151
|
Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, Gan L. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell 2016; 27:3357-3368. [PMID: 27605704 PMCID: PMC5170867 DOI: 10.1091/mbc.e16-07-0506] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022] Open
Abstract
Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin-nucleosomes-are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an "open" configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome-nucleosome associations.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sachiko Tamura
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore.,Department of Pharmacology, National University of Singapore, Singapore 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
152
|
|
153
|
Multiscale coarse-grained modelling of chromatin components: DNA and the nucleosome. Adv Colloid Interface Sci 2016; 232:36-48. [PMID: 26956528 DOI: 10.1016/j.cis.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
Abstract
To model large biomolecular systems, such as cell and organelles an atomistic description is not currently achievable and is not generally practical. Therefore, simplified coarse-grained (CG) modelling becomes a necessity. One of the most important cellular components is chromatin, a large DNA-protein complex where DNA is highly compacted. Recent progress in coarse graining modelling of the major chromatin components, double helical DNA and the nucleosome core particle (NCP) is presented. First, general principles and approaches allowing rigorous bottom-to-top generation of interaction potentials in the CG models are presented. Then, recent CG models of DNA are reviewed and their adequacy is benchmarked against experimental data on the salt dependence of DNA flexibility (persistence length). Furthermore, a few recent CG models of the NCP are described and their application for studying salt-dependent NCP-NCP interaction is discussed. An example of a multiscale approach to CG modelling of chromatin is presented where interactions and self-assembly of thousands of NCPs in solution are observed.
Collapse
|
154
|
Eslami-Mossallam B, Schiessel H, van Noort J. Nucleosome dynamics: Sequence matters. Adv Colloid Interface Sci 2016; 232:101-113. [PMID: 26896338 DOI: 10.1016/j.cis.2016.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
About three quarter of all eukaryotic DNA is wrapped around protein cylinders, forming nucleosomes. Even though the histone proteins that make up the core of nucleosomes are highly conserved in evolution, nucleosomes can be very different from each other due to posttranslational modifications of the histones. Another crucial factor in making nucleosomes unique has so far been underappreciated: the sequence of their DNA. This review provides an overview of the experimental and theoretical progress that increasingly points to the importance of the nucleosomal base pair sequence. Specifically, we discuss the role of the underlying base pair sequence in nucleosome positioning, sliding, breathing, force-induced unwrapping, dissociation and partial assembly and also how the sequence can influence higher-order structures. A new view emerges: the physical properties of nucleosomes, especially their dynamical properties, are determined to a large extent by the mechanical properties of their DNA, which in turn depends on DNA sequence.
Collapse
|
155
|
Ghirlando R, Felsenfeld G. Chromatin structure outside and inside the nucleus. Biopolymers 2016; 99:225-32. [PMID: 23348669 DOI: 10.1002/bip.22157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/07/2012] [Indexed: 11/09/2022]
Abstract
The structure of the 30-nm chromatin fiber has provided, over the years, an important reference in chromatin studies. Originally derived from electron microscopic studies of soluble chromatin fibers released by restriction digestion, the gross structural features of such fragments have been supported by biophysical methods such as low angle X-ray and neutron scattering, sedimentation, light scattering, and electric dichroism. Electron microscopy and sedimentation velocity measurements demonstrated that reconstituted chromatin fibers, prepared from repeating arrays of high affinity nucleosome positioning sequences, retain the same overall features as observed for native chromatin fibers. It had been suggested that the 30 nm fiber might be the form assumed in vivo by transcriptionally silent chromatin, but individual gene or genome-wide studies of chromatin released from nuclei do not reveal any such simple correlation. Furthermore, even though the 30 nm fiber has been thought to represent an intermediate in the hierarchical folding of DNA into chromosomes, most analyses of chromatin folding within the nucleus do not detect any regular extended compact structures. However, there are important exceptions in chicken erythroid cell nuclei as well as in transcribed regions that form extended loops. Localized domains within the nucleus, either at the surface of chromosome domains or constrained as a specialized kind of constitutive heterochromatin by specific DNA binding proteins, may adopt 30 nm fiber-like structures.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540
| | | |
Collapse
|
156
|
Abstract
SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.
Collapse
|
157
|
Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, Szerlong H, Krause C, Herman J, Seidel E, DeLuca J, Ishikawa T, Hansen JC. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J 2016; 35:1115-32. [PMID: 27072995 PMCID: PMC4868957 DOI: 10.15252/embj.201592660] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 03/08/2016] [Indexed: 11/10/2022] Open
Abstract
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Japan
| | - Ryan Rogge
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Sachiko Tamura
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Japan XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Japan
| | | | - Heather Szerlong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Christine Krause
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jake Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Erik Seidel
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
158
|
Dans PD, Walther J, Gómez H, Orozco M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016; 37:29-45. [DOI: 10.1016/j.sbi.2015.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
|
159
|
Liquid-like behavior of chromatin. Curr Opin Genet Dev 2016; 37:36-45. [DOI: 10.1016/j.gde.2015.11.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022]
|
160
|
Friedman DA, Tait L, Vaughan ATM. Influence of nuclear structure on the formation of radiation-induced lethal lesions. Int J Radiat Biol 2016; 92:229-40. [DOI: 10.3109/09553002.2016.1144941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
161
|
Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proc Natl Acad Sci U S A 2016; 113:1238-43. [PMID: 26787893 DOI: 10.1073/pnas.1518280113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access.
