immunoprecipitation revealed that SRO associates with adenylyl cyclase type III and caveolin-1 in the low-density membrane fraction of olfactory cilia. Furthermore, anti-SRO antibodies stimulated cAMP production in fractionated cilia membrane. SRO may play a crucial role in modulating odorant signals in the lipid rafts of olfactory cilia.
Collapse
|
164
|
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.
Collapse
Affiliation(s)
- U Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
165
|
Moon C, Yoo JY, Matarazzo V, Sung YK, Kim EJ, Ronnett GV. Leukemia inhibitory factor inhibits neuronal terminal differentiation through STAT3 activation. Proc Natl Acad Sci U S A 2002; 99:9015-20. [PMID: 12084939 PMCID: PMC124415 DOI: 10.1073/pnas.132131699] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of stem cells in the adult central nervous system raises questions concerning the neurotrophic factors that regulate postnatal neuronal development. Olfactory receptor neurons (ORNs) are a useful model, because they are capable of robust neurogenesis throughout adulthood. We have investigated the role of leukemia inhibitory factor (LIF) in postnatal neuronal development by using ORNs as a model. LIF is a multifunctional cytokine implicated in various aspects of neuronal development, including phenotype determination, survival, and in response to nerve injury. LIF-deficient mice display significant increases, both in the absolute amount and in the number of cells expressing olfactory marker protein, a marker of mature ORNs. The maturation of ORNs was significantly inhibited by LIF in vitro. LIF activated the STAT3 pathway in ORNs, and transfection of ORNs with a dominant negative form of STAT3 abolished the effect of LIF. These findings demonstrate that LIF negatively regulates ORN maturation via the STAT3 pathway. Thus, LIF plays a critical role in controlling the transition of ORNs to maturity. Consequently, a population of ORNs is maintained in an immature state to facilitate the rapid repopulation of the olfactory epithelium with mature neurons during normal cell turnover or after injury.
Collapse
Affiliation(s)
- Cheil Moon
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
166
|
Trudeau MC, Zagotta WN. Mechanism of calcium/calmodulin inhibition of rod cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A 2002; 99:8424-9. [PMID: 12048242 PMCID: PMC123083 DOI: 10.1073/pnas.122015999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rod cyclic nucleotide-gated (CNG) channels are heterotetramers comprised of both CNGA1 and CNGB1 subunits. Calcium/calmodulin (Ca(2+)/CaM) binds to a site in the N-terminal region of CNGB1 subunits and inhibits the opening conformational change in CNGA1/CNGB1 channels. Here, we show that polypeptides derived from an N-terminal region of CNGB1 form a specific interaction with polypeptides derived from a C-terminal region of CNGA1 that is distal to the cyclic nucleotide-binding domain. Deletion of the Ca(2+)/CaM-binding site from the N-terminal region of CNGB1 eliminated both Ca(2+)/CaM modulation of the channel and the intersubunit interaction. Furthermore, the interaction was disrupted by the presence of Ca(2+)/CaM. These results suggest that Ca(2+)/CaM-dependent inhibition of rod channels is caused by the direct binding of Ca(2+)/CaM to a site in the N-terminal region in CNGB1, which disrupts the interaction between this region and a distal C-terminal region of CNGA1. The mechanism underlying Ca(2+)/CaM modulation of rod channels is distinct from that in olfactory (CNGA2) CNG channels.
Collapse
Affiliation(s)
- Matthew C Trudeau
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington Medical School, Box 357370, Seattle, WA 98195, USA
| | | |
Collapse
|
167
|
Abstract
The olfactory system sits at the interface of the environment and the nervous system and is responsible for correctly coding sensory information from thousands of odorous stimuli. Many theories existed regarding the signal transduction mechanism that mediates this difficult task. The discovery that odorant transduction utilizes a unique variation (a novel family of G protein-coupled receptors) based upon a very common theme (the G protein-coupled adenylyl cyclase cascade) to accomplish its vital task emphasized the power and versatility of this motif. We now must understand the downstream consequences of this cascade that regulates multiple second messengers and perhaps even gene transcription in response to the initial interaction of ligand with G protein-coupled receptor.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Departments of Neuroscience and Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
168
|
Koganezawa M, Shimada I. Inositol 1,4,5-trisphosphate transduction cascade in taste reception of the fleshfly, Boettcherisca peregrina. JOURNAL OF NEUROBIOLOGY 2002; 51:66-83. [PMID: 11920729 DOI: 10.1002/neu.10047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of an inositol 1,4,5-trisphosphate (IP3)-mediated transduction cascade in the response of taste receptor cells of the fleshfly Boettcherisca peregrina was investigated by using the following reagents: neomycin (an inhibitor of IP3 production), U73122 (an inhibitor of phospholipase C), adenophostin A (an agonist of the IP3-gated channel), IP3, ruthenium red (a blocker of the IP3-gated channel), and 2-aminoethoxydiphenylborate (2-APB; an antagonist of the IP3-gated channel). For introduction into the receptor cell, the reagents were mixed with a detergent, deoxycholate (DOC). After treatment with neomycin + DOC or U73122 + DOC, the response of the sugar receptor cell to sugars was depressed compared with responses after treatment with DOC alone. During the treatment of adenophostin A + DOC, the response of the sugar receptor cell was elicited. After treatment with IP3 + DOC, the response of the sugar receptor cell to sugars and to amino acids was apparently enhanced. When taste stimuli were administered in the presence of ruthenium red or 2-APB, the response of the sugar receptor cell to glucose were inhibited. The expression of genes for substances involved in the IP3 transduction cascade, such as G protein alpha subunit (dGqalpha), phospholipase C (norpA), and IP3 receptor (itpr), were examined in the taste receptor cell of the fruitfly Drosophila melanogaster by using the pox-neuro70 mutant (poxn70), which lacks taste receptor cells. The expressed levels of dGqalpha and itpr in the tarsus of poxn70 mutant flies were reduced compared with those of wild-type flies. These results suggest that the IP3 transduction cascade is involved in the response of the sugar receptor cell of the fly.
Collapse
Affiliation(s)
- Masayuki Koganezawa
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
169
|
Celik A, Fuss SH, Korsching SI. Selective targeting of zebrafish olfactory receptor neurons by the endogenous OMP promoter. Eur J Neurosci 2002; 15:798-806. [PMID: 11906521 DOI: 10.1046/j.1460-9568.2002.01913.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory nervous system of fish, in particular zebrafish, has become a valid model for that of higher vertebrates. However, no genetic markers for olfactory specific cell types, e.g. the olfactory receptor neurons, have been established in this species. Olfactory marker protein (OMP) is a reliable marker for olfactory receptor neurons in several other vertebrates. We have cloned zOMP, the zebrafish homologue of olfactory marker protein. During development, zOMP is expressed exclusively in the olfactory placode, presumably in olfactory receptor neurons, as shown by in situ hybridization. In the adult nasal epithelium zOMP is found restricted to the sensory region. zOMP appears to be a single gene, without close family members. The 5'-flanking region lacks most of the expected regulatory sequence motifs, both general and cell type-specific ones. Nevertheless, it drives reporter gene expression strongly and specifically in olfactory receptor neurons during the whole developmental period examined. Thus the zOMP promoter constitutes a powerful tool which should be useful to selectively introduce a wide variety of genetic modifications into olfactory receptor neurons.
