151
|
Nishio M, Maehama T, Goto H, Nakatani K, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway. Genes Cells 2017; 22:6-31. [PMID: 28078823 DOI: 10.1111/gtc.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Nakatani
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wakako Kato
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirofumi Omori
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
152
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
153
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
154
|
Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly JS, Benelli M, Demichelis F, Poliani PL, Sieger D, Mione M. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech 2017; 10:15-28. [PMID: 27935819 PMCID: PMC5278524 DOI: 10.1242/dmm.026500] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
Somatic mutations activating MAPK and PI3K signalling play a pivotal role in both tumours and brain developmental disorders. We developed a zebrafish model of brain tumours based on somatic expression of oncogenes that activate MAPK and PI3K signalling in neural progenitor cells and found that HRASV12 was the most effective in inducing both heterotopia and invasive tumours. Tumours, but not heterotopias, require persistent activation of phospho (p)-ERK and express a gene signature similar to the mesenchymal glioblastoma subtype, with a strong YAP component. Application of an eight-gene signature to human brain tumours establishes that YAP activation distinguishes between mesenchymal glioblastoma and low grade glioma in a wide The Cancer Genome Atlas (TCGA) sample set including gliomas and glioblastomas (GBMs). This suggests that the activation of YAP might be an important event in brain tumour development, promoting malignant versus benign brain lesions. Indeed, co-expression of dominant-active YAP (YAPS5A) and HRASV12 abolishes the development of heterotopias and leads to the sole development of aggressive tumours. Thus, we have developed a model proving that neurodevelopmental disorders and brain tumours might originate from the same activation of oncogenes through somatic mutations, and established that YAP activation is a hallmark of malignant brain tumours.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute for Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Victor Gourain
- Institute for Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Markus Reischl
- Institute for Applied Informatics at Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pierre Affaticati
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Ivette 91190, France
| | - Arnim Jenett
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Ivette 91190, France
| | - Jean-Stephane Joly
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Ivette 91190, France
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia School of Medicine, Spedali Civili Brescia, Brescia 25123, Italy
| | - Dirk Sieger
- Centre for Neuroregeneration, The University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marina Mione
- Institute for Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Trento 38123, Italy
| |
Collapse
|
155
|
Matakatsu H, Blair SS, Fehon RG. The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. J Cell Biol 2016; 216:265-277. [PMID: 28031421 PMCID: PMC5223609 DOI: 10.1083/jcb.201609094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
The palmitoyl transferase Approximated regulates signaling by the protocadherin Fat to control tissue growth upstream of the Hippo pathway in Drosophila. Matakatsu et al. show that palmitoylation of the intracellular domain of Fat by Approximated negatively regulates Fat and its ability to restrict growth. The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
156
|
Ma L, Cui J, Xi H, Bian S, Wei B, Chen L. Fat4 suppression induces Yap translocation accounting for the promoted proliferation and migration of gastric cancer cells. Cancer Biol Ther 2016; 17:36-47. [PMID: 26575609 DOI: 10.1080/15384047.2015.1108488] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fat4 functions as a Hippo signaling regulator which is involved in mammalian tissue development, differentiation and tumorigenesis. Loss of Fat4 due to frequent gene mutation was detected in a variety of tumors including gastric cancer, where Fat4 was recognized as a tumor suppressor, repressing cancer cell proliferation and adhesion. However, the detailed mechanisms linking Fat4 to its diverse functions and clinicopathological characteristics in gastric cancer remain unclear. Here, we silenced Fat4 using Fat4-shRNA in gastric cancer cells and found that this suppression led to the increase in phosphorylated Yap and nuclear accumulation of Yap, which associated to the promoted proliferation, migration and cell cycle progression. Then we transfected a full-length Fat4 into the Fat4-silenced cells, and found the decrease in phosphorylated Yap and inhibition of the cell cycle progression. Intriguingly, Fat4 reduction also leads to the accumulation of cytoplasmic β-catenin via the loss of restraining to cytoplasmic Yap instead of β-catenin transcription promotion. The Fat4-silenced cells which were treated with 5-FU, Cisplatin, Oxaliplatin and Paclitaxel individually demonstrated less sensitivities to these chemotherapy drugs compared with the control cells. Furthermore, immunohistochemical analysis revealed that Fat4 expression was significantly reduced in gastric cancer tissues compared with adjacent noncancerous tissues, and negatively correlated with tumor infiltration, lymph node metastasis and cumulative survival rate. In conclusion, Fat4 expression is deceased in gastric cancer cells, leading to nuclear translocation of Yap and correlates with poor prognosis.
Collapse
Affiliation(s)
| | | | - Hongqing Xi
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| | - Shibo Bian
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| | - Bo Wei
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| | - Lin Chen
- a Department of General Surgery , Chinese People's Liberation Army General Hospital , 28 Fuxing Road, Beijing 100853 , China
| |
Collapse
|
157
|
Verheij E, Thomeer HGXM, Pameijer FA, Topsakal V. Middle ear abnormalities in Van Maldergem syndrome. Am J Med Genet A 2016; 173:239-244. [PMID: 27739185 DOI: 10.1002/ajmg.a.37990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022]
Abstract
Van Maldergem syndrome (VMS) is a very rare syndrome that was first described in 1992. The main features of this syndrome comprise intellectual disability, blepharo-naso-facial malformation, and hand anomalies. Almost all nine described patients have been shown to be affected by conductive hearing impairment attributed to microtia, and atresia of the outer ear canal. Here, we present a VMS patient with congenital malformations of the middle ear as the main reason for severe conductive bilateral hearing impairment. To our knowledge, this is the first report to describe middle ear abnormalities in VMS. These malformations were seen on high resolution Computed Tomography scanning and during an exploratory tympanotomy. Due to the severity of the middle ear abnormalities and the risk for facial nerve damage, the patient was not offered an ossicular chain reconstruction but a bone conduction device after this exploratory tympanotomy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emmy Verheij
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henricus G X M Thomeer
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank A Pameijer
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vedat Topsakal
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
158
|
Balasubramanian M, Lord H, Levesque S, Guturu H, Thuriot F, Sillon G, Wenger AM, Sureka DL, Lester T, Johnson DS, Bowen J, Calhoun AR, Viskochil DH, Bejerano G, Bernstein JA, Chitayat D. Chitayat syndrome: hyperphalangism, characteristic facies, hallux valgus and bronchomalacia results from a recurrent c.266A>G p.(Tyr89Cys) variant in the ERF gene. J Med Genet 2016; 54:157-165. [PMID: 27738187 DOI: 10.1136/jmedgenet-2016-104143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/01/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND In 1993, Chitayat et al., reported a newborn with hyperphalangism, facial anomalies, and bronchomalacia. We identified three additional families with similar findings. Features include bilateral accessory phalanx resulting in shortened index fingers; hallux valgus; distinctive face; respiratory compromise. OBJECTIVES To identify the genetic aetiology of Chitayat syndrome and identify a unifying cause for this specific form of hyperphalangism. METHODS Through ongoing collaboration, we had collected patients with strikingly-similar phenotype. Trio-based exome sequencing was first performed in Patient 2 through Deciphering Developmental Disorders study. Proband-only exome sequencing had previously been independently performed in Patient 4. Following identification of a candidate gene variant in Patient 2, the same variant was subsequently confirmed from exome data in Patient 4. Sanger sequencing was used to validate this variant in Patients 1, 3; confirm paternal inheritance in Patient 5. RESULTS A recurrent, novel variant NM_006494.2:c.266A>G p.(Tyr89Cys) in ERF was identified in five affected individuals: de novo (patient 1, 2 and 3) and inherited from an affected father (patient 4 and 5). p.Tyr89Cys is an aromatic polar neutral to polar neutral amino acid substitution, at a highly conserved position and lies within the functionally important ETS-domain of the protein. The recurrent ERF c.266A>C p.(Tyr89Cys) variant causes Chitayat syndrome. DISCUSSION ERF variants have previously been associated with complex craniosynostosis. In contrast, none of the patients with the c.266A>G p.(Tyr89Cys) variant have craniosynostosis. CONCLUSIONS We report the molecular aetiology of Chitayat syndrome and discuss potential mechanisms for this distinctive phenotype associated with the p.Tyr89Cys substitution in ERF.