Collapse
|
162
|
Abstract
The linear and three-dimensional arrangement and composition of chromatin in eukaryotic genomes underlies the mechanisms directing gene regulation. Understanding this organization requires the integration of many data types and experimental results. Here we describe the approach of integrating genome-wide protein-DNA binding data to determine chromatin states. To investigate spatial aspects of genome organization, we present a detailed description of how to run stochastic simulations of protein movements within a simulated nucleus in 3D. This systems level approach enables the development of novel questions aimed at understanding the basic mechanisms that regulate genome dynamics.
Collapse
Affiliation(s)
- Sven Sewitz
- Babraham Institute, Nuclear Dynamics Programme, Cambridge, CB22 3AT, UK
| | - Karen Lipkow
- Babraham Institute, Nuclear Dynamics Programme, Cambridge, CB22 3AT, UK.
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
163
|
Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 2015; 112:E6456-65. [PMID: 26499245 PMCID: PMC4664323 DOI: 10.1073/pnas.1518552112] [Citation(s) in RCA: 1162] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently used in situ Hi-C to create kilobase-resolution 3D maps of mammalian genomes. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that the observed contact domains are inconsistent with the equilibrium state for an ordinary condensed polymer. Combining Hi-C data and novel mathematical theorems, we show that contact domains are also not consistent with a fractal globule. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during polymer condensation leads to formation of an anisotropic "tension globule." In the other, CCCTC-binding factor (CTCF) and cohesin act together to extrude unknotted loops during interphase. Both models are consistent with the observed contact domains and with the observation that contact domains tend to form inside loops. However, the extrusion model explains a far wider array of observations, such as why loops tend not to overlap and why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The convergent rule correctly predicts the affected loops in every case. Moreover, the extrusion model accurately predicts in silico the 3D maps resulting from each experiment using only the location of CTCF-binding sites in the WT. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.
Collapse
Affiliation(s)
- Adrian L Sanborn
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030; Department of Computer Science, Stanford University, Stanford, CA 94305
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; School of Medicine, Stanford University, Stanford, CA 94305
| | - Su-Chen Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Neva C Durand
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Miriam H Huntley
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Andrew I Jewett
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Ivan D Bochkov
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Dharmaraj Chinnappan
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Ashok Cutkosky
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | - Jian Li
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030
| | - Kristopher P Geeting
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030
| | | | | | - Doug McKenna
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; Mathemaesthetics, Inc., Boulder, CO 80306
| | - Elena K Stamenova
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030; Broad Institute of MIT and Harvard, Cambridge, MA 02139;
| |
Collapse
|
164
|
Vicent GP, Wright RHG, Beato M. Linker histones in hormonal gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:520-5. [PMID: 26518266 DOI: 10.1016/j.bbagrm.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.
Collapse
Affiliation(s)
- G P Vicent
- Centre de Regulació Genòmica (CRG), Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - R H G Wright
- Centre de Regulació Genòmica (CRG), Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - M Beato
- Centre de Regulació Genòmica (CRG), Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| |
Collapse
|
165
|
Crane-Robinson C. Linker histones: History and current perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:431-5. [PMID: 26459501 DOI: 10.1016/j.bbagrm.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
Abstract
Although the overall structure of the fifth histone (linker histone, H1) is understood, its location on the nucleosome is only partially defined. Whilst it is clear that H1 helps condense the chromatin fibre, precisely how this is achieved remains to be determined. H1 is not a general gene repressor in that although it must be displaced from transcription start sites for activity to occur, there is only partial loss along the body of genes. How the deposition and removal of H1 occurs in particular need of further study. Linker histones are highly abundant nuclear proteins about which we know too little.
Collapse
Affiliation(s)
- C Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, PO1 2DT, UK
| |
Collapse
|
166
|
Abstract
Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes.
Collapse
|
167
|
Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, Kuipers J, Wolters AHG, Nishida K, Romashchenko AV, Postberg J, Lipps H, Berezikov E, Sibon OCM, Giepmans BNG, Lansdorp PM. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res 2015; 44:152-63. [PMID: 26384414 PMCID: PMC4705689 DOI: 10.1093/nar/gkv900] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/21/2015] [Indexed: 12/27/2022] Open
Abstract
Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.
