151
|
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, Bos M, Kavousi M, Peyser PA, Mayr M, Kovacic JC, Björkegren JLM, Malhotra R, Stukenberg PT, Finn AV, van der Laan SW, Zang C, Sheffield NC, Miller CL. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep 2023; 42:113380. [PMID: 37950869 DOI: 10.1016/j.celrep.2023.113380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD 20878, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | - Maxime Bos
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48019, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London WC2R 2LS, UK; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathan C Sheffield
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
152
|
Luo L, Fu C, Bell CF, Wang Y, Leeper NJ. Role of vascular smooth muscle cell clonality in atherosclerosis. Front Cardiovasc Med 2023; 10:1273596. [PMID: 38089777 PMCID: PMC10713728 DOI: 10.3389/fcvm.2023.1273596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/24/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of death worldwide. While many cell types contribute to the growing atherosclerotic plaque, the vascular smooth muscle cell (SMC) is a major contributor due in part to its remarkable plasticity and ability to undergo phenotype switching in response to injury. SMCs can migrate into the fibrous cap, presumably stabilizing the plaque, or accumulate within the lesional core, possibly accelerating vascular inflammation. How SMCs expand and react to disease stimuli has been a controversial topic for many decades. While early studies relying on X-chromosome inactivation were inconclusive due to low resolution and sensitivity, recent advances in multi-color lineage tracing models have revitalized the concept that SMCs likely expand in an oligoclonal fashion during atherogenesis. Current efforts are focused on determining whether all SMCs have equal capacity for clonal expansion or if a "stem-like" progenitor cell may exist, and to understand how constituents of the clone decide which phenotype they will ultimately adopt as the disease progresses. Mechanistic studies are also beginning to dissect the processes which confer cells with their overall survival advantage, test whether these properties are attributable to intrinsic features of the expanding clone, and define the role of cross-talk between proliferating SMCs and other plaque constituents such as neighboring macrophages. In this review, we aim to summarize the historical perspectives on SMC clonality, highlight unanswered questions, and identify translational issues which may need to be considered as therapeutics directed against SMC clonality are developed as a novel approach to targeting atherosclerosis.
Collapse
Affiliation(s)
- Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Changhao Fu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Caitlin F. Bell
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
153
|
Liu L, Gao J, Tang Y, Guo G, Gan H. Increased expression of the P2Y 12 receptor is involved in the failure of autogenous arteriovenous fistula caused by stenosis. Ren Fail 2023; 45:2278314. [PMID: 38532720 PMCID: PMC11073481 DOI: 10.1080/0886022x.2023.2278314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/27/2023] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE This study investigated the role of the P2Y12 receptor in autogenous arteriovenous fistula (AVF) failure resulting from stenosis. METHODS Stenotic venous tissues and blood samples were obtained from patients with end-stage renal disease (ESRD) together with AVF stenosis, while venous tissues and blood samples were collected from patients with ESRD undergoing initial AVF surgery as controls. Immunohistochemistry and/or immunofluorescence techniques were utilized to assess the expression of P2Y12, transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein 1 (MCP-1), and CD68 in the venous tissues. The expression levels of P2Y12, TGFβ1, and MCP-1 were quantified using quantitative reverse transcription-polymerase chain reaction and western blot analyses. Double and triple immunofluorescence staining was performed to precisely localize the cellular localization of P2Y12 expression. RESULTS Expression levels of P2Y12, TGFβ1, MCP-1, and CD68 were significantly higher in stenotic AVF venous tissues than in the control group tissues. Double and triple immunofluorescence staining of stenotic AVF venous tissues indicated that P2Y12 was predominantly expressed in α-SMA-positive vascular smooth muscle cells (VSMCs) and, to a lesser extent, in CD68-positive macrophages, with limited expression in CD31-positive endothelial cells. Moreover, a subset of macrophage-like VSMCs expressing P2Y12 were observed in both stenotic AVF venous tissues and control venous tissues. Additionally, a higher number of P2Y12+/TGF-β1+ double-positive cells were identified in stenotic AVF venous tissues than in the control group tissues. CONCLUSION Increased expression of P2Y12 in stenotic AVF venous tissues of patients with ESRD suggests its potential involvement in the pathogenesis of venous stenosis within AVFs.
Collapse
Affiliation(s)
- Lei Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jianya Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Guangfeng Guo
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
154
|
Dubner AM, Lu S, Jolly AJ, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. Smooth muscle-derived adventitial progenitor cells direct atherosclerotic plaque composition complexity in a Klf4-dependent manner. JCI Insight 2023; 8:e174639. [PMID: 37991018 PMCID: PMC10755692 DOI: 10.1172/jci.insight.174639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023] Open
Abstract
We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM cell lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM-derived cells localized throughout the vessel wall and atherosclerotic plaques, where they primarily differentiated into fibroblasts, smooth muscle cells (SMC), or remained in a stem-like state. Krüppel-like factor 4 (Klf4) knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched fibroblast phenotype compared with WT mice. Additionally, Klf4 deletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMC and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 deletion, but multiple indices of plaque composition complexity, including necrotic core area, macrophage accumulation, and fibrous cap thickness, were reduced. Collectively, these data support that modulation of AdvSca1-SM cells through KLF4 depletion confers increased protection from the development of potentially unstable atherosclerotic plaques.
Collapse
Affiliation(s)
- Allison M. Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension
- Integrated Physiology PhD Program
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension
- School of Medicine, Consortium for Fibrosis Research and Translation
| | - Austin J. Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Keith A. Strand
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Marie F. Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Tyler Hinthorn
- Department of Medicine, Division of Renal Diseases and Hypertension
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tysen Noble
- Department of Medicine, Division of Renal Diseases and Hypertension
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension
- School of Medicine, Consortium for Fibrosis Research and Translation
| | - Karen S. Moulton
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark W. Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Departments of Pediatrics, Laboratory Medicine & and Pathology, University of Washington, Seattle, Washington, USA
| | - Mary C.M. Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension
- Integrated Physiology PhD Program
- School of Medicine, Consortium for Fibrosis Research and Translation
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
155
|
Aherrahrou R, Baig F, Theofilatos K, Lue D, Beele A, Örd T, Kaikkonen MU, Aherrahrou Z, Cheng Q, Ghosh S, Karnewar S, Karnewar V, Finn A, Owens GK, Joner M, Mayr M, Civelek M. Secreted protein profiling of human aortic smooth muscle cells identifies vascular disease associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298351. [PMID: 37986932 PMCID: PMC10659471 DOI: 10.1101/2023.11.10.23298351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular diseases (CVD), the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a "contractile" to a "synthetic" phenotype characterized by an increased proliferation, migration, production of extracellular matrix (ECM) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of CVD, including coronary artery disease (CAD), stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies (GWAS). Methods Using human aortic SMCs from 123 multi-ancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of the conditioned media. Results We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping (pQTL) and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. Conclusions Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Ferheen Baig
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | | | - Dillon Lue
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alicia Beele
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; University Heart Centre Lübeck, Germany
| | - Qi Cheng
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Saikat Ghosh
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Santosh Karnewar
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Vaishnavi Karnewar
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Aloke Finn
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD
| | - Gary K. Owens
- Department of Molecular Physiology and Biological Physics, Department of Medicine, Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States of America
| | - Michael Joner
- Klinik für Herz-und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
156
|
Majumder S, Chattopadhyay A, Wright JM, Guan P, Buja LM, Kwartler CS, Milewicz DM. Pericentrin deficiency in smooth muscle cells augments atherosclerosis through HSF1-driven cholesterol biosynthesis and PERK activation. JCI Insight 2023; 8:e173247. [PMID: 37937642 PMCID: PMC10721278 DOI: 10.1172/jci.insight.173247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) is caused by biallelic loss-of-function variants in pericentrin (PCNT), and premature coronary artery disease (CAD) is a complication of the syndrome. Histopathology of coronary arteries from patients with MOPDII who died of CAD in their 20s showed extensive atherosclerosis. Hyperlipidemic mice with smooth muscle cell-specific (SMC-specific) Pcnt deficiency (PcntSMC-/-) exhibited significantly greater atherosclerotic plaque burden compared with similarly treated littermate controls despite similar serum lipid levels. Loss of PCNT in SMCs induced activation of heat shock factor 1 (HSF1) and consequently upregulated the expression and activity of HMG-CoA reductase (HMGCR), the rate-limiting enzyme in cholesterol biosynthesis. The increased cholesterol biosynthesis in PcntSMC-/- SMCs augmented PERK signaling and phenotypic modulation compared with control SMCs. Treatment with the HMGCR inhibitor, pravastatin, blocked the augmented SMC modulation and reduced plaque burden in hyperlipidemic PcntSMC-/- mice to that of control mice. These data support the notion that Pcnt deficiency activates cellular stress to increase SMC modulation and plaque burden, and targeting this pathway with statins in patients with MOPDII has the potential to reduce CAD in these individuals. The molecular mechanism uncovered further emphasizes SMC cytosolic stress and HSF1 activation as a pathway driving atherosclerotic plaque formation independently of cholesterol levels.