Collapse
Affiliation(s)
- M Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - H Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - S Levesque
- Department of Pediatrics, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - H Guturu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - F Thuriot
- Department of Pediatrics, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - G Sillon
- Department of Medical Genetics, McGill University Health Center, Montreal, Quebec, Canada
| | - A M Wenger
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - D L Sureka
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - T Lester
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - D S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - J Bowen
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - A R Calhoun
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - D H Viskochil
- School of Medicine, Pediatric Genetics, Salt Lake City, Utah, USA
| | | | - G Bejerano
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.,Department of Computer Science, Stanford University, Stanford, California, USA.,Department of Developmental Biology, Stanford University, Stanford, California, USA
| | - J A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - D Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Clinical Genetics and Metabolism, Department of Pediatrics, The Hospital for Sick Children; University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
159
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
160
|
Hung PC, Wang HS, Chou ML, Lin KL, Hsieh MY, Wong AMC. Clinical and neuroimaging findings in children with gray matter heterotopias: A single institution experience of 36 patients. Eur J Paediatr Neurol 2016; 20:732-7. [PMID: 27262615 DOI: 10.1016/j.ejpn.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To describe the clinical spectrum and neuroimaging features of childhood gray matter heterotopias in a single tertiary hospital in Taiwan. METHODS We retrospectively reviewed the medical records and magnetic resonance images (MRI) of 36 patients with gray matter heterotopias, 19 females and 17 males, between July 1999 and June 2014. The MRI morphologic findings of gray matter heterotopias were recorded along with the presence of associated cerebral malformations. The clinical, electrophysiological and associated systemic malformation data were also recorded. RESULTS A total of 36 patients were included in the study. Their ages ranged from 1 month to 18 years with a mean age of 3 years 6 months. According to the location of gray matter heterotopias, patients were classified into two groups: periventricular (26) and band (10). The phenotypic spectrum in our population differed from that described previously. In the periventricular group, additional cerebral malformations were found in 18/26 (69%) and systemic malformations in 14/26 (54%). In the band group, additional cerebral malformations were found in 5/10 (50%) and systemic malformations in 2/10 (20%). The majority of patients had developmental delay and intellectual deficit. Twenty-two patients suffered from epileptic seizures with 12 developing refractory epilepsy. CONCLUSIONS In periventricular heterotopias, the most common associated cerebral malformation was ventriculomegaly, followed by agenesis of corpus callosum. Congenital heart disease was the most common additional systemic malformation. However, the most common associated cerebral malformation was pachygyria in band form. The majority of patients had developmental delay, intellectual deficit, especially in band heterotopias.
Collapse
Affiliation(s)
- Po-Cheng Hung
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC.
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ming-Liang Chou
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Alex M-C Wong
- Division of Pediatric Neuroradiology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| |
Collapse
|
161
|
Abstract
Malformations of cortical development (MCD) represent a major cause of developmental disabilities, severe epilepsy, and reproductive disadvantage. Genes that have been associated to MCD are mainly involved in cell proliferation and specification, neuronal migration, and late cortical organization. Lissencephaly-pachygyria-severe band heterotopia are diffuse neuronal migration disorders causing severe global neurological impairment. Abnormalities of the LIS1, DCX, ARX, RELN, VLDLR, ACTB, ACTG1, TUBG1, KIF5C, KIF2A, and CDK5 genes have been associated with these malformations. More recent studies have also established a relationship between lissencephaly, with or without associated microcephaly, corpus callosum dysgenesis as well as cerebellar hypoplasia, and at times, a morphological pattern consistent with polymicrogyria with mutations of several genes (TUBA1A, TUBA8, TUBB, TUBB2B, TUBB3, and DYNC1H1), regulating the synthesis and function of microtubule and centrosome key components and hence defined as tubulinopathies. MCD only affecting subsets of neurons, such as mild subcortical band heterotopia and periventricular heterotopia, have been associated with abnormalities of the DCX, FLN1A, and ARFGEF2 genes and cause neurological and cognitive impairment that vary from severe to mild deficits. Polymicrogyria results from abnormal late cortical organization and is inconstantly associated with abnormal neuronal migration. Localized polymicrogyria has been associated with anatomo-specific deficits, including disorders of language and higher cognition. Polymicrogyria is genetically heterogeneous, and only in a small minority of patients, a definite genetic cause has been identified. Megalencephaly with normal cortex or polymicrogyria by MRI imaging, hemimegalencephaly and focal cortical dysplasia can all result from mutations in genes of the PI3K-AKT-mTOR pathway. Postzygotic mutations have been described for most MCD and can be limited to the dysplastic tissue in the less diffuse forms.