Collapse
Affiliation(s)
- Roland F Hoffmann
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Yuri M Moshkin
- Department of Biochemistry, Erasmus University Medical Center, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Ruby D Kalicharan
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Kazuki Nishida
- Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Aleksander V Romashchenko
- Department of Biochemistry, Erasmus University Medical Center, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Jan Postberg
- Helios Medical Centre Wuppertal, Paediatrics Centre, Witten/Herdecke University, Wuppertal, Germany
| | - Hans Lipps
- Institute of Cell Biology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ody C M Sibon
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medicine, University of British Columbia Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
168
|
Abstract
The compaction of diffuse interphase chromatin into stable mitotic chromosomes enables the segregation of replicated DNA to daughter cells. Two new studies characterise, both in vivo and in vitro, the essential contribution of the vertebrate condensin complex to chromosome organisation.
Collapse
Affiliation(s)
- Rahul Thadani
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Frank Uhlmann
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
169
|
Müller O, Kepper N, Schöpflin R, Ettig R, Rippe K, Wedemann G. Changing chromatin fiber conformation by nucleosome repositioning. Biophys J 2015; 107:2141-50. [PMID: 25418099 DOI: 10.1016/j.bpj.2014.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022] Open
Abstract
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ?10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.
Collapse
Affiliation(s)
- Oliver Müller
- Institute for Applied Computer Science, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Nick Kepper
- Deutsches Krebsforschungszentrum and BioQuant, Heidelberg, Germany
| | - Robert Schöpflin
- Institute for Applied Computer Science, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Ramona Ettig
- Deutsches Krebsforschungszentrum and BioQuant, Heidelberg, Germany
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum and BioQuant, Heidelberg, Germany
| | - Gero Wedemann
- Institute for Applied Computer Science, University of Applied Sciences Stralsund, Stralsund, Germany.
| |
Collapse
|
170
|
Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C. Cell 2015; 162:108-19. [PMID: 26119342 DOI: 10.1016/j.cell.2015.05.048] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
We describe a Hi-C-based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, "gene looping" factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction.
Collapse
Affiliation(s)
- Tsung-Han S Hsieh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Bryan Lajoie
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
171
|
Ozer G, Luque A, Schlick T. The chromatin fiber: multiscale problems and approaches. Curr Opin Struct Biol 2015; 31:124-39. [PMID: 26057099 DOI: 10.1016/j.sbi.2015.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails or linker histones to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modeling techniques at the atomic, mesoscopic, and chromosomal scales with a view toward developing multiscale computational strategies to integrate such findings. Innovative modeling methods that connect molecular to chromosomal scales are crucial for interpreting experiments and eventually deciphering the complex dynamic organization and function of chromatin in the cell.
Collapse
Affiliation(s)
- Gungor Ozer
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA
| | - Antoni Luque
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA; Current address: Department of Mathematics & Statistics and Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.
| |
Collapse
|
172
|
Abstract
How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.
Collapse
Affiliation(s)
- Marc Kschonsak
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
173
|
Ricci MA, Manzo C, García-Parajo MF, Lakadamyali M, Cosma MP. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 2015; 160:1145-58. [PMID: 25768910 DOI: 10.1016/j.cell.2015.01.054] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/10/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022]
Abstract
Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.
Collapse
Affiliation(s)
- Maria Aurelia Ricci
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Carlo Manzo
- ICFO, Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
| | - María Filomena García-Parajo
- ICFO, Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Melike Lakadamyali
- ICFO, Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
174
|
Cheng TMK, Heeger S, Chaleil RAG, Matthews N, Stewart A, Wright J, Lim C, Bates PA, Uhlmann F. A simple biophysical model emulates budding yeast chromosome condensation. eLife 2015; 4:e05565. [PMID: 25922992 PMCID: PMC4413874 DOI: 10.7554/elife.05565] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/31/2015] [Indexed: 12/18/2022] Open
Abstract
Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chromosomes. Comparisons of computational and experimental (4C) interaction maps, and other biophysical features, allow us to predict a mode of condensin action. Stochastic condensin-mediated pairwise interactions along the nucleosome chain generate native-like chromosome features and recapitulate chromosome compaction and individualization during mitotic condensation. Higher order interactions between condensin binding sites explain the data less well. Our results suggest that basic assumptions about chromatin behavior go a long way to explain chromosome architecture and are able to generate a molecular model of what the inside of a chromosome is likely to look like.
Collapse
Affiliation(s)
- Tammy MK Cheng
- Biomolecular Modelling Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastian Heeger
- Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing Facility, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics Service, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jon Wright
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Paul A Bates
- Biomolecular Modelling Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
175
|
Abstract
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.