Collapse
Affiliation(s)
- Arzu Celik
- Institut für Genetik, Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany.
| | | | | |
Collapse
|
170
|
Gaillard I, Rouquier S, Pin JP, Mollard P, Richard S, Barnabé C, Demaille J, Giorgi D. A single olfactory receptor specifically binds a set of odorant molecules. Eur J Neurosci 2002; 15:409-18. [PMID: 11876768 DOI: 10.1046/j.0953-816x.2001.01871.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sense of smell is mediated by the initiation of action potential in olfactory sensory neurons during odor stimulation. However, little is known about odorant-olfactory receptor (OR) recognition mechanisms. In the present work, we identified the structural motifs of odorant molecules required to activate mouse OR912-93 by detection of the odorant response using calcium measurement in cells transfected with OR and G(alpha)q and G(alpha)15 proteins. The use of sets of odorants led to the identification of ketones with an aliphatic carbon chain length >or= four carbon atoms and a carbonyl group preferentially located in position C2 or C3. The threshold of detection of these odorants is as low as 10(-6)-10(-8)m. No other odorant ligand, out of 70 representatives of the odorant world, was active. The human ortholog of OR912-93 is not functional, suggesting that apart from a stop-mutation located at the 5'-end that was corrected in the construct, it incurred other deleterious mutations during evolution.
Collapse
Affiliation(s)
- Isabelle Gaillard
- IGH, CNRS UPR 1142, rue de la Cardonille, 34396 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Drescher MJ, Barretto RL, Chaturvedi D, Beisel KW, Hatfield JS, Khan KM, Drescher DG. Expression of subunits for the cAMP-sensitive 'olfactory' cyclic nucleotide-gated ion channel in the cochlea: implications for signal transduction. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 98:1-14. [PMID: 11834291 DOI: 10.1016/s0169-328x(01)00289-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels have been implicated as functioning in sensory transduction and in second-messenger modulation of synaptic neurotransmitter release. The olfactory, cAMP-sensitive CNG ion channel in vivo is considered to comprise the pore-forming CNG2 subunit together with CNG5 and CNG4.3 modulatory subunits. The expression of these 'olfactory' CNG subunit transcripts in microdissected subfractions of the rat cochlea and hair cell libraries has been investigated with RT-PCR. Unmodified transcripts of CNG2 were detected in the organ of Corti, lateral wall and spiral ganglion subfractions. CNG5 message was found in both the sensory organ of Corti and the non-sensory lateral wall subfractions but not in the spiral ganglion subfraction. The CNG5 sequence obtained for the organ of Corti fraction encompassed 78% of the olfactory CNG5 cDNA sequence. CNG5 message has also been detected in an inner hair cell cDNA library. In the lateral wall, unmodified CNG5 sequence was observed as well as truncated versions of CNG5 transcripts, one of which was also found in the rat brain. The truncated versions were characterized by deletions that resulted in a shift in reading frame and the premature appearance of a stop codon. The 'olfactory' CNG4.3 cDNA was amplified from all three subfractions. Within the cochlea, CNG2 immunoreactivity was selectively distributed in a pattern similar to that of adenylyl cyclase type I. Immunoreactivity to CNG2 has been localized to stereocilia of inner hair cells. CNG5 immunoreactivity was associated with stereocilia and lateral plasma membranes of outer hair cells. We conclude that transcripts necessary for a functional cAMP-sensitive CNG ion channel are present in the cochlea resulting from combinations of CNG2 with CNG5 and CNG4.3. Further, the localization of CNG2 and CNG5 immunoreactivity to hair cell stereocilia suggests a role for cAMP-sensitive CNG channels in hair cell signal transduction.
Collapse
Affiliation(s)
- Marian J Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University, 261 Lande Medical Research Building, 540 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
172
|
Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, Zufall F, Reed RR. Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 2001; 294:2172-5. [PMID: 11739959 PMCID: PMC2885906 DOI: 10.1126/science.1063224] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heteromultimeric cyclic nucleotide-gated (CNG) channels play a central role in the transduction of odorant signals and subsequent adaptation. The contributions of individual subunits to native channel function in olfactory receptor neurons remain unclear. Here, we show that the targeted deletion of the mouse CNGA4 gene, which encodes a modulatory CNG subunit, results in a defect in odorant-dependent adaptation. Channels in excised membrane patches from the CNGA4 null mouse exhibited slower Ca2+-calmodulin-mediated channel desensitization. Thus, the CNGA4 subunit accelerates the Ca2+-mediated negative feedback in olfactory signaling and allows rapid adaptation in this sensory system.
Collapse
Affiliation(s)
- Steven D. Munger
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew P. Lane
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Haining Zhong
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Trese Leinders-Zufall
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - King-Wai Yau
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Opthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank Zufall
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Randall R. Reed
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- To whom correspondence should be addressed.
| |
Collapse
|
173
|
Kemp PJ, Kim KJ, Borok Z, Crandall ED. Re-evaluating the Na(+) conductance of adult rat alveolar type II pneumocytes: evidence for the involvement of cGMP-activated cation channels. J Physiol 2001; 536:693-701. [PMID: 11691865 PMCID: PMC2278905 DOI: 10.1111/j.1469-7793.2001.t01-1-00693.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
1. Alveolar epithelial type II pneumocytes were isolated and purified from adult rat lung by elastase digestion and differential adhesion, and cultured in serum-free medium for approximately 2 days on glass coverslips for subsequent patch-clamp studies employing symmetrical sodium isethionate solutions. 2. Whole-cell Na(+) currents exhibited essentially linear current-voltage relationships which were mildly inhibited (by approximately 25 %) by 10 microM amiloride. In contrast, 1 mM Zn(2+) inhibited the currents by approximately 55 % with an IC(50) of approximately 134 microM and maximal blockade achieved between 5 and 10 mM. The effects of Zn(2+) and amiloride were additive, and independent of the order of blocker addition. 3. Gd(2+), Zn(2+) and La(3+) at 10 mM were all effective at rapidly, reversibly and significantly blocking the amiloride-insensitive currents by approximately 60%. in contrast, Ni(2+) was a very weak inhibitor (30 % inhibition at 10 mM). 4. Pimozide (10 microM) caused inhibition of whole-cell cation conductance by approximately 55 %. The inhibitory effect of pimozide was concentration dependent with an IC(50) of approximately 1 microM and was maximally effective between 10 and 30 microM. Sequential addition of Zn(2+) and pimozide, in either order, revealed no overlapping inhibitory effect on the amiloride-insensitive conductance, and supported the notion that the Zn(2+)- and pimozide-sensitive currents are identical. 5. The amiloride-insensitive, Zn(2+)-blockable conductance was characterised by a Na(+)/K(+) permeability ratio (P(Na)/P(K)) of 0.73 +/- 0.02. 6. 8Br-cGMP (100 microM), a membrane-permeable analogue of cGMP, evoked a robust activation of whole-cell cation conductance to 220 % of control. This activation was apparent in either the absence or the presence of 10 microM amiloride, but was completely abolished in the presence of Zn(2+). 7. These data support the in vivo and in situ observations of a substantial amiloride-resistant Na(+) conductance, demonstrate directly that cyclic nucleotide-gated non-selective cation channels are functionally expressed in alveolar epithelial type II cells, and suggest that these channels may contribute to the fluid-reabsorptive driving force in adult lung.