Collapse
Affiliation(s)
- Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Jamie M. Wright
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - L. Maximilian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| |
Collapse
|
157
|
Buono MF, Benavente ED, Slenders L, Methorst D, Tessels D, Mili E, Finger R, Kapteijn D, Daniels M, van den Dungen NAM, Calis JJA, Mol BM, de Borst GJ, de Kleijn DPV, Pasterkamp G, den Ruijter HM, Mokry M. Human Plaque Myofibroblasts to Study Mechanisms of Atherosclerosis. J Am Heart Assoc 2023; 12:e030243. [PMID: 37889192 PMCID: PMC10727388 DOI: 10.1161/jaha.123.030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/28/2023] [Indexed: 10/28/2023]
Abstract
Background Plaque myofibroblasts are critical players in the initiation and advancement of atherosclerotic disease. They are involved in the production of extracellular matrix, the formation of the fibrous cap, and the underlying lipidic core via modulation processes in response to different environmental cues. Despite clear phenotypic differences between myofibroblast cells and healthy vascular smooth muscle cells, smooth muscle cells are still widely used as a cellular model in atherosclerotic research. Methods and Results Here, we present a conditioned outgrowth method to isolate and culture myofibroblast cells from plaques. We obtained these cells from 27 donors (24 carotid and 3 femoral endarterectomies). We show that they keep their proliferative capacity for 8 passages, are transcriptionally stable, retain donor-specific gene expression programs, and express extracellular matrix proteins (FN1, COL1A1, and DCN) and smooth muscle cell markers (ACTA2, MYH11, and CNN1). Single-cell transcriptomics reveals that the cells in culture closely resemble the plaque myofibroblasts. Chromatin immunoprecipitation sequencing shows the presence of histone H3 lysine 4 dimethylation at the MYH11 promoter, pointing to their smooth muscle cell origin. Finally, we demonstrated that plaque myofibroblasts can be efficiently transduced (>97%) and are capable of taking up oxidized low-density lipoprotein and undergoing calcification. Conclusions In conclusion, we present a method to isolate and culture cells that retain plaque myofibroblast phenotypical and functional capabilities, making them a suitable in vitro model for studying selected mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Michele F. Buono
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Lotte Slenders
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daisey Methorst
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daniëlle Tessels
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Eloi Mili
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Roxy Finger
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daniek Kapteijn
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Mark Daniels
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Jorg J. A. Calis
- Department of CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Pediatric Immunology and Rheumatology, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Barend M. Mol
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Gert J. de Borst
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Gerard Pasterkamp
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hester M. den Ruijter
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Michal Mokry
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
158
|
Chakraborty S, Singh A, Wang L, Wang X, Sanborn MA, Ye Z, Maienschein-Cline M, Mukhopadhyay A, Ganesh BB, Malik AB, Rehman J. Trained immunity of alveolar macrophages enhances injury resolution via KLF4-MERTK-mediated efferocytosis. J Exp Med 2023; 220:e20221388. [PMID: 37615937 PMCID: PMC10450795 DOI: 10.1084/jem.20221388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.
Collapse
Affiliation(s)
- Sreeparna Chakraborty
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Abhalaxmi Singh
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Li Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mark A. Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zijing Ye
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Balaji B. Ganesh
- Research Resources Center, University of Illinois Chicago, Chicago, Illinois, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
159
|
Qu W, Zhou X, Jiang X, Xie X, Xu K, Gu X, Na R, Piao M, Xi X, Sun N, Wang X, Peng X, Xu J, Tian J, Zhang J, Guo J, Zhang M, Zhang Y, Pan Z, Wang K, Yu B, Sun B, Li S, Tian J. Long Noncoding RNA Gpr137b-ps Promotes Advanced Atherosclerosis via the Regulation of Autophagy in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:e468-e489. [PMID: 37767704 DOI: 10.1161/atvbaha.123.319037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Current therapies cannot completely reverse advanced atherosclerosis. High levels of amino acids, induced by Western diet, stimulate mTORC1 (mammalian target of rapamycin complex 1)-autophagy defects in macrophages, accelerating atherosclerotic plaque progression. In addition, autophagy-lysosomal dysfunction contributes to plaque necrotic core enlargement and lipid accumulation. Therefore, it is essential to investigate the novel mechanism and molecules to reverse amino acid-mTORC1-autophagy signaling dysfunction in macrophages of patients with advanced atherosclerosis. METHODS We observed that Gpr137b-ps (G-protein-coupled receptor 137B, pseudogene) was upregulated in advanced atherosclerotic plaques. The effect of Gpr137b-ps on the progression of atherosclerosis was studied by generating advanced plaques in ApoE-/- mice with cardiac-specific knockout of Gpr137b-ps. Bone marrow-derived macrophages and mouse mononuclear macrophage cell line RAW264.7 cells were subjected to starvation or amino acid stimulation to study amino acid-mTORC1-autophagy signaling. Using both gain- and loss-of-function approaches, we explored the mechanism of Gpr137b-ps-regulated autophagy. RESULTS Our results demonstrated that Gpr137b-ps deficiency led to enhanced autophagy in macrophages and reduced atherosclerotic lesions, characterized by fewer necrotic cores and less lipid accumulation. Knockdown of Gpr137b-ps increased autophagy and prevented amino acid-induced mTORC1 signaling activation. As the downstream binding protein of Gpr137b-ps, HSC70 (heat shock cognate 70) rescued the impaired autophagy induced by Gpr137b-ps. Furthermore, Gpr137b-ps interfered with the HSC70 binding to G3BP (Ras GTPase-activating protein-binding protein), which tethers the TSC (tuberous sclerosis complex) complex to lysosomes and suppresses mTORC1 signaling. In addition to verifying that the NTF2 (nuclear transport factor 2) domain of G3BP binds to HSC70 by in vitro protein synthesis, we further demonstrated that HSC70 binds to the NTF2 domain of G3BP through its W90-F92 motif by using computational modeling. CONCLUSIONS These findings reveal that Gpr137b-ps plays an essential role in the regulation of macrophage autophagy, which is crucial for the progression of advanced atherosclerosis. Gpr137b-ps impairs the interaction of HSC70 with G3BP to regulate amino acid-mTORC1-autophagy signaling, and these results provide a new potential therapeutic direction for the treatment of advanced atherosclerosis.
Collapse
Affiliation(s)
- Wenbo Qu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xin Zhou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xinjian Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xianwei Xie
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China (X. Xie)
| | - Kaijian Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xia Gu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China (R.N.)
| | - Minghui Piao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xueyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Junyan Xu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (J.X.)
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China (J.X., J.G.)
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology (J.Z.)
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China (J.X., J.G.)
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Zhenwei Pan
- College of Pharmacy (Z.P., B.S.), Harbin Medical University, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (K.W.)
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Bin Sun
- College of Pharmacy (Z.P., B.S.), Harbin Medical University, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy (S.L.), Harbin Medical University, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases Harbin Medical University, China (S.L.)
- Department of Biopharmaceutical Sciences, College of Pharmacy Harbin Medical University, China (S.L.)
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| |
Collapse
|
160
|
Dubner AM, Lu S, Jolly AJ, Noble T, Hinthorn T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MCM. Confounding Effects of Tamoxifen: Cautionary and Practical Considerations for the Use of Tamoxifen-Inducible Mouse Models in Atherosclerosis Research-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2223-2230. [PMID: 37706321 PMCID: PMC10615862 DOI: 10.1161/atvbaha.123.319922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In recent years, fate-mapping lineage studies in mouse models have led to major advances in vascular biology by allowing investigators to track specific cell populations in vivo. One of the most frequently used lineage tracing approaches involves tamoxifen-inducible CreERT-LoxP systems. However, tamoxifen treatment can also promote effects independent of Cre recombinase activation, many of which have not been fully explored. METHODS To elucidate off-target effects of tamoxifen, male and female mice were either unmanipulated or injected with tamoxifen or corn oil. All mice received PCSK9 (proprotein convertase subtilisin/kexin type 9)-AAV (adeno-associated virus) injections and a modified Western diet to induce hypercholesterolemia. After 2 weeks, serum cholesterol and liver morphology were assessed. To determine the duration of any tamoxifen effects in long-term atherosclerosis experiments, mice received either 12 days of tamoxifen at baseline or 12 days plus 2 sets of 5-day tamoxifen boosters; all mice received PCSK9-AAV injections and a modified Western diet to induce hypercholesterolemia. After 24 weeks, serum cholesterol and aortic sinus plaque burden were measured. RESULTS After 2 weeks of atherogenic treatment, mice injected with tamoxifen demonstrated significantly reduced serum cholesterol levels compared with uninjected- or corn oil-treated mice. However, there were no differences in PCSK9-mediated knockdown of LDL (low-density lipoprotein) receptors between the groups. Additionally, tamoxifen-treated mice exhibited significantly increased hepatic lipid accumulation compared with the other groups. Finally, the effects of tamoxifen remained for at least 8 weeks after completion of injections, with mice demonstrating persistent decreased serum cholesterol and impaired atherosclerotic plaque formation. CONCLUSIONS In this study, we establish that tamoxifen administration results in decreased serum cholesterol, decreased plaque formation, and increased hepatic lipid accumulation. These alterations represent significant confounding variables in atherosclerosis research, and we urge future investigators to take these findings into consideration when planning and executing their own atherosclerosis experiments.