Collapse
|
176
|
Li G, Zhu P. Structure and organization of chromatin fiber in the nucleus. FEBS Lett 2015; 589:2893-904. [PMID: 25913782 DOI: 10.1016/j.febslet.2015.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
Eukaryotic genomes are organized hierarchically into chromatin structures by histones. Despite extensive research for over 30 years, not only the fundamental structure of the 30-nm chromatin fiber is being debated, but the actual existence of such fiber remains hotly contested. In this review, we focus on the most recent progress in elucidating the structure of the 30-nm fiber upon in vitro reconstitution, and its possible organization inside the nucleus. In addition, we discuss the roles of linker histone H1 as well as the importance of specific nucleosome-nucleosome interactions in the formation of the 30-nm fiber. Finally, we discuss the involvement of structural variations and epigenetic mechanisms available for the regulation of this chromatin form.
Collapse
Affiliation(s)
- Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
177
|
Lakadamyali M, Cosma MP. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 2015; 589:3023-30. [PMID: 25896023 DOI: 10.1016/j.febslet.2015.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/29/2022]
Abstract
In the recent years it has become clear that our genome is not randomly organized and its architecture is tightly linked to its function. While genomic studies have given much insight into genome organization, they mostly rely on averaging over large populations of cells, are not compatible with living cells and have limited resolution. For studying genome organization in single living cells, microscopy is indispensable. In addition, the visualization of biological structures helps to understand their function. Up to now, fluorescence microscopy has allowed us to probe the larger scale organization of chromosome territories in the micron length scales, however, the smaller length scales remained invisible due to the diffraction limited spatial resolution of fluorescence microscopy. Thanks to the advent of super-resolution microscopy methods, we are finally starting to be able to probe the nanoscale organization of chromatin in vivo and these methods have the potential to greatly advance our knowledge about chromatin structure and function relationship.
Collapse
Affiliation(s)
- Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Barcelona, Spain.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
178
|
Risca VI, Greenleaf WJ. Unraveling the 3D genome: genomics tools for multiscale exploration. Trends Genet 2015; 31:357-72. [PMID: 25887733 DOI: 10.1016/j.tig.2015.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.
Collapse
Affiliation(s)
- Viviana I Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
179
|
Meng H, Andresen K, van Noort J. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Res 2015; 43:3578-90. [PMID: 25779043 PMCID: PMC4402534 DOI: 10.1093/nar/gkv215] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/03/2015] [Indexed: 11/14/2022] Open
Abstract
Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays.
Collapse
Affiliation(s)
- He Meng
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Kurt Andresen
- Department of Physics, Gettysburg College, Gettysburg, PA 17325, USA
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
180
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
181
|
Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064116. [PMID: 25563431 DOI: 10.1088/0953-8984/27/6/064116] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
182
|
Johnson J, Brackley CA, Cook PR, Marenduzzo D. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064119. [PMID: 25563801 DOI: 10.1088/0953-8984/27/6/064119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.
Collapse
Affiliation(s)
- J Johnson
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | | | | | | |
Collapse
|
183
|
Brackley CA, Allan J, Keszenman-Pereyra D, Marenduzzo D. Topological constraints strongly affect chromatin reconstitution in silico. Nucleic Acids Res 2015; 43:63-73. [PMID: 25432958 PMCID: PMC4288149 DOI: 10.1093/nar/gku1085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022] Open
Abstract
The fundamental building block of chromatin, and of chromosomes, is the nucleosome, a composite material made up from DNA wrapped around a histone octamer. In this study we provide the first computer simulations of chromatin self-assembly, starting from DNA and histone proteins, and use these to understand the constraints which are imposed by the topology of DNA molecules on the creation of a polynucleosome chain. We take inspiration from the in vitro chromatin reconstitution protocols which are used in many experimental studies. Our simulations indicate that during self-assembly, nucleosomes can fall into a number of topological traps (or local folding defects), and this may eventually lead to the formation of disordered structures, characterised by nucleosome clustering. Remarkably though, by introducing the action of topological enzymes such as type I and II topoisomerase, most of these defects can be avoided and the result is an ordered 10-nm chromatin fibre. These findings provide new insight into the biophysics of chromatin formation, both in the context of reconstitution in vitro and in terms of the topological constraints which must be overcome during de novo nucleosome formation in vivo, e.g. following DNA replication or repair.
Collapse
Affiliation(s)
- C A Brackley
- SUPA, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - J Allan
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - D Keszenman-Pereyra
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - D Marenduzzo
- SUPA, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
184
|
Sankaranarayanan K, Nikjoo H. Genome-based, mechanism-driven computational modeling of risks of ionizing radiation: The next frontier in genetic risk estimation? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 764:1-15. [PMID: 26041262 DOI: 10.1016/j.mrrev.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Research activity in the field of estimation of genetic risks of ionizing radiation to human populations started in the late 1940s and now appears to be passing through a plateau phase. This paper provides a background to the concepts, findings and methods of risk estimation that guided the field through the period of its growth to the beginning of the 21st century. It draws attention to several key facts: (a) thus far, genetic risk estimates have been made indirectly using mutation data collected in mouse radiation studies; (b) important uncertainties and unsolved problems remain, one notable example being that we still do not know the sensitivity of human female germ cells to radiation-induced mutations; and (c) the concept that dominated the field thus far, namely, that radiation exposures to germ cells can result in single gene diseases in the descendants of those exposed has been replaced by the concept that radiation exposure can cause DNA deletions, often involving more than one gene. Genetic risk estimation now encompasses work devoted to studies on DNA deletions induced in human germ cells, their expected frequencies, and phenotypes and associated clinical consequences in the progeny. We argue that the time is ripe to embark on a human genome-based, mechanism-driven, computational modeling of genetic risks of ionizing radiation, and we present a provisional framework for catalyzing research in the field in the 21st century.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, P9-02, Stockholm SE 17176, Sweden
| | - H Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, P9-02, Stockholm SE 17176, Sweden.