Collapse
Affiliation(s)
- P J Kemp
- School of Biomedical Sciences, Worsely Medical and Dental Building, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
174
|
Affiliation(s)
- E Biasi
- Istituto di Fisiologia Umana, Universita' di Parma, Via Volturno, 39, I-43100 Parma, Italy
| | | | | |
Collapse
|
175
|
Kramer RH, Molokanova E. Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J Exp Biol 2001; 204:2921-31. [PMID: 11551982 DOI: 10.1242/jeb.204.17.2921] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Cyclic-nucleotide-gated (CNG) channels are crucial for sensory transduction in the photoreceptors (rods and cones) of the vertebrate retina. Light triggers a decrease in the cytoplasmic concentration of cyclic GMP in the outer segments of these cells, leading to closure of CNG channels and hyperpolarization of the membrane potential. Hence, CNG channels translate a chemical change in cyclic nucleotide concentration into an electrical signal that can spread through the photoreceptor cell and be transmitted to the rest of the visual system. The sensitivity of phototransduction can be altered by exposing the cells to light, through adaptation processes intrinsic to photoreceptors. Intracellular Ca2+ is a major signal in light adaptation and, in conjunction with Ca2+-binding proteins, one of its targets for modulation is the CNG channel itself. However, other intracellular signals may be involved in the fine-tuning of light sensitivity in response to cues internal to organisms. Several intracellular signals are candidates for mediating changes in cyclic GMP sensitivity including transition metals, such as Ni2+ and Zn2+, and lipid metabolites, such as diacylglycerol. Moreover, CNG channels are associated with protein kinases and phosphatases that catalyze changes in phosphorylation state and allosterically modulate channel activity. Recent studies suggest that the effects of circadian rhythms and retinal transmitters on CNG channels may be mediated by such changes in phosphorylation. The goal of this paper is to review the molecular mechanisms underlying modulation of CNG channels and to relate these forms of modulation to the regulation of light sensitivity.
Collapse
Affiliation(s)
- R H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA.
| | | |
Collapse
|
176
|
Flynn GE, Johnson JP, Zagotta WN. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci 2001; 2:643-51. [PMID: 11533732 DOI: 10.1038/35090015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- G E Flynn
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
177
|
Picco C, Gavazzo P, Menini A. Co-expression of wild-type and mutant olfactory cyclic nucleotide-gated channels: restoration of the native sensitivity to Ca(2+) and Mg(2+) blockage. Neuroreport 2001; 12:2363-7. [PMID: 11496111 DOI: 10.1097/00001756-200108080-00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the pore of homomeric cyclic nucleotide-gated (CNG) channels, Ca(2+) and Mg(2+) bind to a set of glutamate residues, which in the bovine olfactory CNG channel are located at position 340. However, native CNG channels from olfactory sensory neurons are composed by the assembly of three different types of subunits, each having a different residue -- glutamate, aspartate or glycine -- at the position corresponding to the binding site for external Ca(2+) and Mg(2+). We co-expressed the wild-type principal alpha subunit with its mutants E340G and E340D in different combinations in Xenopus laevis oocytes, and measured Ca(2+) and Mg(2+) blockage in excised outside-out membrane patches. The comparison between our results and data from native olfactory CNG channels indicates that the presence of all three residues -- glutamate, aspartate and glycine -- in the different subunits, is necessary to restore the sensitivity to external Ca(2+) and Mg(2+) measured in native channels.
Collapse
Affiliation(s)
- C Picco
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy
| | | | | |
Collapse
|
178
|
Qu W, Moorhouse AJ, Cunningham AM, Barry PH. Anomalous mole-fraction effects in recombinant and native cyclic nucleotide-gated channels in rat olfactory receptor neurons. Proc Biol Sci 2001; 268:1395-403. [PMID: 11429140 PMCID: PMC1088754 DOI: 10.1098/rspb.2001.1663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anomalous mole-fraction effects (AMFE) were studied, using the inside-out configuration of the patchclamp technique, in both recombinant wild-type alpha-homomeric rat olfactory adenosine 3',5'-cyclic monophosphate (cAMP)-gated channels (rOCNC1) expressed in human embryonic kidney cells (HEK 293) and native cyclic nucleotide-gated (CNG) channels in acutely isolated rat olfactory receptor neurons. Single-channel and macroscopic currents were activated by 200 microM and 500 microM cAMP, respectively. Macroscopic currents, measured with mixtures of Na(+)-NH(4)(+) or Cs(+)-Li(+) in the cytoplasmic bathing solution, displayed AMFE in the rOCNC1 channels at both positive and negative membrane potentials. The rOCNC1 single-channel conductance showed a distinct minimum (or maximum) in an 80% Na(+)-20% NH(4)(+) mixture (or a 60% Cs(+)-40% Li(+) mixture), but only at positive membrane potentials. Macroscopic measurements in native olfactory CNG channels with mixtures of Na(+)-NH(4)(+) indicated similar AMFE. These results suggest that both native CNG channels and recombinant alpha-homomeric channels allow several ions to be present simultaneously within the channel pore. They also further validate the dominant role of the alpha-subunit in permeation through these channels, provide the first evidence to suggest that rOCNC1 channels have multi-ion properties and further justify the use of the rOCNC1 channel as an effective model for structure-function studies of ion permeation and selectivity in olfactory CNG channels.