Collapse
Affiliation(s)
- Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tysen Noble
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler Hinthorn
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen S Moulton
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | - Mary CM Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
161
|
Napiórkowska-Baran K, Schmidt O, Szymczak B, Lubański J, Doligalska A, Bartuzi Z. Molecular Linkage between Immune System Disorders and Atherosclerosis. Curr Issues Mol Biol 2023; 45:8780-8815. [PMID: 37998729 PMCID: PMC10670175 DOI: 10.3390/cimb45110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
A strong relationship exists between immune dysfunction and cardiovascular disease. Immune dysregulation can promote the development of cardiovascular diseases as well as exacerbate their course. The disorders may occur due to the presence of primary immune defects (currently known as inborn errors of immunity) and the more common secondary immune deficiencies. Secondary immune deficiencies can be caused by certain chronic conditions (such as diabetes, chronic kidney disease, obesity, autoimmune diseases, or cancer), nutritional deficiencies (including both lack of nutrients and bioactive non-nutrient compounds), and medical treatments and addictive substances. This article unravels the molecular linkage between the aforementioned immune system disorders and atherosclerosis.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Jakub Lubański
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
162
|
Hutton M, Frazer M, Lin A, Patel S, Misra A. New Targets in Atherosclerosis: Vascular Smooth Muscle Cell Plasticity and Macrophage Polarity. Clin Ther 2023; 45:1047-1054. [PMID: 37709601 DOI: 10.1016/j.clinthera.2023.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Despite an increase in treatment options, and substantial reductions in cardiovascular mortality over the past half-century, atherosclerosis remains the most prevalent cause of premature mortality worldwide. The development of innovative new therapies is crucial to further minimize atherosclerosis-related deaths. The diverse array of cell phenotypes derived from vascular smooth muscle cells (SMCs) and macrophages within atherosclerotic plaques are increasingly becoming recognized for their beneficial and detrimental roles in plaque stability and disease burden. This review explores how contemporary transcriptomics and fate-mapping studies have revealed vascular cell plasticity as a relatively unexplored target for therapeutic intervention. METHODS Recent literature for this narrative review was obtained by searching electronic databases (ie, Google Scholar, PubMed). Additional studies were sourced from reference lists and the authors' personal databases. FINDINGS The lipid-rich and inflammatory plaque milieu induces SMC phenotypic switching to both beneficial and detrimental phenotypes. Likewise, macrophage heterogeneity increases with disease burden to a variety of pro-inflammatory and anti-inflammatory activation states. These vascular cell phenotypes are determinants of plaque structure stability, and it is therefore highly likely that they influence clinical outcomes. Development of clinical treatments targeting deleterious phenotypes or promoting pro-healing phenotypes remains in its infancy. However, existing treatments (statins) have shown beneficial effects toward macrophage polarization, providing a rationale for more targeted approaches. In contrast, beneficial SMC phenotypic modulation with these pharmacologic agents has yet to be achieved. The range of modulated vascular cell phenotypes provides a multitude of novel targets and the potential to reduce future adverse events. IMPLICATIONS Vascular cell phenotypic heterogeneity must continue to be explored to lower cardiovascular events in the future. The rapidly increasing weight of evidence surrounding the role of SMC plasticity and macrophage polarity in plaque vulnerability provides a strong foundation upon which development of new therapeutics must follow. This approach may prove to be crucial in reducing cardiovascular events and improving patient benefit in the future.
Collapse
Affiliation(s)
- Michael Hutton
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Madeleine Frazer
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
163
|
Cardoso Dos Santos LM, Azar P, Brun C, König S, Roatti A, Baertschi AJ, Chaabane C, Bochaton-Piallat ML. Apelin is expressed in intimal smooth muscle cells and promotes their phenotypic transition. Sci Rep 2023; 13:18736. [PMID: 37907514 PMCID: PMC10618247 DOI: 10.1038/s41598-023-45470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
During atherosclerotic plaque formation, smooth muscle cells (SMCs) switch from a contractile/differentiated to a synthetic/dedifferentiated phenotype. We previously isolated differentiated spindle-shaped (S) and dedifferentiated rhomboid (R) SMCs from porcine coronary artery. R-SMCs express S100A4, a calcium-binding protein. We investigated the role of apelin in this phenotypic conversion, as well as its relationship with S100A4. We found that apelin was highly expressed in R-SMCs compared with S-SMCs. We observed a nuclear expression of apelin in SMCs within experimentally-induced intimal thickening of the porcine coronary artery and rat aorta. Plasmids targeting apelin to the nucleus (N. Ap) and to the secretory vesicles (S. Ap) were transfected into S-SMCs where apelin was barely detectable. Both plasmids induced the SMC transition towards a R-phenotype. Overexpression of N. Ap, and to a lesser degree S. Ap, led to a nuclear localization of S100A4. Stimulation of S-SMCs with platelet-derived growth factor-BB, known to induce the transition toward the R-phenotype, yielded the direct interaction and nuclear expression of both apelin and S100A4. In conclusion, apelin induces a SMC phenotypic transition towards the synthetic phenotype. These results suggest that apelin acts via nuclear re-localization of S100A4, raising the possibility of a new pro-atherogenic relationship between apelin and S100A4.
Collapse
Affiliation(s)
| | - Pascal Azar
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Cécile Brun
- Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Stéphane König
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Angela Roatti
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alex J Baertschi
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
164
|
Shin J, Tkachenko S, Gomez D, Tripathi R, Owens GK, Cherepanova OA. Smooth muscle cells-specific loss of OCT4 accelerates neointima formation after acute vascular injury. Front Cardiovasc Med 2023; 10:1276945. [PMID: 37942066 PMCID: PMC10627795 DOI: 10.3389/fcvm.2023.1276945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction There is growing evidence that smooth muscle cell (SMC) phenotypic transitions play critical roles during normal developmental and tissue recovery processes and in pathological conditions such as atherosclerosis. However, the molecular mechanisms responsible for these transitions are not well understood. Recently, we found that the embryonic stem cell/induced pluripotent stem cell (iPSC) factor OCT4, which was believed to be silenced in somatic cells, plays an atheroprotective role in SMC, and regulates angiogenesis after corneal alkali burn and hindlimb ischemia by mediating microvascular SMC and pericyte migration. However, the kinetics of OCT4 activation in arterial SMC and its role in acute pathological conditions are still unknown. Methods and Results Here, using an Oct4-IRES-GFP reporter mouse model, we found that OCT4 is reactivated in the carotid artery 18 hours post-acute ligation-induced injury, a common in vivo model of the SMC phenotypic transitions. Next, using a tamoxifen-inducible Myh11-CreERT2 Oct4 knockout mouse model, we found that the loss of OCT4, specifically in SMC, led to accelerated neointima formation and increased tunica media following carotid artery ligation, at least in part by increasing SMC proliferation within the media. Bulk RNA sequencing analysis on the cultured SMC revealed significant down-regulation of the SMC contractile markers and dysregulation of the genes belonging to the regulation of cell proliferation and, positive and negative regulation for cell migration ontological groups following genetic inactivation of Oct4. We also found that loss of Oct4 resulted in suppression of contractile SMC markers after the injury and in cultured aortic SMC. Further mechanistic studies revealed that OCT4 regulates SMC contractile genes, ACTA2 and TAGLN, at least in part by direct binding to the promoters of these genes. Conclusion These results demonstrate that the pluripotency factor OCT4 is quickly activated in SMC after the acute vascular injury and inhibits SMC hyperproliferation, which may be protective in preventing excessive neointima formation.