| |
Collapse
|
185
|
Affiliation(s)
- Robert K McGinty
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
186
|
Dekker J. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 2014; 7:25. [PMID: 25435919 PMCID: PMC4247682 DOI: 10.1186/1756-8935-7-25] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/15/2014] [Indexed: 01/19/2023] Open
Abstract
Genetic and epigenetic inheritance through mitosis is critical for dividing cells to maintain their state. This process occurs in the context of large-scale re-organization of chromosome conformation during prophase leading to the formation of mitotic chromosomes, and during the reformation of the interphase nucleus during telophase and early G1. This review highlights how recent studies over the last 5 years employing chromosome conformation capture combined with classical models of chromosome organization based on decades of microscopic observations, are providing new insights into the three-dimensional organization of chromatin inside the interphase nucleus and within mitotic chromosomes. One striking observation is that interphase genome organization displays cell type-specific features that are related to cell type-specific gene expression, whereas mitotic chromosome folding appears universal and tissue invariant. This raises the question of whether or not there is a need for an epigenetic memory for genome folding. Herein, the two different folding states of mammalian genomes are reviewed and then models are discussed wherein instructions for cell type-specific genome folding are locally encoded in the linear genome and transmitted through mitosis, e.g., as open chromatin sites with or without continuous binding of transcription factors. In the next cell cycle these instructions are used to re-assemble protein complexes on regulatory elements which then drive three-dimensional folding of the genome from the bottom up through local action and self-assembly into higher order levels of cell type-specific organization. In this model, no explicit epigenetic memory for cell type-specific chromosome folding is required.
Collapse
Affiliation(s)
- Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-0103 USA
| |
Collapse
|
187
|
Hamano T, Dwiranti A, Kaneyoshi K, Fukuda S, Kometani R, Nakao M, Takata H, Uchiyama S, Ohmido N, Fukui K. Chromosome interior observation by focused ion beam/scanning electron microscopy (FIB/SEM) using ionic liquid technique. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1340-7. [PMID: 25010743 DOI: 10.1017/s143192761401280x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Attempts to elucidate chromosome structure have long remained elusive. Electron microscopy is useful for chromosome structure research because of its high resolution and magnification. However, biological samples such as chromosomes need to be subjected to various preparation steps, including dehydration, drying, and metal/carbon coating, which may induce shrinkage and artifacts. The ionic liquid technique has recently been developed and it enables sample preparation without dehydration, drying, or coating, providing a sample that is closer to the native condition. Concurrently, focused ion beam/scanning electron microscopy (FIB/SEM) has been developed, allowing the investigation and direct analysis of chromosome interiors. In this study, we investigated chromosome interiors by FIB/SEM using plant and human chromosomes prepared by the ionic liquid technique. As a result, two types of chromosomes, with and without cavities, were visualized, both for barley and human chromosomes prepared by critical point drying. However, chromosome interiors were revealed only as a solid structure, lacking cavities, when prepared by the ionic liquid technique. Our results suggest that the existence and size of cavities depend on the preparation procedures. We conclude that combination of the ionic liquid technique and FIB/SEM is a powerful tool for chromosome study.