Collapse
Affiliation(s)
- Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Wash., USA
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
162
|
Wilsch-Bräuninger M, Florio M, Huttner WB. Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 2016; 39:122-32. [DOI: 10.1016/j.conb.2016.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/15/2016] [Indexed: 02/06/2023]
|
163
|
A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat Commun 2016; 7:11812. [PMID: 27264089 PMCID: PMC4897765 DOI: 10.1038/ncomms11812] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
The outer subventricular zone (OSVZ) is a germinal layer playing key roles in the development of the neocortex, with particular relevance in gyrencephalic species such as human and ferret, where it contains abundant basal radial glia cells (bRGCs) that promote cortical expansion. Here we identify a brief period in ferret embryonic development when apical RGCs generate a burst of bRGCs that become founders of the OSVZ. After this period, bRGCs in the OSVZ proliferate and self-renew exclusively locally, thereby forming a self-sustained lineage independent from the other germinal layers. The time window for the brief period of OSVZ bRGC production is delineated by the coincident downregulation of Cdh1 and Trnp1, and their upregulation reduces bRGC production and prevents OSVZ seeding. This mechanism in cortical development may have key relevance in brain evolution and disease. The outer subventricular zone (OSVZ) contains basal radial glial cells (bRGC) involved in cortical expansion in gyrencephalic mammals. Here the authors identify a developmental time window with marked production of bRGCs required to found the OSVZ that is dependent on coincident downregulation of Cdh1 and Trnp1.
Collapse
|
164
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
165
|
Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. Bioessays 2016; 38:644-53. [PMID: 27173018 PMCID: PMC5031209 DOI: 10.1002/bies.201600037] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
166
|
Dchs1-Fat4 regulation of polarized cell behaviours during skeletal morphogenesis. Nat Commun 2016; 7:11469. [PMID: 27145737 PMCID: PMC4858749 DOI: 10.1038/ncomms11469] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2016] [Indexed: 01/12/2023] Open
Abstract
Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1–Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1–Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure. How the shape of the sternum is regulated is unclear. Here, the authors identify the Dchs1-Fat4-planar cell polarity pathway as controlling cell orientation and cell intercalation of mesenchymal cells that form skeletal condensations for the mouse sternum, which defines the relative dimensions of the sternum.
Collapse
|
167
|
Dau C, Fliegauf M, Omran H, Schlensog M, Dahl E, van Roeyen CR, Kriz W, Moeller MJ, Braun GS. The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. Biochem Biophys Res Commun 2016; 473:1177-1184. [DOI: 10.1016/j.bbrc.2016.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 01/12/2023]
|
168
|
Li L, Liu CQ, Li TF, Guan YG, Zhou J, Qi XL, Yang YT, Deng JH, Xu ZQD, Luan GM. Analysis of Altered Micro RNA Expression Profiles in Focal Cortical Dysplasia IIB. J Child Neurol 2016; 31:613-20. [PMID: 26442942 DOI: 10.1177/0883073815609148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022]
Abstract
Focal cortical dysplasia type IIB is a commonly encountered subtype of developmental malformation of the cerebral cortex and is often associated with pharmacoresistant epilepsy. In this study, to investigate the molecular etiology of focal cortical dysplasia type IIB, the authors performed micro ribonucleic acid (RNA) microarray on surgical specimens from 5 children (2 female and 3 male, mean age was 73.4 months, range 50-112 months) diagnosed of focal cortical dysplasia type IIB and matched normal tissue adjacent to the lesion. In all, 24 micro RNAs were differentially expressed in focal cortical dysplasia type IIB, and the microarray results were validated using quantitative real-time polymerase chain reaction (PCR). Then the putative target genes of the differentially expressed micro RNAs were identified by bioinformatics analysis. Moreover, biological significance of the target genes was evaluated by investigating the pathways in which the genes were enriched, and the Hippo signaling pathway was proposed to be highly related with the pathogenesis of focal cortical dysplasia type IIB.
Collapse
Affiliation(s)
- Lin Li
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chang-Qing Liu
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tian-Fu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory in Epilepsy, Beijing, China Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Guang Guan
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xue-Ling Qi
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yu-Tao Yang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Beijing, China
| | - Jia-Hui Deng
- Beijing Key Laboratory in Epilepsy, Beijing, China
| | - Zhi-Qing David Xu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Beijing, China Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Guo-Ming Luan
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory in Epilepsy, Beijing, China Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
169
|
Lodge EJ, Russell JP, Patist AL, Francis-West P, Andoniadou CL. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development. Front Physiol 2016; 7:114. [PMID: 27065882 PMCID: PMC4814506 DOI: 10.3389/fphys.2016.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumors. Multiple signaling pathways, including WNT, BMP, FGF, and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridization method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.
Collapse
Affiliation(s)
- Emily J Lodge
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - John P Russell
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Amanda L Patist
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Philippa Francis-West
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Cynthia L Andoniadou
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| |
Collapse
|
170
|
Mullin BH, Walsh JP, Zheng HF, Brown SJ, Surdulescu GL, Curtis C, Breen G, Dudbridge F, Richards JB, Spector TD, Wilson SG. Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density. BMC Genomics 2016; 17:136. [PMID: 26911590 PMCID: PMC4766752 DOI: 10.1186/s12864-016-2481-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Background Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits. Results We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 × 10−09). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034–1.19 × 10−23). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 × 10−06, 2.0 × 10−06 and 2.0 × 10−06 respectively). Conclusions Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia.
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia.
| | - Hou-Feng Zheng
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia.
| | - Gabriela L Surdulescu
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Charles Curtis
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Gerome Breen
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - J Brent Richards
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK. .,Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, Canada.
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia. .,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
171
|
Hsiao C, Lampe M, Nillasithanukroh S, Han W, Lian X, Palecek SP. Human pluripotent stem cell culture density modulates YAP signaling. Biotechnol J 2016; 11:662-75. [PMID: 26766309 DOI: 10.1002/biot.201500374] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however, the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway, which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs, we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities, YAP phosphorylation and localization to the cytoplasm increased, which led to decreased YAP-mediated transcriptional activity. Furthermore, total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally, the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.