Collapse
Affiliation(s)
- Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Delphine Gomez
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rupande Tripathi
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
165
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
166
|
Nagesh PT, Nishi H, Rawal S, Zahr T, Miano JM, Sorci-Thomas M, Xu H, Akbar N, Choudhury RP, Misra A, Fisher EA. HDL regulates TGFß-receptor lipid raft partitioning, restoring contractile features of cholesterol-loaded vascular smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562786. [PMID: 37905061 PMCID: PMC10614922 DOI: 10.1101/2023.10.19.562786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFβ signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives To test whether cholesterol-loading reduces VSMC TGFβ signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfβr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfβr2 or partially deficient (Tgfβr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results Cholesterol-loading of hVSMCs downregulated TGFβ signaling and contractile gene expression; macrophage markers were induced. TGFβ signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFβ receptors into lipid rafts, with consequent TGFβ signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFβ signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfβr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFβ signaling. Conclusions Cholesterol suppresses TGFβ signaling and the contractile state in hVSMC through partitioning of TGFβ receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.
Collapse
Affiliation(s)
- Prashanth Thevkar Nagesh
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Hitoo Nishi
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Shruti Rawal
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Tarik Zahr
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Mary Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
167
|
Abstract
The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations.
Collapse
Affiliation(s)
- Runji Chen
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
| | - Daifei Shen
- Research Center for Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
- Cardiovascular‐Metabolic Disease Translational Research ProgrammeNational University of SingaporeSingapore
| |
Collapse
|
168
|
Karnewar S, Karnewar V, Deaton R, Shankman LS, Benavente ED, Williams CM, Bradley X, Alencar GF, Bulut GB, Kirmani S, Baylis RA, Zunder ER, den Ruijter HM, Pasterkamp G, Owens GK. IL-1β inhibition partially negates the beneficial effects of diet-induced lipid lowering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562255. [PMID: 37873280 PMCID: PMC10592822 DOI: 10.1101/2023.10.13.562255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions are the leading cause of death in the world. The most common and effective means to reduce these major adverse cardiovascular events (MACE), including myocardial infarction (MI) and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, little is known regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. Methods Smooth muscle cell (SMC)-lineage tracing Apoe-/- mice were fed a Western diet (WD) for 18 weeks and then switched to a low-fat chow diet for 12 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery (BCA) lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of SMC, and other lesion cells by SMC-lineage tracing combined with scRNA-seq, CyTOF, and immunostaining plus high resolution confocal microscopic z-stack analysis. In addition, to determine if treatment with a potent inhibitor of inflammation could augment the benefits of chow diet-induced reductions in LDL-cholesterol, SMC-lineage tracing Apoe-/- mice were fed a WD for 18 weeks and then chow diet for 12 weeks prior to treating them with an IL-1β or control antibody (Ab) for 8-weeks. Results Lipid-lowering by switching Apoe-/- mice from a WD to a chow diet reduced LDL-cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1β Ab treatment resulted in multiple detrimental changes including increased plaque burden, BCA lesion size, as well as increased cholesterol crystal accumulation, intra-plaque hemorrhage, necrotic core area, and senescence as compared to IgG control Ab treated mice. Furthermore, IL-1β Ab treatment upregulated neutrophil degranulation pathways but down-regulated SMC extracellular matrix pathways likely important for the protective fibrous cap. Conclusions Taken together, IL-1β appears to be required for chow diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.
Collapse
Affiliation(s)
- Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Vaishnavi Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Rebecca Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Laura S. Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Ernest D. Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Corey M. Williams
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Xenia Bradley
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gabriel F. Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gamze B. Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Sara Kirmani
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Eli R. Zunder
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| |
Collapse
|
169
|
Pekayvaz K, Gold C, Hoseinpour P, Engel A, Martinez-Navarro A, Eivers L, Coletti R, Joppich M, Dionísio F, Kaiser R, Tomas L, Janjic A, Knott M, Mehari F, Polewka V, Kirschner M, Boda A, Nicolai L, Schulz H, Titova A, Kilani B, Lorenz M, Fingerle-Rowson G, Bucala R, Enard W, Zimmer R, Weber C, Libby P, Schulz C, Massberg S, Stark K. Mural cell-derived chemokines provide a protective niche to safeguard vascular macrophages and limit chronic inflammation. Immunity 2023; 56:2325-2341.e15. [PMID: 37652021 PMCID: PMC10588993 DOI: 10.1016/j.immuni.2023.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages. Intravital imaging revealed a spatiotemporal macrophage niche across vascular beds alongside mural cells (MCs)-pericytes and smooth muscle cells. Single-cell transcriptomics, co-culture, and genetic deletion experiments revealed MC-derived expression of the chemokines CCL2 and MIF, which actively preserved macrophage survival and their homeostatic functions. In atherosclerosis, this positioned macrophages in viable plaque areas, away from the necrotic core, and maintained a homeostatic macrophage phenotype. Disruption of this MC-macrophage unit via MC-specific deletion of these chemokines triggered detrimental macrophage relocalizing, exacerbated plaque necrosis, inflammation, and atheroprogression. In line, CCL2 inhibition at advanced stages of atherosclerosis showed detrimental effects. This work presents a MC-driven safeguard toward maintaining the homeostatic vascular macrophage niche.
Collapse
Affiliation(s)
- Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Christoph Gold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Parandis Hoseinpour
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anouk Engel
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Luke Eivers
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raffaele Coletti
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Flávio Dionísio
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Rainer Kaiser
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lukas Tomas
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Maximilian Knott
- Institute of Pathology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Fitsumbirhan Mehari
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vivien Polewka
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Megan Kirschner
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Annegret Boda
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Weber
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
170
|
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, Tumanov S, Örd T, Hadden M, Mokry M, Mol BM, Pasterkamp G, Padula MP, Geczy CL, Ramaswamy Y, Sluimer JC, Kaikkonen MU, Stocker R, Baker AH, Fisher EA, Patel S, Misra A. Colchicine promotes atherosclerotic plaque stability independently of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560632. [PMID: 37873248 PMCID: PMC10592948 DOI: 10.1101/2023.10.03.560632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.
Collapse
|
171
|
Francis GA. The Greatly Under-Represented Role of Smooth Muscle Cells in Atherosclerosis. Curr Atheroscler Rep 2023; 25:741-749. [PMID: 37665492 PMCID: PMC10564813 DOI: 10.1007/s11883-023-01145-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW This article summarizes previous and recent research on the fundamental role of arterial smooth muscle cells (SMCs) as drivers of initial and, along with macrophages, later stages of human atherosclerosis. RECENT FINDINGS Studies using human tissues and SMC lineage-tracing mice have reinforced earlier observations that SMCs drive initial atherogenesis in humans and contribute a multitude of phenotypes including foam cell formation hitherto attributed primarily to macrophages in atherosclerosis. Arterial smooth muscle cells (SMCs) are the primary cell type in human pre-atherosclerotic intima and are responsible for the retention of lipoproteins that drive the development of atherosclerosis. Despite this, images of atherogenesis still depict the process as initially devoid of SMCs, primarily macrophage driven, and indicate only relatively minor roles such as fibrous cap formation to intimal SMCs. This review summarizes historical and recent observations regarding the importance of SMCs in the formation of a pre-atherosclerotic intima, initial and later foam cell formation, and the phenotypic changes that give rise to multiple different roles for SMCs in human and mouse lesions. Potential SMC-specific therapies in atherosclerosis are presented.
Collapse
Affiliation(s)
- Gordon A Francis
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
172
|
Eberhardt N, Noval MG, Kaur R, Amadori L, Gildea M, Sajja S, Das D, Cilhoroz B, Stewart O, Fernandez DM, Shamailova R, Guillen AV, Jangra S, Schotsaert M, Newman JD, Faries P, Maldonado T, Rockman C, Rapkiewicz A, Stapleford KA, Narula N, Moore KJ, Giannarelli C. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. NATURE CARDIOVASCULAR RESEARCH 2023; 2:899-916. [PMID: 38076343 PMCID: PMC10702930 DOI: 10.1038/s44161-023-00336-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) present increased risk for ischemic cardiovascular complications up to 1 year after infection. Although the systemic inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Maria Gabriela Noval
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ravneet Kaur
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Letizia Amadori
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Michael Gildea
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Swathy Sajja
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Dayasagar Das
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Burak Cilhoroz
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - O’Jay Stewart
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn M. Fernandez
- Department of Medicine, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roza Shamailova
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Andrea Vasquez Guillen
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan D. Newman
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Peter Faries
- Department of Surgery, Vascular Division, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Maldonado
- Department of Surgery, Vascular Division, New York University Langone Health, New York, NY, USA
| | - Caron Rockman
- Department of Surgery, Vascular Division, New York University Langone Health, New York, NY, USA
| | - Amy Rapkiewicz
- Department of Pathology, NYU Winthrop Hospital, Long Island School of Medicine, New York, NY, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
173
|
Liu X, Luo P, Zhang W, Zhang S, Yang S, Hong F. Roles of pyroptosis in atherosclerosis pathogenesis. Biomed Pharmacother 2023; 166:115369. [PMID: 37643484 DOI: 10.1016/j.biopha.2023.115369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Pyroptosis is a pro-inflammatory type of regulated cell death (RCD) characterized by gasdermin protein-mediated membrane pore formation, cell swelling, and rapid lysis. Recent studies have suggested that pyroptosis is closely related to atherosclerosis (AS). Previous studies reported that pyroptosis involving endothelial cells (ECs), macrophages, and smooth muscle cells (SMCs) plays an important role in the formation and development of AS. Pyroptosis not only causes local inflammation but also amplifies the inflammatory response and it aggravates plaque instability, leading to plaque rupture and thrombosis, eventually resulting in acute cardiovascular events. In this review, we clarified some novel pathways and mechanics and presented some potential drugs.