Collapse
Affiliation(s)
- W Qu
- Schools of Physiology and Pharmacology, The University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
179
|
Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol 2001; 118:63-78. [PMID: 11429444 PMCID: PMC2233745 DOI: 10.1085/jgp.118.1.63] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphodiesterases (PDEs) catalyze the hydrolysis of the second messengers cAMP and cGMP. However, little is known about how PDE activity regulates cyclic nucleotide signals in vivo because, outside of specialized cells, there are few methods with the appropriate spatial and temporal resolution to measure cyclic nucleotide concentrations. We have previously demonstrated that adenovirus-expressed, olfactory cyclic nucleotide-gated channels provide real-time sensors for cAMP produced in subcellular compartments of restricted diffusion near the plasma membrane (Rich, T.C., K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, and J.W. Karpen. 2000. J. Gen. Physiol. 116:147-161). To increase the utility of this method, we have modified the channel, increasing both its cAMP sensitivity and specificity, as well as removing regulation by Ca(2)+-calmodulin. We verified the increased sensitivity of these constructs in excised membrane patches, and in vivo by monitoring cAMP-induced Ca(2)+ influx through the channels in cell populations. The improved cAMP sensors were used to monitor changes in local cAMP concentration induced by adenylyl cyclase activators in the presence and absence of PDE inhibitors. This approach allowed us to identify localized PDE types in both nonexcitable HEK-293 and excitable GH4C1 cells. We have also developed a quantitative framework for estimating the K(I) of PDE inhibitors in vivo. The results indicate that PDE type IV regulates local cAMP levels in HEK-293 cells. In GH4C1 cells, inhibitors specific to PDE types I and IV increased local cAMP levels. The results suggest that in these cells PDE type IV has a high K(m) for cAMP, whereas PDE type I has a low K(m) for cAMP. Furthermore, in GH4C1 cells, basal adenylyl cyclase activity was readily observable after application of PDE type I inhibitors, indicating that there is a constant synthesis and hydrolysis of cAMP in subcellular compartments near the plasma membrane. Modulation of constitutively active adenylyl cyclase and PDE would allow for rapid control of cAMP-regulated processes such as cellular excitability.
Collapse
Affiliation(s)
- Thomas C. Rich
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Tonia E. Tse
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Joyce G. Rohan
- Neuroscience Program, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jerome Schaack
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jeffrey W. Karpen
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
- Neuroscience Program, University of Colorado Health Sciences Center, Denver, CO 80262
| |
Collapse
|
180
|
Fagan KA, Schaack J, Zweifach A, Cooper DM. Adenovirus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells. FEBS Lett 2001; 500:85-90. [PMID: 11434932 DOI: 10.1016/s0014-5793(01)02564-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The current, static methodologies for measuring cyclic AMP (cAMP) may underestimate its regulatory properties. Here, we have exploited the Ca2+-conducting properties of cyclic nucleotide-gated (CNG) channels to measure cAMP in live cells, in response to various stimuli. We placed a mutated CNG channel with high sensitivity to cAMP in adenovirus to maximize and render facile its expression in numerous cell types. The ready, continuous nature of the readout contrasted with the traditional approach, which yielded similar static information, but lacked any continuous or interactive qualities. It seems fair to predict that this readily adopted approach will broaden the perception of cAMP signaling.
Collapse
Affiliation(s)
- K A Fagan
- Department of Pharmacology, University of Colorado Health Sciences Center, 4200 East Ninth Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
181
|
Kaneko H, Nakamura T, Lindemann B. Noninvasive measurement of chloride concentration in rat olfactory receptor cells with use of a fluorescent dye. Am J Physiol Cell Physiol 2001; 280:C1387-93. [PMID: 11350733 DOI: 10.1152/ajpcell.2001.280.6.c1387] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inwardly directed Ca(2+)-dependent chloride currents are thought to prolong and boost the odorant-induced transient receptor currents in olfactory cilia. Cl(-) inward current, of course, requires a sufficiently high intracellular Cl(-) concentration ([Cl(-)](i)). In previous measurements using a fluorescent Cl(-) probe, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), [Cl(-)](i) of newt olfactory cells was estimated to be only 40 mM. This low value led us to reexamine the [Cl(-)](i) by an improved procedure. When isolated rat olfactory neurons were bathed in Tyrode's solution (150 mM Cl(-)) at room temperature, the [Cl(-)] was 81.5 +/- 13.5 mM (mean +/- SE) in the tip of the dendrite (olfactory knob) and 81.8 +/- 10.2 mM (mean +/- SE) in the soma. The corresponding Cl(-) equilibrium potentials were -15.4 and -15.3 mV, respectively. Therefore, at resting potentials in the range of -90 to -50 mV, Cl(-) currents are predicted to be inward and capable of contributing to the depolarization induced by odorants. Yet, if the cell was depolarized beyond -15 mV, somal Cl(-) currents would be outward and facilitate repolarization during excitation. The measured [Cl(-)] in soma and knob are of interest, because in the cilia the chloride content may be expected to equilibrate with that of the knob in the resting state. They provide a starting point for the decrease in ciliary [Cl(-)] predicted to occur during transduction.
Collapse
Affiliation(s)
- H Kaneko
- Department of Applied Physics and Chemistry, Division of Bio-Informatics, The University of Electro-Communications, Chofu, Tokyo 182 - 8585, Japan
| | | | | |
Collapse
|
182
|
Syntaxin 1A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J Neurosci 2001. [PMID: 11312278 DOI: 10.1523/jneurosci.21-09-02949.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-type Ca(2+) channels are modulated by a variety of G-protein-coupled pathways. Some pathways produce a transient, voltage-dependent (VD) inhibition of N channel function and involve direct binding of G-protein subunits; others require the activation of intermediate enzymes and produce a longer-lasting, voltage-independent (VI) form of inhibition. The ratio of VD:VI inhibition differs significantly among cell types, suggesting that the two forms of inhibition play unique physiological roles in the nervous system. In this study, we explored mechanisms capable of altering the balance of VD and VI inhibition in chick dorsal root ganglion neurons. We report that (1) VD:VI inhibition is critically dependent on the Gbetagamma concentration, with VI inhibition dominant at low Gbetagamma concentrations, and (2) syntaxin-1A (but not syntaxin-1B) shifts the ratio in favor of VD inhibition by potentiating the VD effects of Gbetagamma. Variations in expression levels of G-proteins and/or syntaxin provide the means to alter over a wide range both the extent and the rate of Ca(2+) influx through N channels.
Collapse
|
183
|
Weiner RI, Charles A. Regulation of gonadotropin-releasing hormone release by cyclic AMP signalling pathways. Growth Horm IGF Res 2001; 11 Suppl A:S9-S15. [PMID: 11527095 DOI: 10.1016/s1096-6374(01)80003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The frequency and amplitude of gonadotropin-releasing hormone (GnRH) pulses are tightly regulated for the maintenance of reproductive cycles. Pulsatile GnRH release was shown to be an intrinsic property of murine GT1 GnRH neurons, and primate placodal GnRH neurons. GT1 neurons show spontaneous action potentials that are associated with Ca2+ oscillations and hormone secretion. Increased cyclic AMP (cAMP) levels in GT1 neurons appear to stimulate GnRH release by activation of cAMP-gated cation (CNG) channels. Activation of the CNG channels correlated with increased neuron excitability and Ca2+ oscillations. Activation of protein kinase A is not necessary for cAMP-induced stimulation of GnRH secretion, but appears to activate negative feedback pathways. Potential negative feedback pathways may decrease cAMP levels by inhibiting adenylyl cyclase V, and activating the phosphodiesterase, PDE4D3. These stimulatory and inhibitory cAMP-signalling pathways appear to regulate the excitability of the GT1 neurons, and may constitute a biological clock timing the pulsatile release of GnRH.