Collapse
Affiliation(s)
- Cheston Hsiao
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Michael Lampe
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Songkhun Nillasithanukroh
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Wenqing Han
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Xiaojun Lian
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| |
Collapse
|
172
|
The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat Commun 2016; 7:10510. [PMID: 26821647 PMCID: PMC4740179 DOI: 10.1038/ncomms10510] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Stem cells control their mitotic activity to decide whether to proliferate or to stay in quiescence. Drosophila neural stem cells (NSCs) are quiescent at early larval stages, when they are reactivated in response to metabolic changes. Here we report that cell-contact inhibition of growth through the canonical Hippo signalling pathway maintains NSC quiescence. Loss of the core kinases hippo or warts leads to premature nuclear localization of the transcriptional co-activator Yorkie and initiation of growth and proliferation in NSCs. Yorkie is necessary and sufficient for NSC reactivation, growth and proliferation. The Hippo pathway activity is modulated via inter-cellular transmembrane proteins Crumbs and Echinoid that are both expressed in a nutrient-dependent way in niche glial cells and NSCs. Loss of crumbs or echinoid in the niche only is sufficient to reactivate NSCs. Finally, we provide evidence that the Hippo pathway activity discriminates quiescent from non-quiescent NSCs in the Drosophila nervous system. Drosophila neural stem cells (NSCs) are quiescent at early larval stages but how this is regulated is unclear. Here, Ding et al. show that quiescence of NSCs is mediated by cell-contact inhibition via the Hippo pathway transmembrane proteins Crumbs and Echinoid, which in turn are regulated by nutrient levels.
Collapse
|
173
|
Park R, Moon UY, Park JY, Hughes LJ, Johnson RL, Cho SH, Kim S. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun 2016; 7:10329. [PMID: 26754915 PMCID: PMC4729961 DOI: 10.1038/ncomms10329] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 11/09/2022] Open
Abstract
Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury.
Collapse
Affiliation(s)
- Raehee Park
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Uk Yeol Moon
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Jun Young Park
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Lucinda J. Hughes
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Graduate Program of Biomedical Sciences, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Randy L. Johnson
- Department of Cancer Biology, MD Anderson Cancer Research Center, University of Texas, Houston, Texas 77030, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
174
|
Ahmed AF, de Bock CE, Lincz LF, Pundavela J, Zouikr I, Sontag E, Hondermarck H, Thorne RF. FAT1 cadherin acts upstream of Hippo signalling through TAZ to regulate neuronal differentiation. Cell Mol Life Sci 2015; 72:4653-69. [PMID: 26104008 PMCID: PMC11113810 DOI: 10.1007/s00018-015-1955-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022]
Abstract
The Hippo pathway is emerging as a critical nexus that balances self-renewal of progenitors against differentiation; however, upstream elements in vertebrate Hippo signalling are poorly understood. High expression of Fat1 cadherin within the developing neuroepithelium and the manifestation of severe neurological phenotypes in Fat1-knockout mice suggest roles in neurogenesis. Using the SH-SY5Y model of neuronal differentiation and employing gene silencing techniques, we show that FAT1 acts to control neurite outgrowth, also driving cells towards terminal differentiation via inhibitory effects on proliferation. FAT1 actions were shown to be mediated through Hippo signalling where it activated core Hippo kinase components and antagonised functions of the Hippo effector TAZ. Suppression of FAT1 promoted the nucleocytoplasmic shuttling of TAZ leading to enhanced transcription of the Hippo target gene CTGF together with accompanying increases in nuclear levels of Smad3. Silencing of TAZ reversed the effects of FAT1 depletion thus connecting inactivation of TAZ-TGFbeta signalling with Hippo signalling mediated through FAT1. These findings establish FAT1 as a new upstream Hippo element regulating early stages of differentiation in neuronal cells.
Collapse
Affiliation(s)
- Abdulrzag F Ahmed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Charles E de Bock
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven and Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Lisa F Lincz
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW, 2298, Australia
| | - Jay Pundavela
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Ihssane Zouikr
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, 2258, Australia.
| |
Collapse
|
175
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
176
|
Abstract
Cadherin-catenin complexes are critical for the assembly of cell-cell adhesion structures known as adherens junctions. In addition to the mechanical linkage of neighboring cells to each other, these cell-cell adhesion protein complexes have recently emerged as important sensors and transmitters of the extracellular cues inside the cell body and into the nucleus. In the past few years, multiple studies have identified a connection between the cadherin-catenin protein complexes and major intracellular signaling pathways. Those studies are the main focus of this review.
Collapse
Affiliation(s)
- Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA ; Department of Pathology, University of Washington, Seattle, WA, 98195, USA ; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
177
|
Badouel C, Zander MA, Liscio N, Bagherie-Lachidan M, Sopko R, Coyaud E, Raught B, Miller FD, McNeill H. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development. Development 2015. [PMID: 26209645 DOI: 10.1242/dev.123539] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.
Collapse
Affiliation(s)
- Caroline Badouel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Mark A Zander
- Neuroscience and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Liscio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | - Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Freda D Miller
- Neuroscience and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
178
|
Li-Villarreal N, Forbes MM, Loza AJ, Chen J, Ma T, Helde K, Moens CB, Shin J, Sawada A, Hindes AE, Dubrulle J, Schier AF, Longmore GD, Marlow FL, Solnica-Krezel L. Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development 2015; 142:2704-18. [PMID: 26160902 DOI: 10.1242/dev.119800] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 01/04/2023]
Abstract
Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meredyth M Forbes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Andrew J Loza
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Taylur Ma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kathryn Helde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna E Hindes
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory D Longmore
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
179
|
Bagherie-Lachidan M, Reginensi A, Pan Q, Zaveri HP, Scott DA, Blencowe BJ, Helmbacher F, McNeill H. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 2015; 142:2564-73. [PMID: 26116661 DOI: 10.1242/dev.122648] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 01/10/2023]
Abstract
Regulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to misregulation of the Hippo kinase pathway transcriptional co-activator YAP. Here, we use tissue-specific deletions to prove that FAT4 acts non-autonomously in the renal stroma to control nephron progenitors. We show that loss of Yap from the CM in Fat4-null mice does not reduce the expanded CM, indicating that FAT4 regulates the CM independently of YAP. Analysis of Six2(-/-);Fat4(-/-) double mutants demonstrates that excess progenitors in Fat4 mutants are dependent on Six2, a crucial regulator of nephron progenitor self-renewal. Electron microscopy reveals that cell organisation is disrupted in Fat4 mutants. Gene expression analysis demonstrates that the expression of Notch and FGF pathway components are altered in Fat4 mutants. Finally, we show that Dchs1, and its paralogue Dchs2, function in a partially redundant fashion to regulate the number of nephron progenitors. Our data support a model in which FAT4 in the stroma binds to DCHS1/2 in the mouse CM to restrict progenitor self-renewal.