Collapse
Affiliation(s)
- Tohru Hamano
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| | - Astari Dwiranti
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| | - Kohei Kaneyoshi
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| | - Shota Fukuda
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| | - Reo Kometani
- 2Laboratory of Nano Mechanics,Department of Mechanical Engineering,Graduate School of Engineering,The University of Tokyo,Hongo,Bunkyo,Tokyo 113-8685,Japan
| | - Masayuki Nakao
- 3Department of Engineering Synthesis,Graduate School of Engineering,The University of Tokyo,Hongo,Bunkyo,Tokyo 113-8685,Japan
| | - Hideaki Takata
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| | - Susumu Uchiyama
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| | - Nobuko Ohmido
- 4Department of Human Environmental Science,Division of Living Environment,Graduate School of Human Development and Environment,Kobe University,Tsurukabuto,Nada,Kobe 657-8501,Japan
| | - Kiichi Fukui
- 1Laboratory of Dynamic Cell Biology,Department of Biotechnology,Graduate School of Engineering,Osaka University,Yamadaoka,Suita,Osaka 565-0871,Japan
| |
Collapse
|
188
|
Ausió J, González-Romero R, Woodcock CL. Comparative structure of vertebrate sperm chromatin. J Struct Biol 2014; 188:142-55. [PMID: 25264147 DOI: 10.1016/j.jsb.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
Abstract
A consistent feature of sperm nuclei is its exceptionally compact state in comparison with somatic nuclei. Here, we have examined the structural organization of sperm chromatin from representatives of three vertebrate lineages, bony fish (Danio rerio), birds (Gallus gallus domesticus) and mammals (Mus musculus) using light and transmission electron microscopy (TEM). Although the three sperm nuclei are all highly compact, they differ in morphology and in the complement of compaction-inducing proteins. Whereas zebrafish sperm retain somatic histones and a nucleosomal organization, in the rooster and mouse, histones are largely replaced by small, arginine-rich protamines. In contrast to the mouse, the rooster protamine contains no cysteine residues and lacks the potential stabilizing effects of S-S bonds. Protamine driven chromatin compaction results in a stable, highly condensed chromatin, markedly different from the somatic nucleosome-based beads-on-a-string architecture, but its structure remains poorly understood. When prepared gently for whole mount TEM, the rooster and mouse sperm chromatin reveal striking rod-like units 40-50 nm in width. Also present in the mouse, which has very flattened sperm nuclei, but not rooster, where nuclei take the form of elongated cylinders, are toroidal shaped structures, with an external diameter of about 90 nm. In contrast, similarly prepared zebrafish sperm exhibit nucleosomal chromatin. We also examined the early stages in the binding of salmine (the salmon protamine) to defined sequence DNA. These images suggest an initial side-by-side binding of linear DNA-protamine complexes leading to the nucleation of thin, flexible rods with the potential to bend, allowing the ends to come into contact and fuse to form toroidal structures. We discuss the relationship between these in vitro observations and the rods and toroids seen in nuclei, and suggest an explanation for the apparent absence of these structures in TEM images of fully condensed sperm nuclei.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Rodrigo González-Romero
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
189
|
Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 2014; 124:81-94. [DOI: 10.1007/s00412-014-0486-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
|
190
|
Maeshima K, Imai R, Hikima T, Joti Y. Chromatin structure revealed by X-ray scattering analysis and computational modeling. Methods 2014; 70:154-61. [PMID: 25168089 DOI: 10.1016/j.ymeth.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/23/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
It remains unclear how the 2m of human genomic DNA is organized in each cell. The textbook model has long assumed that the 11-nm-diameter nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, is folded into a 30-nm chromatin fiber. One of the classical models assumes that the 30-nm chromatin fiber is further folded helically to form a larger fiber. Small-angle X-ray scattering (SAXS) is a powerful method for investigating the bulk structure of interphase chromatin and mitotic chromosomes. SAXS can detect periodic structures in biological materials in solution. In our SAXS results, no structural feature larger than 11 nm was detected. Combining this with a computational analysis of "in silico condensed chromatin" made it possible to understand more about the X-ray scattering profiles and suggested that the chromatin in interphase nuclei and mitotic chromosomes essentially consists of irregularly folded nucleosome fibers lacking the 30-nm chromatin structure. In this article, we describe the experimental details of our SAXS and modeling systems. We also discuss other methods for investigating the chromatin structure in cells.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| | - Ryosuke Imai
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
191
|
Affiliation(s)
- Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
192
|
Chromatin fiber polymorphism triggered by variations of DNA linker lengths. Proc Natl Acad Sci U S A 2014; 111:8061-6. [PMID: 24847063 DOI: 10.1073/pnas.1315872111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.
Collapse
|
193
|
Tsuchiya M, Hashimoto M, Takenaka Y, Motoike IN, Yoshikawa K. Global genetic response in a cancer cell: self-organized coherent expression dynamics. PLoS One 2014; 9:e97411. [PMID: 24831017 PMCID: PMC4022610 DOI: 10.1371/journal.pone.0097411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome.
Collapse
Affiliation(s)
- Masa Tsuchiya
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, School of Media and Governance, Keio University, Fujisawa, Japan
- * E-mail: (MT); (KY)
| | - Midori Hashimoto
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Yoshiko Takenaka
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ikuko N. Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
- * E-mail: (MT); (KY)
| |
Collapse
|
194
|
Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell 2014; 53:819-30. [PMID: 24606920 DOI: 10.1016/j.molcel.2014.02.014] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/04/2013] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
Abstract
Nucleosomes are barriers to transcription in vitro; however, their effects on RNA polymerase in vivo are unknown. Here we describe a simple and general strategy to comprehensively map the positions of elongating and arrested RNA polymerase II (RNAPII) at nucleotide resolution. We find that the entry site of the first (+1) nucleosome is a barrier to RNAPII for essentially all genes, including those undergoing regulated pausing farther upstream. In contrast to the +1 nucleosome, gene body nucleosomes are low barriers and cause RNAPII stalling both at the entry site and near the dyad axis. The extent of the +1 nucleosome barrier correlates with nucleosome occupancy but anticorrelates with enrichment of histone variant H2A.Z. Importantly, depletion of H2A.Z from a nucleosome position results in a higher barrier to RNAPII. Our results suggest that nucleosomes present significant, context-specific barriers to RNAPII in vivo that can be tuned by the incorporation of H2A.Z.