Collapse
Affiliation(s)
- R I Weiner
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco School of Medicine, 94143, USA.
| | | |
Collapse
|
184
|
Lee HM, Park YS, Kim W, Park CS. Electrophysiological characteristics of rat gustatory cyclic nucleotide--gated channel expressed in Xenopus oocytes. J Neurophysiol 2001; 85:2335-49. [PMID: 11387380 DOI: 10.1152/jn.2001.85.6.2335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complementary DNA encoding gustatory cyclic nucleotide--gated ion channel (or gustCNG channel) cloned from rat tongue epithelial tissue was expressed in Xenopus oocytes, and its electrophysiological characteristics were investigated using tight-seal patch-clamp recordings of single and macroscopic channel currents. Both cGMP and cAMP directly activated gustCNG channels but with markedly different affinities. No desensitization or inactivation of gustCNG channel currents was observed even in the prolonged application of the cyclic nucleotides. Single-channel conductance of gustCNG channel was estimated as 28 pS in 130 mM of symmetric Na(+). Single-channel current recordings revealed fast open-close transitions and longer lasting closure states. The distribution of both open and closed events could be well fitted with two exponential components and intracellular cGMP increased the open probability (P(o)) of gustCNG channels mainly by increasing the slower opening rate. Under bi-ionic conditions, the selectivity order of gustCNG channel among divalent cations was determined as Na(+) approximately K(+) > Rb(+) > Li(+) > Cs(+) with the permeability ratio of 1:0.95:0.74:0.63:0.49. Magnesium ion blocked Na(+) currents through gustCNG channels from both intracellular and extracellular sides in voltage-dependent manners. The inhibition constants (K(i)s) of intracellular Mg(2+) were determined as 360 +/- 40 microM at 70 mV and 8.2 +/- 1.5 mM at -70 mV with z delta value of 1.04, while K(i)s of extracellular Mg(2+) were as 1.1 +/- 0.3 mM at 70 mV and 20.0 +/- 0.1 microM at -70 mV with z delta of 0.94. Although 100 microM l-cis-diltiazem blocked significant portions of outward Na(+) currents through both bovine rod and rat olfactory CNG channels, the gustCNG channel currents were minimally affected by the same concentration of the drug.
Collapse
Affiliation(s)
- H M Lee
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | |
Collapse
|
185
|
Savchenko A, Kraft TW, Molokanova E, Kramer RH. Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue. Proc Natl Acad Sci U S A 2001; 98:5880-5. [PMID: 11320223 PMCID: PMC33307 DOI: 10.1073/pnas.101524998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca(2+), which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the alpha-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.
Collapse
Affiliation(s)
- A Savchenko
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
186
|
Müller F, Vantler M, Weitz D, Eismann E, Zoche M, Koch KW, Kaupp UB. Ligand sensitivity of the 2 subunit from the bovine cone cGMP-gated channel is modulated by protein kinase C but not by calmodulin. J Physiol 2001; 532:399-409. [PMID: 11306659 PMCID: PMC2278562 DOI: 10.1111/j.1469-7793.2001.0399f.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Homomeric cyclic nucleotide-gated (CNG) channels composed of alpha2 subunits from bovine cone photoreceptors were heterologously expressed in the human embryonic kidney (HEK) 293 cell line. Modulation of cGMP sensitivity by protein kinase C (PKC)-mediated phosphorylation and by binding of calmodulin (CaM) was investigated in inside-out patches. 2. A peptide encompassing the putative CaM-binding site within the N-terminus of the channel protein binds Ca(2+)-CaM with high affinity, yet the ligand sensitivity of alpha2 channels is not modulated by CaM. 3. PKC-mediated phosphorylation increased the activation constant (K(1/2)) for cGMP from 19 to 56 microM and decreased the Hill coefficient (from 2.5 to 1.5). The change in ligand sensitivity involves phosphorylation of the serine residues S577 and S579 in the cGMP-binding domain. The increase in K(1/2) was completely abolished in mutant channels in which the two serine residues were replaced by alanine. 4. An antibody specific for the delta isoform of PKC strongly labels the cone outer segments. 5. Modulation of cGMP affinity of bovine alpha2 CNG channels by phosphorylation could play a role in the regulation of photoreceptor sensitivity.
Collapse
Affiliation(s)
- F Müller
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
187
|
Yao WD, Wu CF. Distinct roles of CaMKII and PKA in regulation of firing patterns and K(+) currents in Drosophila neurons. J Neurophysiol 2001; 85:1384-94. [PMID: 11287463 DOI: 10.1152/jn.2001.85.4.1384] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP-dependent protein kinase A (PKA) cascades have been implicated in neural mechanisms underlying learning and memory as supported by mutational analyses of the two enzymes in Drosophila. While there is mounting evidence for their roles in synaptic plasticity, less attention has been directed toward their regulation of neuronal membrane excitability and spike information coding. Here we report genetic and pharmacological analyses of the roles of PKA and CaMKII in the firing patterns and underlying K(+) currents in cultured Drosophila central neurons. Genetic perturbation of the catalytic subunit of PKA (DC0) did not alter the action potential duration but disrupted the frequency coding of spike-train responses to constant current injection in a subpopulation of neurons. In contrast, selective inhibition of CaMKII by the expression of an inhibitory peptide in ala transformants prolonged the spike duration but did not affect the spike frequency coding. Enhanced membrane excitability, indicated by spontaneous bursts of spikes, was observed in CaMKII-inhibited but not in PKA-diminished neurons. In wild-type neurons, the spike train firing patterns were highly reproducible under consistent stimulus conditions. However, disruption of either of these kinase pathways led to variable firing patterns in response to identical current stimuli delivered at a low frequency. Such variability in spike duration and frequency coding may impose problems for precision in signal processing in these protein kinase learning mutants. Pharmacological analyses of mutations that affect specific K(+) channel subunits demonstrated distinct effects of PKA and CaMKII in modulation of the kinetics and amplitude of different K(+) currents. The results suggest that PKA modulates Shaker A-type currents, whereas CaMKII modulates Shal-A type currents plus delayed rectifier Shab currents. Thus differential regulation of K(+) channels may influence the signal handling capability of neurons. This study provides support for the notion that, in addition to synaptic mechanisms, modulations in spike activity patterns may represent an important mechanism for learning and memory that should be explored more fully.