Collapse
Affiliation(s)
- Mazdak Bagherie-Lachidan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Antoine Reginensi
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Qun Pan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| |
Collapse
|
180
|
Mao Y, Francis-West P, Irvine KD. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 2015; 142:2574-85. [PMID: 26116666 DOI: 10.1242/dev.122630] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
Abstract
Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.
Collapse
Affiliation(s)
- Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Philippa Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
181
|
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25:499-513. [PMID: 26045258 DOI: 10.1016/j.tcb.2015.05.002] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The Hippo pathway is a potent regulator of cellular proliferation, differentiation, and tissue homeostasis. Here we review the regulatory mechanisms of the Hippo pathway and discuss the function of Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding domain (TAZ), the prime mediators of the Hippo pathway, in stem cell biology and tissue regeneration. We highlight their activities in both the nucleus and the cytoplasm and discuss their role as a signaling nexus and integrator of several other prominent signaling pathways such as the Wnt, G protein-coupled receptor (GPCR), epidermal growth factor (EGF), bone morphogenetic protein (BMP)/transforming growth factor beta (TGFβ), and Notch pathways.
Collapse
Affiliation(s)
- Carsten Gram Hansen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
182
|
Urban S, Kobi D, Ennen M, Langer D, Le Gras S, Ye T, Davidson I. A Brn2-Zic1 axis specifies the neuronal fate of retinoic-acid-treated embryonic stem cells. J Cell Sci 2015; 128:2303-18. [PMID: 25991548 DOI: 10.1242/jcs.168849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) treated with all-trans retinoic acid differentiate into a homogenous population of glutamatergic neurons. Although differentiation is initiated through activation of target genes by the retinoic acid receptors, the downstream transcription factors specifying neuronal fate are less well characterised. Here, we show that the transcription factor Brn2 (also known as Pou3f2) is essential for the neuronal differentiation programme. By integrating results from RNA-seq following Brn2 silencing with results from Brn2 ChIP-seq, we identify a set of Brn2 target genes required for the neurogenic programme. Further integration of Brn2 ChIP-seq data from retinoic-acid-treated ESCs and P19 cells with data from ESCs differentiated into neuronal precursors by Fgf2 treatment and that from fibroblasts trans-differentiated into neurons by ectopic Brn2 expression showed that Brn2 occupied a distinct but overlapping set of genomic loci in these differing conditions. However, a set of common binding sites and target genes defined the core of the Brn2-regulated neuronal programme, among which was that encoding the transcription factor Zic1. Small hairpin RNA (shRNA)-mediated silencing of Zic1 prevented ESCs from differentiating into neuronal precursors, thus defining a hierarchical Brn2-Zic1 axis that is essential to specify neural fate in retinoic-acid-treated ESCs.
Collapse
Affiliation(s)
- Sylvia Urban
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Dominique Kobi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Marie Ennen
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Diana Langer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Stéphanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Tao Ye
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France Equipe Labellisée of the Ligue Nationale Contre le Cancer, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| |
Collapse
|
183
|
Beste C, Ocklenburg S, von der Hagen M, Di Donato N. Mammalian cadherins DCHS1-FAT4 affect functional cerebral architecture. Brain Struct Funct 2015; 221:2487-91. [PMID: 25930014 DOI: 10.1007/s00429-015-1051-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022]
Abstract
Cortical development is a complex process where a multitude of factors, including cadherins, plays an important role and where disruptions are known to have far reaching effects in neural development and cortical patterning. Cadherins play a central role in structural left-right differentiation during brain and body development, but their effect on a functional level remains elusive. We addressed this question by examining functional cerebral asymmetries in a patient with Van Maldergem Syndrome (VMS) (MIM#601390), which is caused by mutations in DCHS1-FAT4 cadherins, using a dichotic listening task. Using neurophysiological (EEG) data, we show that when key regulators during mammalian cerebral cortical development are disrupted due to DCHS1-FAT4 mutations, functional cerebral asymmetries are stronger. Basic perceptual processing of biaurally presented auditory stimuli was unaffected. This suggests that the strength and emergence of functional cerebral asymmetries is a direct function of proliferation and differentiation of neuronal stem cells. Moreover, these results support the recent assumption that the molecular mechanisms establishing early left-right differentiation are an important factor in the ontogenesis of functional lateralization.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/physiopathology
- Abnormalities, Multiple/psychology
- Acoustic Stimulation
- Adolescent
- Cadherin Related Proteins
- Cadherins/genetics
- Cadherins/physiology
- Cerebral Cortex/physiopathology
- Child
- Craniofacial Abnormalities/genetics
- Craniofacial Abnormalities/physiopathology
- Craniofacial Abnormalities/psychology
- Dichotic Listening Tests
- Electroencephalography
- Evoked Potentials, Auditory
- Foot Deformities, Congenital/genetics
- Foot Deformities, Congenital/physiopathology
- Foot Deformities, Congenital/psychology
- Functional Laterality
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/physiopathology
- Hand Deformities, Congenital/psychology
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/physiopathology
- Intellectual Disability/psychology
- Joint Instability/genetics
- Joint Instability/physiopathology
- Joint Instability/psychology
- Male
- Mutation
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
| | - Sebastian Ocklenburg
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr Universität Bochum, Bochum, Germany
| | - Maja von der Hagen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nataliya Di Donato
- Faculty of Medicine, Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| |
Collapse
|
184
|
Magi A, D'Aurizio R, Palombo F, Cifola I, Tattini L, Semeraro R, Pippucci T, Giusti B, Romeo G, Abbate R, Gensini GF. Characterization and identification of hidden rare variants in the human genome. BMC Genomics 2015; 16:340. [PMID: 25903059 PMCID: PMC4416239 DOI: 10.1186/s12864-015-1481-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022] Open
Abstract
Background By examining the genotype calls generated by the 1000 Genomes Project we discovered that the human reference genome GRCh37 contains almost 20,000 loci in which the reference allele has never been observed in healthy individuals and around 70,000 loci in which it has been observed only in the heterozygous state. Results We show that a large fraction of this rare reference allele (RRA) loci belongs to coding, functional and regulatory elements of the genome and could be linked to rare Mendelian disorders as well as cancer. We also demonstrate that classical germline and somatic variant calling tools are not capable to recognize the rare allele when present in these loci. To overcome such limitations, we developed a novel tool, named RAREVATOR, that is able to identify and call the rare allele in these genomic positions. By using a small cancer dataset we compared our tool with two state-of-the-art callers and we found that RAREVATOR identified more than 1,500 germline and 22 somatic RRA variants missed by the two methods and which belong to significantly mutated pathways. Conclusions These results show that, to date, the investigation of around 100,000 loci of the human genome has been missed by re-sequencing experiments based on the GRCh37 assembly and that our tool can fill the gap left by other methods. Moreover, the investigation of the latest version of the human reference genome, GRCh38, showed that although the GRC corrected almost all insertions and a small part of SNVs and deletions, a large number of functionally relevant RRAs still remain unchanged. For this reason, also future resequencing experiments, based on GRCh38, will benefit from RAREVATOR analysis results. RAREVATOR is freely available at http://sourceforge.net/projects/rarevator. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1481-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Magi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Romina D'Aurizio
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics and Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | - Flavia Palombo
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.