Collapse
Affiliation(s)
- Xiaohan Liu
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China
| | - Peiyi Luo
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Weiyun Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuxian Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shulong Yang
- School of basic medical sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China; Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China.
| | - Fenfang Hong
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China.
| |
Collapse
|
174
|
Pineda-Castillo SA, Acar H, Detamore MS, Holzapfel GA, Lee CH. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:574-588. [PMID: 37166394 PMCID: PMC10618830 DOI: 10.1089/ten.teb.2023.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.
Collapse
Affiliation(s)
- Sergio A. Pineda-Castillo
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
175
|
Chakraborty A, Li Y, Zhang C, Li Y, Rebello KR, Li S, Xu S, Vasquez HG, Zhang L, Luo W, Wang G, Chen K, Coselli JS, LeMaire SA, Shen YH. Epigenetic Induction of Smooth Muscle Cell Phenotypic Alterations in Aortic Aneurysms and Dissections. Circulation 2023; 148:959-977. [PMID: 37555319 PMCID: PMC10529114 DOI: 10.1161/circulationaha.123.063332] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smooth muscle cell (SMC) phenotypic switching has been increasingly detected in aortic aneurysm and dissection (AAD) tissues. However, the diverse SMC phenotypes in AAD tissues and the mechanisms driving SMC phenotypic alterations remain to be identified. METHODS We examined the transcriptomic and epigenomic dynamics of aortic SMC phenotypic changes in mice with angiotensin II-induced AAD by using single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin. SMC phenotypic alteration in aortas from patients with ascending thoracic AAD was examined by using single-cell RNA sequencing analysis. RESULTS Single-cell RNA sequencing analysis revealed that aortic stress induced the transition of SMCs from a primary contractile phenotype to proliferative, extracellular matrix-producing, and inflammatory phenotypes. Lineage tracing showed the complete transformation of SMCs to fibroblasts and macrophages. Single-cell sequencing assay for transposase-accessible chromatin analysis indicated that these phenotypic alterations were controlled by chromatin remodeling marked by the reduced chromatin accessibility of contractile genes and the induced chromatin accessibility of genes involved in proliferation, extracellular matrix, and inflammation. IRF3 (interferon regulatory factor 3), a proinflammatory transcription factor activated by cytosolic DNA, was identified as a key driver of the transition of aortic SMCs from a contractile phenotype to an inflammatory phenotype. In cultured SMCs, cytosolic DNA signaled through its sensor STING (stimulator of interferon genes)-TBK1 (tank-binding kinase 1) to activate IRF3, which bound and recruited EZH2 (enhancer of zeste homolog 2) to contractile genes to induce repressive H3K27me3 modification and gene suppression. In contrast, double-stranded DNA-STING-IRF3 signaling induced inflammatory gene expression in SMCs. In Sting-/- mice, the aortic stress-induced transition of SMCs into an inflammatory phenotype was prevented, and SMC populations were preserved. Finally, profound SMC phenotypic alterations toward diverse directions were detected in human ascending thoracic AAD tissues. CONCLUSIONS Our study reveals the dynamic epigenetic induction of SMC phenotypic alterations in AAD. DNA damage and cytosolic leakage drive SMCs from a contractile phenotype to an inflammatory phenotype.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Kimberly R Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Shengyu Li
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Samantha Xu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Kaifu Chen
- Department of Pediatrics, Harvard Medical School, Boston, MA (K.C.)
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
176
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
177
|
Liu H, Dong X, Jia K, Yuan B, Ren Z, Pan X, Wu J, Li J, Zhou J, Wang RX, Qu L, Sun J, Pan LL. Protein arginine methyltransferase 5-mediated arginine methylation stabilizes Kruppel-like factor 4 to accelerate neointimal formation. Cardiovasc Res 2023; 119:2142-2156. [PMID: 37201513 DOI: 10.1093/cvr/cvad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/28/2023] [Accepted: 03/01/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Accumulating evidence supports the indispensable role of protein arginine methyltransferase 5 (PRMT5) in the pathological progression of several human cancers. As an important enzyme-regulating protein methylation, how PRMT5 participates in vascular remodelling remains unknown. The aim of this study was to investigate the role and underlying mechanism of PRMT5 in neointimal formation and to evaluate its potential as an effective therapeutic target for the condition. METHODS AND RESULTS Aberrant PRMT5 overexpression was positively correlated with clinical carotid arterial stenosis. Vascular smooth muscle cell (SMC)-specific PRMT5 knockout inhibited intimal hyperplasia with an enhanced expression of contractile markers in mice. Conversely, PRMT5 overexpression inhibited SMC contractile markers and promoted intimal hyperplasia. Furthermore, we showed that PRMT5 promoted SMC phenotypic switching by stabilizing Kruppel-like factor 4 (KLF4). Mechanistically, PRMT5-mediated KLF4 methylation inhibited ubiquitin-dependent proteolysis of KLF4, leading to a disruption of myocardin (MYOCD)-serum response factor (SRF) interaction and MYOCD-SRF-mediated the transcription of SMC contractile markers. CONCLUSION Our data demonstrated that PRMT5 critically mediated vascular remodelling by promoting KLF4-mediated SMC phenotypic conversion and consequently the progression of intimal hyperplasia. Therefore, PRMT5 may represent a potential therapeutic target for intimal hyperplasia-associated vascular diseases.
Collapse
Affiliation(s)
- He Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Kunpeng Jia
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Baohui Yuan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, P. R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|
178
|
Lei C, Kan H, Xian X, Chen W, Xiang W, Song X, Wu J, Yang D, Zheng Y. FAM3A reshapes VSMC fate specification in abdominal aortic aneurysm by regulating KLF4 ubiquitination. Nat Commun 2023; 14:5360. [PMID: 37660071 PMCID: PMC10475135 DOI: 10.1038/s41467-023-41177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Reprogramming of vascular smooth muscle cell (VSMC) differentiation plays an essential role in abdominal aortic aneurysm (AAA). However, the underlying mechanisms are still unclear. We explore the expression of FAM3A, a newly identified metabolic cytokine, and whether and how FAM3A regulates VSMC differentiation in AAA. We discover that FAM3A is decreased in the aortas and plasma in AAA patients and murine models. Overexpression or supplementation of FAM3A significantly attenuate the AAA formation, manifested by maintenance of the well-differentiated VSMC status and inhibition of VSMC transformation toward macrophage-, chondrocyte-, osteogenic-, mesenchymal-, and fibroblast-like cell subpopulations. Importantly, FAM3A induces KLF4 ubiquitination and reduces its phosphorylation and nuclear localization. Here, we report FAM3A as a VSMC fate-shaping regulator in AAA and reveal the underlying mechanism associated with KLF4 ubiquitination and stability, which may lead to the development of strategies based on FAM3A to restore VSMC homeostasis in AAA.
Collapse
Affiliation(s)
- Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Haoxuan Kan
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Xiangyu Xian
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Wenlin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Wenxuan Xiang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Xiaohong Song
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Jianqiang Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing, 100193, China.