Collapse
Affiliation(s)
- W D Yao
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
188
|
Molokanova E, Kramer RH. Mechanism of inhibition of cyclic nucleotide-gated channel by protein tyrosine kinase probed with genistein. J Gen Physiol 2001; 117:219-34. [PMID: 11222626 PMCID: PMC2225614 DOI: 10.1085/jgp.117.3.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rod cyclic nucleotide-gated (CNG) channels are modulated by changes in tyrosine phosphorylation catalyzed by protein tyrosine kinases (PTKs) and phosphatases (PTPs). We used genistein, a PTK inhibitor, to probe the interaction between the channel and PTKs. Previously, we found that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel alpha-subunit (RETalpha), genistein triggers a noncatalytic inhibitory interaction between the PTK and the channel. These studies suggest that PTKs affects RETalpha channels in two ways: (1) by catalyzing phosphorylation of the channel protein, and (2) by allosterically regulating channel activation. Here, we study the mechanism of noncatalytic inhibition. We find that noncatalytic inhibition follows the same activity dependence pattern as catalytic modulation (phosphorylation): the efficacy and apparent affinity of genistein inhibition are much higher for closed than for fully activated channels. Association rates with the genistein-PTK complex were similar for closed and fully activated channels and independent of genistein concentration. Dissociation rates were 100 times slower for closed channels, which is consistent with a much higher affinity for genistein-PTK. Genistein-PTK affects channel gating, but not single channel conductance or the number of active channels. By analyzing single channel gating during genistein-PTK dissociation, we determined the maximal open probability for normal and genistein-PTK-bound channels. genistein-PTK decreases open probability by increasing the free energy required for opening, making opening dramatically less favorable. Ni(2+), which potentiates RETalpha channel gating, partially relieves genistein inhibition, possibly by disrupting the association between the genistein-PTK and the channel. Studies on chimeric channels containing portions of RETalpha, which exhibits genistein inhibition, and the rat olfactory CNG channel alpha-subunit, which does not, reveals that a domain containing S6 and flanking regions is the crucial for genistein inhibition and may constitute the genistein-PTK binding site. Thus, genistein-PTK stabilizes the closed state of the channel by interacting with portions of the channel that participate in gating.
Collapse
Affiliation(s)
- E Molokanova
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
189
|
Nevin ST, Haddrill JL, Lynch JW. A pore-lining glutamic acid in the rat olfactory cyclic nucleotide-gated channel controls external spermine block. Neurosci Lett 2000; 296:163-7. [PMID: 11109006 DOI: 10.1016/s0304-3940(00)01650-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spermine is a potent, voltage-dependent blocker of the olfactory cyclic nucleotide-gated channel from both the intracellular and extracellular sides. However, its sites of action are unknown. This study investigated the external spermine binding site in the rat CNCalpha3 subunit. Neutralization of a glutamic acid residue (E342Q) in the P-loop region eliminated voltage-dependence of block by externally applied spermine. The charge-conservative E342D mutation had little effect on spermine block. Thus, E342 forms the binding site for externally applied spermine. However, spermine remained a potent voltage-independent blocker of the E342Q mutant channel, suggesting that the mutation either created a novel binding site outside the membrane electrical field or that it dramatically changed the properties of the existing pore site.
Collapse
Affiliation(s)
- S T Nevin
- Department of Physiology and Pharmacology, University of Queensland, QLD 4072, Brisbane, Australia
| | | | | |
Collapse
|
190
|
Zheng J, Zagotta WN. Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 2000; 28:369-74. [PMID: 11144348 DOI: 10.1016/s0896-6273(00)00117-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Site-specific fluorescence recordings have shown great promise in understanding conformational changes in signaling proteins. The reported applications on ion channels have been limited to extracellular sites in whole oocyte preparations. We are now able to directly monitor gating movements of the intracellular domains of cyclic nucleotide-gated channels using simultaneous site-specific fluorescence recording and patchclamp current recording from inside-out patches. Fluorescence signals were reliably observed when fluorophore was covalently attached to a site between the cyclic nucleotide-binding domain and the pore. While iodide, an anionic quencher, has a higher quenching efficiency in the channel's closed state, thallium ion, a cationic quencher, has a higher quenching efficiency in the open state. The state and charge dependence of quenching suggests movements of charged or dipolar residues near the fluorophore during CNG channel activation.
Collapse
Affiliation(s)
- J Zheng
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
191
|
Abstract
Mammals can discriminate among a large number (> 10,000) of unique odorants. The most highly supported explanation for this ability is that olfactory neurons express a large number of seven transmembrane receptors that are not spatially organized at the level of the olfactory epithelium, but whose axonal projections form a distinct pattern within the olfactory bulb. The odor-induced signaling pathway in olfactory neurons includes a Gs-like protein (G(olf)) that activates a specific adenylyl cyclase (type III) isoform, resulting in elevations of cyclic AMP and subsequent activation of a cyclic nucleotide-gated channel. The channel also can be regulated by cyclic GMP. Recently, an olfactory neuron-specific guanylyl cyclase was discovered in rodents, and subsequently a large family of sensory neuronal guanylyl cyclases was identified in nematodes. These guanylyl cyclases are concentrated in the plasma membrane of the dendritic cilia and contain extracellular domains that retain many of the primary sequence characteristics of guanylyl cyclases known to be receptors for various peptides. Thus, the guanylyl cyclases appear to represent a second family of odorant/pheromone receptors.
Collapse
Affiliation(s)
- A D Gibson
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| | | |
Collapse
|
192
|
Gavazzo P, Picco C, Eismann E, Kaupp UB, Menini A. A point mutation in the pore region alters gating, Ca(2+) blockage, and permeation of olfactory cyclic nucleotide-gated channels. J Gen Physiol 2000; 116:311-26. [PMID: 10962010 PMCID: PMC2233693 DOI: 10.1085/jgp.116.3.311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon stimulation by odorants, Ca(2+) and Na(+) enter the cilia of olfactory sensory neurons through channels directly gated by cAMP. Cyclic nucleotide-gated channels have been found in a variety of cells and extensively investigated in the past few years. Glutamate residues at position 363 of the alpha subunit of the bovine retinal rod channel have previously been shown to constitute a cation-binding site important for blockage by external divalent cations and to control single-channel properties. It has therefore been assumed, but not proven, that glutamate residues at the corresponding position of the other cyclic nucleotide-gated channels play a similar role. We studied the corresponding glutamate (E340) of the alpha subunit of the bovine olfactory channel to determine its role in channel gating and in permeation and blockage by Ca(2+) and Mg(2+). E340 was mutated into either an aspartate, glycine, glutamine, or asparagine residue and properties of mutant channels expressed in Xenopus laevis oocytes were measured in excised patches. By single-channel recordings, we demonstrated that the open probabilities in the presence of cGMP or cAMP were decreased by the mutations, with a larger decrease observed on gating by cAMP. Moreover, we observed that the mutant E340N presented two conductance levels. We found that both external Ca(2+) and Mg(2+) powerfully blocked the current in wild-type and E340D mutants, whereas their blockage efficacy was drastically reduced when the glutamate charge was neutralized. The inward current carried by external Ca(2+) relative to Na(+) was larger in the E340G mutant compared with wild-type channels. In conclusion, we have confirmed that the residue at position E340 of the bovine olfactory CNG channel is in the pore region, controls permeation and blockage by external Ca(2+) and Mg(2+), and affects channel gating by cAMP more than by cGMP.