| | - Lorenzo Tattini
- Department of Neuroscience, Pharmacology and Child Health, University of Florence, Florence, Italy.
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Tommaso Pippucci
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Giovanni Romeo
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Rosanna Abbate
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Gian Franco Gensini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
185
|
Lian G, Sheen VL. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Front Cell Neurosci 2015; 9:99. [PMID: 25883548 PMCID: PMC4381626 DOI: 10.3389/fncel.2015.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/07/2015] [Indexed: 01/28/2023] Open
Abstract
The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH), a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation), heterotopia (impaired initial migration) and disruption along the neuroependymal lining (impaired cell-cell adhesion). Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| |
Collapse
|
186
|
Wu H, Gao L, Li F, Song F, Yang X, Kasabov N. Identifying overlapping mutated driver pathways by constructing gene networks in cancer. BMC Bioinformatics 2015; 16 Suppl 5:S3. [PMID: 25859819 PMCID: PMC4402595 DOI: 10.1186/1471-2105-16-s5-s3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale cancer genomic projects are providing lots of data on genomic, epigenomic and gene expression aberrations in many cancer types. One key challenge is to detect functional driver pathways and to filter out nonfunctional passenger genes in cancer genomics. Vandin et al. introduced the Maximum Weight Sub-matrix Problem to find driver pathways and showed that it is an NP-hard problem. METHODS To find a better solution and solve the problem more efficiently, we present a network-based method (NBM) to detect overlapping driver pathways automatically. This algorithm can directly find driver pathways or gene sets de novo from somatic mutation data utilizing two combinatorial properties, high coverage and high exclusivity, without any prior information. We firstly construct gene networks based on the approximate exclusivity between each pair of genes using somatic mutation data from many cancer patients. Secondly, we present a new greedy strategy to add or remove genes for obtaining overlapping gene sets with driver mutations according to the properties of high exclusivity and high coverage. RESULTS To assess the efficiency of the proposed NBM, we apply the method on simulated data and compare results obtained from the NBM, RME, Dendrix and Multi-Dendrix. NBM obtains optimal results in less than nine seconds on a conventional computer and the time complexity is much less than the three other methods. To further verify the performance of NBM, we apply the method to analyze somatic mutation data from five real biological data sets such as the mutation profiles of 90 glioblastoma tumor samples and 163 lung carcinoma samples. NBM detects groups of genes which overlap with known pathways, including P53, RB and RTK/RAS/PI(3)K signaling pathways. New gene sets with p-value less than 1e-3 are found from the somatic mutation data. CONCLUSIONS NBM can detect more biologically relevant gene sets. Results show that NBM outperforms other algorithms for detecting driver pathways or gene sets. Further research will be conducted with the use of novel machine learning techniques.
Collapse
Affiliation(s)
- Hao Wu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Feng Li
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Fei Song
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
187
|
Ito T, Taniguchi H, Fukagai K, Okamuro S, Kobayashi A. Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS One 2015; 10:e0118336. [PMID: 25679223 PMCID: PMC4334522 DOI: 10.1371/journal.pone.0118336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023] Open
Abstract
Oncogenic transformation is characterized by morphological changes resulting from alterations in actin dynamics and adhesive activities. Emerging evidence suggests that the protocadherin FAT4 acts as a tumor suppressor in humans, and reduced FAT4 gene expression has been reported in breast and lung cancers and melanoma. However, the mechanism controlling FAT4 gene expression is poorly understood. In this study, we show that transient activation of the Src oncoprotein represses FAT4 mRNA expression through actin depolymerization in the immortalized normal human mammary epithelial cell line MCF-10A. Src activation causes actin depolymerization via the MEK/Erk/Cofilin cascade. The MEK inhibitor U0126 blocks the inhibitory effect of Src on FAT4 mRNA expression and Src-induced actin depolymerization. To determine whether actin dynamics act on the regulation of FAT4 mRNA expression, we treated MCF-10A cells with the ROCK inhibitor Y-27632. Y-27632 treatment decreased FAT4 mRNA expression. This suppressive effect was blocked by siRNA-mediated knockdown of Cofilin1. Furthermore, simultaneous administration of Latrunculin A (an actin depolymerizing agent), Y-27632, and Cofilin1 siRNA to the cells resulted in a marked reduction of FAT4 mRNA expression. Intriguingly, we also found that FAT4 mRNA expression was reduced under both low cell density and low stiffness conditions, which suggests that mechanotransduction affects FAT4 mRNA expression. Additionally, we show that siRNA-mediated FAT4 knockdown induced the activity of the Hippo effector YAP/TAZ in MCF-10A cells. Taken together, our results reveal a novel inhibitory mechanism of FAT4 gene expression through actin depolymerization during Src-induced carcinogenesis in human breast cells.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Hiroaki Taniguchi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kousuke Fukagai
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shota Okamuro
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
- * E-mail:
| |
Collapse
|
188
|
Bizzotto S, Francis F. Morphological and functional aspects of progenitors perturbed in cortical malformations. Front Cell Neurosci 2015; 9:30. [PMID: 25729350 PMCID: PMC4325918 DOI: 10.3389/fncel.2015.00030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/18/2015] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area.