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
179
|
Chin DD, Patel N, Lee W, Kanaya S, Cook J, Chung EJ. Long-term, in vivo therapeutic effects of a single dose of miR-145 micelles for atherosclerosis. Bioact Mater 2023; 27:327-336. [PMID: 37122900 PMCID: PMC10140752 DOI: 10.1016/j.bioactmat.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to lower serum lipid levels. Despite its widespread use, many patients taking statins continue to experience acute events. Thus, to develop improved and alternative therapies, we previously reported on microRNA-145 (miR-145 micelles) and its ability to inhibit atherosclerosis by targeting vascular smooth muscle cells (VSMCs). Importantly, one dose of miR-145 micelles significantly abrogated disease progression when evaluated two weeks post-administration. Thus, in this study, to evaluate how long the sustained effects of miR-145 micelles can be maintained and towards identifying a dosing regimen that is practical for patients with chronic disease, the therapeutic effects of a single dose of miR-145 micelles were evaluated for up to two months in vivo. After one and two months post-treatment, miR-145 micelles were found to reduce plaque size and overall lesion area compared to all other controls including statins without causing adverse effects. Furthermore, a single dose of miR-145 micelle treatment inhibited VSMC transdifferentiation into pathogenic macrophage-like and osteogenic cells in plaques. Together, our data shows the long-term efficacy and sustained effects of miR-145 micelles that is amenable using a dosing frequency relevant to chronic disease patients.
Collapse
Affiliation(s)
- Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Woori Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Sonali Kanaya
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jackson Cook
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
180
|
Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH, Hwa J. Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol 2023; 69:101809. [PMID: 37478801 PMCID: PMC10528349 DOI: 10.1016/j.smim.2023.101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation. Due to the danger that pyroptosis represents to cells within the cardiovascular system and the whole organism, multiple levels of pyroptosis regulation have evolved. Those include regulation of inflammasome priming, post-translational modifications of gasdermins, and cellular mechanisms for pore removal. While pyroptosis in macrophages is well characterized as a dramatic pro-inflammatory process, pyroptosis in other cell types within the cardiovascular system displays variable pathways and consequences. Furthermore, different cells and organs engage in local and distant crosstalk and exchange of pyroptosis triggers (oxidized mitochondrial DNA), mediators (IL-1β, S100A8/A9) and antagonists (IL-9). Development of genetic tools, such as Gasdermin D knockout animals, and small molecule inhibitors of pyroptosis will not only help us fully understand the role of pyroptosis in cardiovascular diseases but may result in novel therapeutic approaches inhibiting inflammation and progression of chronic cardiovascular diseases to reduce morbidity and mortality from acute cardiovascular events.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Meiling Su
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chaofei Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, the Hong Kong Special Administrative Region of China
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
181
|
Liu H, Zhang J, Xue Z, Chang M, Feng X, Cai Y, Bai L, Wang W, Liu E, Zhao S, Wang R. Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching. Atherosclerosis 2023; 380:117195. [PMID: 37586220 DOI: 10.1016/j.atherosclerosis.2023.117195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND AIMS Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an essential role in the development of atherosclerosis. Protein inhibitor of activated STAT (Pias) regulates VSMCs phenotype via acting as sumo E3 ligase to promote protein sumoylation. Our previous study indicated that Pias3 expression decreased in atherosclerotic lesions. Therefore, this study aimed to explore the role of Pias3 on VSMCs phenotype switching during atherosclerosis. METHODS ApoE-/- and ApoE-/-Pias3-/- double-deficient mice were fed with high-fat/high-cholesterol diet to induce atherosclerosis. Aorta tissues and primary VSMCs were collected to assess plaque formation and VSMCs phenotype. In vitro, Pias3 was overexpressed in A7r5, a VSMCs cell line, by transfection with Pias3 plasmid. Real-time quantitative PCR, immunoblotting, immunoprecipitation, were used to analyze the effect of Pias3 on VSMCs phenotypic switching. RESULTS Pias3 deficiency significantly exacerbated atherosclerotic plaque formation and promoted VSMCs phenotypic switching to a synthetic state within lesion. In vitro, overexpressing Pias3 in VSMCs increased the expression of contractile markers (myosin heavy chain 11, calponin 1), while it decreased the level of synthetic marker (vimentin). Additionally, Pias3 overexpression blocked PDGF-BB-induced VSMCs proliferation and migration. Immunoprecipitation and mass spectrometry results showed that Pias3 enhanced sumoylation and ubiquitination of vimentin, and shortened its half-life. Moreover, the ubiquitination level of vimentin was impaired by 2-D08, a sumoylation inhibitor. This suggests that Pias3 might accelerate the ubiquitination-degradation of vimentin by promoting its sumoylation. CONCLUSIONS These results indicate that Pias3 might ameliorate atherosclerosis progression by suppressing VSMCs phenotypic switching and reducing vimentin protein stability.
Collapse
Affiliation(s)
- Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jingyi Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziyang Xue
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingke Chang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xinxin Feng
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yifan Cai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
182
|
Xu X, Zhang DD, Kong P, Gao YK, Huang XF, Song Y, Zhang WD, Guo RJ, Li CL, Chen BW, Sun Y, Zhao YB, Jia FY, Wang X, Zhang F, Han M. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep 2023; 42:112869. [PMID: 37481722 DOI: 10.1016/j.celrep.2023.112869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can transdifferentiate into macrophage-like cells in the context of sustained inflammatory injury, which drives vascular hyperplasia and atherosclerotic complications. Using single-cell RNA sequencing, we identify that macrophage-like VSMCs are the key cell population in mouse neointimal hyperplasia. Sex-determining region Y (SRY)-related HMG-box gene 10 (Sox10) upregulation is associated with macrophage-like VSMC accumulation and pyroptosis in vitro and in the neointimal hyperplasia of mice. Tumor necrosis factor α (TNF-α)-induced Sox10 lactylation in a phosphorylation-dependent manner by PI3K/AKT signaling drives transcriptional programs of VSMC transdifferentiation, contributing to pyroptosis. The regulator of G protein signaling 5 (RGS5) interacts with AKT and blocks PI3K/AKT signaling and Sox10 phosphorylation at S24. Sox10 silencing mitigates vascular inflammation and forestalls neointimal hyperplasia in RGS5 knockout mice. Collectively, this study shows that Sox10 is a regulator of vascular inflammation and a potential control point in inflammation-related vascular disease.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Ya-Kun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang-Lin Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Bo-Wen Chen
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Sun
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yong-Bo Zhao
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
183
|
Deng Q, Li H, Yue X, Guo C, Sun Y, Ma C, Gao J, Wu Y, Du B, Yang J, Zhang C, Zhang W. Smooth muscle liver kinase B1 inhibits foam cell formation and atherosclerosis via direct phosphorylation and activation of SIRT6. Cell Death Dis 2023; 14:542. [PMID: 37607939 PMCID: PMC10444762 DOI: 10.1038/s41419-023-06054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
Foam cell formation is a hallmark of the early phase of atherosclerosis. Growing evidence has demonstrated that vascular smooth muscle cells (VSMCs) comprise a considerable proportion of foam cells. Liver kinase B1 (LKB1) plays a crucial part in cardiovascular diseases. However, the role of LKB1 in VSMC-derived foam cell formation and atherosclerosis remains unclear. To explore the effects of LKB1 on VSMC-derived foam cell formation and atherosclerosis, we generated smooth muscle-specific LKB1 knockout (LKB1SMKO) mice by crossbreeding LKB1flox/flox mice with SM22α-CreERT2 mice. LKB1 expression decreased in plaque-loaded aortas and oxidized low-density lipoprotein (oxLDL)-treated VSMCs. Compared with controls, atherosclerosis development was exacerbated in LKB1SMKO mice via the promotion of VSMC-derived foam cell formation. Conversely, LKB1 overexpression inhibited lipid uptake and foam cell formation in VSMCs. Mechanistically, LKB1 binds to SIRT6 and directly phosphorylates and activates it, thereby reducing lectin-like oxLDL receptor-1 (LOX-1) via SIRT6-dependent histone deacetylation. Finally, adeno-associated virus (AAV)-mediated LOX-1 deficiency in smooth muscle ameliorated atherosclerosis in LKB1SMKO mice. Our findings suggest that LKB1 may modulate VSMC-derived foam cell formation and atherosclerosis via the phosphorylation and activation of SIRT6.
Collapse
Affiliation(s)
- Qiming Deng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongxuan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaolin Yue
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chenghu Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanyuan Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chang Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Du
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
184
|
Alonso-Herranz L, Albarrán-Juárez J, Bentzon JF. Mechanisms of fibrous cap formation in atherosclerosis. Front Cardiovasc Med 2023; 10:1254114. [PMID: 37671141 PMCID: PMC10475556 DOI: 10.3389/fcvm.2023.1254114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
The fibrous cap is formed by smooth muscle cells that accumulate beneath the plaque endothelium. Cap rupture is the main cause of coronary thrombosis, leading to infarction and sudden cardiac death. Therefore, the qualities of the cap are primary determinants of the clinical outcome of coronary and carotid atherosclerosis. In this mini-review, we discuss current knowledge about the formation of the fibrous cap, including cell recruitment, clonal expansion, and central molecular signaling pathways. We also examine the differences between mouse and human fibrous caps and explore the impact of anti-atherosclerotic therapies on the state of the fibrous cap. We propose that the cap should be understood as a neo-media to substitute for the original media that becomes separated from the surface endothelium during atherogenesis and that embryonic pathways involved in the development of the arteria media contribute to cap formation.