Collapse
Affiliation(s)
- Paola Gavazzo
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
| | - Cristiana Picco
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
| | - Elisabeth Eismann
- Institut für Biologische Informationsverarbeitung, 52425 Jülich, Germany
| | - U. Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, 52425 Jülich, Germany
| | - Anna Menini
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
- Biophysics Sector, International School for Advanced Studies, 34014 Trieste, Italy
| |
Collapse
|
193
|
Middendorf TR, Aldrich RW, Baylor DA. Modification of cyclic nucleotide-gated ion channels by ultraviolet light. J Gen Physiol 2000; 116:227-52. [PMID: 10919869 PMCID: PMC2229495 DOI: 10.1085/jgp.116.2.227] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We irradiated cyclic nucleotide-gated ion channels in situ with ultraviolet light to probe the role of aromatic residues in ion channel function. UV light reduced the current through excised membrane patches from Xenopus oocytes expressing the alpha subunit of bovine retinal cyclic nucleotide-gated channels irreversibly, a result consistent with permanent covalent modification of channel amino acids by UV light. The magnitude of the current reduction depended only on the total photon dose delivered to the patches, and not on the intensity of the exciting light, indicating that the functionally important photochemical modification(s) occurred from an excited state reached by a one-photon absorption process. The wavelength dependence of the channels' UV light sensitivity (the action spectrum) was quantitatively consistent with the absorption spectrum of tryptophan, with a small component at long wavelengths, possibly due to cystine absorption. This spectral analysis suggests that UV light reduced the currents at most wavelengths studied by modifying one or more "target" tryptophans in the channels. Comparison of the channels' action spectrum to the absorption spectrum of tryptophan in various solvents suggests that the UV light targets are in a water-like chemical environment. Experiments on mutant channels indicated that the UV light sensitivity of wild-type channels was not conferred exclusively by any one of the 10 tryptophan residues in a subunit. The similarity in the dose dependences of channel current reduction and tryptophan photolysis in solution suggests that photochemical modification of a small number of tryptophan targets in the channels is sufficient to decrease the currents.
Collapse
Affiliation(s)
- Thomas R. Middendorf
- Neurobiology Department, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| | - Richard W. Aldrich
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| | - Denis A. Baylor
- Neurobiology Department, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
194
|
Middendorf TR, Aldrich RW. Effects of ultraviolet modification on the gating energetics of cyclic nucleotide-gated channels. J Gen Physiol 2000; 116:253-82. [PMID: 10919870 PMCID: PMC2229492 DOI: 10.1085/jgp.116.2.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Middendorf et al. (Middendorf, T.R., R.W. Aldrich, and D.A. Baylor. 2000. J. Gen. Physiol. 116:227-252) showed that ultraviolet light decreases the current through cloned cyclic nucleotide-gated channels from bovine retina activated by high concentrations of cGMP. Here we probe the mechanism of the current reduction. The channels' open probability before irradiation, P(o)(0), determined the sign of the change in current amplitude that occurred upon irradiation. UV always decreased the current through channels with high initial open probabilities [P(o)(0) > 0.3]. Manipulations that promoted channel opening antagonized the current reduction by UV. In contrast, UV always increased the current through channels with low initial open probabilities [P(o)(0) < or = 0.02], and the magnitude of the current increase varied inversely with P(o)(0). The dual effects of UV on channel currents and the correlation of both effects with P(o)(0) suggest that the channels contain two distinct classes of UV target residues whose photochemical modification exerts opposing effects on channel gating. We present a simple model based on this idea that accounts quantitatively for the UV effects on the currents and provides estimates for the photochemical quantum yields and free energy costs of modifying the UV targets. Simulations indicate that UV modification may be used to produce and quantify large changes in channel gating energetics in regimes where the associated changes in open probability are not measurable by existing techniques.
Collapse
Affiliation(s)
- Thomas R. Middendorf
- Neurobiology Department, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| | - Richard W. Aldrich
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
195
|
Cadiou H, Sienaert I, Vanlingen S, Parys JB, Molle G, Duclohier H. Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia. Eur J Neurosci 2000; 12:2805-11. [PMID: 10971622 DOI: 10.1046/j.1460-9568.2000.00166.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to the activation of cAMP-dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5-trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip-dip method). In the presence of InsP3 (10 microM) and Ca2+ (100 nM), a current of 1.6 +/- 0.1 pA (mean +/- SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 +/- 5 pS and a reversal potential of -29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 +/- 0.4 ms and 42.0 +/- 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 microM) or heparin (10 microg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nM Ca2+ (Po = 0.50 +/- 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross-reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3-dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.
Collapse
Affiliation(s)
- H Cadiou
- UMR 6522 CNRS, IFRMP 23,Université de Rouen, F-76821 Mont Saint Aignan, France
| | | | | | | | | | | |
Collapse
|
196
|
Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 2000; 116:147-61. [PMID: 10919863 PMCID: PMC2229499 DOI: 10.1085/jgp.116.2.147] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP is a ubiquitous second messenger that coordinates diverse cellular functions. Current methods for measuring cAMP lack both temporal and spatial resolution, leading to the pervasive notion that, unlike Ca(2+), cAMP signals are simple and contain little information. Here we show the development of adenovirus-expressed cyclic nucleotide-gated channels as sensors for cAMP. Homomultimeric channels composed of the olfactory alpha subunit responded rapidly to jumps in cAMP concentration, and their cAMP sensitivity was measured to calibrate the sensor for intracellular measurements. We used these channels to detect cAMP, produced by either heterologously expressed or endogenous adenylyl cyclase, in both single cells and cell populations. After forskolin stimulation, the endogenous adenylyl cyclase in C6-2B glioma cells produced high concentrations of cAMP near the channels, yet the global cAMP concentration remained low. We found that rapid exchange of the bulk cytoplasm in whole-cell patch clamp experiments did not prevent the buildup of significant levels of cAMP near the channels in human embryonic kidney 293 (HEK-293) cells expressing an exogenous adenylyl cyclase. These results can be explained quantitatively by a cell compartment model in which cyclic nucleotide-gated channels colocalize with adenylyl cyclase in microdomains, and diffusion of cAMP between these domains and the bulk cytosol is significantly hindered. In agreement with the model, we measured a slow rate of cAMP diffusion from the whole-cell patch pipette to the channels (90% exchange in 194 s, compared with 22-56 s for substances that monitor exchange with the cytosol). Without a microdomain and restricted diffusional access to the cytosol, we are unable to account for all of the results. It is worth noting that in models of unrestricted diffusion, even in extreme proximity to adenylyl cyclase, cAMP does not reach high enough concentrations to substantially activate PKA or cyclic nucleotide-gated channels, unless the entire cell fills with cAMP. Thus, the microdomains should facilitate rapid and efficient activation of both PKA and cyclic nucleotide-gated channels, and allow for local feedback control of adenylyl cyclase. Localized cAMP signals should also facilitate the differential regulation of cellular targets.