Collapse
Affiliation(s)
- Sara Bizzotto
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
189
|
Whole exome sequencing in females with autism implicates novel and candidate genes. Int J Mol Sci 2015; 16:1312-35. [PMID: 25574603 PMCID: PMC4307305 DOI: 10.3390/ijms16011312] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/31/2014] [Indexed: 01/17/2023] Open
Abstract
Classical autism or autistic disorder belongs to a group of genetically heterogeneous conditions known as Autism Spectrum Disorders (ASD). Heritability is estimated as high as 90% for ASD with a recently reported compilation of 629 clinically relevant candidate and known genes. We chose to undertake a descriptive next generation whole exome sequencing case study of 30 well-characterized Caucasian females with autism (average age, 7.7 ± 2.6 years; age range, 5 to 16 years) from multiplex families. Genomic DNA was used for whole exome sequencing via paired-end next generation sequencing approach and X chromosome inactivation status. The list of putative disease causing genes was developed from primary selection criteria using machine learning-derived classification score and other predictive parameters (GERP2, PolyPhen2, and SIFT). We narrowed the variant list to 10 to 20 genes and screened for biological significance including neural development, function and known neurological disorders. Seventy-eight genes identified met selection criteria ranging from 1 to 9 filtered variants per female. Five females presented with functional variants of X-linked genes (IL1RAPL1, PIR, GABRQ, GPRASP2, SYTL4) with cadherin, protocadherin and ankyrin repeat gene families most commonly altered (e.g., CDH6, FAT2, PCDH8, CTNNA3, ANKRD11). Other genes related to neurogenesis and neuronal migration (e.g., SEMA3F, MIDN), were also identified.
Collapse
|
190
|
Mao B, Gao Y, Bai Y, Yuan Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim Biophys Sin (Shanghai) 2015; 47:2-9. [PMID: 25476206 DOI: 10.1093/abbs/gmu109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Co-ordination of cell proliferation, differentiation, and apoptosis maintains tissue development and homeostasis under normal or stress conditions. Recently, the highly conserved Hippo signaling pathway, discovered in Drosophila melanogaster and mammalian system, has been implicated as a key regulator of organ size control. Importantly, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to maintain homeostasis at the cellular and organic levels. The mutation or deregulation of the key components in the pathway will result in degenerative disorder, developmental defects, or tumorigenesis. The purpose of this review is to summarize the recent findings and discuss how Hippo pathway responds to cellular stress and regulates early development events, tissue homeostasis as well as tumorigenesis.
Collapse
Affiliation(s)
- Beibei Mao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhao Gao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujie Bai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zengqiang Yuan
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
191
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
192
|
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 2014; 94:1287-312. [PMID: 25287865 DOI: 10.1152/physrev.00005.2014] [Citation(s) in RCA: 1292] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulators YAP and TAZ are the focus of intense interest given their remarkable biological properties in development, tissue homeostasis and cancer. YAP and TAZ activity is key for the growth of whole organs, for amplification of tissue-specific progenitor cells during tissue renewal and regeneration, and for cell proliferation. In tumors, YAP/TAZ can reprogram cancer cells into cancer stem cells and incite tumor initiation, progression and metastasis. As such, YAP/TAZ are appealing therapeutic targets in cancer and regenerative medicine. Just like the function of YAP/TAZ offers a molecular entry point into the mysteries of tissue biology, their regulation by upstream cues is equally captivating. YAP/TAZ are well known for being the effectors of the Hippo signaling cascade, and mouse mutants in Hippo pathway components display remarkable phenotypes of organ overgrowth, enhanced stem cell content and reduced cellular differentiation. YAP/TAZ are primary sensors of the cell's physical nature, as defined by cell structure, shape and polarity. YAP/TAZ activation also reflects the cell "social" behavior, including cell adhesion and the mechanical signals that the cell receives from tissue architecture and surrounding extracellular matrix (ECM). At the same time, YAP/TAZ entertain relationships with morphogenetic signals, such as Wnt growth factors, and are also regulated by Rho, GPCRs and mevalonate metabolism. YAP/TAZ thus appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | | |
Collapse
|
193
|
Kong D, Zhao Y, Men T, Teng CB. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy. J Drug Target 2014; 23:125-33. [DOI: 10.3109/1061186x.2014.983522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
194
|
Hofmeister W, Nilsson D, Topa A, Anderlid BM, Darki F, Matsson H, Tapia Páez I, Klingberg T, Samuelsson L, Wirta V, Vezzi F, Kere J, Nordenskjöld M, Syk Lundberg E, Lindstrand A. CTNND2-a candidate gene for reading problems and mild intellectual disability. J Med Genet 2014; 52:111-22. [PMID: 25473103 DOI: 10.1136/jmedgenet-2014-102757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cytogenetically visible chromosomal translocations are highly informative as they can pinpoint strong effect genes even in complex genetic disorders. METHODS AND RESULTS Here, we report a mother and daughter, both with borderline intelligence and learning problems within the dyslexia spectrum, and two apparently balanced reciprocal translocations: t(1;8)(p22;q24) and t(5;18)(p15;q11). By low coverage mate-pair whole-genome sequencing, we were able to pinpoint the genomic breakpoints to 2 kb intervals. By direct sequencing, we then located the chromosome 5p breakpoint to intron 9 of CTNND2. An additional case with a 163 kb microdeletion exclusively involving CTNND2 was identified with genome-wide array comparative genomic hybridisation. This microdeletion at 5p15.2 is also present in mosaic state in the patient's mother but absent from the healthy siblings. We then investigated the effect of CTNND2 polymorphisms on normal variability and identified a polymorphism (rs2561622) with significant effect on phonological ability and white matter volume in the left frontal lobe, close to cortical regions previously associated with phonological processing. Finally, given the potential role of CTNND2 in neuron motility, we used morpholino knockdown in zebrafish embryos to assess its effects on neuronal migration in vivo. Analysis of the zebrafish forebrain revealed a subpopulation of neurons misplaced between the diencephalon and telencephalon. CONCLUSIONS Taken together, our human genetic and in vivo data suggest that defective migration of subpopulations of neuronal cells due to haploinsufficiency of CTNND2 contribute to the cognitive dysfunction in our patients.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Alexandra Topa
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fahimeh Darki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hans Matsson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Isabel Tapia Páez
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Samuelsson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
195
|
Watrin F, Manent JB, Cardoso C, Represa A. Causes and consequences of gray matter heterotopia. CNS Neurosci Ther 2014; 21:112-22. [PMID: 25180909 DOI: 10.1111/cns.12322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to review the pathophysiological bases of gray matter heterotopia and to appreciate their involvement in brain cortical development and functional consequences, namely epilepsy. The development of the cerebral cortex results from complex sequential processes including cell proliferation, cell migration, cortical organization, and formation of neuronal networks. Disruption of these steps yields different types of cortical malformations including gray matter heterotopia, characterized by the ectopic position of neurons along the ventricular walls or in the deep white matter. Cortical malformations are major causes of epilepsy, being responsible for up to 40% of drug-resistant epilepsy, and the cognitive level of affected patients varies from normal to severely impaired. This review reports data from human patients and animal models highlighting the genetic causes for these disorders affecting not only neuronal migration but also the proliferation of cortical progenitors. Therefore, gray matter heterotopias should not be considered as solely due to an abnormal neuronal migration and classifying them as such may be too restrictive. The review will also summarize literature data indicating that besides ectopic neurons, neighbor cortical areas also play a consistent role in epileptogenesis, supporting the notion that plastic changes secondary to the initial malformation are instrumental in the pathophysiology of epilepsy in affected patients.