Collapse
Affiliation(s)
- Laura Alonso-Herranz
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julián Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fog Bentzon
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
185
|
Zhang Z, Li L, Shi H, Chen B, Li X, Zhang Y, Liu F, Wei W, Zhou Y, Liu K, Xia W, Gu X, Huang J, Tu S, Yin C, Shao A, Jiang L. Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1461. [PMID: 37629751 PMCID: PMC10456328 DOI: 10.3390/medicina59081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS.
Collapse
Affiliation(s)
- Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Huanqing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Biao Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Fei Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wan Wei
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China;
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou 310009, China
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| |
Collapse
|
186
|
Affiliation(s)
- Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, P&S 10-401 New York, NY 10032, USA
| | - Benedek Halmos
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
187
|
Kaw K, Chattopadhyay A, Guan P, Chen J, Majumder S, Duan XY, Ma S, Zhang C, Kwartler CS, Milewicz DM. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells. Eur Heart J 2023; 44:2713-2726. [PMID: 37377039 PMCID: PMC10393072 DOI: 10.1093/eurheartj/ehad373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.
Collapse
Affiliation(s)
- Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Xue-yan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuangtao Ma
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- Department of Medicine, Michigan State University, 1355 Bogue St, B226B Life Sciences, East Lansing, MI 48824, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Callie S Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
188
|
Han Z, Hu H, Yin M, Lin Y, Yan Y, Han P, Liu B, Jing B. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4: a potential mechanism of atherosclerosis pathogenesis. Mol Med 2023; 29:104. [PMID: 37528397 PMCID: PMC10394793 DOI: 10.1186/s10020-023-00685-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.
Collapse
Affiliation(s)
- Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Haidi Hu
- Department of General and Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - MingZhu Yin
- Department of Dermatology, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
- Human Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Yu Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yan Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Peng Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
189
|
Perry RN, Albarracin D, Aherrahrou R, Civelek M. Network Preservation Analysis Reveals Dysregulated Metabolic Pathways in Human Vascular Smooth Muscle Cell Phenotypic Switching. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:372-381. [PMID: 37387208 PMCID: PMC10434832 DOI: 10.1161/circgen.122.003781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their dysfunction may impact disease progression. METHODS We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 multiethnic heart transplant donors cultured under quiescent or proliferative conditions. RESULTS We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen metabolism-related genes and coronary artery disease-associated genes and found significant correlations, suggesting the involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation. CONCLUSIONS Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI (mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in smooth muscle cells.
Collapse
Affiliation(s)
- R. Noah Perry
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Diana Albarracin
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
| | - Mete Civelek
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| |
Collapse
|
190
|
Lien CF, Lin CS, Shyue SK, Hsieh PS, Chen SJ, Lin YT, Chien S, Tsai MC. Peroxisome proliferator-activated receptor δ improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br J Pharmacol 2023; 180:2085-2101. [PMID: 36942453 DOI: 10.1111/bph.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tan Lin
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
191
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
192
|
Hu Y, Cai Z, He B. Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease. Int J Mol Sci 2023; 24:11701. [PMID: 37511460 PMCID: PMC10380637 DOI: 10.3390/ijms241411701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in the maintenance of aortic wall integrity. VSMCs have been suggested to have contractile and synthetic phenotypes and undergo phenotypic switching to contribute to the deteriorating aortic wall structure. Recently, the unprecedented heterogeneity and diversity of VSMCs and their complex relationship to aortic aneurysms (AAs) have been revealed by high-resolution research methods, such as lineage tracing and single-cell RNA sequencing. The aortic wall consists of VSMCs from different embryonic origins that respond unevenly to genetic defects that directly or indirectly regulate VSMC contractile phenotype. This difference predisposes to hereditary AAs in the aortic root and ascending aorta. Several VSMC phenotypes with different functions, for example, secreting VSMCs, proliferative VSMCs, mesenchymal stem cell-like VSMCs, immune-related VSMCs, proinflammatory VSMCs, senescent VSMCs, and stressed VSMCs are identified in non-hereditary AAs. The transformation of VSMCs into different phenotypes is an adaptive response to deleterious stimuli but can also trigger pathological remodeling that exacerbates the pathogenesis and development of AAs. This review is intended to contribute to the understanding of VSMC diversity in health and aneurysmal diseases. Papers that give an update on VSMC phenotype diversity in health and aneurysmal disease are summarized and recent insights on the role of VSMCs in AAs are discussed.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
193
|
Kidder E, Pea M, Cheng S, Koppada SP, Visvanathan S, Henderson Q, Thuzar M, Yu X, Alfaidi M. The interleukin-1 receptor type-1 in disturbed flow-induced endothelial mesenchymal activation. Front Cardiovasc Med 2023; 10:1190460. [PMID: 37539090 PMCID: PMC10394702 DOI: 10.3389/fcvm.2023.1190460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Atherosclerosis is a progressive disease that develops in areas of disturbed flow (d-flow). Progressive atherosclerosis is characterized by bulky plaques rich in mesenchymal cells and high-grade inflammation that can rupture leading to sudden cardiac death or acute myocardial infarction. In response to d-flow, endothelial cells acquire a mesenchymal phenotype through endothelial-to-mesenchymal transition (EndMT). However, the signaling intermediaries that link d-flow to EndMT are incompletely understood. Methods and Results In this study we found that in human atherosclerosis, cells expressing SNAI1 (Snail 1, EndMT transcription factor) were highly expressed within the endothelial cell (EC) layer and in the pre-necrotic areas in unstable lesions, whereas stable lesions did not show any SNAI1 positive cells, suggesting a role for EndMT in lesion instability. The interleukin-1 (IL-1), which signals through the type-I IL-1 receptor (IL-1R1), has been implicated in plaque instability and linked to EndMT formation in vitro. Interestingly, we observed an association between SNAI1 and IL-1R1 within ECs in the unstable lesions. To establish the causal relationship between EndMT and IL-1R1 expression, we next examined IL-1R1 levels in our Cre-lox endothelial-specific lineage tracing mice. IL-1R1 and Snail1 were highly expressed in ECs under atheroprone compared to athero-protective areas, and oscillatory shear stress (OSS) increased IL-1R1 protein and mRNA levels in vitro. Exposure of ECs to OSS resulted in loss of their EC markers and higher induction of EndMT markers. By contrast, genetic silencing of IL-1R1 significantly reduced the expression of EndMT markers and Snail1 nuclear translocation, suggesting a direct role for IL-1R1 in d-flow-induced EndMT. In vivo, re-analysis of scRNA-seq datasets in carotid artery exposed to d-flow confirmed the IL-1R1 upregulation among EndMT population, and in our partial carotid ligation model of d-flow, endothelial cell specific IL-1R1 KO significantly reduced SNAI1 expression. Discussion Global inhibition of IL-1 signaling in atherosclerosis as a therapeutic target has recently been tested in the completed CANTOS trial, with promising results. However, the data on IL-1R1 signaling in different vascular cell-types are inconsistent. Herein, we show endothelial IL-1R1 as a novel mechanosensitive receptor that couples d-flow to IL-1 signaling in EndMT.
Collapse
Affiliation(s)
- Evan Kidder
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Meleah Pea
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Siyuan Cheng
- Department of Urology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Satya-Priya Koppada
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Suren Visvanathan
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Quartina Henderson
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Moe Thuzar
- Department of Pathology and Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Xiuping Yu
- Department of Urology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Mabruka Alfaidi
- Department of Internal Medicine-Division of Cardiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Science (CCDS), Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| |
Collapse
|
194
|
Dubner AM, Lu S, Jolly AJ, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MCM. Smooth muscle-derived adventitial progenitor cells promote key cell type transitions controlling plaque stability in atherosclerosis in a Klf4-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549539. [PMID: 37503181 PMCID: PMC10370085 DOI: 10.1101/2023.07.18.549539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM cells localize throughout the vessel wall and atherosclerotic plaques, where they primarily differentiate into fibroblasts, SMCs, or remain in a stem-like state. Klf4 knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched myofibroblast phenotype compared to WT mice. Additionally, Klf4 depletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMCs and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 depletion, but multiple indices of plaque vulnerability were reduced. Collectively, these data support that modulating the AdvSca1-SM population confers increased protection from the development of unstable atherosclerotic plaques.