Collapse
Affiliation(s)
- Christopher M Weber
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Srinivas Ramachandran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
195
|
Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma 2014; 123:225-37. [PMID: 24737122 PMCID: PMC4031381 DOI: 10.1007/s00412-014-0460-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/01/2023]
Abstract
Since Flemming described a nuclear substance in the nineteenth century and named it “chromatin,” this substance has fascinated biologists. What is the structure of chromatin? DNA is wrapped around core histones, forming a nucleosome fiber (10-nm fiber). This fiber has long been assumed to fold into a 30-nm chromatin fiber and subsequently into helically folded larger fibers or radial loops. However, several recent studies, including our cryo-EM and X-ray scattering analyses, demonstrated that chromatin is composed of irregularly folded 10-nm fibers, without 30-nm chromatin fibers, in interphase chromatin and mitotic chromosomes. This irregular folding implies a chromatin state that is physically less constrained, which could be more dynamic compared with classical regular helical folding structures. Consistent with this, recently, we uncovered by single nucleosome imaging large nucleosome fluctuations in living mammalian cells (∼50 nm/30 ms). Subsequent computational modeling suggested that nucleosome fluctuation increases chromatin accessibility, which is advantageous for many “target searching” biological processes such as transcriptional regulation. Therefore, this review provides a novel view on chromatin structure in which chromatin consists of dynamic and disordered 10-nm fibers.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,
| | | | | | | |
Collapse
|
196
|
Shemilt LA, Estandarte AKC, Yusuf M, Robinson IK. Scanning electron microscope studies of human metaphase chromosomes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130144. [PMID: 24470422 PMCID: PMC3900039 DOI: 10.1098/rsta.2013.0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Scanning electron microscopy (SEM) is used to evaluate potential chromosome preparations and staining methods for application in high-resolution three-dimensional X-ray imaging. Our starting point is optical fluorescence microscopy, the standard method for chromosomes, which only gives structural detail at the 200 nm scale. In principle, with suitable sample preparation protocols, including contrast enhancing staining, the surface structure of the chromosomes can be viewed at the 1 nm level by SEM. Here, we evaluate a heavy metal nucleic-acid-specific stain, which gives strong contrast in the backscattered electron signal. This study uses SEM to examine chromosomes prepared in different ways to establish a sample preparation protocol for X-rays. Secondary electron and backscattered electron signals are compared to evaluate the effectiveness of platinum-based stains used to enhance the contrast.
Collapse
Affiliation(s)
- L. A. Shemilt
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0FA, UK
| | - A. K. C. Estandarte
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0FA, UK
| | - M. Yusuf
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0FA, UK
| | - I. K. Robinson
- London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0FA, UK
| |
Collapse
|
197
|
Daban JR. The energy components of stacked chromatin layers explain the morphology, dimensions and mechanical properties of metaphase chromosomes. J R Soc Interface 2014; 11:20131043. [PMID: 24402918 PMCID: PMC3899872 DOI: 10.1098/rsif.2013.1043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/11/2013] [Indexed: 12/17/2022] Open
Abstract
The measurement of the dimensions of metaphase chromosomes in different animal and plant karyotypes prepared in different laboratories indicates that chromatids have a great variety of sizes which are dependent on the amount of DNA that they contain. However, all chromatids are elongated cylinders that have relatively similar shape proportions (length to diameter ratio approx. 13). To explain this geometry, it is considered that chromosomes are self-organizing structures formed by stacked layers of planar chromatin and that the energy of nucleosome-nucleosome interactions between chromatin layers inside the chromatid is approximately 3.6 × 10(-20) J per nucleosome, which is the value reported by other authors for internucleosome interactions in chromatin fibres. Nucleosomes in the periphery of the chromatid are in contact with the medium; they cannot fully interact with bulk chromatin within layers and this generates a surface potential that destabilizes the structure. Chromatids are smooth cylinders because this morphology has a lower surface energy than structures having irregular surfaces. The elongated shape of chromatids can be explained if the destabilizing surface potential is higher in the telomeres (approx. 0.16 mJ m(-2)) than in the lateral surface (approx. 0.012 mJ m(-2)). The results obtained by other authors in experimental studies of chromosome mechanics have been used to test the proposed supramolecular structure. It is demonstrated quantitatively that internucleosome interactions between chromatin layers can justify the work required for elastic chromosome stretching (approx. 0.1 pJ for large chromosomes). The high amount of work (up to approx. 10 pJ) required for large chromosome extensions is probably absorbed by chromatin layers through a mechanism involving nucleosome unwrapping.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