Collapse
Affiliation(s)
- Françoise Watrin
- INSERM, INMED, Marseille, France; Aix-Marseille University, UMR 901, Marseille, France
| | | | | | | |
Collapse
|
196
|
The Atypical Cadherin Fat Directly Regulates Mitochondrial Function and Metabolic State. Cell 2014; 158:1293-1308. [DOI: 10.1016/j.cell.2014.07.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/09/2014] [Accepted: 07/10/2014] [Indexed: 11/21/2022]
|
197
|
Schmid MT, Weinandy F, Wilsch-Bräuninger M, Huttner WB, Cappello S, Götz M. The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Front Cell Neurosci 2014; 8:215. [PMID: 25147501 PMCID: PMC4124588 DOI: 10.3389/fncel.2014.00215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/16/2014] [Indexed: 12/02/2022] Open
Abstract
During brain development, radial glial cells possess an apico-basal polarity and are coupled by adherens junctions (AJs) to an F-actin belt. To elucidate the role of the actin, we conditionally deleted the key component α-E-catenin in the developing cerebral cortex. Deletion at early stages resulted in severe disruption of tissue polarity due to uncoupling of AJs with the intracellular actin fibers leading to the formation of subcortical band heterotopia. Interestingly, this phenotype closely resembled the phenotype obtained by conditional RhoA deletion, both in regard to the macroscopic subcortical band heterotopia and the subcellular increase in G-actin/F-actin ratio. These data therefore together corroborate the role of the actin cytoskeleton and its anchoring to the AJs for neuronal migration disorders.
Collapse
Affiliation(s)
- Marie-Theres Schmid
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany
| | - Franziska Weinandy
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany
| | | | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Silvia Cappello
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany ; Department of Physiological Genomics, Institute of Physiology, University of Munich Munich, Germany
| | - Magdalena Götz
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany ; Department of Physiological Genomics, Institute of Physiology, University of Munich Munich, Germany
| |
Collapse
|
198
|
Zakaria S, Mao Y, Kuta A, de Sousa CF, Gaufo GO, McNeill H, Hindges R, Guthrie S, Irvine KD, Francis-West PH. Regulation of neuronal migration by Dchs1-Fat4 planar cell polarity. Curr Biol 2014; 24:1620-1627. [PMID: 24998526 PMCID: PMC4193925 DOI: 10.1016/j.cub.2014.05.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/14/2014] [Accepted: 05/23/2014] [Indexed: 01/02/2023]
Abstract
Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.
Collapse
Affiliation(s)
- Sana Zakaria
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | - Anna Kuta
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Catia Ferreira de Sousa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Gary O Gaufo
- Department of Biology, The University of Texas at San Antonio, One UTSA circle, San Antonio, Texas, 78249 USA
| | - Helen McNeill
- The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Canada
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | - Sarah Guthrie
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | - Philippa H Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| |
Collapse
|
199
|
van den Berghe V, Stappers E, Seuntjens E. How cell-autonomous is neuronal migration in the forebrain? Molecular cross-talk at the cell membrane. Neuroscientist 2014; 20:571-5. [PMID: 24972605 DOI: 10.1177/1073858414539396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the adult brain, different cell types communicate with each other through cell-cell contacts and brain activity is regulated at the cell membrane. But long before the brain is fully functional, different excitatory and inhibitory cell types generated at distinct places migrate through the developing brain to their final position. The elements guiding these migrating neurons, either structural axonal scaffolds or chemical guidance factors, are relatively well described. However, the molecules involved in the individual short-timed membrane contacts migrating cells make with other cells during their migration process are less well understood. This update focuses on recent novel insights into the molecular nature of these cell-cell contacts and the cross-talk taking place at the cell membrane.
Collapse
Affiliation(s)
- Veronique van den Berghe
- KU Leuven, Leuven, Belgium Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | | | | |
Collapse
|
200
|
Sheen VL. Filamin A mediated Big2 dependent endocytosis: From apical abscission to periventricular heterotopia. Tissue Barriers 2014; 2:e29431. [PMID: 25097827 PMCID: PMC4117685 DOI: 10.4161/tisb.29431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/23/2023] Open
Abstract
Periventricular heterotopia (PH) is one of the most common malformations of cortical development (MCD). Nodules along the lateral ventricles of the brain, disruption of the ventricular lining, and a reduced brain size are hallmarks of this disorder. PH results in a disruption of the neuroependyma, inhibition of neural proliferation and differentiation, and altered neuronal migration. Human mutations in the genes encoding the actin-binding Filamin A (FLNA) and the vesicle trafficking Brefeldin A-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in PH formation. Recent studies have shown that the transition from proliferating neural progenitors to post-mitotic neurons relies on apical abscission along the neuroepithelium. This mechanism involves an actin dependent contraction of the apical portion of a neural progenitor along the ventricular lining to complete abscission. Actin also maintains stability of various cell adhesion molecules along the neuroependyma. Loss of cadherin directs disassembly of the primary cilium, which transduces sonic-hedgehog (Shh) signaling. Shh signaling is required for continued proliferation. In this context, apical abscission regulates neuronal progenitor exit and migration from the ventricular zone by detachment from the neuroependyma, relies on adhesion molecules that maintain the integrity of the neuroepithelial lining, and directs neural proliferation. Each of these processes is disrupted in PH, suggesting that genes causal for this MCD, may fundamentally mediate apical abscission in cortical development. Here we discuss several recent reports that demonstrate a coordinated role for actin and vesicle trafficking in modulating neural development along the neurepithelium, and potentially the neural stem cell to neuronal transition.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA USA
| |
Collapse
|