Collapse
Affiliation(s)
- Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Keith A Strand
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie F Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler Hinthorn
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Tysen Noble
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen S Moulton
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101
- Departments of Pediatrics, Laboratory Medicine & and Pathology, University of Washington, Seattle, WA, 98195
| | - Mary CM Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
195
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292633. [PMID: 37502836 PMCID: PMC10370238 DOI: 10.1101/2023.07.13.23292633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
- Karolinksa Institute, Department of Medicine
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
196
|
Karnewar S, Karnewar V, Shankman LS, Owens GK. Treatment of advanced atherosclerotic mice with the senolytic agent ABT-263 is associated with reduced indices of plaque stability and increased mortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548696. [PMID: 37502944 PMCID: PMC10369968 DOI: 10.1101/2023.07.12.548696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The use of senolytic agents to remove senescent cells from atherosclerotic lesions is controversial. A common limitation of previous studies is the failure to rigorously define the effects of senolytic agent ABT-263 (Navitoclax) on smooth muscle cells (SMC) despite studies claiming that they are the major source of senescent cells. Moreover, there are no studies of the effect of ABT-263 on endothelial cells (EC), which along with SMC comprise 90% of α-SMA+ myofibroblast-like cells in the protective fibrous cap. Here we tested the hypothesis that treatment of advanced atherosclerotic mice with the ABT-263 will reduce lesion size and increase plaque stability. SMC (Myh11-CreERT2-eYFP) and EC (Cdh5-CreERT2-eYFP) lineage tracing Apoe-/- mice were fed a WD for 18 weeks, followed by ABT-263 100mg/kg/bw for six weeks or 50mg/kg/bw for nine weeks. ABT-263 treatment did not change lesion size or lumen area of the brachiocephalic artery (BCA). However, ABT-263 treatment reduced SMC by 90% and increased EC-contributions to lesions via EC-to-mesenchymal transition (EndoMT) by 60%. ABT-263 treatment also reduced α-SMA+ fibrous cap thickness by 60% and increased mortality by >50%. Contrary to expectations, treatment of WD-fed Apoe-/- mice with the senolytic agent ABT-263 resulted in multiple detrimental changes including reduced indices of stability, and increased mortality.
Collapse
Affiliation(s)
- Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
| | - Vaishnavi Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
| | - Laura S Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
| |
Collapse
|
197
|
Theofilis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Pathophysiology of Acute Coronary Syndromes-Diagnostic and Treatment Considerations. Life (Basel) 2023; 13:1543. [PMID: 37511918 PMCID: PMC10381786 DOI: 10.3390/life13071543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Coronary artery disease and acute coronary syndromes are accountable for significant morbidity and mortality, despite the preventive measures and technological advancements in their management. Thus, it is mandatory to further explore the pathophysiology in order to provide tailored and more effective therapies, since acute coronary syndrome pathogenesis is more varied than previously assumed. It consists of plaque rupture, plaque erosion, and calcified nodules. The advancement of vascular imaging tools has been critical in this regard, redefining the epidemiology of each mechanism. When it comes to acute coronary syndrome management, the presence of ruptured plaques almost always necessitates emergent reperfusion, whereas the presence of plaque erosions may indicate the possibility of conservative management with potent antiplatelet and anti-atherosclerotic medications. Calcified nodules, on the other hand, are an uncommon phenomenon that has largely gone unexplored in terms of the best management plan. Future studies should further establish the importance of detecting the underlying mechanism and the role of various treatment plans in each of these distinct entities.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- First Department of Cardiology, "Hippokration" General Hospital, University of Athens Medical School, 115 27 Athens, Greece
| | - Evangelos Oikonomou
- Third Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", University of Athens Medical School, 115 27 Athens, Greece
| | - Christos Chasikidis
- Department of Cardiology, General Hospital of Corinth, 201 00 Corinth, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, "Hippokration" General Hospital, University of Athens Medical School, 115 27 Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, "Hippokration" General Hospital, University of Athens Medical School, 115 27 Athens, Greece
| |
Collapse
|
198
|
Li K, Li B, Zhang D, Du T, Zhou H, Dai G, Yan Y, Gao N, Zhuang X, Liao X, Liu C, Dong Y, Chen D, Qu LH, Ou J, Yang JH, Huang ZP. The translational landscape of human vascular smooth muscle cells identifies novel short open reading frame-encoded peptide regulators for phenotype alteration. Cardiovasc Res 2023; 119:1763-1779. [PMID: 36943764 DOI: 10.1093/cvr/cvad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 03/23/2023] Open
Abstract
AIMS The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown. Here, we explored the genome-wide regulation at the translational level of human VSMCs during phenotype alteration. METHODS AND RESULTS We generated nucleotide-resolution translatome and transcriptome data from human VSMCs undergoing phenotype alteration. Deep sequencing of ribosome-protected fragments (Ribo-seq) revealed alterations in protein synthesis independent of changes in messenger ribonucleicacid levels. Increased translational efficiency of many translational machinery components, including ribosomal proteins, eukaryotic translation elongation factors and initiation factors were observed during the phenotype alteration of VSMCs. In addition, hundreds of candidates for short open reading frame-encoded polypeptides (SEPs), a class of peptides containing 200 amino acids or less, were identified in a combined analysis of translatome and transcriptome data with a high positive rate in validating their coding capability. Three evolutionarily conserved SEPs were further detected endogenously by customized antibodies and suggested to participate in the pathogenesis of atherosclerosis by analysing the transcriptome and single cell RNA-seq data from patient atherosclerotic artery samples. Gain- and loss-of-function studies in human VSMCs and genetically engineered mice showed that these SEPs modulate the alteration of VSMC phenotype through different signalling pathways, including the mitogen-activated protein kinase pathway and p53 pathway. CONCLUSION Our study indicates that an increase in the capacity of translation, which is attributable to an increased quantity of translational machinery components, mainly controls alterations of VSMC phenotype at the level of translational regulation. In addition, SEPs could function as important regulators in the phenotype alteration of human VSMCs.
Collapse
Affiliation(s)
- Kang Li
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Dihua Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Tailai Du
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Huimin Zhou
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Youchen Yan
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Nailin Gao
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Xiaodong Zhuang
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Xinxue Liao
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Chen Liu
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Yugang Dong
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Demeng Chen
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Jingsong Ou
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Zhan-Peng Huang
- 1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (Sun Yat-sen University), 58 Zhongshan Er Road, Guangzhou 510080, China
| |
Collapse
|
199
|
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z. Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells. Front Med (Lausanne) 2023; 10:1193660. [PMID: 37469665 PMCID: PMC10352799 DOI: 10.3389/fmed.2023.1193660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. Vascular calcification (VC), the deposition of calcium and phosphate within the arterial wall, is an important characteristic of AS natural history. However, medial arterial calcification (MAC) differs from intimal calcification and cannot simply be explained as the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are directly involved in AS and VC processes. Understanding the communication between ECs and VSMCs is critical in revealing mechanisms underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular messengers in kinds of physiological processes and pathological progression. Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The effects of ncRNAs have not been comprehensively understood, especially encapsulated in EVs. Some ncRNAs have demonstrated significant roles in AS and VC, but it remains unclear the functions of the majority ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chongmei Liu
- Department of Pathology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
200
|
Neels JG, Gollentz C, Chinetti G. Macrophage death in atherosclerosis: potential role in calcification. Front Immunol 2023; 14:1215612. [PMID: 37469518 PMCID: PMC10352763 DOI: 10.3389/fimmu.2023.1215612] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Cell death is an important aspect of atherosclerotic plaque development. Insufficient efferocytosis of death cells by phagocytic macrophages leads to the buildup of a necrotic core that impacts stability of the plaque. Furthermore, in the presence of calcium and phosphate, apoptotic bodies resulting from death cells can act as nucleation sites for the formation of calcium phosphate crystals, mostly in the form of hydroxyapatite, which leads to calcification of the atherosclerotic plaque, further impacting plaque stability. Excessive uptake of cholesterol-loaded oxidized LDL particles by macrophages present in atherosclerotic plaques leads to foam cell formation, which not only reduces their efferocytosis capacity, but also can induce apoptosis in these cells. The resulting apoptotic bodies can contribute to calcification of the atherosclerotic plaque. Moreover, other forms of macrophage cell death, such as pyroptosis, necroptosis, parthanatos, and ferroptosis can also contribute by similar mechanisms to plaque calcification. This review focuses on macrophage death in atherosclerosis, and its potential role in calcification. Reducing macrophage cell death and/or increasing their efferocytosis capacity could be a novel therapeutic strategy to reduce the formation of a necrotic core and calcification and thereby improving atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Jaap G. Neels
- Université Côte d’Azur, Institut national de la santé et de la recherche médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Claire Gollentz
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Giulia Chinetti
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| |
Collapse
|