198
|
Eltsov M, Sosnovski S, Olins AL, Olins DE. ELCS in ice: cryo-electron microscopy of nuclear envelope-limited chromatin sheets. Chromosoma 2014; 123:303-12. [PMID: 24570264 DOI: 10.1007/s00412-014-0454-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/01/2022]
Abstract
Nuclear envelope-limited chromatin sheets (ELCS) form during excessive interphase nuclear envelope growth in a variety of cells. ELCS appear as extended sheets within the cytoplasm connecting distant nuclear lobes. Cross-section stained images of ELCS, viewed by transmission electron microscopy, resemble a sandwich of apposed nuclear envelopes separated by ∼30 nm, containing a layer of parallel chromatin fibers. In this study, the ultrastructure of ELCS was compared by three different methods: (1) aldehyde fixation/dehydration/plastic embedding/sectioning and staining, (2) high-pressure freezing/freeze substitution into plastic/sectioning and staining, and (3) high-pressure freezing/cryo-sectioning/cryo-electron microscopy. ELCS could be clearly visualized by all three methods and, consequently, must exist in vivo and are not fixation artifacts. The ∼30-nm chromatin fibers could only be observed following aldehyde fixation; none were seen in cryo-sections. Electron microscopic tomography tangential views of aldehyde-fixed ELCS suggested an ordering of the separate chromatin fibers adjacent to the nuclear envelope. Possible mechanisms of this chromatin ordering are discussed.
Collapse
Affiliation(s)
- Mikhail Eltsov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany,
| | | | | | | |
Collapse
|
199
|
Dwiranti A, Hamano T, Takata H, Nagano S, Guo H, Onishi K, Wako T, Uchiyama S, Fukui K. The effect of magnesium ions on chromosome structure as observed by helium ion microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:184-188. [PMID: 24229477 DOI: 10.1017/s1431927613013792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the few conclusions known about chromosome structure is that Mg2+ is required for the organization of chromosomes. Scanning electron microscopy is a powerful tool for studying chromosome morphology, but being nonconductive, chromosomes require metal/carbon coating that may conceal information about the detailed surface structure of the sample. Helium ion microscopy (HIM), which has recently been developed, does not require sample coating due to its charge compensation system. Here we investigated the structure of isolated human chromosomes under different Mg2+ concentrations by HIM. High-contrast and resolution images from uncoated samples obtained by HIM enabled investigation on the effects of Mg2+ on chromosome structure. Chromatin fiber information was obtained more clearly with uncoated than coated chromosomes. Our results suggest that both overall features and detailed structure of chromatin are significantly affected by different Mg2+ concentrations. Chromosomes were more condensed and a globular structure of chromatin with 30 nm diameter was visualized with 5 mM Mg2+ treatment, while 0 mM Mg2+ resulted in a less compact and more fibrous structure 11 nm in diameter. We conclude that HIM is a powerful tool for investigating chromosomes and other biological samples without requiring metal/carbon coating.
Collapse
Affiliation(s)
- Astari Dwiranti
- Laboratory of Dynamic Cell Biology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Hamano
- Laboratory of Dynamic Cell Biology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideaki Takata
- Laboratory of Dynamic Cell Biology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoko Nagano
- Surface Characterization Group, Nano Characterization Unit, Advanced Key Technologies Division, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hongxuan Guo
- Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Keiko Onishi
- Surface Characterization Group, Nano Characterization Unit, Advanced Key Technologies Division, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Toshiyuki Wako
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Susumu Uchiyama
- Laboratory of Dynamic Cell Biology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Fukui
- Laboratory of Dynamic Cell Biology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
200
|
Derenzini M, Olins AL, Olins DE. Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur J Histochem 2014; 58:2307. [PMID: 24704998 PMCID: PMC3980211 DOI: 10.4081/ejh.2014.2307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022] Open
Abstract
Ultrastructural studies conducted in situ using conventional transmission electron microscopy have had relatively little impact on defining the structural organization of chromatin. This is due to the fact that in routine transmission electron microscopy, together with the deoxyribonucleoprotein, many different intermingled substances are contrasted, masking the ultrastructure of chromatin. By selective staining of DNA in thin sections, using the Feulgen-like osmium-ammine reaction, these drawbacks have been overcome and worthwhile data have been obtained both on the gross morphology and the ultrastructural-functional organization of chromatin in situ. In the present study these results are reviewed and discussed in light of recent achievements in both interphase nuclear chromatin compartmentalization in interphase nuclei and in the structural organization of chromatin fibers in transcriptionally active and inactive chromatin.
Collapse
|