Collapse
Affiliation(s)
- Thomas C. Rich
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Kent A. Fagan
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Hiroko Nakata
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jerome Schaack
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Dermot M.F. Cooper
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jeffrey W. Karpen
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262
| |
Collapse
|
197
|
Wu S, Moore TM, Brough GH, Whitt SR, Chinkers M, Li M, Stevens T. Cyclic nucleotide-gated channels mediate membrane depolarization following activation of store-operated calcium entry in endothelial cells. J Biol Chem 2000; 275:18887-96. [PMID: 10764797 DOI: 10.1074/jbc.m002795200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium agonists induce membrane depolarization in endothelial cells through an unknown mechanism. Present studies tested the hypothesis that pulmonary artery endothelial cells express a cyclic nucleotide-gated (CNG) cation channel activated by store-operated calcium entry to produce membrane depolarization. In the whole-cell configuration, voltage-clamped cells revealed a large non-inactivating, outwardly rectifying cationic current in the absence of extra- or intracellular Ca(2+) that was reduced upon replenishment of Ca(2+). The inward current was non-selective for K(+), Na(+), Cs(+), and Rb(+) and was not inhibited by high tetraethylammonium concentrations. cAMP and cGMP stimulated the current and changed the cation permeability to favor Na(+). Moreover, 8-bromo-cAMP stimulated the current in voltage-clamped cells in the perforated patch mode. The cationic current was inhibited by the CNG channel blocker LY83,583, and reverse transcriptase-polymerase chain reaction cloning identified expression of a CNG channel resembling that seen in olfactory neurons. Activation of store-operated calcium entry using thapsigargin increased a current through the CNG channel. Stimulation of the current paralleled pulmonary artery endothelial cell membrane depolarization, and both the current and membrane depolarization were abolished using LY83,583. Taken together, these data demonstrate activation of store-operated calcium entry stimulates a CNG channel producing membrane depolarization. Such membrane depolarization may contribute to slow feedback inhibition of store-operated calcium entry.
Collapse
Affiliation(s)
- S Wu
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Molokanova E, Savchenko A, Kramer RH. Interactions of cyclic nucleotide-gated channel subunits and protein tyrosine kinase probed with genistein. J Gen Physiol 2000; 115:685-96. [PMID: 10828243 PMCID: PMC2232887 DOI: 10.1085/jgp.115.6.685] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cGMP sensitivity of cyclic nucleotide-gated (CNG) channels can be modulated by changes in phosphorylation catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases. Previously, we used genistein, a PTK inhibitor, to probe the interaction between PTKs and homomeric channels comprised of alpha subunits (RETalpha) of rod photoreceptor CNG channels expressed in Xenopus oocytes. We showed that in addition to inhibiting phosphorylation, genistein triggers a noncatalytic interaction between PTKs and homomeric RETalpha channels that allosterically inhibits channel gating. Here, we show that native CNG channels from rods, cones, and olfactory receptor neurons also exhibit noncatalytic inhibition induced by genistein, suggesting that in each of these sensory cells, CNG channels are part of a regulatory complex that contains PTKs. Native CNG channels are heteromers, containing beta as well as alpha subunits. To determine the contributions of alpha and beta subunits to genistein inhibition, we compared the effect of genistein on native, homomeric (RETalpha and OLFalpha), and heteromeric (RETalpha+beta, OLFalpha+beta, and OLFalpha+RETbeta) CNG channels. We found that genistein only inhibits channels that contain either the RETalpha or the OLFbeta subunits. This finding, along with other observations about the maximal effect of genistein and the Hill coefficient of genistein inhibition, suggests that the RETalpha and OLFbeta subunits contain binding sites for the PTK, whereas RETbeta and OLFalpha subunits do not.
Collapse
Affiliation(s)
- Elena Molokanova
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101
| | - Alexei Savchenko
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101
| | - Richard H. Kramer
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101
| |
Collapse
|
199
|
Lang R, Lee G, Liu W, Tian S, Rafi H, Orias M, Segal AS, Desir GV. KCNA10: a novel ion channel functionally related to both voltage-gated potassium and CNG cation channels. Am J Physiol Renal Physiol 2000; 278:F1013-21. [PMID: 10836990 DOI: 10.1152/ajprenal.2000.278.6.f1013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory previously cloned a novel rabbit gene (Kcn1), expressed in kidney, heart, and aorta, and predicted to encode a protein with 58% amino acid identity with the K channel Shaker Kv1.3 (Yao X et al. Proc Natl Acad Sci USA 92: 11711-11715, 1995). Because Kcn1 did not express well (peak current in Xenopus laevis oocytes of 0.3 microA at +60 mV), the human homolog (KCNA10) was isolated, and its expression was optimized in oocytes. KCNA10 mediates voltage-gated K(+) currents that exhibit minimal steady-state inactivation. Ensemble currents of 5-10 microA at +40 mV were consistently recorded from injected oocytes. Channels are closed at the holding potential of -80 mV but are progressively activated by depolarizations more positive than -30 mV, with half-activation at +3.5 +/- 2.5 mV. The channel displays an unusual inhibitor profile because, in addition to being blocked by classical K channel blockers (barium tetraethylammonium and 4-aminopyridine), it is also sensitive to inhibitors of cyclic nucleotide-gated (CNG) cation channels (verapamil and pimozide). Tail-current analysis shows a reversal potential shift of 47 mV/decade change in K concentration, indicating a K-to-Na selectivity ratio of at least 15:1. The phorbol ester phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibited whole cell current by 42%. Analysis of single-channel currents reveals a conductance of approximately 11 pS. We conclude KCNA10 is a novel human voltage-gated K channel with features common to both K-selective and CNG cation channels. Given its distribution in renal blood vessels and heart, we speculate that KCNA10 may be involved in regulating the tone of renal vascular smooth muscle and may also participate in the cardiac action potential.
Collapse
Affiliation(s)
- R Lang
- University of Vermont, Burlington 05446, USA
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Miyazu M, Tanimura T, Sokabe M. Molecular cloning and characterization of a putative cyclic nucleotide-gated channel from Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2000; 9:283-292. [PMID: 10886412 DOI: 10.1046/j.1365-2583.2000.00186.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have cloned a cDNA encoding a putative cyclic nucleotide-gated (CNG) channel from Drosophila melanogaster. The N-terminal half of the predicted protein, designated as CNGL, shows a high degree of sequence similarity with the known CNG channel proteins. CNGL has a long hydrophilic C-terminal stretch that is absent in other CNG channels. Northern blot analysis revealed that the messenger RNA (mRNA) corresponding to the size of the cloned cDNA is expressed in Drosophila heads. Immunolocalization studies showed that CNGL is expressed in the brain, including the medulla, lobulla and lobulla plate, the antennal lobe glomeruli, and mushroom bodies. These results suggest a possible role of the putative CNGL channel in the processing of visual and olfactory information in the nervous system of Drosophila.
Collapse
Affiliation(s)
- M Miyazu
- Department of Physiology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|